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Investigating the role of a poorly soluble
surfactant in a thermally driven 2D microfoam†

Vincent Miralles,a Emmanuelle Rio,b Isabelle Cantatc and Marie-Caroline Jullien*a

Foam drainage dynamics is known to be strongly affected by the nature of the surfactants stabilising the

liquid/gas interface. In the present work, we consider a 2D microfoam stabilized by both soluble

(sodium dodecylsulfate) and poorly soluble (dodecanol) surfactants. The drainage dynamics is driven by

a thermocapillary Marangoni stress at the liquid/gas interface [V. Miralles et al., Phys. Rev. Lett., 2014,

112, 238302] and the presence of dodecanol at the interface induces interface stress acting against the

applied thermocapillary stress, which slows down the drainage dynamics. We define a damping parameter

that we measure as a function of the geometrical characteristics of the foam. We compare it with

predictions based on the interface rheological properties of the solution.

1 Introduction

Foams are ubiquitous in everyday life, and for fields as varied
as enhanced oil recovery1,2 or solid foams,3,4 a major stake
in terms of controlling foam properties is to understand the
dynamics of drainage, a key destabilisation process.5–8 Our
insight into foam drainage has been steadily refined since the
pioneering work of Leonard and Lemlich.9 Two important
models rationalized two distinct regimes, where dissipation is
dominant in either the Plateau borders or the nodes, respec-
tively: the Trinity College model considers a rigid interface,
with an infinite surface shear viscosity and a Poiseuille flow in
the Plateau borders (dissipation in the borders),10 while the
Harvard model is based on a zero surface shear viscosity and
a plug flow in the Plateau borders, i.e. the interface is fluid
(dissipation in the nodes)6,11 – both models perform well in
their respective forced-drainage set of experiments.12 Experi-
mental transitions between these two regimes were observed
depending on the liquid fraction13 or the Boussinesq number
Bq = e/(ZRPb)14 that compares surface and bulk viscous dissipa-
tions through the interface shear viscosity e, the bulk dynamic
viscosity Z and the radius of curvature of the Plateau borders
RPb. A main take-away from these models is that the physical
chemistry of the components forming the foam (i.e. the surfac-
tants, liquid and gas) significantly impacts the predictions of

the global drainage model by changing the boundary condition
at the gas/liquid interface:15

( %Pgas � %Psol)n = rs� %Ps (1)

where n is the normal to the interface oriented towards the liquid
phase, %Pgas = �p0%I and %Psol = �p%I + �t are the stress tensors,
respectively, in the gas and liquid phases and %Ps = %Isg + �ts is the
surface-excess stress, with g being the surface tension and
�ts being the viscous contribution involving the surface shear
viscosity e and the surface dilational viscosity k.

Importantly, the Marangoni stress rs�Īsg, due to surface
tension variations, can contain two contributions: (i) the thermo-
capillary stress qTgqxT, and (ii) the Gibbs Marangoni stress
qGgqxG, which comes from a non-homogeneous surface concen-
tration of surfactant, G. The importance of the Gibbs contribu-
tion was explored by Durand and Langevin,16 who worked
within Leonard and Lemlich’s framework but included surface
tension variations due to a gradient in the surface concentration
of surfactants. Remarkably, their model was able to account for
both the Harvard and Trinity regimes, and for insoluble surfac-
tants with a dissipation occurring only in the Plateau borders.
This work was then refined to include a recirculating flow at
the junction of the Plateau borders and the films, due to the
Marangoni stress;17 in this picture, the films act as a surfactant
reservoir.

The present study attempts to shed more light on this issue
by taking advantage of a microfluidic experimental setup in
which the geometry is very simple and the parameters are well
controlled. More precisely, we study the drainage dynamics of a
microfoam constrained in a 2D microfluidic Hele-Shaw cell.
The geometry of the 2D foam is then very simple: a single layer
of monodisperse bubbles of controlled radius R, where the
cross-section of the Plateau borders is set by the height of the
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chamber e { R.18,19 The cell is placed horizontally on a series of
heating resistors, which allows us to impose a well-defined local
temperature gradient and use the thermocapillary component
of the Marangoni stress as a driving force. We previously used a
similar setup to characterize the drainage dynamics of a foam
stabilized by the highly soluble surfactant sodium dodecylsulfate
(SDS), and were able to show that surface rheology played no role
in that situation.20 Here, we add a poorly soluble surfactant to
the solution, dodecanol (DOH), that adsorbs on the interface.
During drainage, the air/liquid interfaces move towards the
cooler part of the bubble in response to the thermocapillary
driving stress qTgqxT, advecting the DOH. The dodecanol then
accumulates at the cooler end of the bubble, inducing in turn a
solutocapillary stress opposing drainage: qGgqxG, where G is the
dodecanol surface excess, see Fig. 1. In addition to this Gibbs
elasticity effect, the surface shear and dilational viscosities are
expected to increase with the DOH concentration at the inter-
face, which would also contribute to slowing down the drainage
process. We indeed find that the characteristic time td of the
drainage process is increased by a maximal factor of 20% due to
the addition of DOH to the solution. To assess the influence of
these different contributions, we measure the variation of td with
the temperature gradient (driving term), the DOH concentration,
and the geometrical parameters R and e.

We then cover several possible models, looking for a domi-
nant contribution. For each of the mechanisms listed above,
we derive the relative scaling law for a characteristic damping
parameter r with respect to the geometrical parameters of
the system, and compare it with our experimental data. While
looking at the Gibbs elasticity in particular, we also consider
different ways to formalize the diffusion of surfactants from
one bubble to the next. However, none of these models turn out
to be sufficient to capture the full picture, which leads us to
conclude that even in such a minimal system, the drainage
dynamics probably results from a complex interplay between
several contributions.

2 Materials and methods

The experimental setup is a microfluidic Hele-Shaw cell placed
horizontally on a series of heating resistors, see the inset in
Fig. 2. The chamber is made of polydimethylsiloxane (PDMS)
and fabricated using standard soft lithography techniques.21

Its dimensions are L� w = 2000� 1500 mm2 in the plane, with a
thickness e A {19.3;54.2} mm. The optimized resistors placed
below the cell generate a linear temperature profile along x,
while the temperature is homogeneous along y, which induces
a constant thermocapillary stress throughout the foam:
dxg = qxTqTg.22 The temperature range is [25–32] 1C, which
corresponds to a constant thermocapillary stress equal to
0.735 Pa for all experiments. This thermocapillary stress is
the only driving force inducing drainage, since the cell is placed
horizontally in the (x,y) plane, and gravity (along z) plays no
role. We characterize the drainage dynamics by following the
time evolution of the liquid fraction f via image processing.20

The foaming solution consists of SDS (Sigma-Aldrich, 16 mM –
2 cmc – at 25 1C) with DOH (Fluka, at concentrations that will be
given throughout the paper) mixed with glycerol (5.68 wt%, Aldrich)
in deionized water (Millipore). In the following, the DOH bulk
concentration will be noted either [DOH] in the graphs, or simply
c in the equations. The bulk viscosity of the solution is Z =
1.2 � 10�3 Pa s at 25 1C and 0.88 � 10�3 Pa s at 32 1C23 and does
not depend on the DOH concentration: this means a relative
variation of about 10% in our temperature range, which lies within
the error bars of our results. Moreover, a noticeable influence of the
variation of Z with the temperature would lead to nonlinear
variations of the flows with the temperature, which was carefully
ruled out in previous work using a similar setup.20 We thus assume
a constant value of Z = 1.2 � 10�3 Pa s in the following. As regards
the shear viscosity of the solution, it is very low and difficult to
measure; our discussion only considers the order of magnitude of
this viscosity. The values reported in the literature are Zs = 6 �
10�8 kg s�1 for SDS at 2 cmc and Zs = 2 � 10�6 kg s�1 when
0.3 g L�1 of DOH is added, with relative error bars of B25%.24 The
variations with temperature in our operating range are unknown,
but probably well within these error bars. Finally, the surface
tension of the solution has been measured as a function of
temperature and DOH concentration and is given in the ESI.†

Fig. 1 Illustration of the Marangoni stress at the air–water interface. DOH
molecules are represented in green. Left: The interface is at rest and the
surfactants are homogeneously distributed. Right: A temperature gradient
induces a thermocapillary stress (@Tg~rsT , where ~rs is the surface gradient)
that affects the surfactant distribution, causing in turn a solutocapillary

stress (@Gg~rsG) in the opposite direction.
Fig. 2 Typical time evolution of the liquid volume fraction f normalised
by the liquid fraction at initial time f0 B 14%. The thermocapillary stress is
set to a constant value equal to 0.735 Pa for all the experiments. Open
circles and open squares, respectively, correspond to [DOH] A {1.6 � 10�6;
5.6 � 10�6} mol L�1 and e = 54.2 mm. Open diamonds and crosses,
respectively, correspond to [DOH] A {1.6 � 10�6; 5.6 � 10�6} mol L�1 and
e = 19.3 mm. Solid lines show the best exponential fit for each dataset. Error
bars are within 10% for all the experimental curves, and are not represented
to help legibility. Inset: Sketch of the experimental setup. The Hele-Shaw
cell is sealed above the heating resistors.20
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3 Experimental results

The drainage process is monitored by following the normalized
liquid fraction f/f0 over time, where f0 is the initial liquid
fraction. The specific case of a solution containing SDS as the
only surfactant has been extensively investigated in a previous
work,20 and is used as a reference point in what follows. The
foaming solution is driven by the thermocapillary stress towards
the cooler end of the cell, where it is free to exit. This corre-
sponds to an exponential decrease in f down to a saturation
value at t = ts. Fig. 2 shows the time evolution of f/f0 for high
and low DOH concentrations, at two different values of the cell
thickness e, as well as the corresponding exponential fits
f(t) = f0e�t/td over the time range [0–ts]. As expected, introducing
DOH in the solution slows down the drainage process, and
td varies with the DOH concentration for both values of e (we
carefully checked that the characteristic drainage time td is
insensitive to the choice of the cut-off time ts, which can vary
within a few seconds without notably affecting td).

To quantify the influence of dodecanol in the solution,
we introduce a damping factor r, directly related to the experi-
mental td, measuring the departure from the reference case.
First, the mass conservation equation in the cell gives:

d lnf
dt
¼ ��vx

L
(2)

where %vx is the projection along x of the average velocity in the
liquid phase near the cell end and L is the cell’s length.20 In the
reference case, we proposed to neglect all the rheological proper-
ties of the interface, and could write:

�v0x ¼
ae
Z
@Tg@xT (3)

with a numerical parameter a observed experimentally to be
constant within 3% and equal to a0 = 3.7 � 10�3 whatever the
values of the bubble radius R (defined in Fig. 6) and the cell
thickness e.20 As will be discussed in more detail in Section 4,
the corrections related to the different rheological properties of
the interface all depend on these two geometrical parameters,
and the independence of a with respect to R and e confirmed
our initial assumption that the rheological properties of the
SDS solution are negligible in our system.

The damping factor r can now be defined by setting:

%vx = %v0
x(1 � r). (4)

Using f = f0 exp(�t/td) and eqn (2), we get the direct relation
between r and the experimentally measured td:

td ¼
ZL

a0eð1� rÞ@Tg@xT
: (5)

We can now look at the influence of the temperature gradient,
the dodecanol concentration, the bubble size R and the cell
thickness e on the damping parameter r, see Fig. 3 and 4. First,
we find that for a given DOH concentration and geometry, the
value of r does not depend on the applied temperature gradient
(inset in Fig. 3), i.e. the system responds linearly to the driving
stress. This confirms that the temperature dependence of all

the physical parameters is negligible. Consequently and for
the sake of simplicity, the thermocapillary stress is set to a
constant value equal to qTgqxT = 0.735 Pa in all the following
experiments, corresponding to qTg = �2.1 � 10�4 N m�1 K�1

and qxT = �3.5 K mm�1.
The evolution of r with the DOH concentration is shown in

Fig. 3, for typical values of the geometrical parameters e = 54.2 mm
and R = 86.0� 2.9 mm (e/R = 0.63). We find that r = 0 below a DOH
concentration of c B 10�6 mol L�1: at such low concentrations,
there are not enough DOH molecules adsorbed at the interface to
significantly affect the interface stress tensor. At higher concen-
trations however, the increase of r is a signature of the appear-
ance of an additional interface stress, until a plateau is reached
above c = 10�5 mol L�1 where r = 0.17. Importantly, the presence
of dodecanol never rigidifies the interface enough to induce an
interfacial stress able to fully counteract the thermocapillary
stress. In other words, we never reach the rigid interface limit
proposed in the Trinity College model.

Lastly, Fig. 4 shows the variation of r with the two relevant
geometrical quantities: the typical length of a meniscus R

Fig. 3 Damping factor r as a function of the DOH bulk concentration, for
e = 54.2 mm and R = 86.0 � 2.9 mm (e/R = 0.63). Inset: Evolution of r as a
function of the applied temperature gradient, with [DOH] = 3.2� 10�6 mol L�1

and e/R = 0.53 � 0.02.

Fig. 4 Evolution of r as a function of the bubble radius R for different
DOH concentrations and different cell thicknesses e: 1.6 � 10�6 mol L�1

(circles), 3.2 � 10�6 mol L�1 (squares), 5.6 � 10�6 mol L�1 (diamonds) and
9.6 � 10�6 mol L�1 (triangles). For each dataset, the hollow (resp. solid)
symbols correspond to e = 19.3 mm (resp. e = 54.2 mm).
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and its width e. As discussed previously, the characteristic
drainage time does not depend on e or R in the absence of
DOH (see eqn (3)): r = 0 in the reference case. Conversely,
for DOH concentrations in the range [10�6–10�5] mol L�1,
r increases with e and decreases with R, until saturation is
reached at r = 0.17. Such a geometry-dependent delay is the
signature of interfacial rheology effects due to the presence
of DOH.

4 Model

To gain better insight into the relative contributions of the surface
shear viscosity e, the dilational viscosity k, and the solutocapillary
effect, we look for scaling laws for r (with the parameters e,
R and rT) corresponding to each of the mechanisms at play.
To do so, we write down the full boundary conditions at the
interface.

We take the meniscus in contact with the plate, separating
two bubbles as an elementary piece of foam, see Fig. 5. In our
range of liquid fractions, there is no film between adjacent
bubbles, and the transverse radius of curvature of the meniscus
is e/2. Since the foam is squeezed between two plates with
e { R, the second curvature is negligible, and each air/liquid
interface is a fraction of a cylinder of radius e/2. The orientation
of the local normal -n and tangent

-

t on the interface is given in
Fig. 5. For the sake of simplicity, the equations are written
for a meniscus parallel to the x direction. Inside the bubbles,
the pressure is constant and equal to p0, and the viscous stress
is negligible; gravity and inertia can also be safely neglected. In
our geometry, the width e of the meniscus cannot vary and
some degrees of freedom are thus blocked: in particular, an
isotropic extension, which would induce forces involving k
only, cannot occur. Here, the interface may only be (i) sheared
in the (t,x) plane, and (ii) elongated along x. Case (i) is a simple
shear and involves only e. Case (ii) is, from geometrical arguments,
a mix of simple shear and isotropic extension. The combination
of viscosities corresponding to this uniaxial stretching is e + k.
This can be mathematically derived by writing the boundary
conditions at the gas/liquid interface (domain qO1 in Fig. 5),
which are:25

Normal stress component:

p� p0 � 2Z
@vn
@n
¼ �2

e
gþ k

@vt
@t
þ @vx
@x

� �
þ e

@vt
@t
� @vx
@x

� �� �
;

(6)

Stress component along
-

t:

Z
@vt
@n
� 2vt

e

� �
¼ � @g

@t
þ k

@

@t

@vt
@t
þ @vx
@x

� �
þ e

@2vt
@t2
þ @

2vt

@x2

� �� �

(7)

Stress component along -x:

Z
@vx
@n
¼ � @g

@x
þ k

@

@x

@vt
@t
þ @vx
@x

� �
þ e

@2vx
@t2
þ @

2vx

@x2

� �� �
; (8)

where
@g
@x

includes both the driving thermocapillary stress and

the solutocapillary stress, e is the surface shear viscosity, k is
the surface dilational viscosity, and (vn,vt,vx) are the velocity
components in the local basis.

Using the notation
@g
@x
¼ @g
@T

@T

@x
� @g

@G

����
����@G@x ¼ @xgð ÞG� @xgj jT¼

@xgð ÞG 1� reð Þ with subscripts G and T indicating the constant
surface concentration and temperature, respectively, and where
the ratio re = |qxg|T/(qxg)G (with subscript e for elasticity)
compares the damping Gibbs Marangoni stress to the driving
thermocapillary stress, eqn (8) can be written as a function of a
single theoretical damping factor rth:

Z
@vx
@n
¼ � @xgð ÞG 1� re þ

kþ e
@xgð ÞG

@2vx
@x2
þ e

@xgð ÞG
@2vx
@t2

� �
; (9)

= �(qxg)G(1 � rth) (10)

Here we neglect the tangential velocity vt in comparison with vx.
This equation, together with the Stokes equation in the bulk,
governs the fluid motion and thus the drainage dynamics.
All the rheological properties of the interface are included in
the correction (1 � rth) to the driving force (qxg)G. Since we are
in the linear regime (inset of Fig. 3), a multiplicative correc-
tion to the force induces the same multiplicative correction
to the system response. The parameter rth hence provides a
theoretical prediction for the experimental parameter r defined
in eqn (4).

As r remains smaller than 0.17, we consider it to be a small
correction to the unperturbed drainage. The velocity then scales

as U � a0
e

Z
@g
@x

� �
G

(see eqn (3)). From this we deduce:

e
@xgð ÞG

@2vx
@t2
� e

e2
e

@xgð ÞG
� a0Bs

q with Bs
q ¼

e
Ze

(11)

ðkþ eÞ
@xgð ÞG

@2vx
@x2
� ðkþ eÞ

R2

U

@xgð ÞG
� a0Bd

q with Bd
q ¼

eðkþ eÞ
ZR2

(12)

It is clear from this analysis that the global damping factor
rth is a function of three non-dimensional numbers:

rth = f (re, Bs
q, Bd

q)
Fig. 5 Zoom in on the cross-sectional view of a pseudo-Plateau border,
and definition of domains (the liquid phase is represented in grey).
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where re is a retardation factor due to the Gibbs elasticity, Bs
q is

the Boussinesq number based on the surface shear viscosity
and Bd

q is the Boussinesq number associated with the extension
of the film. We will now examine each of those contributions
separately.

4.1 Contribution of the Gibbs elasticity

We first disregard the influence of surface viscosity, to focus on
the solutocapillary contribution in eqn (10). A sketch of the
surfactant transport mechanism is presented in Fig. 6. We
consider the surfactant transport along a meniscus oriented
along x. The adsorbed surfactants of concentration G are
advected by the interface velocity Us B a0e(qTgqxT)/Z, inducing a
flux F1

conv B (GUs)e for each meniscus. Similarly, the surfactants
in the bulk, of concentration c, generate a flux Fbulk

conv B (cU)e2. At
the front end of a bubble, the x-component of the bulk velocity is
not strongly modified, but that of the interface velocity tends to
zero for geometrical reasons. The convective flux F1

conv thus
vanishes too. Experimentally, the exponential decay of the liquid
fraction (before the sudden saturation at ts) is the indication of a
constant value of the parameter r. This means that the soluto-
capillary effect is constant during the whole drainage process, i.e.
the concentration at the interface is steady, and the surfactant
flux along x is independent of x. A classical assumption is that a
counterflow in the thin films balances F1

conv.
17 However, in our

specific geometry, there is no thin film between the bubbles, and
the mobility of the wetting films is very small due to the no slip
condition at the cell wall. The vanishing flux F1

conv at the end of
the meniscus must therefore be compensated by a flux in the
same direction and of the same amplitude across the liquid
phase located at the end of the meniscus (see Fig. 6). In other
words, the surfactants flow along the bubble interface and, upon
reaching the front of the bubble, they have to diffuse through the
solution to reach the next bubble downstream:

F1
conv = F1-2

diff (13)

where F1-2
diff is the diffusive flux of DOH across the liquid phase

between two adjacent bubbles, labelled bubble 1 and bubble 2.
The diffusion field is coupled to the complex geometry of the
meniscus and the vertex network, and to the convection by the
bulk velocity. We examined three modes of surfactant transport

between bubbles: diffusion across the meniscus, diffusion across
the films, and convection across the meniscus. However, the scaling
laws from the latter two models are not in agreement with our
experimental data, and this part of the analysis has been moved to
the ESI.† We focus here on the first of these three models.

We consider the diffusion across a meniscus of character-
istic size e3. The surfactants diffuse through a section e2 and the
concentration gradient scales as Dc/e, where Dc is the difference
in DOH bulk concentration between the front of bubble 1 and
the rear of bubble 2. We get F1-2

diff B (DDOHDc/e)e2, where DDOH

is the diffusion coefficient of DOH in water. The parameter Dc
involved in this expression is also the concentration difference
between the two ends of a given meniscus, and obeys
Dc B R(qxg)T/(qcg), assuming a fast equilibration of the interface
with the subphase. From this, we deduce the expression of
(qxg)T and the relation:

rthD;1 �
a0GðcÞ

@geq
@c

����
����

ZDDOH
� e

R
: (14)

The scaling law in e/R is in very good agreement with the
experimental results shown in Fig. 7, in which e and R varied
independently.

Based on the literature, we take DDOH = 5 � 2 � 10�9 m2 s�1

for the diffusion coefficient of DOH in water.26 Our measure-
ments of qcgeq show that the equilibrium surface tension evolves
linearly with the DOH bulk concentration: qgeq/qc = 1 N m2 mol�1

(see Fig. 2 in the ESI†). Lastly, the concentration at the interface is
given by a Langmuir isotherm:27,28

GðcÞ ¼ G1
Kc

1þ Kc
(15)

with GN = 5.53� 10�6 mol m2 and K = 2.86� 105 L mol�1 (see ESI,†
and ref. 29). Now that all the terms are known, and eqn (14) can be
directly compared to the experimental results with a dimensionless
prefactor A as the only adjustable parameter. As shown in Fig. 7,
the best fit is obtained for A B 1.5 � 10�4.

Fig. 6 (a) Sketch representing the solutocapillary stress induced by the
DOH molecules. pPb refers to the pseudo-Plateau borders.20 (b) Diffusion
of the surfactant across the meniscus.

Fig. 7 Evolution of r as a function of the ratio e/R for different DOH
concentrations: 1.6 � 10�6 mol L�1 (circles), 3.2 � 10�6 mol L�1 (squares),
5.6 � 10�6 mol L�1 (diamonds) and 9.6 � 10�6 mol L�1 (triangles). For each
dataset, the hollow (resp. solid) symbols correspond to e = 19.3 mm (resp.
e = 54.2 mm). Solid lines represent the fitting curves based on eqn (14) in
the linear regime for A = 1.5 � 10�4, without any other fit parameter.
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The functional dependency of r with the 3 independent
parameters e, R and qT/qx is accurately captured by this model
in the linear regime. However, A is surprisingly small: the model
fails to even remotely predict the order of magnitude of the delay
in drainage. A possible explanation for it is that G does not reach
its equilibrium value G(c). The interface elements are created at
the rear of the bubble (interface extension zone) and disappear
at the front (interface compression zone). The lifetime of these
interface elements is thus of the order of U/R B 1 s, which is
much shorter than the equilibration time of the interface, of
about 20 s (see ESI†). A smaller average value of G, independent
of the geometry, might explain our data.

4.2 Contribution of the surface viscosities

We now consider the damping to be dominated by viscous effects
rather than by an elastic effect. The first contribution of the surface
viscosity to the damping factor r scales as (eqn (10) and (11)):

rthdil �
ðkþ eÞ

Z
e

R2
: (16)

The experimental values of r from Fig. 4 are shown in Fig. 8
as a function of e/R2. For a given cell height e, the general trend
is consistent with such a scaling, however the data do not

collapse on a single curve at a fixed DOH concentration when e
and R vary. Furthermore, the curves are not linear. The intercept
corresponds to an offset that could be imputed to the surface
shear viscosity. Indeed, eqn (10) and (11) give the following
scaling for its contribution to the damping factor:

rthsh �
e
Ze

(17)

However, the offset increases with e for a given DOH concentration,
in contradiction with the prediction from eqn (17). Finally, even
though this model cannot recover a scaling law consistent with our
experiments, it does predict a much better order of magnitude for
the delay r: with e B 10�7 kg s�1 we get ee/(ZR2) B 0.1.

4.3 Synthesis

Table 1 shows the scalings for the contributions examined here
and in the ESI,† with the exception of Gibbs elasticity with
convection across the meniscus since it turns out to be negligible
(see ESI†). We find that the best fit is r B e/R, i.e. Plateau border
cross-section/length, which may correspond to a dominating
elastic contribution. However a prefactor of order 10�4 indicates
that the surfactant transport process is faster than simple
diffusion in the meniscus between adjacent bubbles. A more
consistent order of magnitude is given by the model for Gibbs
elasticity with diffusion of surfactants across the films, or by the
viscous model; however neither of those predicts a scaling for
r with e and R in agreement with the experimental data.

5 Conclusion

In this work, we investigated the effect of surface rheology on a
thermally driven foam in a microfluidic cell. Such an experi-
mental setup allows for a simple foam geometry (monodisperse
and 2D), the parameters of which can be tuned with great
accuracy. We investigated the level of contribution of different
surface rheological properties arising from the presence of a
poorly soluble surfactant at the interface: (i) the surface shear
viscosity, which was expected to be enhanced in a microfluidic
experiment where the velocity is zero at the walls and maximal
in the mid-plane of the Hele-Shaw cell, (ii) the surface dilational
viscosity expected in any drainage experiment, since convecting
interfaces requires their creation at the rear of the bubbles and
their destruction at the front, and (iii) the Gibbs Marangoni
stress induced by the thermocapillary surface flow. We charac-
terised the drainage dynamics by defining a damping parameter

Fig. 8 Evolution of r as a function of e/R2 for different DOH concentra-
tions: 1.6 � 10�6 mol L�1 (circles), 3.2 � 10�6 mol L�1 (squares) and 5.6 �
10�6 mol L�1 (diamonds). For each dataset, the hollow (resp. solid) symbols
correspond to e = 19.3 mm (resp. e = 54.2 mm). Dashed (resp. solid) lines
represent the best linear fitting curves for e = 19.3 mm (resp. e = 54.2 mm),
for each dataset.

Table 1 Different scaling laws for the contributions to the damping factor r

Gibbs elasticity Surface viscosity

Diff. – meniscus Diff. – film Bs
q Bd

q

Scaling law for r
a0G1

@geq
@c

����
����

ZDDOH
� Kc

1þ Kc
� e

R

a0G1
ffiffiffi
h
p @geq

@c

����
����

ZDDOH
� Kc

1þ Kc
� e3=2

R2

2e
Ze

ðkþ eÞ
2Z

e

R2

Observations
+ Consistent scaling,

prefactor too small
Consistent trend
requires the intercept
(offset increasing with e)

Scaling independent of R
wrong trend for the intercept (R - N)

Consistent trend
requires the intercept
(offset increasing with e)

�
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r encompassing these three contributions. We derive scaling
laws for r in terms of the geometrical parameters e and R for
each of the damping mechanisms, and find the best agreement
with the pure elastic damping model. However, the order of
magnitude of r predicted by this model differs strongly from the
experimental values, whereas considering only viscous effects
gives a prediction closer to the experimental data, but the wrong
scaling. We conclude that the damping at work is likely to be a
more complex mechanism, involving an interplay between several
of these contributions. Our study paves the way towards a deeper
investigation in that direction.
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