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The effective viscosity of liquid foams is controlled by Marangoni forces and therefore by the transport of
surfactants. Direct tracking of the latter during foam deformation is out of reach. Besides, the competition
between diffusion and convection on the interfaces and in the bulk of complex assemblies of thin films and
menisci is still an open problem. These shortcomings severely limit our understanding of foam rheology and
stability. In this Letter, we use a comprehensive characterization of in-plane flows in an elementary foam
during imposed deformation to determine indirectly the flux of surfactants from a film to its first neighbor.
We show that the meniscus connecting the films, despite its potential role as a surfactant reservoir, is not
involved in surfactant transport. This information has been identified as a key missing piece in local foam
viscosity models of the literature.
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As many other complex fluids, liquid foams are visco-
elasto-plastic materials whose rheological behavior is well
described by a Herschel-Bulkley model [1]. However,
predicting the parameters of this phenomenological law
is still a challenge. Notably, the Herschel-Bulkley exponent,
close to 1=2, may be explained either by the local
description of the flow [2], or by a mean field theory based
on the generic elastoplastic properties of athermal systems
[3–5]. Liquid foams offer the unique opportunity to question
these predictions, as both the plasticity field [6] and the local
structure are experimentally accessible. Focusing on this
second approach, previous experiments have been per-
formed where a few foam films connected to a common
meniscus are being deformed, defining the scale of what is
called an elementary foam [7–10].
When a foam film is stretched or compressed, the

surfactant population of its interfaces is diluted or con-
centrated, and the surface tension γ changes. The local
subphase is too thin to provide or accept enough surfac-
tants to relax toward equilibrium, and a Gibbs elasticity
E ¼ Að∂γ=∂AÞ can be defined, with A the film area [11].
However, the interfaces can relax through surfactant
exchanges with the exterior, at the edges of the film.
This relaxation process provides the internal timescale of
the material, and is thus a key process to predict the foam
effective viscosity [12].
At its boundary, a film is in contact with a meniscus,

shared with two other films. On the generic example shown
in Fig. 1, the horizontal film is compressed and its two
neighbors are stretched. The compressed film shares the
interfaces I1 and I2 with its neighbors and its surfactants
can easily escape by flowing over the meniscus, convected
by a Marangoni flow driven by the surface tension differ-
ence between the films. However the interface I3 cannot
follow the motion of both I2 and I1 without being locally

stretched, which hinders the relaxation toward equilibrium:
this is reminiscent of the geometric frustration encountered
in granular stacking [13]. As already predicted in [14], the
key to fully determine the foam local relaxation timescale is
knowing the origin of the surfactants covering this frus-
trated interface. The Fig. 1(b) illustrates two possible
limiting cases: (i) a transverse flux of surfactant from
the other interface, or (ii) bulk diffusion from the meniscus.
All the state-of-the-art models of elementary foam defor-
mation [7–10] had to make hypotheses on this transport
process to predict the relaxation rate of the films, which

FIG. 1. (a) Schematic view of the experimental setup. (b) Two
limit scenarios for the surfactant transport induced by the
deformation. The red and dark red surfactants are on the top
and bottom interfaces of the horizontal film at t ¼ 0. At final
time, they are on the left and the interface I3 is covered either by
the red surfactant having crossed the film [scenario (i), as actually
measured] or by the blue surfactants coming from the meniscus
[scenario (ii), which will be invalidated].

PHYSICAL REVIEW LETTERS 134, 168201 (2025)

0031-9007=25=134(16)=168201(5) 168201-1 © 2025 American Physical Society

https://orcid.org/0009-0008-9920-9619
https://orcid.org/0009-0003-0792-2278
https://orcid.org/0000-0002-3256-1254
https://ror.org/015m7wh34
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.168201&domain=pdf&date_stamp=2025-04-21
https://doi.org/10.1103/PhysRevLett.134.168201
https://doi.org/10.1103/PhysRevLett.134.168201
https://doi.org/10.1103/PhysRevLett.134.168201
https://doi.org/10.1103/PhysRevLett.134.168201


remains a fitting parameter, in the absence of experimental
evidence to justify the choice.
In a preliminary work [15], the velocity field on both

sides of a meniscus has been measured, during the
deformation shown in Fig. 1. On the stretched side, the
velocity is directed toward the film and drives some liquid
out of the meniscus by viscous shear [16]. This extracted
film is thicker than the film initially present, and has a
well-defined boundary which was tracked to determine the
velocity. On the compressed side, the velocity is directed
toward the meniscus and was measured by tracking
photobleached spots. However, the amount of surfactant
carried by the flow depends on the film deformation state
(stretched or compressed), so no quantitative surfactant
mass balance could be achieved in [15].
In this Letter, we measure simultaneously the local

velocity and the film deformation states, on both sides
of a meniscus, during the deformation. For different
foaming solutions, having a Gibbs elasticity in the range
½5–10� mN=m, a mass balance around the meniscus allows
us to conclude that the meniscus does not provide nor
absorb any surfactants. In the experimentally accessible
time range, and for the investigated deformation rates, we
thus provide a clear experimental answer to this long-
standing question.
An isometric view of the elementary foam used in our

study is shown in Fig. 1(a), where light blue represents the
three liquid films denoted as the top, bottom, and horizontal
films. The meniscus they share will be called the free
meniscus, by contrast with the menisci hung on the solid
frames, on the three other edges of the films. The lateral
edges are supported by a fixed solid frame, respecting the
angle of 120° between the films. The external edge of each
film is supported by a mobile frame [in dark gray in
Fig. 1(a)] of length Lz ¼ 45 mm along the z direction.
Each one is controlled by a piezomotor and moves in the
plane of its film. We will impose a compression to the
horizontal film, of length L−ðtÞ, and the same extension to
the top and bottom films, of length LþðtÞ. Both lengths are
measured in the ðx; yÞ plane.
The solution used is made with deionized water to

which we add sodium dodecyl sulfate (SDS, concentration
cs ¼ 5.6 g=L, i.e., 2.4 CMC), fluorescein (0.8 g/L)
and dodecanol (DOH, concentration cd). The reference
surface tension is measured with a pendant drop method,
yielding γ0 ¼ 37 − 34 − 33 mN=m (for, respectively,
cd ¼ 15 − 35− 50 mg=L), and the viscosity is assumed
to be the same as pure water η ¼ 10−3 Pa s. These solutions
mainly differ by their Gibbs modulus, respectively,
E ¼ 5–8–10 mN=m, as measured in [17].
The frame is first bathed in the soapy solution and the

motors are then moved during a preparatory phase, begin-
ning at tp ¼ −4 s and ending at t ¼ 0 s, to produce a well
defined initial state (see the Supplemental Material [18],
which includes Refs. [19,20]). At t ¼ −1 s, the motors stop

and the horizontal film is hit with a cyan laser to create two
rows of photobleached circular spots of radii ∼100 μm,
acting as passive tracers in the film. Two cameras with
filters are positioned around the setup, monitoring the
fluorescent light emitted by the horizontal and top films.
The radius of curvature R of the free meniscus is

measured with a subsidiary close-up camera, from which
we get R ¼ 0.39� 0.02 mm, and the thickness profile of
the horizontal film is measured using a hyperspectral
camera [18]. During the preparatory phase, the horizontal
film is stretched, inducing a film extraction at both edges of
the film initially present. These extracted films have a
thickness around h ≃ 0.5 μm while the preexisting film has
a thickness of the order of 0.3 μm, leading to the initial
thickness profiles schematized in Fig. 2(a).
At t ¼ 0, we start deforming the three films as shown in

Fig. 2: the horizontal film length L− goes from 10 to 5 mm,
whereas the top and bottom ones Lþ go from 10 to 15 mm,
all at Udef ¼ 10 − 20 − 35 − 50 mm=s.
The top film can be decomposed into three parts, clearly

distinguishable on the images. Its central part Lþ
c ðtÞ is the

part of the film present at t ¼ 0. Afterward, it is bounded by
two growing extracted films of length Lþ

Σ ðtÞ and Lþ
e ðtÞ,

respectively, on the free meniscus and external sides. The
total film length, imposed by the motor motion, is thus
Lþ ¼ Lþ

Σ þ Lþ
c þ Lþ

e [see Fig. 2(b)]. Similarly, the hori-
zontal film L− ¼ L−

Σ þ L−
c þ L−

e is decomposed into the
central part L−

c , present at tp ¼ −4 s, and the films
extracted during the preparatory phase, whose lengths
L−
ΣðtÞ and L−

e ðtÞ decrease during the main deformation.
The size of the different pieces of film are measured as
long as their boundaries remain straight, i.e., during
typically 0.1 s, using image processing discussed in the
Supplemental Material [18] (see Fig. 3). The time evolution
of Lþ

Σ , L
−
Σ and L−

c are represented in Fig. 4(a).
We define σ ¼ 2γ the tension in a given film as twice

the surface tension. This quantity is uniform along a

FIG. 2. Scheme of the elementary foam before (a) and after
(b) the main deformation. The notation � indicates the stretched
ðþÞ and compressed ð−Þ films. Their different parts are denoted
(c) for central, (e) for external, and ðΣÞ close to the free meniscus,
as they belong to the system Σ, shown in red.
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single film [7,10], and the force balance on the free
meniscus, projected on the horizontal axis x, reads,
neglecting its inertia as well as pressure and gravity forces,
σ−ðtÞ ¼ 2σþðtÞ cos θðtÞ. The semiangle θðtÞ between the
top and bottom films (see Fig. 2) can be deduced from the
meniscus position xm [see Figs. 3(a) and 3(c) and [10] ].
The resulting tension ratio is shown in Figs. 4(c), 4(d) and
quantifies the Marangoni stress that sets the interfaces in
motion, thus allowing the surfactant transfers between
films.
For t < tp ¼ −4 s, the tension ratio is stable which

indicates that tensions in all films are equal. This is our
reference state at which σþ ¼ σ− ¼ 2γ0 and θ ¼ π=3. The
tension ratio increases as L− is slowly stretched during the
preparatory phase and then relaxes when the motors are at
rest. Note that, at t ¼ 0, this first relaxation is still going on
and σ−=σþ > 1. The tension ratio then suddenly decreases
during the main deformation, and crosses the point
σ−=σþ ¼ 1 at a time denoted t ¼ t� (see Fig. 4), before
reaching its minimal value, at the end of the motor motion.
Afterward, the tension ratio tends to relax to one, its
equilibrium value.
From these tension and length measurements, we will be

able to quantify the surfactant exchanges from one film to
another.
The surfactant diffusion in the direction parallel to the

film occurs on the time scale τdk ∼ l2=D ∼ 10 s, with

D∼10−9m2=s the surfactant diffusivity, and l ≃ 100 μm
the typical distance for thickness variations. The Poiseuille
flows induced by these thickness heterogeneities scale as
vpk ∼ γ0h3=ηl3 ∼ 10−5 m=s (with respect to the interface),

which leads to the typical time τpk ¼ l=vpk ∼ 102 s. Our

experimental time τexp ∼ 10−1 s is much smaller, so these
parallel transport mechanisms are negligible. Especially,
both surfactant and water fluxes are negligible across the
boundary between the central and extracted films.
In the transverse direction, the diffusion time scales as

τd⊥ ∼ h2=D ∼ 10−3 s, much lower than τexp. The bulk and
interface concentrations are thus at equilibrium at each point
of the films. The SDS concentration is large enough to
remain above the CMC even in the stretched film, so it has
no contribution to the tension change. The dodecanol is
much less soluble and its characteristic length hΓ ¼ Γ=cd,
with Γ and cd the interface and bulk dodecanol concen-
trations, is of the order of 400 μm [10]. As hΓ ≫ h, the
amount of dodecanol in the bulk of a thin film element is
negligible, and any variation of film area leads to a variation
of Γ which cannot be compensated by exchange with the
bulk. However, hΓ ≈ R and the meniscus contains a
significant amount of dodecanol.
Thus, we assume DOH is the only surfactant to

contribute to the film tension variations observed in
Figs. 4(c) and 4(d), and it is the species we track when
quantifying the surfactant exchanges during the deforma-
tion. In this respect we define Γ0 the reference surface
excess of DOH associated with the reference tension σ0.
Note that, as the tensions σ−ðΓ−Þ and σþðΓþÞ are homo-
geneous in each film, the concentrations Γ− and Γþ are
homogeneous too.

FIG. 3. Experimental images from both cameras cropped
around their respective ROI, shown in Fig. 1. (a) and (c) Hori-
zontal film during the deformation at t ¼ 0 (a) and t ¼ 0.15 s (c),
with Udef ¼ 20 mm=s; the vertical bars localize the edge of the
free meniscus (black), the edge of the central film (red and blue)
and the center xm of the free meniscus (green). The black circles
highlight two photobleached dots. (b) and (d) Top film during the
deformation at t ¼ 0 (b) and t ¼ 0.15 (d), with Udef ¼ 50 mm=s;
the red vertical bar is the edge of the central film, coinciding at
t ¼ 0 with the edge of the free meniscus (black line).

FIG. 4. Experimental data for cd ¼ 50 mg=L and
Udef ¼ 50 mm=s, averaged over 4 experiments. The root mean
square is shown in shaded area (when larger than the symbol
size). (a) Lengths, (b) deformation states, and (c) tension ratio.
The time range where all quantities can be measured simulta-
neously is the gray shaded area in (a),(b). The tension ratio for the
velocities Udef ¼ 10 − 20 − 35 − 50 mm=s (from light to dark
greens) are shown in (d).
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In the following, we work with the system Σ represented
in red in Fig. 2, and defined for t > 0. It encompasses the
free meniscus, the piece of film LΣ− in the horizontal film
and the two pieces of film LΣþ , in the top and bottom films.
As soon as LΣþ is visible, Σ has measurable boundaries,
across which the surfactant fluxes are negligible: Σ is a
well-defined closed system in which the quantity of DOH is
conserved.
Importantly, the photobleached spots allow us to check

the absence of any compression or dilation in the z
direction. The spots are observable between t ¼ −0.4
and t ¼ 0.1 s and during this time range the distance
between two spots in the row [see Fig. 3(a)] varies by
less than 2%ð�2Þ. It means that the quantities N used
below to build the mass conservation law can be defined
per unit length in the z direction.
Let us denote NΣ the total quantity of dodecanol in Σ. In

the limit hΓ ≫ h, we have NΣ ¼ 2N−
Σ þ 4Nþ

Σ þ Nm with
Nm the quantity of DOH in the meniscus (interface and
bulk) and N�

Σ ¼ Γ�L�
Σ the quantity of DOH on each

interface of L�
Σ . The surfactant contribution of the meniscus

will be deduced from the conservation of NΣ with time.
This requires to have an experimental access to the

dodecanol concentrations Γ� on the interfaces of L�
Σ .

However, we will take advantage of the concentration
uniformity to determine them in the central part of each
film, where they are more easily accessible.
In the horizontal film, L−

c forms a well-defined closed
system. Indeed, from tp ¼ −4 s to later times, it remains
separated from the menisci by the extracted films L−

Σ
and L−

e , and has therefore trackable boundaries, imper-
meable to surfactants. The amount Γ−L−

c of DOH on its
interfaces is thus conserved. At t ¼ tp, Γ− ¼ Γ0 so we
get Γ−ðtÞ ¼ Γ0L−

c ðtpÞ=L−
c ðtÞ.

The situation in the stretched film is more subtle as, at
times t < 0, its boundaries are in contact with the menisci
and it is thus able to lose surfactants in an undetectable way.
At t > 0, the top and bottom films are stretched, and the
extracted films Lþ

Σ and Lþ
e begin to grow, even if their sizes

are not immediately measurable. The quantity ΓþLþ
c is thus

conserved at t > 0, but not before. The reference value is
obtained at the time t�, at which we have, by definition,
σþðt�Þ ¼ σ−ðt�Þ and, consequently, Γ−ðt�Þ ¼ Γþðt�Þ. We
thus get ΓþðtÞ ¼ Γ−ðt�ÞLþ

c ðt�Þ=Lþ
c ðtÞ.

We define Lþ
c;0 as the reference length that the closed

system Lþ
c would have once relaxed toward Γ0, and we get

from the previous relation Lþ
c;0 ¼ Γ−ðt�ÞLþ

c ðt�Þ=Γ0.
Similarly, for L−

c , we set L−
c;0 ¼ L−

c ðtpÞ, and we define
the film deformations as ε� ¼ L�

c ðtÞ=L�
c;0 − 1. These quan-

tities are shown in Figs. 4(a) and 4(b). As expected, both
films are prestretched at t ¼ 0, because of the preparatory
phase. During the main deformation, the horizontal film is
compressed and the lateral films are stretched. The small
discontinuity observed in εþ is due to the measurement of

Lþ
Σ , which has been set to 0 as long as it is not distinguish-

able from the meniscus and suddenly jumps to a finite size
when measurable [see Fig. 4(a)].
The amount of surfactant on each interface, once

rescaled by Γ0, can now be expressed as a function of
the various measurable lengths:

N−
ΣðtÞ
Γ0

¼ L−
c ðtpÞ
L−
c ðtÞ

L−
ΣðtÞ;

Nþ
Σ ðtÞ
Γ0

¼ Lþ
c ðt�ÞL−

c ðtpÞ
L−
c ðt�ÞLþ

c ðtÞ
Lþ
Σ ðtÞ:

ð1Þ

The DOH conservation in Σ between the times 0 and t
finally imposes, using Nþ

Σ ð0Þ ¼ 0,

Nþ
Σ ðtÞ ¼

1

2
ðN−

Σð0Þ − N−
ΣðtÞÞ þ

1

4
ðNmð0Þ − NmðtÞÞ: ð2Þ

The quantities Nþ
Σ ðtÞ, entering each of the four stretched

interfaces, and ðN−
Σð0Þ − N−

ΣðtÞÞ leaving each of the two
compressed interfaces, are compared in Fig. 5. For all the
velocities and all the concentrations, on the time range
where all quantities can be measured simultaneously [as
shown in Figs. 4(a) and 4(b)], the measurements are
compatible with a slope 1=2. Using Eq. (2), this means
that the meniscus does not contribute significantly to the
surfactant exchanges, in line with the scenario (i). The
scenario (ii), in contrast, assumes that the meniscus
provides the surfactants needed on interface I3 so that
Nmð0Þ − NmðtÞ ¼ 2Nþ

Σ , leading, from Eq. (2), to the
slope 1 shown in Fig. 5, which can be ruled out.
The meniscus is thus a large but unused reservoir of

surfactant. This important experimental result is the first
direct characterization of surfactant transport induced by
foam deformation.

FIG. 5. Amount of dodecanol Nþ
Σ ðtÞ=Γ0 extracted by each of

the four stretched film interfaces as a function of the amount
ðN−

Σð0Þ − N−
ΣðtÞÞ=Γ0 evacuated by each of the two compressed

film interfaces (normalized by Γ0). Each curve stands for one
chemistry cd at one Udef and is an average over 4 experiments.
From lightest to darkest colors: Udef ¼ 10−20−35−50mm=s.
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We systematically impose the deformation δLþ ¼ δL−,
which is symmetric for the elementary foam, yet not
specific at the local scale of the free meniscus. In fact,
the deformation near the free meniscus is also influenced
by the film extraction at the external meniscus, where we
measure Lþ

e ≠ L−
e , as well as a variation with velocity.

Generality is ensured by the fact that we explored a range of
non-symmetric deformations, all of which involve an
increase in the total interface area. While globally com-
pressive cases remain to be investigated experimentally,
they are expected to yield similar results, at least in the
linear regime, where compressions and expansions are
governed by similar transport rules. We therefore argue
that the absence of meniscus contributions in the surfactant
mass balance established in this study is relevant to a broad
class of deformations. However, different processes may be
observed if the films are thin enough to be governed by the
disjoining pressure, of if the film size becomes smaller than
the dynamical length scales appearing in the vicinity of the
meniscus [10].
Our experimental determination of surfactant transfer is

an important piece of information needed to close the
different models of local flows in liquid foams [2,7,8,10].
Notably, this sets the free parameter of the model developed
in [10] which predicts the effective viscoelasticity of an
elementary foam. This opens the way for rheological
models for macroscopic liquid foams with physical local
building blocks, and provides local-scale data to validate
and calibrate numerical models of foam flow [21–23].
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