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Adhesion-induced vesicle propulsion
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We study theoretically vesicle locomotion. We show how adhesion may lead to vesicle propulsion. The
problem is fully solved numerically and an analytical solution is obtained in a perturbative scheme. The
analytical result reproduces the numerical one. We provide an expression for the drift velocity as a function of
relevant parameters. We discuss how a vesicle or a cell could establish itself this motion from physico-
chemical concepts, while its environment could be initially homogeneous. We suggest experimental protocols.
@S1063-651X~97!51209-8#

PACS number~s!: 87.22.Bt, 64.60.Cn, 68.15.1e
er
ol
ll
s
h

gy
in
in

an
pt
fe

e
d
in
d
e
ith

u
ice
its
b

re
u
e
o
o

el

at
W

el
o

th

en
f
th
b

the
ns a

.
ho-

ata

b-
ta-
-

the
en-

t it
of

our
d in

that
iated

of
o-

is-
are

rall
-
e
nt
tion
the

art

e
za-
Phospholipid membranes are widely studied both exp
mentally and theoretically. The reasons are at least twof
~i! they constitute the major and vital compartments of ce
in the realm of biology,~ii ! they provide canonical system
that lend themselves to a relatively simple modeling. T
famous Helfrich@1# model based only on curvature ener
has constituted an important starting point for the model
of vesicle shapes. Some of these shapes are surpris
close to those encountered for real biological cells, such
erythrocytes. This has stimulated a myriad of studies
drawn attention to the fact that simple physical conce
may, to some extent, be relevant for describing several
tures~e.g., the shape! of apparently complex entities@2#.

Theoretical studies@3# on equilibrium shapes of a pur
phospholipidic vesicle have been successfully conducte
predicting the shape conformations that are expected
given range of parameter space. Experiments have playe
important role@4# in the development of this field, and hav
even led to the discovery of many surprising forms w
nontrivial topologies@5# ~such asn-genus torus! predicted by
the model@6#.

In the realm of biology, many features are of a noneq
librium dissipative nature. Perhaps one of the most not
able and puzzling nonequilibrium features of a cell is
ability to move. The understanding of the mechanisms
which crawling, rolling, etc. operate is still quite prematu
Several recent attracting experimental works attempt to
derstand cell locomotion@7,8#. There is also considerabl
precedent for gradient of substratum bound, insoluble m
ecules, in playing an important role in orienting the locom
tion of cells@9#. That is to say, adhesion gradients selectiv
guide the movement.

We report on how a phospholipidic vesicle on a substr
can move in the presence of inhomogeneous adhesion.
provide an expression for the velocity as a function of r
evant parameters. We shall comment in the conclusion
concepts related to how a cell or a vesicle could establish
motion spontaneously.

Our study is inspired by a recent impressive experim
on reactive liquid droplets@10#. These are droplets o
n-alkanes containing chlorosilane. The silane reacts with
OH group of the glass substrate, and makes it hydropho
561063-651X/97/56~4!/3776~4!/$10.00
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Once a motion has been initiated the droplet escapes
reacted regions; it thus spontaneously moves, and attai
permanent regime. Brochard-Wyart and De Gennes@11#
have recently given an interpretation of this phenomenon

Let us start with a simple case. Suppose that a phosp
lipid vesicle is deposited on top of two contiguous substr
‘‘ A’’ and ‘‘ B’’ with adhesion energiesW1 and W2 . The
initial stage is that the vesicle is straddling the two su
strates. IfW2.W1 , one expects the vesicle to move spon
neously fromA to B. This is what happens in our simula
tions. We can then imagine different protocols where
vesicle could permanently experience different adhesion
ergies backward and forward. Our expectation is tha
should acquire a permanent motion. This is the outcome
our study.

Similar to studies on vesicle shapes, we shall keep
description as simple as possible. Since we are intereste
dynamics, we shall develop a time-dependent theory
should serve to study any dynamical phenomenon assoc
with shape conformation and/or global motion. For ease
presentation in this paper, we restrict ourselves to a tw
dimensional vesicle. Any fluctuation is associated with a d
sipation in some degrees of freedom. The slowest modes
of hydrodynamics type. We shall rather assume an ove
constant mobilityh. This does not alter the qualitative fea
tures. Inclusion of full hydrodynamics will constitute th
subject of a forthcoming work. The model below is sufficie
in presenting the general concept. The simplest descrip
of vesicle dynamics is based here on a model where
vesicle positionr obeys

h
]r

]t
52

1

Ag

dF

dr
1u t̂ , ~1!

whereF is the total free energy including the adhesion p
and will be given below,g is the induced metric, andu ( t̂ is
the unit tangent vector! is a quantity which ensures a gaug
field invariant formulation under any surface reparametri
tion. As it will appear soon,u is a quantity which is fixed
only by the curve parametrization. We consider thatr (a,t) is
R3776 © 1997 The American Physical Society
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56 R3777ADHESION-INDUCED VESICLE PROPULSION
parametrized bya, which is taken at liberty to belong to th
interval @0,1#. The simplest Helfrich free energy~including
adhesion! takes the form

F5kE
0

L

dsS 1

2
c22

1

2
~P/k!r3 t̂1~z/k! D1W1x12W2x2 .

~2!

c is the curvature,k the rigidity,L the total length,x1 andx2
the x positions of the two contact points,P andz are time-
dependent Lagrange multipliers enforcing a constant
closed area~or volume in 3D! and a total length~or surface
in 3D!.

Setting ]r /]t5v we immediately obtain~except at the
end pointsx1 andx2 , as we shall see later! from Eqs.~1! and
~2!,

v5
k

hS d2c

ds2
1

1

2
c32P/k2zc/k D n̂1

u

h
t̂ . ~3!

The quantityu is simply the tangential velocity, while th
physics is contained in the normal partvn . The introduction
of u offers the freedom for the choice of any convenie
parametrization of the vesicle. Once the parametrizatio
fixed, the tangential velocity is determined, without alteri
the physics. Note that the normal part is similar to that fou
by Goldstein and Langer@12# in the context of dynamics o
stiff polymers. We find it convenient to use a parametrisat
in a such way that the relative distance between two po
s/L on the vesicle remains constant as time proceeds.
fixes u @13#.

We are now in a position to tackle nonequilibrium fe
tures. For the adhesion problem one needs to specify
boundary conditions. Letc be the angle between the norm
and the vertical axis. The first boundary condition is

c~x5x1!5p, c~x5x2!52p , ~4!

because any other value would imply an infinite curvature
the contact points. The second condition follows from a
lyzing consequences of virtual displacements of the con
pointsx1 andx2 , a classical variational problem withà pri-
ori nonfixed boundaries@14#. In the present context, Seife
@15# has treated this problem for static vesicles, and provi
a boundary condition on the curvature at the contact po
There isa priori no reason that the same condition holds
the dynamical case. Any virtual displacement of the cont
point by an amountdx leads to an energy change at th
point given bydF5dx(kc222W). Any fluctuation is asso-
ciated to a dissipation. One of the most serious points to
emphasized@16# is the relation between fluctuations and d
sipations. For example, a liquid contact line can dissipate
energy in the hydrodynamic flow in the wedge, or via t
microscopic jump of molecules at the tip. Another importa
question concerns the type of motion at the contact point.
can think of bond breaking on one side of the contact a
bond restoring at the other side. In this work we shall pos
late a dissipation law where the contact points obey the
lowing dynamical equations:
n-
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]x1

]t
5G21~kc222W1!,

]x2

]t
52G21~kc222W2! ,

~5!

whereG is a phenomenological dissipation coefficient. It
an important task for future investigations to determine t
coefficient from microscopic considerations. The time sc
involved in the dissipation coefficientG might be ~but not
necessarily! fixed by hydrodynamics. Which dissipatio
dominates in the general case, should clearly depend on
cific situations. We hope to address these crucial question
the future. The signs in Eq.~5! are fixed by the condition tha
there is either adhesion~energy gain! or detachment~energy
loss!.

The first result is that the vesicle spontaneously mo
towards theB part. If W1 andW2 are constant on both sides
the vesicle acquires a constant velocity, a situation on wh
we now direct our attention. The full transient problem w
be presented elsewhere. We setvn5V sin(c), whereV is the
~constant! drift velocity. Equation~3! can be converted into
three differential equations of first order. We then requ
three conditions. Moreover,V andz are unknown quantities
~here we fixp which implies a freedom on the area!. There is
a hidden unknown, the contact areax22x1 . We need six
conditions in total. Four conditions are provided by Eqs.~4!
and~5!, whereas the remaining two conditions stem from t
geometric constraints, namely,rsin(c)50 ~which imposes to
the height on both sides to be identical!, andrcos(c)ds5x2
2x1 ~which ensures that the ‘‘landing’’ point in a shootin
method is preciselyx2 , if x1 is the shooting origin!.

Figure 1 shows a typical vesicle for three values of t
driving force. Note that the motion direction corresponds
the one where the vesicle has developed a ‘‘foot.’’ Figure
shows how the velocity behaves as a function of the ad
sion difference. Due to various parameters that enter into
problem, it is highly desirable to have analytical results
our disposal. Our starting point is to notice that the veloc
is a global quantity, and there should be no need to go
local details to determine it. For that purpose, we start fr
the third order differential equation forc as it follows from
Eq. ~3!. Multiplying on both sides bydc/ds and integrating
over the vesicle fromx1 to x2 yields

FIG. 1. Typical solution moving at constant speed sideways
different values of parameters. Herep is fixed while the area adapt
itself. V is measured in units of 100mm andW in units of 1024

mJ/m2.
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V5
k/2D~c̈2!1k21D~a2!2pA2/kD~Aa!2z/kD~a!

hE c̈sin~c!ds

,

~6!

where use has been made of Eqs.~5!, andD stands for the
difference betweenx2 and x1 of the quantity under consid
eration. Herea25W22VG/2, anda15W11VG/2. For ex-
ample,Da5W22W12VG. In order to get more insight to-
wards a full analytical expression, we confine ourselves t
relatively small osmotic pressure. In that casec is a slowly
varying function around a circle geometry@in particular, we
can show that forpk/R3 not too large in comparison to unity
~this is our meaning of a small osmotic pressure! the free
vesicle is circular#. Therefore,c̈ can legitimately be disre-
garded. Within this approximation the numerator in Eq.~6! is
completely evaluated as a function ofk and the adhesion
difference on both sides. To evaluate the denominator
find it convenient to setc52ps/L2p1f ~where L is
the length of the vesicle which is not in contact with th
substratum!. In a perturbative scheme~that is neglectingf2

as well as ḟ2), the denominator reads2(2p/L)2Ladh

14p/L*dsḟcos(2ps/L1f). This integral is related exactly
to Ladh , the adhering length of the vesicle which is direct
accessible to experiments~and which turns to be a wea
function of all other parameters!, so that the denominato
takes the form (2p/L)2Ladh . This amounts to

V.
ADW

h1AG
, A[

W

k
~R2/Ladh!@12pR0 /W2z/W# ,

~7!

whereR[L/2p andR0[A(k/2W). Recall that the dissipa-
tion powers are proportional to 1/h and 1/G for the free part
and the contact point, respectively.W is the average adhe
sion energy. The above expression shows that the two d
pation mechanisms can be viewed as two resistances w
are mounted in parallel in an electrical analogy~V would be
the current andDW the potential difference!. The largest

FIG. 2. V as a function ofW22W1 . p560 mPa ~the area
adapts itself!, h5102 Kgm22 s21 ~note that it has a dimension of
viscosity per unit length!, k525kBT, L57 mm, G
5110 Kgm21 s21 ~dimension of a viscosity!.
a

e

si-
ich

resistance dominates the limitation of the vesicle moti
Here we have made an expansion of the numerator in Eq~6!
for small enoughDW. This corresponds to a linear respon
limit. However, it is clear from Eq.~6! that the full expres-
sion of the velocity is a nonlinear function of the velocit
However, we did not find a very pronounced deviation fro
a relatively linear behavior~Fig. 2!, althoughDW varies by
an order of magnitude. In contrastV as a function of the
dissipation ratio (G/h) shows a nonlinear behavior as di
played in Fig. 3. SupposeG is fixed. At small G/h ~this
means largeh), most of the energy is dissipated in the fre
part. The slope ofV is very large. On increasing this ratio,
crossover to a regime where contact dissipation domina
In that case it is easy to check from Eq.~6! that V.(W2
2W1)/G, which is independent ofh. The order of magni-
tude of the velocity for typical values@k;(10220)kBT,
W;1024 mJ/m2 ~weak adhesion! a typical size R
;10 mm, dW/W;0.120.5, an osmotic pressure of the o
der of 1024 bar, andh;0.1 g cm22 s21; this value corre-
sponds to a real dissipation value associated with hydro
namics transport! is V;10021000 mm/s. This velocity
lies in the range of real cells velocities. For example, gra
locytes move in the range 10250 mm/s in vivo, and can
reach 500mm/s in vitro @7#.

The most obvious suggestion is to prepare a vesicle st
dling on two substrata with different adhesion energies. T
vesicle should spontaneously move sideways. The next
is to use a progressive coating of the substrate in orde
establish an adhesion gradient. The vesicle should move
wards the strong adhering regions.

Hitherto vesicle locomotion required an inhomogeneo
environment from outside. Perhaps the most spectacular
ation would be that a vesicle establish the motion itself in
initially homogeneous medium, in a similar manner as w
droplets@10#. The vesicle would deposit through channels
substance reducing its adhesion. We believe that, tho
more complex, this should be feasible with vesicles.

On the general ground cell movement is essential to b
survival: the immune system fight infections trough cell l
comotion. At the same time cell emigration may also co
tribute in reinforcing diseases. For example, cancer c
crawl and spread out throughout the organism@17#. It is well

FIG. 3. V as a function of the bulk to contact dissipation ratio.
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documented that crawling occurs via the bottom of the c
which attaches to the underlying substrate primarily throu
the action of the membrane-adhesion proteins@17#. Under-
standing how and by which mechanisms cells move in
sponse to tissue injury is a major branch of research in
logical and medical science. It goes without saying, that r
cells are much too complex to lend themselves to sim
modeling~for example, cytosqueleton should play a decis
role!. Selecting few ingredients is thus necessary in orde
identify the primary physico-chemical prototypes, which o
erwise may express themselves in a quite disguised form
real cells. We thus believe that experiments onartificial
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vesicles with protein channels allowing permeability a
good candidates on which to perform experiments. T
should constitute a decisive step towards elucidation of
ementary physico-chemical concepts, before dealing w
more complex entities.
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