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Strong Coupling between Diffusive and Elastic Instabilities in Directional Solidification
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We discover that a weak uniaxial stress of the ordet®f® bar leads to a dramatic change of the
Mullins-Sekerka instability. The threshold together with the microstructure scale are shifted by amounts
going up to one (or several) decade(s). This effect should open new lines of both experimental and
theoretical inquiries.

PACS numbers: 81.10.Aj, 68.70.+w, 05.70.Fh, 81.30.Fb

A moving solidification front in an external thermal lead to fracture, through the external stress is as small as a
gradient (directional solidification) is well known to un- fraction of the atmospheric pressure [8].
dergo a morphological Mullins-Sekerka (MS) instability These front instabilities are important focuses of re-
[1] above a critical growth velocity. The initially planarin- search on both the technological and the fundamental
terface bifurcates into a cellular structure which itself bifur-levels, and they seem to embrace disparate situations rang-
cates into deep cells and then to dendrites at higher speéty from low dimensional nanostructures [9] (e.g., quan-
[2]. The cellular structure may also at both small [3] andtum dots) to geology [10]. However, from the above scale
large speeds [4] experience symmetry-breaking instabiliestimates one would naively expect that there is (virtu-
ties leading ultimately to spatiotemporal chaos. The scalally) no coupling between the MS and ATG instabilities
of the patterns is roughly determined byys ~ /Idy,  given the disparate lengths on which they operate. We
which is a compromise between two competing scalesshow here that in contrast there is clearly strong interac-
the destabilizing diffusion lengtth ~ D/V (whereV is  tion in the case for directional solidification. Indeed the
the pulling speed anB the solute diffusion constant) and external thermal gradiei@ combined to other parameters
the chemical capillary lengtdy = yTy/LAT (L is the plays the role of an effective gravitye;r = LG/psTuy,
latent heat per unit volumey the surface tensiorT;,, the  wherep; is the solid density. For typical materials we find
melting temperature, and T the temperature miscibility that gy = (10°-10%)g (i.e., the effective gravity is sev-
gap). A lies roughly in the 10—-10@Qum range. More re- eral orders of magnitude larger than the real gravity). This
cently, Grinfeld [5] brought out the idea, which was earlierbrings down the scale of the ATG instability to the range
presented by Asaro and Tiller [6], that when a solid is sub<10—-100.m, which is in the same range as the MS scale
ject to a uniaxial stress (i.e., whery = o, — o,, # 0, and strong coupling between the two instabilities must be
oij is the stress tensor), the solid-liquid (or solid vacuum)expected. An important result which emanates from our
interface breaks up into a cellular structure (ATG instabil-analysis is that the MS stability tongue exhibits dramatic
ity). When the solid is in contact with vacuum (a situ- changes in the presence of even very weak uniaxial stress,
ation encountered in heteroepitaxy, for example, wheref the order of 1000 the atmospheric pressure. In partic-
the lattice misfit is the source of axial stresses), the scalelar, the velocity threshold is reduced by a factor of about
of the pattern is approximately given byt ~ yE/og 10, while the microstructure scale is decreased at low speed
(E is the Young modulus). This leads to a scale in theand increased at large speed by the same amount. Such
range of 10—100 nm for typical heteroepitaxy. Whenan effect is clearly not devoid of experimental testability.
the solid is in contact with its melt, however, because of thd-urthermore, a weakly nonlinear analysis shows that, con-
gravitational potential energy (which does not favor a corrary to the pure MS instability, at low velocity the bifur-
rugation), the typical length scale is expected to be of theation issubcriticalfor all partition coefficients.
order of the gravitational capillary length (as is the case for For ease of presentation we consider the one-sided
gravity waves\atg ~ +/v/gAp (gis gravity andAp the  model, which is appropriate for most ordinary solids.
solid-liquid densities difference). This leads to a scale inn the liquid phase the reduced concentration fiele
the range 0.1-1 cm. An impressive experiment was pertc — ¢»)/Ac (Ac is the miscibility gap andc.. is the
formed by Balibaret al. [7] on solid “He in contact with  concentration far ahead of the front) obeys the diffusion
the superfluid, and has unambiguously demonstrated thexjuation written in the laboratory frame
ATG instability taking place on the scale of 0.7 cm. Non- ou ou
linear calculations have shown that such an instability may Au +2 9z TR 1)
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where lengths and time are reduced by 2D/V and For one dimensional deformations considered here it is
T = 12/D, respectively, D being the mass diffusion convenient to make use of the Airy functiogn which
constant andv the speed at which the sample is pulledis related to the stress tensor by, = 0%y /9z>, o.. =

through the thermal gradient field. At the interfacés  —o%y/dxdz, ando.. = 9%y /9x>. It can be shown [11]
subject to the mass conservation condition from the Lamé equation thay obeys the biharmonic
ou equation
vplu — k(u — D] = ——, )
on
V2V2y =0. (6)

where v,, is the normal growth velocityk the partition
coefficient, andd/on stands for the normal derivative. ] o
For a moving boundary there is a need for an additionaPecause we take the prestrained situation as a refer-
condition. This follows for mass transport across the in-€Nce,x must obey the conditioy(z — —%) = 0. Once
terface. For a molecularly rough interface the chemi-x iS obtained, we immediately get;;. The elastic
cal potential difference across the front is practicallyProblem must be supplemented with mechanical equilib-
small so that transport across the front simply reduces t§Um conditions at the front. These ave, = —p; and

Ap = u, — u; =~ 0. Au is a function of temperature, @n =0 where p; is the hydrostatic I|qU|d_ pressure, and
concentration, and the stress (or strain) tensor deformaZnn = nioijnj, on = niojt; (repeated indices are to
tion. Any virtual front displacement is associated with abe summed over). .
chemical potential difference given in [8] (to leading or- Before proceeding further some remarks are in order.

der) (i) We have neglected capillary effects in the above
| — o2 mechanical equilibrium conditiono(,, = —p;). It can
0=~Apu=—(0y — om) + Vi be shown that this is legitimate up to corrections of the
2E order of oy/E which is large only close to the fracture

+ (T, — TM)L + ¢;lmyl L_ 3) thr{—:shqld. (ii)_We consi(_j(_er the static version of glgsticity,

T T which is obviously legitimate for small velocities as

fcompared to the sound speed. (i) An important point
which must be emphasized concerns the elastic effect due

to the incorporation of the solute in the solid. This should

asically alter the equilibrium condition which relates
the concentration on both phases. As shown by Davis

et al.[12], this leads to small effects on the stability

The first term accounts for the increase of the soli
chemical potential due to elastic deformations;(is the
stress tensor, where the subscript@andt refer to the
normal and tangent to the interface), the second express
capillary effects ¢ is the surface tension ané the
front curvature counted positive for a convex solid), the=; . o
third one the front undercoolingrl’{ is the actual front diagram for typical situations.

temperatureT,, the melting temperature, adthe latent . The at_)ove set of equations supports a planar fr(_)nt solu-
heat per unit volume), and the last one the concentratioﬂfl)n moving at a constant speed. Becquse of elastic effects
effect (n, is the liquidus slope). Because we considertn® fro.nt pos!tlon.undergoes a recession (compared to the
the thermal properties of both phases to be identical, anynstrained situation; the stress makes. the solid unfavor-
neglect the latent heat generation at the fr@nis simply able, thus a m_eltmg process_occurs)_ glve_znaz_’,yz nir
given byT = Ty + G¢ whereG is the thermal gradient. (all lengths being measured in the diffusion length unit).

Therefore Eq. (3) takes the form (in reduced units) For mod_erate uniaxial stressés, ~ 0.01 bay this re-
) cession is of the order di.1ly. Usually Iy ~ 100 um

i=1-%_ dok + 7 G ‘Tn;)z — 90 = (4) so that the recession is of the order of Ath. The lin-
It g ear stability analysis is easily accomplished. The diffu-
sion problem is standard and shall not be reproduced here.
For the elastic problem the biharmonic equation leads to a
) solution of the formy = e(a + bz)e?*T@"i4¥ wheree
n = ol (I—-0) Tu _ (5) is the deformation amplitude is the perturbation wave-
2E  |my|AcL length, andw is the amplification (attenuation) rate that

In Eq. (4) we have subtracted from the full elastic effectV® wish to determine. Mechanical equilibrium imposes

the contribution corresponding to the prestrained situatior® 0 a’.‘d b = —ay. _Reportln_g th.'s S(_)Iuthn into (4),
o0 is the applied uniaxial stresgy = o, — 0., and o and again together with the diffusion field into Egs. (1)
- XX 2 H
is the Poisson ratio. The parametgris associated with a}nd (2), we obtain two homogeneogs sets Qf two equa-
$!ons for the deformation and the diffusion field ampli-

where dy and Iy are the usual capillary and thermal
lengths, while

elasticity. It measures the ratio of the elastic energy store o " . .
due to the uniaxial stress over the latent heat of meltin udes. The compatibility condition leads to the dispersion
elation

which is involved to “jump” the temperature gayr.
Now we must solve the elastic problem in the solid
which is bounded by a deformable solid-liquid interface. @ +2=(1 —2k)X + 2 — X))yl + ¢* + 0, (7)
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whereX = I7' — 4nq + dyg®. Form = 0 we recover interface is absolutely unstable at all velocities. The
the Mullins-Sekerka dispersion relation. For a vanishingeduced bifurcation wave number at the lower threshold
growth velocity we immediately get from the above is large compared to unity and obeys the equation=
dispersion relatiom = /g2 + w (4nqg — 1/l7 — dog?®)  [2k/(dy — 27m/q.1)]"/>. Inspection of this equation leads
which is the dynamical version of the ATG result whento a physical wave number which behaves @s =
bulk dissipation prevails. Note that Eq. (7) could be2n/dy + (kdy/8D?*n*)V?2. The first part is purely elastic
inferred directly by combining the MS and ATG results. and is independent &f, while the second one is a mixture
It can be shown analytically [13] that Re) = 0  of elasticity and diffusion. Note that in the pure MS
entails automatically that Itw) = 0. That is to say, caseq. ~ V3/*. Elasticity leads to a completely different
the bifurcation is steady. Figure 1 shows the neutrabcaling withV. We can see also in Fig. 1 that fersmall
curve (solid line) and the most dangerous mode (dasheithe line of the most dangerous mode is concave in the
line) for » = 0 (thin lines) andn = 0.0014 (thick lines)  presence of a uniaxial stress, and it is convex otherwise.
(other parameters are shown in the caption). For typical In the large velocity regimg < 1, we obtain that the
parameter values we find thgt= 1073 corresponds to a upper threshold is given by
uniaxial stressr ~ 1073 bar, which is a small fraction of
the atmospheric pressure. V., = % )
A striking result is that, despite the small value of “ k(do — 4nPly)
the external stress, the neutral curve exhibits unexpected
changes. For example, both the upper and lower limitslere again there is no restabilization 4> > dy/4l7.
of the threshold are, respectively, about 10 times smallefhe (reduced) bifurcation wave number is given in this
and larger than the MS ones (note that the scales afemit by §., = 2n/(dy — 1/2k). Upon substitution of
logarithmic). The same holds for the scale of the mosthe relation (9), we obtaig., = 1/(27nir) (recall that at
dangerous modes close to the upper and lower limitshe upper limitg — 0 in the absence of stress and for a
Here elasticity favors small scales at low speed and largeanishing thermal gradient).
scales at high speed. From Eq. (7) we find after some If the tongue is preserved (i.ep> < 4d,/Iy) and for
algebraic manipulations that the lower velocity thresholdtypical values given in the caption of Fig. 1, we find
value in the tongue is given (in physical variables showrthat V.1/Vus: ~ 7, gc1/qemst ~ 4, while Vo /Vuvsy ~

(9)

here with tildes) 40, ge2/qems2 ~ 20, where the subscript “MS” refers to
D 2l the bare Mullins-Sekerka value. The fact that the elastic
Ve = ~—(1 4 — ) (8) effect is much more pronounced in the large velocity
Ir do regime is understood as follows. At large velocity the

Since n can reach values (at the threshold) going up tc]dlffu5|on length becomes smaller and smaller. The self-

1072, it is easily visible (because typically /dy ~ 10°) interaction of the front becomes local and usually capillary
that ,the ratio4i; 2/d, can be very close t(;) unity for effects overcome the diffusive instability. Since elasticity
uniaxial stresses of the order 003 bar. In the extreme 2CtS always on large scales, it wins over diffusion and

o 2 3 /4] ; . determines the dynamics at large scabpsrfall).
limit where = do/4r, there is no threshold:  The We have analyzed the weakly nonlinear behavior in

order to determine the nature of the bifurcation. We give

6

10 R B B B A B here simply the result, while details will be published
- elsewhere. The pure ATG instability is known to be
= q0f L i subcritical [14]. The Mullins-Sekerka instability may be
S subcritical or supercritical depending on the velocity and
g the partition coefficient. For small velocities the MS
8 10° - , 7 bifurcation is subcritical [15] fork < 0.4 (which is the
= case for the majority of metals) and supercritical otherwise.
S 00 L | Here we find that in the sma¥ or equivalently largey
> regime the (3rd order) Landau constant is dominated by the

ATG effect which behaves ag'; the MS effect behaves

CE— R e PP asq?. Thatis to say, the bifurcation is subcritical for all
10 10 10 10 10 10 o -~

w . partition coefficients.
avenumber (arbit. unit) . . .
o Finally, an important task concerns the experimental

FIG. 1. The neutral curve (solid line) and the most dangerousestability of our finding. A possibility would be to
mode (dashed line) in the presence of a uniaxial stesgge g cell with piezoelectric plates in order to impose a
(thick line) in the plane (physical wave number, physical trolled uniaxial st th lid has b devised
velocity) compared to the unstrained case (thin line).  HererONIroOted Uniaxial stress on the Solid as has been devise
n = 0.0014, dy = 1075, k = 1, and units are chosen so that for “He by Balibaret al. [7]. Transparent materials such
Ir =1andD = 1. as succinonitrile are not, in our opinion, suitable since
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these have plastic properties. This does not mean so fafl] W.W. Mullins and R.F. Sekerka, J. Appl. Phy35, 444
that plastic behaviors may not lead to interesting features.  (1964).

But this question is beyond the present study. Of course,[2] H. Esaka and W. Kurz, J. Cryst. Grow#t2, 578 (1985).
transparent materials have interesting properties such a3l S. de Cheveigné, and C. Guthmann, J. Phys. | (Fraice)
the allowance for arin situ analysis, and it would be 193 (1992); J.T.C. Lee, and R.A. Brown, Phys. Rev. B
very important to take advantage of that. However, many[ 4] f’ féi;%?ge’% Misbah. H. Mller-Krumbhaar. and
materials that enter this category are, beside plasticity, ' " o o ’

. 2, A. Valence, Phys. Rev. E9, 5477 (1994);49, 5495
smooth on the atomic scale, and that therefore exhibit 1994). y v ( )

faceted morphologies. In contrast, many metallic alloys (5] m. A, Grinfeld, Dokl. Akad. Nauk. SSSR90, 1358 (1986)
are rough on the atomic scale and_ lead to round_ed growth ~ [Sov. Phys. Dokl31, 831 (1986)].
shapes. We believe that metallic alloys are important[6] R.J. Asaro and W.A. Tiller, Metall. Tran8, 1789 (1972).
candidates on which to perform such experiments. There[7] S. Balibar, D. O. Edwards, and W. F. Saam, J. Low Temp.
exists by now overabundant literature about directional  Phys.82, 119 (1991); R.H. Torri and S. Balibar, J. Low
solidification on these materials. The effects we put  Temp. Phys89, 391 (1992).
forward should be easily detectable since they involve [8] K. Kassner and C. Misbah, Europhys. L8, 245 (1994).
strong changes on both the threshold values and the scaldg] R- N6tzel, J. Temmyo, and T. Tamamura, Nature (Lon-
of the pattern don) 369, 131 (1994).

We believe. that experimental checks of our theor arélo] S:R. Tait and C. Jaupart, iinteractive Dynamics of

L P y Convection and Solidificatioredited by H. Davis, H.E.

decisive in order to guide further developments.
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