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Abstract – The role of surface rheology in fundamental fluid dynamical systems, such as liquid
coating flows and soap film formation, is poorly understood. We investigate the role of surface
viscosity in the classical film-coating problem. We propose a theoretical model that predicts film
thickening based on a purely surface-viscous theory. The theory is supported by a set of new
experimental data that demonstrates slight thickening even at very high surfactant concentrations
for which Marangoni effects are irrelevant. The model and experiments represent a new regime
that has not been identified before.

Copyright c© EPLA, 2010

Introduction. – Although the concepts of surface
viscosity and elasticity date back to Plateau in the
19th century, they have only recently been formalized
mathematically and subsequently been used in quanti-
tative descriptions of surface flows (see [1] for a historic
review). The concepts of surface viscosity and elastic-
ity (Marangoni) effects are intimately related, and are
not always distinguishable in an experimental setting.
Even in some of the simplest situations, there is debate
over the role of surface rheology. One such configuration
is the Landau-Levich-Derjaguin (LLD) dip-coating flow,
wherein a film of wetting liquid is “deposited” onto a solid
substrate as it is withdrawn from a bath. This process is
so fundamental to coating flows that it is ubiquitous in
today’s coating technologies. The aim is always to deposit
a film with a desired thickness, which is achieved by
controlling the substrate withdrawal speed and the (bulk
and surface) rheology of the liquid. The film thickness h0
in a dip-coating process at speed u0 usually follows the
LLD-like law,

h0

�c
= 0.9458αCa2/3, (1)

where �c =
√
γ/(ρg) is the capillary length and Ca=

µu0/γ the capillary number, with µ the dynamic viscosity,

(a)E-mail: bscheid@ulb.ac.be

ρ the density, γ the surface tension, and g the gravitational
acceleration. Here α is a thickening factor that is tied to
surface rheology and is a maximum of 42/3 for immobile
interfaces (in the frame of the film) [2].
There are open questions for flows where Marangoni

effects are weak or are not expected to play a role. In
particular, it is commonly assumed that, as for pure
liquids, there is no thickening (i.e., α= 1) for liquids
containing large amounts of soluble surfactants, such
that the substrate withdrawal does not induce Marangoni
stresses. However, in some cases thickening does occur
(e.g., [3]), again raising the prospect of a role for surface
rheology. In this letter we show experimentally and theo-
retically that thickening in the absence of Marangoni
effects can be explained by surface viscosity. Our work has
relevance for dip-coating flows, as well as soap films forma-
tion and other flows involving fluid-fluid interfaces with
surface-active materials. We first discuss the role of surfac-
tant concentration on surface rheology, followed by the
development of our model and a discussion of its results
as compared to new experimental data.

Role of surfactant concentration. – At high surfac-
tant concentration, exchanges between surface and volume
are fast and can suppress the Marangoni effect that is
caused by surface elasticity, thus rendering the interface
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more mobile. This phenomenon, referred to as “surface
remobilization” [4], requires two conditions to occur that
are both fostered at high bulk surfactant concentration.
First, the surfactant exchange rate between the interface
and the sublayer has to be fast in comparison to the dilata-
tion/compression rate of the interface, e.g., [5] gives the
dependence of surface elasticity with the rate of compres-
sion. Second, the film should be thick enough such that
it contains enough surfactants to replenish the interface.
Sonin et al. [6] showed that the drainage of very thin films
is controlled by Marangoni effects and proceeds as if the
surfactants were insoluble, even at high bulk concentra-
tion. This phenomenon was predicted earlier by Lucassen-
Reynders and Lucassen [7], who proposed expressions for
the decrease of the effective film elastic modulus with
increasing film thickness.
In their study of fiber coating, Quéré and de Ryck [3]

defined a parameter σ=Γ/(c h0), which measures the
capacity of the “bulk reservoir” to replenish the inter-
face with surfactant, where Γ is the surface concentration
and c the bulk concentration. Using the soluble surfac-
tant DTAB (dodecyl trimethyl ammonium bromide) at
high concentration c= 5 cmc (cmc=15mM), they iden-
tified a “dynamical transition of thickening” by increas-
ing the substrate speed (i.e. Ca), hence the film thickness,
separating a region of large thickening (α� 1.9) before the
transition, corresponding to σ > 0.1, from a region of small
thickening (α� 1.15) beyond the transition, corresponding
to σ < 0.01. This transition was shifted toward smaller Ca
when increasing the concentration to c= 25 cmc (see fig. 61
in [3]). For both concentrations used by these authors, the
thickening factor beyond the transition remained unex-
pectedly larger than unity, and the thickening mechanism
for such thicker films has not been explained as of yet.
As mentioned earlier, surface elasticity, responsible for
thickening at lower Ca, should not play a significant role
after the transition because of surface remobilization. We
demonstrate here that thickening beyond the transition
can instead be rationalized by surface-viscous effects.

Model. – Consider a flat plate that is withdrawn from
a bath of liquid and entrains a film of thickness h(x) that
eventually approaches a constant value h0 at distances far
above the static meniscus, as sketched in fig. 1. For a pure
Newtonian fluid, this thickness is given by (1) with α= 1
and the region that connects the static meniscus with
the flat film, called the dynamic meniscus, has a typical
length of �Ca = h0 Ca

−1/3. Here we investigate how the
thickening factor α is affected by surface viscosity, denoted
µ∗. As in the usual LLD problem the film is thin enough
in the dynamic meniscus region such that lubrication
theory applies, i.e. h0/�� 1. We further neglect gravity
in the dynamic meniscus as compared to viscous stress,
i.e. ρg� µu0/h

2
0. Under these assumptions, the velocity

profile tends toward a uniform flow as x→∞ and the
pressure relative to the ambient pressure remains constant
across the film, i.e. p=−γ∂xxh. The axial-force balance

h0

u0

g

us(x)
h(x)

x

y

air

liquid

Fig. 1: Sketch of the dip-coating problem with surfactants at
high concentration; h(x) is the film thickness and us(x) the
surface velocity in the dynamic meniscus of length �.

has the form
µ∂yyu+ γ∂xxxh= 0. (2)

The axial velocity u(x, y) is therefore parabolic in y and

using u|y=0 = u0, u|y=h = us(x) and
∫ h
0
u(x, y) dy= h0u0,

the velocity in the film can be expressed as

u

u0
= 1−

(
1− us

u0

)
y

h
− 3
(
h− 2h0

h
+
us

u0

)
y

h

(
1− y

h

)
,

(3)
where us(x) is the unknown surface velocity. The system
is closed by the tangential stress balance at the interface
(see, e.g., [8]):

µ∂yu
∣∣
y=h
= µ∗∂xxus. (4)

Substituting (3) into both (2) (evaluated at y= h(x)) and
(4), and introducing the dimensionless variablesH = h/h0,
U = us/u0, and X = x/�, leads to

H ′′′ =
12

H3
− 6+6U

H2
, (5a)

β U ′′ =− 6
H2
+
2+4U

H
, (5b)

where a prime denotes the X-derivative and � has
been set to �Ca such that β =Bq Ca

2/3 �c/h0 is the sole
independent parameter, and Bq= µ ∗ /(µ�c) is the Boussi-
nesq number. The system (5) is solved with the following
boundary conditions: H,U → 1 and H ′,H ′′, U ′→ 0 as
X→∞. Furthermore, the curvature of the film profile
must match with the curvature of the static meniscus
near the bath, which yields the requirement ∂xxh=

√
2/�c

as x→−∞, or
h0

�c
=
H ′′(−∞)√

2
Ca2/3. (6)

24002-p2



The role of surface rheology in liquid film formation

1

1.5

2

2.5

10-2 10-1 100 101 102 103 104 105 106 107 108
-0.5

0

0.5

1

α

a
42/3

b

Bq = µ∗
c

U(−∞)

Fig. 2: Effect of surface viscosity µ∗ on the thickening factor α
and on the matching velocity U(−∞), as calculated from the
model (5).

Using (6), we find Bq= β H ′′(−∞)/√2, which is thus
determined a posteriori from the solution (β being an
input of the calculation and H ′′(−∞) being an output).
In the limit of β→ 0, (5b) gives U |β→0 = (3−H)/2H,

which substituted into (5a) yields the familiar LLD equa-
tion: H3H ′′′ = 3 (1−H). The solution to this equation
gives H ′′(−∞) = 1.3376 such that (6) leads to (1) with
α= 1. Moreover, as X approaches the static meniscus,
H� 1 such that U(−∞) =−1/2. Notice that the thicken-
ing factor for finite β has the form α=H ′′(−∞)/1.3376,
and does not depend on Ca at constant Bq.
In the limit of β→∞, solving (5b) with the boundary

conditions for U yields U |β→∞ = 1, which substituted into
(5a) gives:H3H ′′′ = 12 (1−H), the solution of which leads
to (1) with α= 42/3. In this limit, the interface moves at
the same speed as the substrate. It is not surprising that
α is identical for the cases of an “infinite” surface viscosity
and an “infinite” surface elasticity or Marangoni effect
(see, e.g., [9,10]), which renders in both cases the surface
immobile (relative to the moving plate). Finally, since for
the above limits, the matching velocity is constant, we also
require U(−∞) to be constant for any finite value of β,
i.e. − 12 � β � 1, so as to ensure continuity of the branch
of solutions.

Numerical solutions. We solve (5) for finite values of
β and scrutinize the transition between the two limits
mentioned above. Solutions to (5) were found using a
shooting technique (see details in the Appendix A) that
ensures both a constant curvature H ′′(X) and a constant
surface velocity U(X) for X→−∞. Results are shown
in fig. 2. Figure 2(a) shows that the thickening factor
increases smoothly from 1 to 42/3 as Bq increases, demon-
strating the possibility of thickening due to pure surface
viscosity effects. The best fit we found in the transi-
tion region is α∝Bq1/7 though it is only empirical.
We also give in the Appendix B a nonlinear fit of the

h0

u0

6Bq = 1

Bq = 10 Bq = 100

Fig. 3: Streamlines for various Boussinesq numbers Bq. In each
plot, the vertical length is 6�= 6h0/Ca

1/3 and the dotted line
shows the position of h0. Dots indicate stagnation points.

curve α vs. Bq. Figure 2(b) shows the surface velocity
U(−∞), which varies monotonically from − 12 to 1 as Bq
is increased. We then observe that for Bq > 25, U(−∞)
becomes positive, indicating the absence of a stagnation
point at the interface, in contrast to the pure LLD limit.
We find that U(−∞) = 0 corresponds to α≈ 1.3, which
differs significantly from the value α= 22/3 ≈ 1.59 found
in the case of pure surface elasticity [11,12].
To understand the role of surface viscosity in the flow

behavior, we plot in fig. 3 the streamlines as reconstructed
from the stream function defined by ψ(x, y) =

∫
u(x, y) dy.

The plot for Bq= 1 is comparable to the LLD situation for
pure liquids, which includes the presence of a stagnation
point at the interface. As the Boussinesq number increases,
the stagnation point is displaced downwards (outside the
plot area for Bq= 10) and eventually disappears from
the interface for Bq > 25 as found in fig. 2(b). Instead,
for Bq > 25, the stagnation point moves into the interior
of the fluid and is displaced upwards for increasing Bq,
as illustrated for Bq= 100. This behavior is qualitatively
similar to the flow in the case of a pure elastic surface [12],
even though the origin of the interfacial stress is different.

Applicability conditions. As conjectured in the intro-
duction, the interface should essentially be viscous beyond
the dynamical transition of thickening, i.e. no Marangoni
effects are expected in the region of “large” capillary
numbers. However, the present lubrication model (5) relies
on the assumption that gravity is negligible, which is satis-
fied only for “small” capillary numbers, namely Ca1/3� 1
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Fig. 4: Rate of stretching of a surface material element along
the X-coordinate for various Bq.

assuming h0 ≈ �c Ca2/3. The region of applicability of the
present model is thus restricted to a narrow range of Ca,
which only exists at high surfactant concentrations so as to
ensure complete surface remobilization and allow neglect
of surface elasticity. This regime requires two conditions
to be satisfied. First, surfactants should have time to be
adsorbed at the interface, and second they should be avail-
able in sufficient quantity adjacent to the interface.
The first condition implies that when new interface

is generated by stretching on a time scale τs = �/u0,
surfactants should populate the interface by adsorbing in
a time scale τa� τs. Applying a result obtained in [3] for
fiber coating to the case of planar coating, the condition
on time scales is

τa

τs
≈ λ

�c
� 1, (7)

where λ= (γ0− γ)Γ0/(kcµ) is a length scale with γ0
the surface tension of the pure liquid, Γ0 the saturated
surface concentration at equilibrium, and k the intrinsic
surfactant adsorption speed. The ratio λ/�c does not
depend on u0 and is therefore only a property of the
surfactant solution. However, since stagnation points also
occur at the interface, we cannot dismiss a priori the
possibility of having different time scales for stretching
along the length of the film. We report in fig. 4 the
rate of stretching of a surface material element defined
as dU/ds=U ′/

√
1+H ′2. We notice that as the value

of Bq increases, the maximum of the velocity derivative
diminishes. Therefore, the convective transport becomes
less important and the adsorption mechanism works even
more efficiently to reduce the concentration gradients since
dU/ds= 1 was assumed when setting τs = �/u0.
The second condition implies that

σ=
Γ0
ch0
≈ Γ0

c�cCa
2/3
� 0.01, (8)

where we assumed Γ≈ Γ0 for bulk concentrations much
above the cmc. A typical value is Γ0 = 1molecule/50 Å

2 �
3× 10−6mol/m2 (see, e.g., [13]). Though (8) has been
obtained empirically by Quéré and de Ryck [3] for DTAB,

0.0001 0.001

0.001

0.01

Ca = µu0/γ

h0

c

α = 0.99
(sd=0.02)

Fig. 5: Experimental results for silicon oil (Si47v20) with no
surfactant. The dashed line is a (2/3)-power law corresponding
to the mean value of the thickening factor α, with “sd” the
standard deviation. Error on Ca values is smaller than the size
of the symbols.

we assume this condition to be applicable for the surfac-
tant used in the experiments we next describe, since the
molecules are very similar.

Experiments. – Experiments using water solutions
of the surfactant dTAB (decyl trimethyl ammonium
bromide) have been performed at high concentrations.
This surfactant with cmc= 66mM was chosen for
its greater solubility in water than DTAB. The surface
tension was measured by the Wilhelmy plate method. The
shear viscosity of the liquid was measured by a rheometer
(Anton Paar Physica MCR 300) with an embedded double
Couette cylindrical system (DG 26.7/TEZ 150 P-C) [14].
The substrate used was a silicon wafer. The film thickness
was measured using a multi-wavelength light reflected on
the film and analyzed with a spectrometer (Ocean Optics).
The error on the thickness measurement was evaluated at
5%, and is reported by the error bars in the subsequent
plots. We validated the measurement technique with a
pure liquid by comparing the mean value of the thick-
ening factor obtained for each thickness measurement.
The results are shown in fig. 5, where the dashed line
corresponds to the mean value for the thickening factor,
α= 0.99, which is 1% below the theoretical value, lying in
turn within the standard deviation (sd) of 2%. The reason
we performed the control experiment with silicon oil and
not with water is because water is easily contaminated
and it was impossible to keep pure water clean during a
complete set of measurements. Indeed, it is known that
a very small amount of impurities at a water surface can
induce a strong Marangoni effect [15]. However, as long as
surfactant (c > cmc) is added to water, these difficulties
disappear, as the impurities (mainly fatty substances) get
dissolved in the micelles and the monolayer remains only
populated by added surfactants [16].

24002-p4
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0.0001 0.001
0.001

0.01

Ca = µu0/γ

h0

c

LLD

α = 1.057
(sd=0.013)

α = 42/3

Fig. 6: Experimental results for dTAB with c= 15 cmc. Solid
lines are the bounds for the thickening factor. The dashed line
is a (2/3)-power law corresponding to the mean value of α
beyond the “dynamical transition of thickening” (dotted line).

Figure 6 shows the measured variation of the film thick-
ness with the capillary number for c= 15 cmc. The dotted
line separates the dynamical transition of thickening on
the left, to a zone of constant thickening on the right.
Though large thickening is usually attributed to surface
elasticity, the dynamical transition shows a decrease of the
thickening with Ca. As mentioned in the introduction, this
phenomenon is due to the surface remobilization caused
by the increase of the film thickness, which increases the
number of surfactants available to replenish the interface
(as quantified by the parameter σ). Having also performed
experiments for smaller concentration (not shown), we
observed a shift of the dynamic transition of thickening
toward smaller Ca values for increasing the concentra-
tion. Consequently, the experiment for high concentra-
tion (c= 15 cmc) allowed us to put in evidence a zone of
constant thickening for almost a decade in Ca beyond the
dynamical transition.
The mean value of the thickening factors for the exper-

imental points lying on the right of the dotted line in
fig. 6 gives α≈ 1.06, with a standard deviation of about
1%. Though small, this 6% thickening exceeds the errors
associated with our experimental method (1% for pure
liquid). Such a result thus demonstrates the existence of
a thickening effect induced by the presence of surfactant
in a regime where no concentration gradient exists, i.e.
for which conditions (7) and (8) are satisfied. To eval-
uate the intrinsic adsorption speed k, and considering
the worst case, we added to the diffusion process (i.e.
D/a≈ 0.1m/s, with D the diffusion coefficient and a the
molecular size) a small electrostatic barrier of V = 100mV,
common for large surfactant concentrations, which gives
k= (D/a)e−V/kbT ≈ 10−3m/s, with kbT ≈ 25mV. Taking
γ0 = 0.072N/m, γ = 0.04N/m, µ= 0.00335Pa s and ρ=
1000 kg/m3, leads, for c= 990mM and Ca= 10−3, to
τa/τs ≈ 10−2 and σ≈ 10−4, which indeed fully satisfies
conditions (7) and (8).

We can therefore state that the constant thickening
observed in fig. 6 should essentially be induced by surface
viscosity effects. We then use our model to assess the
value of surface viscosity corresponding to α= 1.06,
and from fig. 2(a), we get the corresponding Boussinesq
number Bq≈ 3. Using �c ≈ 2mm, we finally obtain
µ∗ ≈ 2× 10−5 Pa sm, which is consistent with typical
values reported in the literature for ionic surfactants (see,
e.g., [17,18]). One should mention that this small value
was at the limit of resolution of the surface rheometer
(Anton Paar Physica MCR 301 with an embedded
interfacial rheology system) available to us at the time of
this study, which did not permit a direct measurement of
the surface viscosity.
It is known that surface viscosity has two contributions,

namely “intrinsic” viscosity associated with the shear
between surfactants at the interface, and “exchange”
viscosity arising from the energy dissipation associated
with the exchange of surfactants between the surface and
the sublayer (see, e.g., [7]). Though exchange viscosity is
usually much higher than intrinsic viscosity at low c [19],
it inherently vanishes with surface elasticity at large c (see,
e.g., [20]) such that intrinsic surface viscosity alone should
be responsible for thickening in the parameter range that
satisfies the conditions (7) and (8) for complete surface
remobilization.

Conclusions. – We conclude that the constant
thickening observed in the dip-coating process at large
Ca values with surfactants of high solubility and at high
concentration can be rationalized entirely by the effect
of intrinsic surface viscosity. Moreover, based on our
findings, we anticipate that the large constant thickening
observed at small Ca values (see fig. 6) should not only be
due to surface elasticity, as generally proposed in the liter-
ature, but to cooperative effects of both surface elasticity
and surface viscosity, with an even bigger influence of
the surface viscosity than in the present study due to its
“exchange” component. For instance, this argument could
be a candidate to resolve the apparent paradox reported
by Krechetnikov and Homsy [21] between the strong
thickening observed in experiments in contrast with the
thinning predicted by their simulations. In any case, it
is clear that surface rheology deserves closer study for a
better understanding of flows dominated by the presence
of fluid-fluid interfaces containing surface-active materials.

∗ ∗ ∗
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Appendix A: shooting procedure. – We detail
in this appendix the shooting procedure used in the
numerical resolution of (5). We first look for approximate
solutions in the vicinity of the flat film region, i.e. H,U →
1 as X→∞. Those local solutions are sought in the
form H = 1+ aeλX and U = 1+ beλX . Substituting those
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Fig. 7: Real eigenvalues vs. β obtained from (A.1). Note a
unique real eigenvalue is obtained in the LLD limit for β→ 0.

expressions into (5) and linearizing with respect to the
small amplitudes a and b, we find the characteristic
equation for the eigenvalue λ,

4−βλ2− 36

12+λ3
= 0. (A.1)

Among the five roots of this equation, three are real
(one positive and two negative) and plotted in fig. 7 as
a function of β. The local solution should therefore be
a linear combination of the solutions corresponding to
the negative eigenvalues, noted λ1 and λ2. We can thus
write H = 1+ a1e

λ1X + a2e
λ2X for the local solution near

the flat film region. The amplitudes b1 and b2 for the
surface velocity U are determined from bi =−6ai/(4−
βλ2i ). Since solutions are invariant by translation along the
X-coordinate, we can fix one of the two amplitudes and use
the other as the shooting parameter. We chose in fact to
fix the curvature of the solution, takingX = 0 as reference,
such that H ′′(0) = a1λ21+ a2λ22. For all calculations, we
have taken H ′′(0) = 10−3. The rest of the procedure thus
consists in shooting from X = 0 toward negative values
by progressively extending the domain and adjusting the
single shooting parameter such that H ′′ and U eventually
tend to constants, namely H ′′(−∞) and U(−∞). It was
found that a domain of 15� was large enough to satisfy
these criteria for any value of Bq.

Appendix B: nonlinear fit of α vs. Bq. – We
propose here a nonlinear fit of the curve plotted in fig. 2(a),

α∼= 1
2
+21/3+

(
21/3− 1

2

)
tanh

[
6.40− 8.27Bq−0.049] ,

which can be inverted to get a rough estimate of the value
of the Boussinesq number Bq, hence the surface viscosity
µ∗, for a given thickening factor α.
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