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Instability of the one-dimensional thickness profile at the edge of a horizontal
foam film and its Plateau border
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The thinning of the liquid films separating bubbles in a foam or in a bubbly liquid
controls the coalescence process and the foam stability, and is highly relevant in many
industrial processes. The spatiotemporal evolution of the film thickness is governed by
highly nonlinear equations, the solution properties of which are still mostly unknown. For
a flat film in contact with a meniscus at a lower pressure, a classical theoretical solution is
the appearance, deepening and widening of a pinched region, uniform along the meniscus.
However, film thinning has been shown to be mainly controlled by nonuniform marginal
regeneration, for which no clear explanation has been provided to date. In this article,
we establish experimentally that the theoretical uniform film thickness profile is unstable,
even in a horizontal film, and we measure the instability wavelength along the meniscus.
We show that the Poiseuille flow can be neglected during the destabilization process, and,
taking advantage of this scale separation, we build an original equation set leading to the
prediction of the instability wavelength.

DOI: 10.1103/PhysRevFluids.6.114005

I. INTRODUCTION

Liquid foams are complex fluids used in various industrial domains, such as food science, oil
recovery, the cosmetic and detergent industry, ore extraction, or fire fighting. In most situations, the
foam stability, i.e., its lifetime, is a key parameter; it is difficult to control or predict because the
dynamics of film thinning is still poorly understood. The foam films consist of surfactant solution
confined between two gas bubbles and limited laterally by a meniscus, as shown in Fig. 1(a). Their
dynamics belongs to the large class of lubrication flows that are governed by a strong coupling
between the shape of the limiting interfaces and the hydrodynamic forces. In the foam-film case,
the coupling arises from the Laplace law [1], relating the interface curvature and the pressure: in
the meniscus, the curvature is fixed by the bubble diameter and the total volume of the foaming
solution, yielding a pressure lower than in the air; in the film, the thickness evolves with the
flow of solution, generating a nonuniform curvature that gives a complex feedback on the flow.
It results in a peculiar dynamics, and, depending on the boundary condition at the interfaces [2,3]
and on the bubble motion, the meniscus under pressure may lead to different drainage processes:
in particular, the thinnest part of the film may be either the film center [4–6] [Fig. 1(b)] or a
pinched region at the film edge [7–10] [Fig. 1(c)]. In this last case, denoted marginal pinching in
the literature, the film thickness profile has been predicted by Aradian, Raphaël, and de Gennes
[2], assuming the interfaces do not move. This important simplification actually results from
two different assumptions: (i) an incompressible interface, which is a limit usually reached in
foam films, due to their high interface elastic modulus [11], and (ii) the uniformity of the profile
along the meniscus direction, which only results from the symmetry of the problem. These two
conditions impose a uniform velocity at the interface, and thus a velocity equal to zero on the whole
interface when the film is at rest far from the meniscus. The aim of the paper is to question the
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FIG. 1. (a) Sketch of the studied configuration: a flat film of surfactant solution separates two volumes
of air (bubbles), and is delimited by two Plateau borders (PBs) of uniform radius of curvature rm. Under the
assumption of a thickness uniform along the x direction, different cases are known for the drainage depending
on the boundary condition at the interfaces: the thinnest part of the film can be located in the center (b) or at
the edges of the film (c). In the experiments and in the present modeling, the thickness profile is close to case
(c) at short time. However, it does not remain uniform along the x direction at long time, and it destabilizes
into a periodic pattern (d).

assumption (ii) and to investigate the stability of the one-dimensional (1D) profile with respect to 2D
perturbations.

We first recall here the mechanism detailed in [2] leading to the pinched regions close to the
meniscus [see Fig. 1(c)]. A meniscus (also called a Plateau border) of uniform radius of curvature
rm is oriented along x and in contact with a flat immobile film of thickness 2h∞ at large y. The film
is horizontal, so there are no gravity effects, and it is thick enough for the disjoining pressure to
be negligible. The pressure in the film at the position y is thus entirely controlled by the Laplace
pressure, which is the product of the interfacial tension γ and of the interface curvature. The
Reynolds number is negligible, and the pressure gradient balances the viscous forces associated
with the Poiseuille flow in the film. Due to volume conservation, the flow, which is driven by the
thickness profile, also modifies the thickness. This complex feedback loop generates the following
dynamics: at the edge between the flat film at atmospheric pressure and the meniscus at a lower
pressure, there is a flow from the film to the meniscus. This flow decreases the thickness at the film
edge and creates a trough and a new pressure distribution along the film, with a low pressure at the
bottom of the trough and a high pressure at its border. The subsequent fluxes result in a widening
and a deepening of the trough. The modeling discussed in Sec. IV yields at long time to a scale
invariant film profile, with scaling laws for the characteristic width w of the pinched region and for
the minimal thickness hmin of the profile as a function of time t :

w ∼ rm

( t

τ

)1/4

(1)

and

hmin ∼ h2
∞

rm

( t

τ

)−1/2

, (2)

with τ being a viscocapillary time such as τ = 3ηr4
m/(γ h3

∞), where η is the viscosity of the liquid.
In this mechanism, the flow is 1D, and the thickness profile remains uniform in the direction parallel
to the meniscus.
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This process is at the origin of the dimple shapes often observed in draining films [12]. In
some cases, the pinched region is reported to destabilize into a necklace of thin spots [13–15], and
this instability then evolves into a nonuniform flow dynamics along the meniscus [1,16,17], which
controls the subsequent film drainage and its lifetime [10,18–20]: regions of the film with a small
thickness are emitted from the menisci, while thicker parts of the film flow into the menisci. In the
presence of gravity, the thin regions migrate by buoyancy to the top of the film. The localization
of this phenomenon at the margin of the film yielded the term marginal regeneration [1]. The
identification of the parameters controlling the destabilization process, and the prediction of the
initial wavelength, are open questions in the literature.

Symmetry breaking induced by the disjoining pressure [21] or by an increase of the tension far
from the meniscus, due to evaporation in a binary mixture [22], has been observed. In this paper, we
show that the film profile destabilization occurs even in the absence of gravity or disjoining pressure,
and that it can be explained by capillary effects only. We produce a 600-nm-thick horizontal film
at rest, in contact with a meniscus. A thinner region appears along the meniscus, initially uniform
by translation along the meniscus, and this pinched region destabilizes into quasicircular spots of
thin film separated by a well-defined wavelength. Revisiting the classical lubrication equations, we
show that this destabilization occurs by a simple reorganization of the film elements in the plane of
the film, driven by the interface area minimization, under the novel constraint that the film thickness
distribution must be preserved. Under well-controlled approximations, we show that the instability
is entirely decoupled from the underlying drainage process, which allows us to predict the scaling
laws for the instability wavelength, in qualitative agreement with our observations. The wavelength
later increases due to a coarsening process studied in [17].

II. EXPERIMENTAL SETUP

A. Physicochemical properties of the foaming solution

The foaming solution consists of water, with 15 %w glycerol, 5.6 g/L of sodium dodecyl sulfate
(cmc: 2.36 g/L), and 0.8 g/L fluorescein. The resulting viscosity is 1.5 mPa s and the surface tension
is γ = 40 mN/m. The surface shear viscosity is not known with a high degree of precision, and the
values reported in the literature show a large dispersion [23]. Here we assume ηs = 6 × 10−8 kg s,
following [24]. The hygrometry is not controlled, and the evaporation may lead to a slow increase
of the initial concentrations. A thickness decrease rate of 30 nm/s may be deduced from [25] for
horizontal interfaces of a surfactant solution of comparable area, and for a relative humidity of 50%.
This should not play any role during the destabilization time.

B. Mechanical and optical devices

Our experimental setup is similar to the setup used in [17], in which the experimental details are
given. A deformable frame holds three rectangular, flat, foam films connected by a free meniscus
(or Plateau border). The film of interest is horizontal, of constant dimension Lx in the x direction
and variable dimension Ly in the y direction (see Fig. 2). Its dynamics is monitored through two
cameras. A Photron S4 fast camera, perpendicular to the film, records the fluorescent signal thanks
to a blue LED illumination and a dichroic filter (1000 fps, 5 μm/pixel). The film thickness, as
well as the meniscus width, are measured from these images. A Resonon Pika L spectral camera
provides a better determination of the height profile along a line perpendicular to the free meniscus
by specular reflection of a halogen light forming an angle of 48o with the vertical direction (100 fps,
2.5 μm/pixel).

C. Film preparation

The three motor displacements are tuned to produce a horizontal film close to the ideal initial
conditions discussed in Ref. [2]: a film of uniform thickness and vanishing interface velocity, in
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FIG. 2. Sketch of the experimental setup. Three films extend between a free meniscus and mobile frames,
and the film of interest is the horizontal one in the xy plane. To produce a reproducible initial condition, a piece
of film of controlled thickness (of the order of one micron), denoted as the Frankel film, is extracted from the
free meniscus by stretching the horizontal film. The green rectangle represents the area of interest pictured in
Fig. 4. The meniscus on the mobile frame (on the right) behaves similarly but is not studied.

contact with a static meniscus. Toward this end, the frame is plunged into the solution, producing
the three initial films. Then the horizontal film is stretched and the lateral films are compressed by
moving the motors at a speed of 50 mm/s. The tension increases in the horizontal film, and some
new film is extracted from the meniscus, following Frankel’s law [1]. The thickness of the new film,
located between the initial film and the meniscus, and denoted as Frankel’s film in the following,
is of the order of 600 nm, so that the disjoining pressure is negligible. If the motor is suddenly
stopped, the film extraction continues as long as the horizontal film tension is above its steady value.
The extraction velocity, and thus Frankel’s film thickness, decreases during the tension relaxation
process, and the flat film’s initial condition is therefore not achieved. A much better result is obtained
by moving the motors back by a small amount after the stretching step. This relaxes the film tension
and stops the film extraction more rapidly. The boundary between the initial film and Frankel’s film
(c-d limit in Fig. 3) starts receding at the time t = ti defined as the initial time of the experiment. As
discussed below, the interface velocity vanishes close to the meniscus at an intermediate time, after
the motor stop and before ti. The instability of interest occurs typically 0.5 s later than ti.

Following two characteristic material points in the film (the point of maximal thickness and the
boundary between Frankel’s film and the initial film), we estimate the compression rate during
this relaxation as ε̇ = 2 ± 1 s−1, which is consistent with the compression rate deduced from
the thickness map in Sec. IV B. Assuming a homogeneous compression in the film, the velocity,
extrapolated at the boundary with the meniscus, is lower (in absolute value) than 0.5 mm/s.
The upper bound for the interface displacement in the pinched region during the 20 ms of the
destabilization process is therefore 10 μm, i.e., a small fraction of the width of the profile. The
best evidence of the vanishing velocity at the meniscus results from the analysis in Sec. IV B. In
the following, we thus assume that the interface velocity is vanishing at the meniscus during the
destabilization.

The region of interest is located in Frankel’s film, close to the free meniscus. In this domain,
the film thickness is uniform at ti, with a value of 2h∞. This thickness has been varied in the range
[0.5, 1] μm and is correlated with the meniscus radius rm, which is in the range [375, 570] μm.
From this initial condition, we let the film evolve spontaneously.

D. Initial film profile characterization

The film first remains uniform in the x direction and gets locally thinner at the boundary between
the meniscus and the film. Then, at a critical time, chosen as the reference time t = 0 (note that this
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FIG. 3. (a) Film profile (h is the half-thickness) from fluorescence measurement calibrated through the
spectral camera, close to the destabilization time at t = 0 (in this example, ti = −450 ms). Areas a, b, c, and
d , respectively, correspond to the meniscus, the pinched region, the Frankel film, and the initial thin film. Two
characteristic material points can be followed during this time range and move at the velocities vc = 1.6 mm/s
and vd = 4.0 mm/s indicated in the figure, showing the film compression. (b) Zoom on the 1D film profiles
obtained with the spectral camera for the same experiment, before the destabilization. The colored profiles are
recorded from t = −210 ms (dark blue) to −110 ms (red) every 10 ms, and the black one show the measurable
part of the profile at t = 0 ms.

implies ti < 0), the uniformity in the x direction is spontaneously broken, and the pinched region
begins to destabilize in small circular patches of thin film surrounded by the film of thickness 2h∞
(see Fig. 4). The film half-thickness profiles hexp(y, t ) obtained with the spectral camera at different
times between t = ti and the time t = 0 are shown in Fig. 3. The profiles at short time are entirely
resolved, but when thickness gradients become too large, or the thickness too thin, the interference
pattern is lost. In particular, at the destabilization time the thinnest part of the profile is not measured.
Few data points are obtained on the meniscus side, and they show a fast increase of the thickness,
as expected. This enables us to localize precisely the meniscus. On the film side, the upper part of
the profile is resolved.

E. Instability wavelength and destabilization time

We now focus on the destabilization of the film profile at t > 0. The fluorescence intensity along
a line y = yp close to the meniscus (see Fig. 4) is plotted for different times in Fig. 5. We define
λexp as the wavelength measured on the first profile where an oscillating intensity can be detected.

FIG. 4. Film thickness field obtained from the fluorescence intensity before (top, t = −13 ms) and after
(bottom, t = 36 ms) the instability onset (h is the half-thickness). The bars on the right of the top image indicate
the meniscus (region 1, thickness not resolved), the pinched region, of width wp (region 2), and Frankel’s film,
of thickness 2 h∞ (region 3). The region pictured corresponds to the rectangle shown in Fig. 2, and the dashed
line is the position yp where the profiles of Fig. 5 are measured.
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FIG. 5. Intensity profiles along the line y = yp (shown in Fig. 4) recorded every 10 ms, from t = 0 (top,
dark blue) to t = 150 ms (bottom, dark red). An arbitrary offset is added for the sake of visibility.

More precisely, in profiles like the one presented in Fig. 5, we identify patterns consisting of a few
wavelengths that grow simultaneously over time, and we measure the wavelength at the first instant
that it can be detected. The resulting measurements are presented as a function of the half-thickness
of the flat film, h∞, in Fig. 6.

III. THEORY

We consider a film of half-thickness h(x, y) as schematized in Fig. 7. As in the model of Mysels
et al. [1], we assume the Gibbs elasticity to be large enough so that the limit of incompressible
interface is reached [11,26]. The interface is therefore seen as a two-dimensional incompressible
Newtonian fluid, of interface shear viscosity ηs and of tension γ = γ0 + δγ (x, y, t ), with γ0 a
reference tension, taken as the equilibrium tension of the foaming solution. In this limit, the tension
variation δγ is not related to any thermodynamic property of the interface, and it can be seen as
the Lagrange multiplier associated with the conservation of the local interface area. This model has
been introduced by Mysels et al. [1] to describe the motion of the interfaces defined as “mobile.”
This must not be confused with the “rigid” interfaces, which follow similar rules but with an infinite
shear viscosity that prevents any recirculation in the film.

A. Lubrication equations

The lubrication equations governing the bulk velocity u(x, y, z, t ) and the half film thickness
h(x, y, t ) have been established in [16,27] and are briefly recalled here. They can be derived from
the 3D Stokes equation by making a Taylor expansion, using ε = h/L as a small parameter, with
L the characteristic length scale of the thickness variations. At dominant order, the normal velocity
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FIG. 6. Measured wavelengths as a function of the half-thickness of the flat Frankel film.

is negligible and u = (ux, uy ); the pressure is uniform across the film, and its value is P(x, y) =
−γ0�h, with �h the interface mean curvature (note that � and ∇ are 2D operators).

The Stokes equation η ∂2u/∂z2 = ∇P leads to, by successive integrations,

∂u
∂z

= −γ0

η
∇(�h) z, (3)

u = −γ0

η
∇(�h)

(
z2

2
− h2

2

)
+ v, (4)

q =
∫ h

0
u dz = γ0

3η
h3∇(�h) + vh. (5)

Equation (3) is obtained using the symmetry condition in the middle of the film, ∂u/∂z(0) = 0, and
Eq. (4) uses the boundary condition u(h) = u(−h) = v.

FIG. 7. Notations used in the text and schematic of the most general flow pattern, associated with Eqs. (3)–
(5).
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The mass conservation in the film gives finally

∂h

∂t
= −∇ ·

[
γ0

3η
h3∇(�h) + vh

]
. (6)

The interface velocity v(x, y, t ) is determined from the condition of tangential stress continuity
at the interface [16]:

γ0h∇(�h) + ηs�v + ∇δγ = 0. (7)

This equation can be seen as the Stokes equation for the interface, modeled as a 2D Newtonian
incompressible fluid. The term ηs�v represents the viscous forces in the interface, in the limit of
small interface curvature, and the term ∇δγ is the 2D equivalent of a pressure term, insuring the
interface incompressibility. The first term has no 3D equivalent, as it arises from the friction between
the interface and the underlying fluid, which is proportional to the bulk velocity derivative given by
Eq. (3).

For an interface element of projected area dS = dx dy, the actual area is

dA =
√

1 + (∇h)2 dx dy ∼ dx dy + 1
2 (∇h)2dx dy. (8)

At dominant order, the conservation of dA implies that dx dy must be conserved, leading to the
condition ∇ · v = 0. This condition can be taken into account by using the stream function ψ (x, y)
defined such as v = ( ∂ ψ

∂ y ,− ∂ ψ

∂ x ). After derivation of both components of Eq. (7), they are combined
into

ηs

(
∂ 4ψ

∂ x4
+ 2

∂ 4ψ

∂ x2y2
+ ∂ 4ψ

∂ y4

)
= γ0

(
∂ h

∂ x

∂ �h

∂ y
− ∂ h

∂ y

∂ �h

∂ x

)
. (9)

The film dynamics is thus governed by the coupled Eqs. (6) and (9), once initial and boundary
conditions have been set.

B. Solutions with vanishing interface velocities

Let us first remark that Eq. (9) imposes that solutions with vanishing interface velocity verify

∂ h

∂ x

∂ �h

∂ y
− ∂ h

∂ y

∂ �h

∂ x
= 0. (10)

It follows immediately that any profile uniform along x belongs to this class of solutions, and is thus
compatible with the condition v = 0.

In this 1D case, the equations set (6),(9) simplifies into Eq. (6) only, in its 1D version and with
v = 0. As discussed in the Introduction, this case has been solved by Aradian et al. [2] to predict the
evolution of a foam film in contact with a straight meniscus, assuming a priori a solution uniform
along the meniscus. This situation corresponds to our experimental case, before the instability onset,
and the corresponding equation is solved numerically in Sec. IV A to analyze our initial condition.

The condition v = 0 is also compatible with axisymmetric shapes. Indeed, Eq. (10) can be written
in polar coordinates (r, θ ) as(

sin θ
∂ h

∂ r
+ 1

r sin θ

∂ h

∂ θ

)(
cos θ

∂ �h

∂ r
− 1

r sin θ

∂ �h

∂ θ

)

=
(

cos θ
∂ h

∂ r
− 1

r sin θ

∂ h

∂ θ

)(
sin θ

∂ �h

∂ r
+ 1

r sin θ

∂ �h

∂ θ

)
, (11)

which is verified for any function h(r) invariant with θ .
If such symmetries are a priori assumed in a foam film, the condition v = 0 at the interface is

automatically verified: the condition of a “rigid interface,” valid at large interface shear viscosity,
is artificially recovered, without any assumption on the interface shear viscosity value. In contrast,
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for a generic profile h(x, y), the hydrodynamic problem does not have any solution at vanishing
interface velocity, and Eq. (9), involving ηs, must be solved.

C. The sliding puzzle dynamics

At this stage, we propose the key approximation of the paper, based on a scale separation between
the Poiseuille flux, damped by the bulk viscosity, and the flux due to the in-plane recirculation,
damped by the interface viscosity.

Assuming that the thickness and velocity variations occur on the characteristic length scale L
in both directions x and y, the comparison of the two terms of Eq. (9) imposes the scaling of the
interfacial velocity v ∼ (γ0h/ηs)h/L. We can then substitute this scaling in Eq. (6) and compare the
fluxes associated with the Poiseuille flow and with the recirculation at velocity v. The first one is
much smaller than the second one if L � Lspd, with

Lspd = h
√

ηs

h η
(12)

a critical length, of the order of 10 μm if h ∼ 1 μm and ηs = 6 × 10−8 kg s−1. The small value of
Lspd makes such dynamics, hereafter denoted as the sliding-puzzle dynamics, relevant for a large
class of dynamical problems in foam films. It leads to original and simplified equations of motion,
which may allow us to solve problems that are otherwise difficult to address.

In such a regime, Eq. (6) becomes

∂h

∂t
= −∇ · (vh) = −v · ∇h. (13)

The bulk velocity is homogeneous across the film, equal to v, so an elementary volume d� =
2h dS, denoted a film element in the following, is a closed material system of constant volume. The
projected area dS is conserved (at leading order in h/L), and thus h is conserved too and behaves as
a passive tracer. The position of a given element in the film, and its shape, may nevertheless vary,
one element replacing the other in the film plane, as in a sliding puzzle.

We define the film half-thickness distribution as

Ŝ(h0) =
∫

S
H (h0 − h(x, y))dx dy, (14)

with H the Heaviside function, and Ŝ(h0) is the projected area of the domain having a half-thickness
smaller than h0, in the domain S of interest. During a sliding-puzzle dynamics, this distribution is
conserved, as h is conserved for each element. However, the motion modifies the thickness gradients
and induces interface area variations of the order of (∇h)2. In the following, we show that these
higher-order area variations generate the driving forces for spontaneous in-plane reorganizations of
the film.

D. Energy balance

When the Poiseuille flow is negligible, the dissipation in the bulk can be neglected in the energy
balance of a domain � of the film. Moreover, if we assume a vanishing interface velocity at the
boundary of the system, the tension forces related to δγ do not provide power to the system. The
energy balance, to be derived just below, is thus simply

γ0
dA

dt
+ Ds = 0, (15)

with Ds the viscous dissipation induced in an interface by the flow.
Despite the apparent simplicity of this equation, rigorously writing the energy balance in cap-

illary flows is not straightforward, as discussed in [28], even for a clean interface with vanishing
elasticity. Equation (15) can be established from a scalar product between Eq. (7) and the velocity
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field v, integrated spatially. Using the assumption that v is vanishing at the integration domain
boundary and that Eq. (13) applies, the three terms in Eq. (7) are computed using several times the
relation

∫
A · ∇B = − ∫

B divA, valid when A or B is vanishing at the boundary,

I1 =
∫

S
γ0 h∇(�h) · v dx dy

= −γ0

∫
S
�h v · ∇h dx dy

= γ0

∫
∇h · ∇(v · ∇h) dx dy

= −γ0

∫
∇h · ∇

(
dh

dt

)
dx dy

= −γ0
dA

dt
, (16)

I2 =
∫

S
ηs�v · v dx dy

= −ηs

∫
S

(
(∇vx )2 + (∇vy)2

)
dx dy

= −Ds, (17)

and finally

I3 =
∫

S
∇δγ · v dxdy = 0, (18)

which leads to Eq. (15).
In the limit L � Lspd, and at the order 2 in h/L, the film in-plane reorganizations are entirely

decoupled from the bulk properties. They are driven by the area minimization and damped by
the interface viscosity; they are, however, governed by the Marangoni Eq. (7), which involves the
friction on the bulk (first term) and the tension gradient (third term).

E. The symmetric increasing rearrangement and the Pólya-Szegö inequality

We deduce from Eq. (15) that the stable shapes are minimal surfaces under the constraint
of conserved area distribution. The Pólya-Szegö inequality (Ref. [29], Chap. 3) discussed below
implies that the most stable profile in this situation is the axisymmetric one.

This inequality applies to an initial film profile h(x, y) = h∞ − δh(x, y) (with δh > 0 defined in
the whole plane) under the assumption that (δh)2 is integrable, as well as the square of its gradient.
Note that this excludes the x-invariant film profiles.

Let us define the Schwarz symmetric increasing rearrangement hs(r) of the initial film profile
h(x, y) as the unique axisymmetric shape that has the same half-thickness distribution Ŝ and that
increases with the distance r to the origin. The profile hs is simply obtained by a rearrangement
of the initial film elements of h, from the thinnest at small r to the thickest at larger r, in
concentric domains. It is an axisymmetric pinched region in the middle of a flat film of asymptotic
thickness h∞.

The Pòlya-Szegö inequality states that∫
(∇h)2 dx dy �

∫
(∇hs)2 dx dy. (19)

Using the expression of the film area Eq. (8), this inequality proves that among all the shapes
accessible by a sliding puzzle dynamics from the initial shape h, the symmetric increasing
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FIG. 8. The Gaussian profile in the domain Pλ (top) and its reorganized axisymmetric shape (bottom).

rearrangement hs of h has the smallest area and is thus the most stable shape. This theorem ensures
the global stability of a single axisymmetric increasing film profile h(r) for the dynamics of interest.
It can be extended to the metastability of a set of such axisymmetric profiles, as long as the pinched
regions are separated from each other by a flat film of reference thickness h∞.

The case of an x-invariant film profile cannot be directly discussed using the same tool, as it does
not belong to the allowed class of profiles. However, a direct comparison between the energy of an
x-invariant pinched region and the energy of a set of isolated axisymmetric pinched regions can be
done: if the energy of the latter profile is lower, the spontaneous destabilization of the x-invariant
profile toward this metastable solution is possible, otherwise it is not.

F. Example of Gaussian profiles and scaling law

In this section, we consider the simple case of an infinite flat foam film, with a thinner part in the
vicinity of the x axis. We assume the thickness profile to be uniform in the x direction and Gaussian
in the y direction. This differs from our experimental geometry, but it provides an illustrative and
analytically solvable example. The aim is to compare the interfacial energy of this shape with the
energy of shapes, nonuniform in the x direction, and in which the thinner part of the first film
has been rearranged into a necklace of locally axisymmetric thin patches, with conservation of the
thickness distribution. We show that, depending on the wavelength, these nonuniform shapes may
be more or less stable than the first one.

Consider an x-invariant Gaussian pinched region of width w and depth h0,

hlin(x, y) = h∞ − h0e−y2/(2w2 ), (20)

and a band of film Pλ of length λ in the x direction and spanning from y = −∞ to +∞ (see Fig. 8).
The excess area of the piece of film located in Pλ, with respect to a flat film in the same domain,

is, at dominant order,

δAlin = λ

∫ ∞

−∞

1

2

(
∂h

∂y

)2

dy = λ
h2

0

√
π

4w
. (21)

An axisymmetric profile haxi,λ is then produced by a spatial reorganization of the film elements
located in Pλ. For a given y, all the film elements with a thickness smaller than hlin(y) are in a
rectangular domain of width 2y and length λ, and hence of projected area 2λy. After rearrangement,
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this rectangle becomes a circular domain of the same area, and hence of radius r(y) such as πr(y)2 =
2λy.

Before and after rearrangement, the maximum thicknesses are at the edge of the domains, and
therefore

haxi,λ(r(y)) = hlin(y) = hlin(πr(y)2/(2λ)) (22)

haxi,λ(r) = h∞ − h0e−π2r4/(8λ2w2 ). (23)

The excess area of this shape is

δAaxi,λ = π

∫ ∞

0

(
∂haxi,λ

∂r

)2

r dr = πh2
0, (24)

and is thus more favorable than the initial 1D profile if

λ > λ∗
G = 4

√
πw. (25)

The same transformation is made for every band of width λ, leading to a set of axisymmetric
pinched regions. They are not strictly isolated, but the obtained pinched regions can be distributed
in the (x, y) plane to ensure that they are separated by a film of thickness as close as we want to h∞.

For example, if the axisymmetric shape obtained for λ∗
G has its center of symmetry in the middle

of P , its value at the boundary of P is

h∞ − haxi(r = λ∗
G/2) = h0 e−π2(λ∗

G )2/(27w2 ) (26)

= h0 e−π3/8 = 0.02h0. (27)

As the asymptotic thickness is almost recovered, this axisymmetric shape can be restricted to the
domain Pλ without significant modification of Ŝ. It can then be used as an elementary pattern to built
a periodic film profile of wavelength λ, with the axisymmetric pinched regions distributed along a
straight line. This remark is valid for any λ > λ∗

G.
Finally, a Gaussian profile, uniform in the x direction and of width w, can destabilize into a

row of axisymmetric spots if the associated wavelength is larger than λ∗
G = 4

√
πw. These rows

of axisymmetric Gaussian spots are metastable shapes whose total energy (per unit length in the
x direction) decreases with the wavelength. This criterion is of a purely geometric nature, and the
smallest allowed wavelength is proportional to the pinched region width, with a simple numerical
prefactor. Note that the dynamics has been entirely disregarded in this analysis, so this stability
criterion only provides a necessary condition for the destabilization, and λ∗

G is a lower bound for the
observed wavelength.

This result can be extended to an arbitrary profile, characterized by a depth hp and a width
wp, using scaling analysis. Indeed, the excess area of a length λ of the pinched region is δAlin ∼
λwp(hp/wp)2 = λh2

p/wp, whereas for the corresponding axisymmetric shape, the gradients are built
on the radius of the disk, rp = √

λwp, so δAaxi,λ ∼ λwp(hp/rp)2 = h2
p. The two excess areas are thus

equal if λ ∼ wp, which provides the scaling of the instability wavelength.

IV. COMPARISON WITH EXPERIMENTAL DATA

The experimental observations can now be rationalized, on the basis of the theoretical arguments
developed in Sec. III. When the interfacial velocity vanishes, the film begins to get thinner along
the meniscus. This slow dynamics results from a Poiseuille flow, without velocity at the interface,
and is governed by Eq. (6) in its 1D version. It leads to the x-invariant film profile that eventually
destabilizes at t = 0. This first step is discussed in Sec. IV A. We then address the destabilization
process, which involves nonzero interfacial velocities, 2D recirculation at large scale, and a neg-
ligible contribution of the Poiseuille flow. This second step obeys the simplified Eq. (15), based
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FIG. 9. Film profile evolution with time (in its x-invariant regime). The colored symbols are the experi-
mental profiles [same data as in Fig. 3(b)]. The lines are the numerical profiles obtained by solving Eq. (28);
the black empty circles underline the numerical profile corresponding to the same film age as the experimental
profile shown in black. The two color bars indicate the time with respect to the initial time ti for the numerical
and experimental results. The last numerical profile, in red, is hnum(y).

on an approximation whose experimental validity is checked in Sec. IV B. Finally, the unstable
wavelengths and associated growth rates are discussed in Secs. IV C and IV D.

A. The 1D film profile

We first discuss the x-invariant dynamics occurring between the time ti < 0 and the time t = 0
of destabilization.

In the x-invariant case, Eq. (6) becomes

∂h

∂t
= − ∂

∂y

[
γ0

3η
h3 ∂3h

∂y3
+ vyh

]
. (28)

This equation is solved numerically using a MATLAB code, with the following assumptions. At
small y we impose the measured film curvature 1/rm. We first impose a positive velocity vy (oriented
toward the film) to prepare a uniform film: using Frankel’s theory [1], we choose vy so that the film
converges toward a steady film of half-thickness h∞, with h∞ the value measured experimentally at
the instability onset. To compare our experimental profile with the Aradian’s prediction, the interface
velocity is set to 0 at the time defined as the time tnum

i , and we let the shape evolve as a function of
the numerical time tnum. The successive shapes we obtain are plotted in Fig. 9, with a color code
indicating the film age. We explored a larger time range in the simulation than in the experiment, so
the two color codes differ.

The dynamics of pinching is qualitatively reproduced, but without quantitative agreement,
especially at short time. At long time, the sides of the profile are reproduced by the simulation:
a very fast thickness increase at the meniscus side, and a milder slope on the film side. However,
the position of the minimum is not captured, and the dynamics is faster in the experiment than in
the simulation. We explain this by the fact that, at short time, we are not able to stop the interface
instantaneously, and some film must be extracted at a slower velocity just before Frankel’s film
boundary switch direction at ti (see Sec. II C). Consequently, during a few tens of milliseconds
before ti, instead of pinching a film at rest (Aradian’s case [2]), we are extracting a film thinner than
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FIG. 10. (a) Probability distribution function of the film half-thickness h in the vicinity of the pinched
region, recorded every 5 ms from t = −10 ms (dark blue) to t = 25 ms (orange). (b) Same data, after a global
rescaling, taking into account a residual compression of the film. (c) Same data as in b, with three additional
times 30, 35, and 40 ms.

2h∞ from the meniscus (Frankel’s case [1]). The time shift between the experimental and numerical
dynamics is thus likely due to the different conditions imposed at short time. Note also that the
numerical pinched region width evolves as t1/4, and because of this small power law, a small width
variation is related to a large time variation.

The profile is expected to relax toward the Aradian’s solution at long time, and indeed the
numerical and experimental shapes become closer with time. We thus use the numerical shape to
rebuild the missing part of the experimental profile at the instability onset. In this regard, we let the
numerical film evolve until the best agreement is reached with the measurable part of hexp(y, t = 0).
In Fig. 9, the resulting profile hnum(y) is the last numerical profile, which fits best the two sides of
the unstable profile. It is used to determine the geometrical properties of the experimental profile.
The numerical profile has a small bump between the thinnest part of the film and the flat film, and
thus it reaches the thickness h∞ at a point located between the pinched region and the bump, which
provides a good definition of the end of the pinched region: we define wp as the width of the domain
for which hnum(y) < h∞. Similarly, the profile depth hp is defined as h∞ − hnum

min , with hnum
min the

minimum value of hnum(y) (see Fig. 9). These two quantities characterize the experimental unstable
profile. Note that the fit of the experimental profile relies on the shape and positions of lateral sides
of the pinched region. The width wp is thus a robust experimental quantity, whereas hp relies on the
modeling of the pinch. However, we have shown in Sec. III F that the instability wavelength only
depends on wp, which makes a better determination of hp much less crucial.

B. Area distribution

One key assumption of the model is that the destabilization occurs at constant thickness distri-
bution. To test this assumption, we measured the probability distribution function P(h) of the film
half-thickness in the vicinity of the pinched region. For a film of projected area S0, this function is
defined as P(h) = (1/S0)dŜ/(dh), with Ŝ the area defined by Eq. (14). So P(h) dh is the fraction
of the image having a half-thickness in the range [h, h + dh]. We selected of small ROI restricted
to the pinched region in the images of the film, and we determined the gray level distribution. This
distribution is then normalized and converted to obtain P(h). The distributions obtained before and
after the instability onset are shown in Fig. 10(a). The most probable thickness is the asymptotic
one, 2h∞, and the pinched region contributes to the smaller thicknesses. In Fig. 10(a), we see that
the distribution slowly drifts toward larger thicknesses. This indicates a residual compression of the
film, which has been corrected in Fig. 10(b) by plotting the distribution of the rescaled half-thickness
hres = h/[1 + ε(t )]. We obtain a very good superposition of all the curves in the range [−10 ; 25]
ms if we assume that ε varies linearly from 0 at t = −10 ms (used as an arbitrary reference) to 0.015
at t = 25 ms. This indicates that the global film compression during the dynamics is less than 2%
and is thus negligible, as is assumed in our model.

More importantly, the rescaled distributions at small thickness are not modified at the instability
onset: in Fig. 10(b), the probability distributions are the same before the onset (negative times) and
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FIG. 11. Experimental wavelength λexp as a function of the pinched region width (a) and as a function of
λ∗ (b). The solid lines are guides for the eyes, of the equation λexp = 2.95wp on the left and λexp = 4.2λ∗ on
the right. The dashed line corresponds to λexp = λ∗.

after (positive times). This validates our assumption that the film profile destabilization is governed
by a sliding-puzzle dynamics: it confirms that the Poiseuille flow is negligible and that the interface
velocity vanishes at the boundary with the meniscus, as discussed in Sec. II C.

This initial destabilization clearly differs from the coarsening process at later times, which has
been shown in [17] to be governed by exchanges of film elements between the film and the meniscus:
the first one preserves the thickness distribution function, not the second one. To illustrate this point,
we added the thickness distribution functions measured in the time range [30, 40] ms after the onset,
in Fig. 10(c). In this regime, the film of thickness 2h∞, associated with the maximal area value in
Fig. 10, is absorbed by the meniscus, and its probability decreases, while some thin film (of thickness
around one micron) is extracted from the meniscus, thus increasing the corresponding probability.

From these graphs, we thus conclude that the film profile destabilization occurs at a constant
thickness distribution in the time range [0 ; 25] ms, and that the marginal regeneration, involving
interface exchanges with the meniscus, begins afterwards.

C. Unstable wavelength

The Gaussian example illustrates that the patterns with a wavelength larger than a few times
the width of the pinched region are more stable than the initial profile, whereas the patterns with
a shorter wavelength are less stable. This property is of a purely geometric nature, and it remains
true regardless of the physical properties of the system, the initial film thickness, and the minimal
thickness in the pinched region. Assuming that the observed wavelength is close to the shorter
accessible wavelength, as is obtained for other classical instabilities damped by viscosity, such as
the Rayleigh-Taylor instability for example, we thus expect the experimental wavelength to verify
λexp = αwp, with α a numerical prefactor close to 1.

This prediction is tested in Fig. 11(a), showing that both quantities are of the same order of
magnitude. However, the data dispersion and the narrow range of wp do not permit us to test the
predicted linear dependency.

The pinched region is not Gaussian, so we determined the critical wavelength λ∗ of the actual
film profile from the numerical profile obtained in Sec. IV A. To perform the film reorganization,
we consider a piece of a pinched region of size wp × λ [the domain Pλ, between the two dashed
lines in Fig. 12(a)].

The film profile in this domain is discretized and a list of pixels is obtained, sorted by their
thickness value. These pixels are then reorganized in concentric circles, from the small thicknesses
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FIG. 12. Example of film profiles before (a) and after (b) the reorganization shown in the (x, y) plane with
the color indicating the half-thickness of the film. The reorganized domain Pλ is limited by the black dashed
lines. The film domain outside Pλ is the asymptotic flat film of half-thickness h∞. The thickness profiles along
the magenta lines are shown in (c) and (d). The meniscus is shown for clarity [the yellow part in (a) and (b) and
the left side of the profile in (c) and (d)] but is not involved in the dynamics.

at the center to the large ones at the perimeter. The rectangle wp thus becomes a disk of the same
area and of radius R(λ) = √

wpλ/π [see Fig. 12(b)]. The periodic pattern of the film profile is the
whole pattern shown in Fig. 12(b). The film profile hs(r) is shown in Fig. 12(d).

The excess area of the obtained axisymmetric spot is �Aaxi,λ = 2π
∫ R(λ)

0 (∂hs/∂r)2/2r dr. For
all our profiles, the condition �Aaxi,λ = �Alin is obtained for λ∗ = (0.7 ± 0.1)wp. Note that we
verified that 2R(λ) < λ for λ > λ∗, thus allowing us to build the periodic shape without any overlap
of the axisymmetric spots for the unstable wavelengths.

The previous analysis evidences that the initial wavelength of the instability must be larger than
λ∗. As shown in Fig. 11(b), the observed wavelength verifies λexp = (4.2 ± 1)λ∗ = (2.8 ± 0.5)wp,
so the fastest wavelength appears to be a few times larger than the first unstable one, as expected.

D. Instability growth rate

Entirely solving the problem would require us to determine the time at which the 1D film profile
destabilizes, and the corresponding value of wp. This destabilization time is expected to be governed
by very different laws if the initial 1D film profile is unstable or only metastable, which remains an
open question. The destabilization time of a metastable profile should be controlled by an external
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noise and by the energy barrier between the metastable initial profile and the more stable final one. In
contrast, the destabilization time of an unstable profile (or a metastable profile with a small enough
energy barrier) is expected to be related to the instability growth rate τ g.

The scaling law for the growth rate can be deduced from Eq. (15). The instability wavelength λ

scales as wp, so it is the only characteristic length in the film plane. For a piece of film of projected
area S, the first term scales as (γ0/τg)S(hp/wp)2 and the second one as ηS(1/τg)2, which leads to
the prediction

τ g = ηsw
2
p

/(
γ0h2

p

)
. (29)

A condition for the instability to be observable is that the pinched region is at least as old as τ g,
which could provide the scaling for the destabilization time |ti| if the transition dynamics is limited
by the instability growth rate. Experimentally, |ti| is in the range 200–600 ms and τg ≈ 40 ms.

V. CONCLUSION

In this article, we evidence experimentally that the 1D film thinning process that arises at the
boundary between a meniscus and a one-micron-thick horizontal foam film is unstable. These
experimental conditions exclude the gravity and the disjoining pressure as potential driving forces
for the instability and indicate its purely capillary origin. We identify a class of foam-film flows
governed by the thickness gradients only, and preserving the thickness distribution. We show
that in this regime, the stable shape is an axisymmetric rearrangements of the initial shape, and
that rows of circular pinched regions are metastable shapes, which energy decreases with the
wavelength. The predicted instability wavelength deduced from this theory are compatible with the
experimental observations. This article identifies the important role of the film thickness gradients
in the foam-film dynamics, at the origin of a purely geometric instability, triggering the marginal
regeneration.
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