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Directional solidification under stress
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Directional solidification under uniaxial stress is analyzed. In the absence of stress, it is well known that the
moving planar front undergoes a morphological Mullins-Sekerka~MS! instability. Under uniaxial stress, even
an interface at rest develops an instability known by the names of Asaro, Tiller, and Grinfeld~ATG!. This
paper analyzes the coupling between these two instabilities, a situation on which we have recently given a brief
account@Durandet al., Phys. Rev. Lett.76, 3013~1996!#. We discover that under favorable circumstances a
weak uniaxial stress of the order of 1 bar leads to a dramatic change of the Mullins-Sekerka instability. The
threshold, together with the microstructure scale, are shifted by amounts going up to one~or several! decade~s!.
This effect should open new lines of both experimental and theoretical inquiries. A weakly nonlinear analysis
is presented by means of a Landau expansion. It is known that the MS bifurcation is subcritical for a small
enough solute partition coefficient, and is supercritical otherwise. The ATG instability is always subcritical.
The nonlinear evolution of the ATG instability leads to cusps which grow unstably, leading ultimately to the
fracture threshold. It is shown here that due to a subtle coupling between both instabilities, the MS bifurcation
in its supercritical regime may cause the MS-ATG coupled bifurcation to be supercritical. Discussions and
outlooks are presented. In particular it is appealing to speculate that the creation of giant causeways in igneous
rocks can be interpreted within the present context.@S1063-651X~98!07010-X#

PACS number~s!: 81.10.Aj, 05.70.Fh, 81.30.Fb, 68.70.1w
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I. INTRODUCTION

It is by now well documented that a moving solidificatio
front in an external thermal gradient~directional solidifica-
tion! undergoes a morphological Mullins-Sekerka~MS! in-
stability @1# above a critical growth velocity. The initially
planar interface bifurcates into a cellular structure, wh
itself bifurcates to deep cells and then to dendrites at hig
speed@2#. The cellular structure may also, at both small@3#
and large speeds@4#, experience symmetry-breaking inst
bilities, leading ultimately to spatiotemporal chaos. The sc
of the patterns is roughly determined bylMS;Ald0, which
is a compromise between two competing scales: the des
lizing diffusion lengthl;D/V ~whereV is the pulling speed
andD the solute diffusion constant! and the chemical capil
lary length d05gTM /LDT (L is the latent heat per uni
volume,g the surface tension,TM the melting temperature
and DT the freezing range!. l lies roughly in the
10–100-mm range. More recently, Grinfeld@5# brought out
the idea, which was earlier presented by Asaro and Tiller@6#,
that when a solid is subject to a uniaxial stress~i.e., when
s0[sxx2szzÞ0, s i j is the stress tensor! the solid-liquid
~or solid-vacuum! planar interface becomes unstable a
turns onto a cellular structure@Asaro-Tiller-Grinfield~ATG!
instability#. This instability is of elastic origin: a surface co
rugation reduces the stored elastic energy. It must be em
sized that this corrugation does not correspond to a ben
of the solid~as it is the case when one applies a longitudi
pressure to a thin rod!. Here, in contrast, the instability ma
terializes itself via mass transport and is independent
whether the stresses are tensile or compressive. When
solid is in contact with vacuum~a situation encountered i
PRE 581063-651X/98/58~5!/6027~14!/$15.00
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heteroepitaxy, for example, where the lattice mismatch is
source of axial stresses!, the instability takes place via mas
surface diffusion in most cases but might also be suppo
by other transport processes~vacancy diffusion, impurity dif-
fusion, etc.!. Though the instability is potentially present i
any strained solid, mass transport is needed to build up
fluctuation. The time scale which is needed depends stron
on temperature. We shall review these points in this pa
The scale of the pattern is approximately given bylATG

;gE/s0
2 (E is the Young modulus!. This leads to a scale in

the range of 10–100 nm for typical heteroepitaxy. When
solid is in contact with its melt, however, the liquid provide
a mass reservoir, and the ATG instability manifests itself
a melting-crystallization process. That is to say chemical
tachment or detachment at the front becomes the limit
factor for the development of the instability.

When the solid is in the bottom and the liquid on top, a
corrugation raises the level of the solid and lowers that of
liquid in an alternating manner. If the corrugation wav
length is not too small~see below for more detail!, then
gravity can lay a stabilizing role. The typical length scale
expected to be of the order of the gravitational capilla
length ~as is the case for gravity waves! lATG

;Ag/gDr (g is the gravity, andDr the solid-liquid densi-
ties difference!. This leads to a scale in the range 0.1–1 c
It must be noted that the wavelength given above could
well be expressed in terms of a stress. Indeed, the ab
value corresponds to the threshold one, where the gra
effect ~which is stabilizing! precisely counterbalance the d
stabilizing effect due to stress. An impressive experim
was performed by Balibar and co-workers@7# on solid He4 in
contact with the superfluid, and has unambiguously dem
6027 © 1998 The American Physical Society
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strated the ATG instability taking place on a scale of 0.7 c
Nonlinear calculations have shown that such an instab
may lead to fracture, though the external stress is a sm
fraction of the atmospheric pressure@8#.

These front instabilities are important focuses of resea
both on the technological and fundamental levels, and t
seem to embrace disparate situations ranging from l
dimensional nanostructures@9# ~e.g., quantum dots!, to geol-
ogy @10#. However, from the above scale estimates o
would naively expect that there is~virtually! no coupling
between the MS and ATG instabilities given the dispar
lengths on which they operate. We show here that in cont
there is clearly strong interaction in the case of directio
solidification. Indeed the external thermal gradientG, com-
bined with other parameters, will be shown to play the r
of an effective gravitygeffDr5LG/TM , where for typical
materials we find thatgeff5(1032104)g ~i.e., the effective
gravity is several orders of magnitude larger than the r
gravity!. This brings down the scale of the ATG instability
the range 10–100mm, which is in the same range as th
MS scale, and strong coupling between the two instabili
must be expected. An important result which follows fro
our analysis is that the MS stability tongue exhibits a d
matic change in the presence of weak uniaxial stress, of
order of the atmospheric pressure. In particular, the velo
threshold is reduced by a factor of about 10, and the mic
structure scale is decreased at low speed and increas
large speed by the same amount. Such an effect is clearly
devoid of experimental testability. Usually, producing sm
scales microstructures necessitates solidification at hig
speeds which are only accessible by means of laser me
or resolidification. Furthermore, it is very difficult to hav
precise quantitative results. For example, accurate estim
of the thermal gradient are difficult to obtain. It appears t
solidification under stress can lead, even at moderate ve
ties, to small scales. We shall discuss this point in detai
this paper.

For pure directional solidification, the planar liquid-sol
interface undergoes a subcritical bifurcation in the stand
velocity range~ranging from 1 to 100mm/s) if the solute
partition coefficient is small enough~smaller than approxi-
mately 0.45@11#!, and a supercritical biforcation otherwis
Nozières@12# showed that the ATG instability is always su
critical. A fully nonlinear analysis shows@8# that the ATG
instability develops and deep grooves grow unstably, lead
ultimately to fracture generation. Here a subtle interplay
tween the two instabilities in the nonlinear regime is foun
Depending on the parameters, the bifurcation can eithe
ways be subcritical regardless of the value of the partit
coefficient, or can become supercritical if the partition co
ficient is not too small, though the ATG instability is alway
subcritical. Thus a stressed solid, which would deve
grooves growing unstably without bound, can develop
smooth and gentle front when driven away from equilibriu

The scheme of this paper is as follows. Section II w
give a short review, plus some new results on the pure A
instability. In Sec. III we write down the model equations
the system including directional solidification. Section
presents the linearized version of the coupled instabilit
and the far-reaching consequences. Section V is devote
the weakly nonlinear analysis, to the determination of
.
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nature of the bifurcation. A summary and an outlook are
subjects of Sec. VI. Technical details and useful derivatio
are given in the appendixes.

II. ATG INSTABILITY

A. General formulation

Since the ATG instability has been identified rather
cently, we feel it worthwhile to discuss it separately, and
present some of its potential applications in other fields.
shall then present its coupling to the MS instability in Se
III.

We wish to describe the behavior of a solid submitted
uniaxial stress and in contact with its melt. Let the two-pha
system initially be in equilibrium in a gravitational fiel
~which is ordinary gravity for the pure ATG instability, bu
will be replaced with effective gravity in the case of dire
tional solidification!.

The applied external stress is assumed to act along tx
direction. Our choice of a coordinate system can be infer
from Fig. 1. We shall see in this subsection that an instabi
arises and may lead to a corrugation of the solid-liquid int
face via a melting-crystallization phenomenon.

For simplicity, we restrict ourselves to planar strain a
isotropic elastic properties of the solid, i.e., we set the str
componentuyy50, which implies, via Hooke’s law,

s i j 5
E

11sS ui j 1
s

122s
ukkd i j D , ~1!

wheres i j is the stress tensor~repeated subscripts are to b
summed over!, ands the Poisson ratio.

A simple intuitive argument exhibiting the origin of th
instability was given by Nozie`res @13#. Suppose there is a
small fluctuation of the interface at constant strain. Then
mechanical equilibrium conditions at the interface are
longer satisfied. The forces on the interface, exerted by
liquid, due to its pressurepl , and by the solid, due to the
anisotropic stress tensor, no, longer compensate for one
other. In particular, there is a nettangentialforce. ~To linear
order in the perturbation, the normal forcesdo compensate
for one another.! Mechanical equilibrium is broken, and th
solid will relax under the tangential force. The relaxatio
cannot lead back to the original state~it changes the strain!,
so there is an instability.

In the following we will assume that the system is abo
the temperature of its roughening transition, i.e., the atta

FIG. 1. The configuration of surface forces after application o
small perturbation to a prestrained solid.
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ment kinetics are fast, resulting in a growth velocity~normal
to the interface! that is proportional to the difference i
chemical potential between the liquid and the solid:

vn52kv~ms2m l ![2kvDm. ~2!

Since the proportionality constantkv is large, the system will
be in a state with smallDm, i.e., close to local equilibrium
whenever the growth velocity is limited by material diffu
sion, as is the case in the solidification of alloys. Therefo
in treating directional solidification, we will not use Eq.~2!
directly, but rather exploit the mass conservation law to
presented in Sec. III. The present formulation would be va
for the experiment on helium@7#, where the prevailing dis-
sipation mechanism is attachment/detachment at the fro

However, Eq.~2! will serve to determine the concentra
tion field at the interface in an extension of the Gibb
Thomson condition to the elastic case. In the appendixes
show thatDm is given, to leading order, by

Dm5
12s2

2E
~s tt2snn!

21gk̃1Drgz̃~x!. ~3!

Herein s tt5t is i j t j and snn5nis i j nj (ni and t i are thei th
components of the normal and the tangent unit vectors,
spectively! are the purely tangential and normal compone
of the stress tensor, respectively,g is the surface tension,k̃
is the interface curvature~in dimensional form!, Dr5rs

2r l is the difference of the solid and liquid densities,z̃(x) is
the position of the solid-liquid interface, andg is the gravi-
tational constant. For convenience, we refer chemical po
tials to the unit volume of a piece of solid. This definitio
differs from the conventional one, referring to the unit ma
by a constant factorrs . Using our convention, we can om
this factor in the denominators of Eq.~3! and in other for-
mulas.

First, the elastic field must be computed. For the o
dimensional deformations considered here, it is conven
to make use of the Airy functionx(x,z), which is related to
the stress tensor via

sxx5
]2x

]z2
, ~4!

szz5
]2x

]x2
, ~5!

sxz52
]2x

]x]z
. ~6!

It can be shown@14# from the Lame´ equations thatx obeys
the biharmonic equation

¹2¹2x50. ~7!

The elastic problem must be supplemented with mech
cal equilibrium conditions at the front. These are

snn52pl , snt50, ~8!
,

e
d

.

-
e

e-
s

n-

,

-
nt

i-

where pl is the hydrostatic liquid pressure, andsnn
5nis i j nj , snt5nis i j t j . Before proceeding further, som
remarks are in order.~i! We have neglected capillary effec
in the above mechanical equilibrium condition (snn5
2pl). It can be shown@15# that this is legitimate up to
corrections of the order ofs0 /E, which is large only close to
the fracture threshold.~ii ! We consider the static version o
elasticity, which is obviously legitimate for small velocitie
as compared to the sound speed.~iii ! An important point
which must be emphasized concerns the elastic effect du
the incorporation of the solute in the solid. This should b
sically alter the equilibrium condition which relates the co
centrations on both phases. As shown by Spenceret al. @16#,
this leads to small effects on the stability.

The boundary conditions~8! read, explicitly,

pl1nx
2sxx12sxznxnz1nz

2szz50, ~9!

nxtxsxx1nxtzsxz1nztxsxz1nztzszz50. ~10!

The normal and the tangent are related to the interface p
tion z5 z̃(x,t) by

~nx ,nz!5~2]z̃/]x,1!/A11~]z̃/]x!2, ~11!

~ tx ,tz!5~1,]z̃/]x!/A11~]z̃/]x!2. ~12!

Let s i j
(0) denote the strain contribution of the prestrain

situation corresponding to the planar front solution. Wh
the solid surface deforms, the strain configuration w
change. For a general interface morphology the problem
be tackled only numerically. Throughout this paper we w
be concerned with linear and weakly nonlinear front exc
sions where analytical solutions can be obtained. Lete ~a
small quantity! denote the strength of the surface modulati
@z(x,t)5eh(x,t), whereh is of order 1#. The strain can be
written as

s i j 5s i j
~0!1es i j

~1!1e2s i j
~2!1e3s i j

~3!1••• . ~13!

We shall later see that one needs to go up to third order ie.
The boundary conditions~9! and~10! become, to that order

05pl1szz
~0!1eszz

~1!1e2@h82s022h8sxz
~1!1szz

~2!#

1e3@~sxx
~1!2szz

~1!!h8222h8sxz
~2!#1•••, ~14!

05e@2s0h81sxz
~1!#1e2@sxz

~2!2h8~sxx
~1!2szz

~1!!#

1e3@h8~szz
~2!2sxx

~2!!1s0h831sxz
~3!22h82sxz

~1!szz
~3!#

1•••. ~15!

We shall needs tt as well@see Eq.~3!#, which takes the form

s tt5sxx
~0!1esxx

~1!1e2@2h82s012h8sxz
~1!1sxx

~2!#

1e3@~szz
~1!2sxx

~1!!h8212h8sxz
~2!1sxx

~3!#1•••.

~16!

These quantities are understood to be evaluated at the
z5eh(x,t). The quantityh(x,t) will also be expanded in
power series ofe
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h~x,t !5h0~x,t !1eh1~x,t !1•••. ~17!

Similarly we decompose the Airy function as

x~x,z,t !5x0~x,z!1ex1~x,z,t !1•••, ~18!

where we have introduced the notations0[sxx
(0)2szz

(0) . Be-
causes0Þ0, we usually say that the system is subject to
uniaxial stress. As it will appear soon, this uniaxial stre
directly induces a morphological instability of the planar s
face.

In a planar geometrye[0. Thus the first boundary con
dition from Eqs. ~14! and ~15! takes the formszz

(0)52pl

~and the second one is automatically satisfied!. Moreover, we
must havesxz

(0)50, since no shear is imposed. It is clear th
the Airy function must, though the surface is planar, depe
on x andz in order to fulfill the boundary conditions. It is
simple matter to check that

x0~x,z!52pl

x2

2
1~s02pl !

z2

2
~19!

solves Eq.~7! together with boundary conditions, and pr
videssxz

(0)50.

B. Linear analysis: The ATG instability

The planar solution~19!, together withz5eh050, is un-
stable against corrugations as long ass0Þ0. This is what we
will show now. Suppose that the interface undergoes a fl
tuationh1(x,t)5h11e

iqx1vt, whereh11 is a constant ampli-
tude. Because in the linear regime the Fourier modes
independent, we consider one Fourier component only.
calculate the elastic field we insertx @Eq. ~18!# into Eq. ~7!.
We easily obtain thatx15(a1bz)eiqx1qz1vt, wherea andb
are integration constants~the conditionx50 whenz→2`
is used!. These are easily determined from Eqs.~14! and~15!
to ordere after expressings i j in terms ofx. We straightfor-
wardly obtaina50 andb52s0h11 (h11 is yet an undeter-
mined constant!. In order to determine the stability cond
tion, one has to evaluate the chemical potential~3! induced
by a shape fluctuation. For that purpose one needs to ev
ate the stress contribution@Eq. ~16!#

s tt2snn5s0@122qeh1~x,t !#. ~20!

so that the difference in chemical potential~3! becomes

Dm5
~12s2!s0

2

2E
@124qeh1#1egq2h11gDr~eh11h00!

~21!

The first term is composed of the zeroth-order contribut
and the first-order one. The zeroth-order contribution is po
tive, meaning that a stress increases the solid chemical
tential and renders it unfavorable. A melting of the plan
front thus occurs. This melting is to be counterbalanced
the gravity effect. This is why we have added, in the grav
term, the constant contributionh00 ~the origin was up to now
arbitrary!. The new position of the solid-liquid interface
a
s
-

t
d

c-

re
o

lu-

n
i-
o-
r
y

y

now h0052(12s2)s0
2/(2gDrE) if the unstrained interface

is at z50. Thus from now on we shall redefine the origin
the new position.

To order e, Dm is lowered whenh1 @h1.cos(qx)# is
positive, and increased otherwise. That is to say the s
chemical potential is lowered close to the maximum and
creased close to the minimum. Thus if a protuberance ta
place the crystallization will be favored on top~i.e., in the
convex part of the interface!, and melting occurs in the bot
tom ~in the concave part!. This is the ATG instability. It must
be emphasized that this is a chemical instability and no
mechanical one: the instability materializes itself through
melting or growth process, and not as a buckling of the so
If the solid were in contact with vacuum, then the instabil
would be expressed via mass transport along the sur
~surface diffusion!. The presence ofq in front of h1 in Eq.
~21! reflects the fact that the stress relaxation penetrates
a distance of order 1/q into the bulk.

Using the fact thatvn.]h1 /]t5vh1 in the linear regime,
and making use of Eq.~2! we obtain, using Eq.~21!, the
dispersion relation

v5kvF2s0
2~12s2!

E
q2gq22DrgG . ~22!

Here one clearly sees the destabilizing effect of elastic
and the stabilizing effects due both to surface tension
gravity.

In the absence of gravity the planar surface is unsta
however small the uniaxial stresss0 is against perturbations
of wave numbers smaller than

qc5
2~12s2!s0

2

Eg
. ~23!

If one uses a small fraction of an atmospheric pressure~as
used for helium! for the uniaxial stress ~about
104 cgs;0.01 bar),E;109 and g;0.1 cgs, we obtainlc
;10 cm.

In the presence of gravity there is a critical stress ab
which the surface becomes unstable. This stress provid
critical wave number for the instability. These threshold v
ues are obtained by solvingv5]v/]q50. This yields

s0c
2 5

E

12s2AggDr, qc5AgDr

g
. ~24!

The threshold wavelength 2p/qc is nothing but the gravity
capillary length, which is in general of the order a few m
This is consistent with the measurement of Ref.@7#. The
corresponding threshold stress for4He is of about s0c
;104 cgs.

Since the ATG instability may have implications on oth
systems, it is appropriate to make a short digression. In
eroepitaxy a thin film is grown on a substrate. The latt
mismatch causes a film to develop a strain. Provided tha
misfit dislocations occur, the stress in the film relaxes via
elastic deformation. We can recalculate the chemical po
tial for a strained film. If the thickness is small, one has
take into account the finite depth effect~precisely as with
shallow water waves!. The chemical potential is approxi
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PRE 58 6031DIRECTIONAL SOLIDIFICATION UNDER STRESS
mately ~only the linear part is considered! given by ~where
the substrate is supposed to be rigid!

Dm5F2
~12s2!s0

2

E
q2d2gq2Gh1 , ~25!

whered is the film thickness. One thus sees that relaxat
takes place after a critical thickness of order

dc;
gE

s0
2 , ~26!

where we have neglecteds2 in comparison to 1~for
most situations s;1/3). The uniaxial stress s0
;E(Da/a) (Da/a is the lattice mismatch!. On the other
hand, generallyg/E;a ~because there is within a materi
no other intrinsic length scale than the atomic one!, so that
dc;a/(Da/a)2. A large enough mismatch is (Da/a)
;1%, so thatdc;104a. There are many situations in mo
lecular beam epitaxy where the critical thickness for the tr
sition from layer by layer growth into a three-dimension
~3D! growth occurs only after a few monolayers. A typic
example is the case of Ge/Si, free of dislocations, where
transition into 3D growth~the so-called Stranski-Krastano
@17# mode! takes place only after 2–3 ML@18#. This di-
lemma has not been resolved to date@20#. It is important to
note that elastic effects seem to play an important role in
fabrication of quantum dots. This topic is of much curre
interest, and where island self-organization with a size
about 100 nm appears spontaneously@19#, it is most likely
due to~probably not solely! an instability of the present type

Finally, it is important to note that although an elas
instability is potentially present, its manifestation time is
nite. It is fixed by the slowest dissipation mechanism. F
4He, kinetic attchment seems to be the limiting factor. T
order of magnitude ofkv ~the kinetic coefficient entering 2!
is of aboutrkv;0.01 cgs@7# @1/(rkv) has a dimension of a
velocity; its value is about 100 cm/s# provides for the fastes
growing mode a typical time of the order of 1–10 s. This
quite consistent with experiments. For the case of an imp
liquid ~Sec. III! mass diffusion in the liquid phase limits th
instability. Finally, when a solid is in contact with vacuum
mass transport along the surface is the prevailing dissipa
mechanism. The time scale was discussed in Ref.@20#, and it
depends on the surface diffusion constant which is a th
mally activated quantity. It is shown there that time scale
of the order of 0.1–1/D cgs, whereD is diffusion constant.
One needs at least diffusion constants of the order
1021–1023 cm2/s to observe the instability within a few
seconds to a few minutes. Usually one expects diffusion c
stant to be much smaller, implying a large time for the ins
bility development. This problem is currently being e
plored.

III. MODEL EQUATIONS

Let us now treat the coupling between the MS and AT
instabilities. In Ref.@21#, we considered only the one-side
model, appropriate for most solids, in order to keep the p
sentation concise. Here we give the general case, whic
only slightly more involved. In the liquid phase, the reduc
n

-
l

e

e
t
f

r
e

re

n

r-
s

f

n-
-

-
is

concentration fieldu5(c2c`)/Dc (Dc is the miscibility
gap andc` is the concentration far ahead of the front! obeys
the diffusion equation written in the laboratory frame

Du12
]u

]z
5

]u

]t
, ~27!

where lengths and time are reduced byl 52D/V and t
5 l 2/D, respectively,D being the mass diffusion constan
and V the speed at which the sample is pulled through
thermal gradient field. A similar equation holds for the so
with a prefactorn5Ds /D, whereDs is the diffusivity in the
solid, in front of the Laplacian. At the interface,u is subject
to the mass conservation condition

vn@u2k~u21!#52
]u

]nU
l

1n
]u

]nU
s

, ~28!

wherevn is the normal growth velocity,k the partition coef-
ficient, and]/]n stands for the normal derivative, the su
scripts l and s indicating the liquid and solid sides of th
interface. For a moving boundary, there is a need for
additional condition, which can be obtained from the balan
of mass transport across the interface. As discussed ab
for a molecularly rough interface the chemical potential d
ference across the front is small, so that transport across
front simply reduces toDm[ms2m l'0. Dm is a function
of temperature, concentration, and stress~or strain! tensor.
Any front displacement is associated with a chemical pot
tial difference. It is shown in the appendixes that th
amounts to

0'Dm5
~12s2!

2E
~s tt2snn!

21gk̃1~TI2TM !
L

TM

1cl uml u
L

TM
. ~29!

The first term accounts for the increase of the solid chem
potential due to elastic deformations the second for capill
effects, the third one for the front undercooling (TI is the
actual front temperature,TM the melting temperature of th
pure solvent, andL the latent heat per unit volume!, and the
last one for the concentration effect (ml is the liquidus
slope!. Because we consider the thermal properties of b
phases to be identical, and neglect the latent heat gener
at the front,T is simply given byT5TM1Gz̃, whereG is
the thermal gradient. Therefore, Eq.~29! takes the form~in
reduced units, i.e.,z5 z̃/ l , k5k̃ l )

u512
z

l T
2d0k2h

~s tt2snn!
22s0

2

s0
2

, ~30!

whered0 and l T are the usual capillary and thermal length
reduced by the diffusion length,

l T5
uml uDc

Gl
, d05

gTM

uml uDcLl
~31!

while
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h5s0
2 ~12s2!

2E

TM

uml uDcL
. ~32!

In Eq. ~30!, we have subtracted from the full elastic effe
the contribution corresponding to the prestrained situat
As in Sec. II,s0 is the applied uniaxial stress. The parame
h is associated with elasticity. It measures the ratio of
elastic energy stored due to the uniaxial stress over the la
heat of melting, which is involved to ‘‘jump’’ the tempera
ture gapDT5uml uDc.

Next we have an equation relating the concentrations
the liquid and solid sides of the interface, which reads

us5k~ul21!. ~33!

To close the description, we need equations for the ela
problem. These were already discussed and solved in Se

Note that in Eq.~30! the thermal gradient plays the sam
role as gravity. To see this, refer to Eq.~29! ~with TI2TM

5Gz̃), and compare with Eq.~3!. One thus sees that th
effective gravity is given bygeffDr[GL/TM . For most met-
als L.10 J/g5108 erg/g and Tm.1500 K, and typical
thermal gradients areG.100 K/cm, and one findsgeff
.1062107 cgs5(1032104)g. While before we had a criti-
cal wavelength of order 1 cm given by relation~24!, now,
because the effective gravitygeff[(1032104)g, the critical
wavelength for the ATG instability can fall in the 100-mm
range and hence a strong coupling with the MS instabi
must be expected. Because the gravity appears only with1

4 th
power in Eq.~24!, the critical stress would be modified b
about 10 only~0.1 bar instead of 0.01 bar!.

IV. LINEAR STABILITY ANALYSIS

The equations of motion admit a planar front solution, t
position of which differs from that of the problem withou
elasticity by the constant amounth00[dz52h l T . This is
due to the fact that the stress induces a solid melting~refer to
Sec. III!. We have absorbed this quantity into a redefiniti
of the z coordinate. The linear stability analysis of this sol
tion is rather straightforward, since the elastic and diffus
problems couple only via the boundary conditions.

We start out from perturbed solutions

u~x,z,t !5u0~z!1eu1~z!exp~ iqx1vt !, ~34!

z~x,t !5eh~x,t !5eh11exp~ iqx1vt !, ~35!

x~x,z,t !5x0~x,z!1e~a1bz!exp~ iqx1qz1vt !,
~36!

wherex denotes the Airy function of the perturbed syste
and xpre that of the unperturbed prestrained syste
@x0(x,z)52p(x2/2)1(s02p)(z2/2)#. The stress problem
was solved in Sec. III.

Using the new boundary condition~30! in the standard
linear stability analysis of the planar front in directional s
lidification, we arrive at the dispersion relation

v1222~11q21v!1/21wq@~11q21v!1/2

1k~11n2q21nv!1/21k21#50, ~37!
n.
r
e
nt

n

tic
II.

y

e

e

,

where

wq5d0q21
1

l T
24hq. ~38!

For h50, we recover the Mullins-Sekerka dispersion r
lation. For a vanishing growth velocity (i.e.,v; l 2@1, q
; l @1) we can reduce the above dispersion relation in
one-sided case to

v5Aq21vS 4hq2
1

l T
2d0q2D , ~39!

which is the dynamical version of the ATG result when bu
dissipation prevails. When compared to Eq.~22!, one sees
that here there is an additional factorAq21v corresponding
to the situation where dissipation is supported by diffusio

A closer analysis of Eq.~37!, given in the appendixes
reveals that the principle of the exchange of stabilities ho
in our system; i.e., whenever the real part ofv becomes zero,
so does the imaginary part, meaning that a Hopf bifurcat
does not occur from the planar state.

Figure 2 shows the neutral curve~thick solid line! and
most dangerous mode~thin solid line! for h50 and 0.001
~dashed lines!. There we also show~dotted lines! the case
with h50.0015, where the surface is always unstable~see
below!. For typical parameter values we find thath51023

corresponds to a uniaxial stress between 0.1~or even
smaller! and 1 bar, which is not outside the range of possi
experimental situations. We can see on the figure that fo
small V, the line of the most dangerous mode is concave
the presence of an uniaxial stress, and it is convex otherw

Given the validity of the stability exchange principle, th
conditions for the instability threshold reduce tov50 and
dv/dq50. Analytical expressions for the wave number

FIG. 2. The neutral curve~thick solid line! and the most dan-
gerous mode~thin solid line! for the pure MS instability. The neu
tral curve in the presence of a uniaxial stress~thick dashed line!,
and the corresponding most dangerous mode~thin dashed line!,
whereh50.001 in the one-sided model. The dotted lines~neutral
curve: thick dotted line; most dangerous mode: thin dotted li!
correspond toh50.0015 where no velocity threshold exists an

more @124h2 l̃ T /d̃0,0; see Eq.~48!#. Hered051025, andk51,
and units are chosen so thatl T51 andD51.
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PRE 58 6033DIRECTIONAL SOLIDIFICATION UNDER STRESS
the critical mode and the critical velocity may then be d
rived. From Eq.~37!, we obtain

2@12~11q2!1/2#1wq@~11q2!1/21k~11n2q2!1/21k21#

50, ~40!

wq8@~11q2!1/21k~11n2q2!1/21k21#

1qF wq22

~11q2!1/2
1

kwqn2

~11n2q2!1/2G50, ~41!

with

wq852d0q24h. ~42!

Defining effectivecapillary and thermal lengths by

d̄05d02
2h

q
, ~43!

l̄ T5
l T

122hqlT
, ~44!

we can map the problem with elasticity to the one witho
For the resulting expressions are identical to those of o
nary directional solidification@22#, with d0 replaced byd̄0

andl T replaced byl̄ T . Of course, this mapping is admissib
only when the newly defined effective lengths are nonne
tive.

A. Lower velocity threshold

It is then possible to take the expressions for the low
and upper thresholds of the linearly unstable range from
literature@22#. Making the appropriate substitutions, one a
rives at the results for the elastic problem, providing, as
shall see, thath is small enough. Assumingq@1 andd̄0q2

!1, the low-velocity threshold is, to lowest order, given b

qc5S k~11n!

4d̄0 l̄ T
2 D 1/3

, ~45!

15
2 l̄ T

11kn
. ~46!

In the case of the one-sided model, the numerator of Eq.~45!
must be replaced with 2k ~but n50 elsewhere!. Note that
these two equations determineqc implicitly, since bothd̄0

and l̄ T depend onqc .
We shall characterize quantities that are given in phys

units by an overtilde~if they are used both in dimensiona
and dimensionless form!. Algebraic manipulations of the dis
persion relation yield, for the critical wave number,

q̃c15
2h

d̃0

1
ad̃0

16h2
Vc1

2 , ~47!
-

.
i-

a-

r
e

-
e

al

a result that was obtained in Ref.@21# for the one-sided
model. We have replaced the subscriptc by c1 to emphasize
the fact that this is the first of two thresholds that we co
sider.

The behavior described by Eq.~47! is very different from
the usual proportionalityq̃c1;V2/3 arising without the elastic
term. Of course, the latter can be recovered for sufficien
small values ofh, but one has to start off from Eqs~45! and
~46! again, because Eq.~47! is already based on the assum
tion d0!h.

The threshold velocity is given by

Vc1

D
5

11kn

2 l̃ T
H 12

4h2 l̃ T

d̃0

2a
d̃0~11kn!2

8h l̃ T
S 12

4h2 l̃ T

d̃0
D 2J ,

~48!

displaying the leading terms of an expansion in powers
124h2 l̃ T /d̃0 . In Ref. @21#, only the first term of the series
was given~for the one-sided model, i.e.,n50). Evidently, in
order for the critical velocity to be positive, we needh2

,4 l̃ T /d̃0 . If this condition is not met, the planar interfac
will be unstable for arbitrarily small velocities due to th
ATG instability.

It is instructive to examine the case of vanishing critic
velocity. From Eqs.~47! and ~48! we haveq̃c52h/d̃0 and
h25d̃0/4l̃ T , hence q̃c

251/(d̃0 l̃ T). Considering the pure
ATG instability, we obtain

q̃c5AgeffDr

g
5A LG

TMg
5ALumuDc

TMg

G

umuDc
5A 1

d̃0 l̃ T

,

~49!

the same result, evidently. So we may express the crit
dimensionless stress for the ATG instability under the eff
tive gravity produced by a thermal gradient and the criti
wave number by the very simple formulas

hc
ATG5

1

2
Ad0

l T
, ~50!

qc
ATG5A 1

d0l T
. ~51!

B. Upper velocity threshold

At high velocities, the stability tongue again closes
directional solidification without elastic strain. Once mo
substituting effective capillary and thermal lengths to obt
the expressions with strain, we find@gk[(11k1kn2)/2k2#

d̄05
1

2k
2e, ~52!

l̄ T
215

e2

gk
, ~53!

qc
25

2e

gk
. ~54!
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Herein,e is a small parameter, measuring the distance fr
the absolute stability limit@22# ~providing the latter exists!,
and henceqc is also small.

Simple manipulations provide us with critical velocity

Vc2

2D
5

1

d̃024h2 l̃ T
F 1

2k
2

11k1kn2

8h2 l̃ T
2 ~ d̃024h2 l̃ T!2G ,

~55!

where the bracketed terms again constitute the beginning
power series, this time in the variabled̃024h2 l̃ T . In contra-
distinction with the lower velocity threshold@see Eq.~48!#,
the leading term of this series is independent of whether
are dealing with the one-sided model or not. It was alrea
given in Ref. @21#. For h25d̃0/4l̃ T , the upper velocity
threshold diverges, i.e., the ATG instability prevents resta
lization in that case.

C. Discussion of linear stability

A striking result is that despite the small value of t
external stress, the neutral curve exhibits unexpec
changes. For example, both the upper and lower limits of
threshold are, respectively, about ten times smaller
larger than the MS ones~note that the scales are logarithmi
Fig. 2!. The dimensionless parameterh @see Eq.~32!# can be
as small as 1023. As is seen from Fig. 2, even a value
h.0.001 leads to a very pronounced shift of both the mi
mum and maximum~close to 10!. The same holds for the
scale of the most dangerous modes close to the upper
lower limits ~compare the thin dashed line to the thin so
line!. Here elasticity favors small scales at low speed a
large scales at large speed. Let us analyze Eq.~48!. When
h2;4 l̃ T /d̃0 , no threshold exists anymore. Using the fa
that l̃ T /d̃0;105, one sees that the threshold should dis
pear forh.1023–1022. Let us now estimate the order o
magnitude for the physical uniaxial stress for which a co
siderable effect must be expected. For that purpose, from
~32! we extract thats0

2.ELDT/TM (DT[uml uDc), where
the Poisson ratio~typically of order 1

3 ) is disregarded.
For many metalsL.10J/g5108 erg/g, andE.1010–1011

cgs. Finally for very dilute metalsD.1 K ~and possibly
smaller!, while the melting temperature lies in the ran
1000–1800 K. This amounts on the average tos0
.106 cgs, or equivalently a stress corresponding to the
mospheric pressure. For more dilute and soft materials w
‘‘weak’’ crystallization ~small DT, E, andL), it seem fea-
sible to reach critical values ofs0.0.1–0.01 bar. Thus it
appears that the effect we have put forward can be chec
experimentally by applying moderate pressures. The s
effect is expected on the wave numbers; variations of
decade by application of a uniaxial stress of the order o
fraction of the atmospheric pressure.

If the tongue is preserved~i.e., h2,4d̃0 / l̃ T), and for
typical values given in the caption of Fig. 2, we find th
Vc1 /Vms1;7, qc1 /qcms1;4, while Vc2 /Vms2;40 and
qc2 /qcms2;20, where the subscript ms refers to the ba
Mullins-Sekerka value. The fact that elastic effect is mu
more pronounced in the large velocity regime is underst
as follows. At large velocity the diffusion length becom
f a

e
y

i-

d
e
d

-
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d
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-
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ed
e
e
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e
h
d

smaller and smaller. The self-interaction of the front b
comes local, and usually capillary effects overcome the
fusive instability. Since elasticity always acts on large sca
it wins over diffusion and determines the dynamics at la
scales (q small!.

V. WEAKLY NONLINEAR BEHAVIOR

The main outcome of the linear theory is the determin
tion of the condition for the onset of the instability and th
range of modes which are likely to grow first. In order
obtain information beyond the instability threshold, a nonl
ear analysis is necessary. In a first step, we restrict ourse
to an analysis of the weakly nonlinear behavior to determ
the nature of the bifurcation. This analysis, which is stand
@23,11#, consists of an expansion in powers of the amplitu
of the deformation up to third order.

If A(t) is the instantaneous deformation amplitude, t
resulting equation will take the form

dA

dt
5vA1a1A3. ~56!

We recall thatv is the linear growth rate determined in Se
IV, whereasa1 is the Landau constant, the sign of whic
tells us whether the bifurcation is subcritical (a1.0) or su-
percritical (a1,0).

So our goal will be to determine this constant. This a
proach has been applied to directional solidification bef
@11#, so we can be brief in our description of the procedu
and will just give the basic equations and results. For eas
presentation, we will consider the one-sided model only.

We look for solutions to the equations of motion~27! and
~7!, given the pertinent boundary conditions~28! and~30!, in
the forms

u~x,z,t !5 (
n50

`

enun~x,z,t !, ~57!

x~x,z,t !5 (
n50

`

enxn~x,z,t !, ~58!

z~x,t !5eh~x,t !5 (
n50

`

enhn~x,t !, ~59!

and assume that

u1~x,z,t !5A~ t !cos~qx!u1~z!, ~60!

x1~x,z,t !5A~ t !cos~qx!x1~z!, ~61!

h1~x,t !5A~ t !cos~qx!, ~62!

whereu1(z) andx1(z) constitute the solution to the linear
ized problem. Inserting Eqs.~57!–~62! into the basic equa-
tions, one arrives in a straightforward manner at

u2~x,z,t !5A2~ t !@u20~z!1u22~z!cos~2qx!#, ~63!

u3~x,z,t !5A3~ t !@u31~z!cos~qx!1u33~z!cos~3qx!#,
~64!
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as well as

h2~x,t !5A2~ t !@h201h22cos~2qx!#, ~65!

h3~x,t !5A3~ t !@h31cos~qx!1h33cos~3qx!#, ~66!

and similar expressions forx(x,z,t), which we do not write
out here. Truncating the expansion at order 3, we obtain
~56! for the temporal evolution of the amplitudeA(t) with
a1 /v5O(e2). To obtain the third-order result for the fu
problem, we will need to evaluatex only up to second orde
@12#; its form is then

x~x,z!5s0@~s11z1s10!cos~qx!eqz

1~s21z1s20!cos~2qx!e2qz#. ~67!

The solutions to the second-order problem yield

u20~z!5u20e
2m20z, u22~z!5u22e

2m22z, ~68!

wherem20511A112v andm22511A112v14q2. Solv-
ing the elastic problem, thus obtaining the coefficientss20
and s22, from the surface equations we obtain two line
systems of equations determining the pairs (h20,u20) and
(h22,u22), respectively. The coefficients are collected in t
appendixes~for the limit v50).

For a calculation of the Landau coefficienta1 , it is suffi-
cient to compute the terms involved in the equation foru31.
The bulk equations contain a contribution due to the thi
order term proportional to cos(qx) that appears in the time
derivative ofu1 . Therefore, the equation foru31(z) takes the
the form

]2u31

]z2
12

]u31

]z
5vu311a1~22wq!e2m l z, ~69!

where m l511A11q21v, and wq has been given in Eq
~38!. The pertinent solution to Eq.~69! reads

u31~z!5u31e
2m31z1

a1~22wq!

2v
~e2m31z2e2m l z!, ~70!

where m31511A113v1q2. In the limit v→0, the two
exponents are equal, and the solution becomes

u31~z!5S u312
a1~22wq!

A11q2
zD e2m l z. ~71!

From the boundary conditions for the diffusion field@Eqs.
~30! and~28!#, we find two inhomogeneous linear equatio
relatingh31 andu31:

LS h31

u31
D 5F~q,l T ,h,k!. ~72!

The linear operatorL on the left-hand side is a matrix th
determinant of which vanishes at the bifurcation. This me
that the vectorF on the right-hand side must satisfy a sol
ability condition: it must be orthogonal to the left-side eige
vector of L corresponding to the eigenvalue zero.~More
down to earth: the two componentsF1 andF2 must have a
q.

r

-

s

-

given ratio.! This solvability condition fixes the value ofa1
in terms of the system parameters.

The result is

a15u22Fm22

2
~m l2m22!1q2G1u20@m20~m l2m20!#

1h22@~22wq!q222m l14#

2@m l12~k21!#xq2
22wq

4
m lq

21m l22. ~73!

The pure ATG instability is known to be subcritical@12#. We
have checked that our result reduces to that of Nozie`res@12#
in the limit V→0. The Mullins-Sekerka instability may b
subcritical or supercritical depending on the velocity and
partition coefficient. For small velocities the MS bifurcatio
is subcritical @11# for k,0.45 ~which is the case for the
majority of metals! and supercritical otherwise. Here we fin
that in the smallV or equivalently largeq regime the~third-
order! Landau constant is dominated by the ATG effe
which behaves asq4; the MS effect behaves asq2. However
as V increases~or, equivalently, on increasingd0 , the re-
duced capillary length—recall that it is reduced by the diff
sion length!, and if the MS bifurcation is supercritical~en-
sured by not too small a partition coefficient!, one finds a
transition from a subcritical bifurcation into a supercritic
one. The result is shown in Fig. 3. Since the critical veloc
for the change of regime is not too large, this result is n
devoid of experimental testability.

VI. SUMMARY OF IMPORTANT RESULTS
AND CONCLUSIONS

Let us first summarize the main results of this paper.
~i! We have shown that the MS and the ATG instabiliti

are strongly coupled. The main reason for this is that th

FIG. 3. The Landau constant as a function of the reduced c
illary length. A negativea1 corresponds to a supercritical bifurca
tion. h51.531023.
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both operate in directional solidification at similar leng
scales~about 100mm). The effect should be visible exper
mentally upon an application of a stress~most likely by
means of piezoelectric plates! of order 0.1–1 bar. The criti-
cal physical velocity of the usual MS instability is given, fo
the one sided model, by@approximately; see Eq.~48!#

Vc1

D
5

1

2 l̃ T
H 12

4h2 l̃ T

d̃0
J , ~74!

where we recall thatl̃ T is the thermal length,d̃0 the capillary
length, andh is related to the applied stress and is given
Eq. ~32!. The critical velocity is lowered by the applie
stress. In the extreme limit whereh254 l̃ T /d̃0 , the critical
velocity vanishes. This equality requires a stress of or
0.1–1 bar. By approaching this value, we expect the in
bility to develop at arbitrary small growth velocities.

~ii ! The stress has an important effect on the critical wa
length. We have found that typically the critical wave num
ber behaves as

q̃c15
2h

d̃0

1
2kd̃0

16h2
Vc1

2 . ~75!

On the one hand, the dependence on velocity is comple
different from that of pure MS bifurcation~which leads to a
dependence likeV2/3, to be compared to an exponent whic
is three times larger!. This effect is clearly not devoid o
experimental testability. On the other hand, the value of
wave number is found~for the parameters used in the capti
of Fig. 2! to be about four times larger than that of the pu
MS one~larger values are possible by increasing the stre!.
Thus application of a stress should lead to a finer structu

~iii ! At large enough velocities, elastic effects are ev
more pronounced. Ifqc is small enough~the physical wave
number is small in comparison to the inverse of the diffus
length!, then Eq.~55! gives, as a threshold value~after trans-
forming the variables back into physical dimensions!,

Vc25
D

k~ d̃024h2 l̃ T!
, ~76!

where the subscript 2 is a reminder that we consider
upper velocity threshold. In the absence of stress,Vc2

5D/kd̃0 , expressing that the diffusion length is twice th
capillary length. In the presence of stress, the velocity re
bilization is increased. Using the values used in the cap
of Fig. 2, we find thatVc2 is about seven times that of th
pure MS case.

The critical wave number also varies with stress. Its
pression is obtained from Eq.~54! by using the above rela
tion for the bifurcation@which can be rewritten to leadin
order ash2l T5(d021/2k)/4]

qc.~8/3!h/e, ~77!

where we have set 11A128/9.1, and e is the distance
from the absolute stability limit. Typically for an ordinar
gradient,e.0.1–0.01. Let us compare the presentqc to that
y

r
a-

-
-

ly

e

.
n

n

e

a-
n

-

obtained in the pure MS case. In that caseqcMS
2 5@4k2/(1

1k)#e. Thus the ratio takes the form

qc

qcMS
.

8hA11k

6ke3/2 . ~78!

For parameters given in the caption of Fig. 2, we find th
qc /qcMS;1/20 ~where we have chosene50.1 andk.1).
For a smaller partition coefficient~the case of many metallic
alloys! the effect is even more pronounced. That is to say
wavelength is increased at large velocities by a large amo

~iv! We have studied the nonlinear evolution of the bifu
cation by deriving a Landau constant whose sign determ
the nature of the bifurcation. The pure ATG instability
subcritical according to Nozie`res’s calculation@12#. At the
lower velocity threshold, the MS bifurcation is subcritical
k is small (k,0.44..) and supercritical otherwise. We ha
shown here that ifk is large enough, the bifurcation becom
supercritical due to the MS bifurcation nature. Ifk is small
enough, then the ATG-MS bifurcation will remain subcrit
cal.

It is worthwhile to note that the present work could be
some relevance in the context of the formation of gia
causeway in igneous rocks. These are patterns that
known in the geology literature@24# to form by contraction
during cooling and crystallization of the lava. We hope
report on quantitative results in the near future.

Finally an important task concerns the experimental te
ability of our finding. A possibility would be to use a ce
with piezoelectric plates in order to impose a controll
uniaxial stress on the solid, as was devised for4He by Bali-
bar and co-workers@7#.

Transparent materials such as succinonitrile are not
our opinion, suitable, since these have plastic propert
This does not mean so far that plastic behaviors may not
to interesting features. But this question is beyond
present study. Of course transparent materials have inte
ing properties, such as the allowance for anin situ analysis,
and it would be very important to take advantage of th
However, many materials that enter this category not o
possess plasticity, but are smooth on the atomic scale,
therefore exhibit faceted morphologies. In contrast many m
tallic alloys are rough on the atomic scale, and lead
rounded growth shapes. We believe that metallic alloys
important candidates on which to perform such experime
By now there exists an overabundant literature about dir
tional solidification on these materials. The effects we p
forward should be easily detectable since they involve str
changes both on the threshold values and the scales o
pattern. We believe that experimental checks of our the
are decisive in order to guide further developments.
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APPENDIX A: DERIVATION
OF CHEMICAL POTENTIALS

1. Pure ATG instability

In order to obtain the difference in chemical potential b
tween the liquid and solid phases, we consider a refere
state, in which the two phases are at equilibrium, and ca
late the change in the Gibbs free energy of the system
transforming a small mass element of liquid at the interfa
into solid ~see Fig. 4!. We denote the volume of the tran
formed solid bydV.

The total change of the Gibbs free energy will then be

DG5DF1D~plV![dVDm„x,z~x!…, ~A1!

as we are referring the chemical potential not to mass bu
the equivalent solid volume. HereDF is the change in Helm-
holtz free energy. This quantity can be decomposed
three parts,

DF5DFb1DFi1DFv , ~A2!

whereDFb corresponds to the change in free energy of
bulk phases,DFi is the interface part, andDFv is the free
energy change of the transformed mass element. The
contribution DFb is zero, because the bulk phases are
modified, except at the position of phase transformation,
contribution of which is explicitly taken into account in th
last term. The second contribution, the change in surface
energy, arises from surface tensionDFi5gdA, with dA the
change in surface area, whereas the last contribution ha
be calculated from the work necessary to bring a volu
element of solid to the appropriate position in the gravi
tional field, and to increase its internal strain to the prevail
value. This is obtained by integrating the work for an infin
tesimal change@14#

d f5s i j dui j 1rg dz. ~A3!

Therefore, this latter contribution is naturally split up into
elastic and a gravitational piece.

For the differential of the elastic contribution toDG, we
may thus write

dGel5s i j dui j dV1pld~dV!

5@~snndunn1s ttdutt!2snn~dunn1dutt!#dV

5~s tt2snn!duttdV, ~A4!

FIG. 4. Calculation of the surface potential.
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where we have used the condition of mechanical equilibri
at the boundary in a twofold way: first, the conditionsnt
50 tells us that the stress tensor is diagonal in the coordin
system spanned by the normal and tangential vectorsn andt;
second, we have replaced the liquid pressurepl with
2snn , neglecting the cross-term between elasticity and c
illarity. Moreover, we have expressed the local change of
volume elementdV in terms of the appropriate strain expre
sionsddV5Tr(dui j )dV.

Our next approximation is to neglect the cross-term
tween gravity and elasticity, arising from the change in pr
sure due to the height change produced by the volume
ment. Therefore, we can assume thatsnn is constant. Then
we obtain, from Hooke’s law@Eq. ~1!#,

dutt5
12s2

E
ds tt5

12s2

E
d~s tt2snn!. ~A5!

Inserting this into Eq.~A4!, and integrating to finite stres
differences, we arrive at

DGel5
12s2

2E
~s tt2snn!

2dV. ~A6!

In a way, the calculation of the gravity part is the mo
subtle piece of the evaluation ofDG. Since in order to obtain
a volumedV of the solid, we have to solidify adifferent
volume (dVr l /rs) of the liquid, it looks, at first sight, as if
the equilibrium condition at the interface becomes nonloc
because we need to fill in the missing liquid volume~provid-
ing rs.r l) with liquid from elsewhere, and we should hav
to specify from where it came. For example, if we know t
initial height of the liquid level above the solid, it is easy
see that the change in potential energy in the gravitatio
field on solidifying a small piece of liquid will depend o
that height. However, we will take the point of view here th
this dependence is absorbed into the equilibrium heigh
the interface. We formulate our discussion in terms of fr
energy rather than potential energy. It is then found that
have to take into account two terms; one is the integral of
second term in Eq.~A3!, the other arises from the variatio
of the hydrostatic pressure with height:dpl52r lg dz. The
total contribution then becomes

DGgrav5Drgz~x!dV. ~A7!

For the surface energy contribution, we simply have
note that in the case of one-dimensional deformations
surface change is proportional to the change of arc lengt
the plane of the deformations. Because the curvature is
variational derivative ofds/dx, wheres5*xA11z8(x)2dx
is the arc length,

k5
d ds/dx

dz~x!
, ~A8!

we have

dA5E ds8~x!

dz~x!
dx dz dy5kdV, ~A9!

and hence
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DGcap5gkdV. ~A10!

Collecting the terms from Eqs.~A6!, ~A7!, and~A10!, and
dividing by dV, we obtain

Dm5
12s2

2E
~s tt2snn!

21gk̃1Drgz̃~x!, ~A11!

which is identical to Eq.~3!.

2. Directional solidification

Here we will derive the chemical potential difference b
tween the solid and liquid phases in directional solidificat
without regard to elastic effects. Then, in the same spirit
before, neglecting cross terms, we will add the elastic c
tribution.

The condition for chemical equilibrium of the solute is

cs5kcl . ~A12!

To obtain the interface temperature, giving us its position
T5T01Gz, we will write down the chemical potential o
the solvent; exploiting that we have a dilute alloy, we do t
calculation by an expansion about the point of reference
scribing the pure substance

cl05cs050, T5TM , pl05ps05pl~TM !. ~A13!

This point of reference corresponds to an equilibrium sit
tion, hence we havem l05ms0 . Thus we obtainDm5ms
2m l directly:

Dm5cs

]ms

]c
1gk̃

]ms

]p
1~TI2TM !

]ms

]T
2cl

]m l

]c

2~TI2TM !
]m l

]T
. ~A14!

The partial derivatives ofm with respect to pressure and wit
respect to temperature are known~recall that we refer the
chemical potential to the unit volume!:

]m

]pU
T,c

51,
]m

]TU
p,c

52s, ~A15!

where s is the entropy density~entropy per volume!. Evi-
dently, the latent heat per volume can be expressed via
entropy density

L5TM~sl2ss!. ~A16!

The combination of partial derivatives with respect to co
centration that appears in Eq.~A14! is obtainable from the
phase diagram~see Fig. 5!. Phase equilibrium along the li
quidus and solidus lines is expressible as

]ms

]T
1

dcs

dT

]ms

]c
5

]m l

]T
1

dcl

dT

]m l

]c
~A17!

⇔ k
]ms

]c
2

]m l

]c
5uml u~ss2sl !5uml u

L

TM
.

-

s
-

a

s
e-

-

he

-

Finally, collecting the terms, we find

Dm5gk̃1~TI2TM !
L

TM
1cl uml u

L

TM
. ~A18!

Adding in the stress expression, we arrive at Eq.~29!.
On replacingTI in this equation byT01Gz̃, we note the

analogy of the termGLz̃/TM with the termDrgz̃ in Eq.
~A11!. This means we can describe this expression
equivalent, for the ATG instability, to an effective gravity o
magnitudegeffDr5GL/TM . A calculation with typical val-
ues for the thermal quantities shows thatgeffDr exceeds
gDr by at least four orders of magnitude~see Sec. III!.
Therefore, we are entitled, in combining Eqs.~A11! and
~A18!, to neglect the true gravity term in comparison wi
the effective one.

APPENDIX B: STABILITY EXCHANGE PRINCIPLE

Setting v5v r1 iv i in Eq. ~37!, we obtain the neutra
surface separating stable and unstable regions of param
space by requiring the real partv r to vanish. This leads to
the following set of two real equations:

22A2x11wqS x1

A2
1k

x2

A2
1k21D 50, ~B1!

uv i uF12
A2

x1
1wqS 1

A2x1

1
kn

A2x2
D G50. ~B2!

Herein, we have introduced the abbreviations

x15$@~11q2!21v i
2#1/2111q2%1/2, ~B3!

x25$@~11n2q2!21n2v i
2#1/2111n2q2%1/2, ~B4!

which are related to the square root expressions in Eq.~37!
@ for v r50# via

~11q21 iv i !
1/25

1

A2
S x11 i

v i

x1
D , ~B5!

~11n2q21 inv i !
1/25

1

A2
S x21 in

v i

x2
D . ~B6!

Note that we have defined square roots to have a positive
part.

FIG. 5. Phase diagram of a dilute alloy.
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Let us nowassumethat there are solutions to the syste
of equations~B1! and~B2!, with v iÞ0, i.e., that the stability
exchange principledoes not hold. Then Eq.~B2! implies the
vanishing of the bracket term, so we obtain

wqS x1

A2
1k

x2

A2
1k21D 5A2x122, ~B7!

wqS 1

A2x1

1
kn

A2x2
D 5

A2

x1
21. ~B8!

From its definition, we see thatx1.A2, and thus the paren
theses on the left-hand sides of Eqs.~B7! and~B8! are posi-
tive, while the right-hand side of Eq.~B7! is positive and that
of Eq. ~B8! is negative. Thus we findwq.0 from Eq.~B7!
and wq,0 from Eq. ~B8!, which is a contradiction. There
fore, our assumptionv iÞ0 was wrong, and the principle o
stability exchange must hold. Forv i50, Eq.~B2! is satisfied
automatically, and Eq.~B8! is not implied. The conclusion
from Eq.~B7! remains correct:wq.0 on the neutral surface
Hence we have demonstrated that the bifurcation from
planar interface never is of the Hopf type.

APPENDIX C: AMPLITUDES IN WEAKLY
NONLINEAR ANALYSIS

First, we give the coefficients appearing in the express
for x to second order:

s105~a A!3S 2
3q

4
1

h22

2 D ,

s1152a A1~a A!3S 3q2

8
1

5qh22

2 D ,

~C1!

s205
1

4
~a A!2,

s215~a A!2S q

2
2h22D .
p

e

n

Then the elasticity term in Eq.~30!, s[(s tt2snn)
2

2s0
2/s0

2 , becomes

s5S1a A cos~qx!1@S201S22cos~2qx!#~a A!2

1@S31cos~qx!1S33cos~3qx!#~a A!3, ~C2!

with

S1524q,

S2050,
~C3!

S2254q228h22q,

S3156q318q2h2224qh13.

The coefficients appearing in the calculation of the co
centration field and of the interface position are

u205211 1
2 ~22wq!m l ,

h2050,

u225H21$4k@211m l
1
2 ~22wq!24hq2#

1~22w2q!@2k2~22wq!~q21km l !#%, ~C4!

h225H21$2k2~22wq!~q21km l !

2@m2212~k21!#@114hq22m l
1
2 ~22wq!#%,

where we have used the notations

H54k2~22w2q!@m2212~k21!#,

wq5 l T
2124hq1d0q2,

~C5!
w2q5 l T

2128hq14d0q2,

xq5h~6q318q2h22!2
3d0q4

8
.

In the limit h50, these results become identical to tho
of Wollkind and Segel@23#.
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