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The thickness of freshly made soap films is usually in the micron range, and interference colors make
thickness fluctuations easily visible. Circular patterns of constant thickness are commonly observed, either
a thin film disc in a thicker film or the reverse. In this Letter, we evidence the line tension at the origin of
these circular patterns. Using a well controlled soap film preparation, we produce a piece of thin film
surrounded by a thicker film. The thickness profile, measured with a spectral camera, leads to a line tension
of the order of 10−10 N which drives the relaxation of the thin film shape, initially very elongated, toward a
circular shape. A balance between line tension and air friction leads to a quantitative prediction of the
relaxation process. Such a line tension is expected to play a role in the production of marginal regeneration
patches, involved in soap film drainage and stability.
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The stability of liquid foams and soap bubbles is
controlled by the evolution of liquid film thickness,
induced by evaporation [1], or capillary and gravity
drainage, until the film bursts. Drainage is associated with
fast in-plane motion in films and thickness heterogeneities
[2–6], often spatially organized as discs of thin film
embedded in a thicker film, or the reverse. In films less
than 100 nm thick, both interfaces interact through short-
range forces of various origins, resulting into a disjoining
pressure. Nonmonotonic variations of the disjoining pres-
sure with the film thickness are known to induce a line
tension along the boundary of film domains of different
thicknesses [7,8]. This phenomenon has been characterized
for the transition between a very thin suspended film and a
meniscus [9], or for the transition between two black
films [10].
In this Letter, we show that the boundary between two

domains of different thicknesses, both thicker than 100 nm,
also generates a line tension, despite the negligible value of
the disjoining pressure. In the transition between the two
domains, the interface is slightly tilted and the excess area
produced by this tilt, multiplied by the surface tension of
the solution, is the excess energy at the origin of this
capillary line tension, of a purely geometric nature.
Marginal regeneration spontaneously generates film

domains of different thicknesses [2] and this line tension
has already been assumed, qualitatively, to play a role in
such foam film instabilities [11,12].
To produce and evidence this original line tension, we

prepare an elongated pattern of thin film surrounded by a
thicker film and measure the relaxation of the pattern to a
circular shape, under the effect of the line tension. Its value,
deduced from the thickness profile we measure, is of the
order of 10−10 N and the relaxation lasts a few seconds,

with velocities of the order of 10 mm=s. The very low
interfacial shear viscosity of our foaming solution [13],
rules it out as a significant friction mechanism. Considering
the viscous friction of air only, and using the analytical
prediction established in [14,15], we are able to predict the
relaxation rate as a function of the measured line tension,
without adjustable parameter. This good agreement vali-
dates our line tension measurement.
The line tension revealed by this work, and more

generally the anisotropic interfacial stress induced by
thickness gradients, whose tensor is given in this study,
should therefore be taken into account in film drainage
models, and potentially in experiments where foam films
are used to investigate 2D turbulence [16,17].

FIG. 1. Experimental setup and notations used in the text.
(a) Image of the film recorded by the top camera. (b) Schematic
view of the setup. The black and green thick lines represent,
respectively, the static and mobile edges of the frame. The thin
film [colored domain in (a), light blue in (b)] is separated from the
light gray thick film by the red contour C. (c) Schematic thickness
profile along L, in the vicinity of C, on the right-hand side of (b).
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Using a deformable horizontal frame of inner area wa,
with w ¼ 62 mm and a a variable width (see Fig. 1), we
produce a thickness pattern in a foam film. The ðx; yÞ plane
is the midplane of the film. We use a mixture of sodium do-
decyl sulfate (SDS, concentration 5.6 g=L, i.e., 2.4 CMC)
and glycerol (15% in volume), of surface tension γ0 ¼
35 mN=m (measured with the pendant drop method) and
bulk viscosity ηl ¼ 1.5 mPa s. The interfacial shear vis-
cosity ηs is shown to be below 10−8 kg=s in [13].
Top views of the film, recorded with a color camera used

at 30 frames per second, are shown in Fig. 2 at different
times. The frame is first set at its smallest area (a ¼ 2.1 mm)
and bathed in the foaming solution to produce the thin part of
the film [Fig. 2(a)], called the thin film hereafter. We let the
film drain close to 3 min until its interference colors are
mainly blue and yellow, indicating a thickness comprising
between 100 and 300 nm. Then we move the mobile edge
of the frame at a velocity Vmot ¼ 10 mm=s during 1 s
[Fig. 1(b)] and a much thicker piece of film, appearing gray,
is extracted from the meniscus surrounding the film (here-
after, the thick film). The relaxation of the thin film toward a
circular shape [Figs. 2(c)–2(f)] is studied after the motor
stops, taken as time reference t ¼ 0. The amplitude of the
initial thickness fluctuations in the thin film is much smaller
than the thickness difference between the thin film and the
thick film and does not play any role in this relaxation. The
thickness profile of the transition between the thin and
the thick parts of the film is measured with a hyperspectral
camera (Resonon Pika L), at a rate of 50 frames per second,
along a line L shown in Fig. 2(c), as explained in [18].
The boundary C of the thin film is detected automatically

and characterized by its length 2L measured in the x
direction, its area A and its width, defined as 2R ¼ A=ð2LÞ
[see Fig. 1(a)]. At the beginning of the relaxation, the
elongated shape is very regular and can be described as a
rectangle 2L × 2R with a hemidisc of radius R at each end,
with R ≪ L. At longer times, it becomes more fluctuating
and a roughly circular shape is eventually obtained at

t ≈ 6 s. Good reproducibility of the shape is obtained for
t < 1.5 s and the relaxation process it quantitatively ana-
lyzed up to this time.
The thin film area varies by at most 10% during the

measurement time range [see Fig. 3(b)]. Moreover, the
whole thickness distribution in the thin film, indicated by
the interference colors, remains qualitatively constant, thus
excluding local compression or dilation in the thin film.
The film profiles are shown in Fig. 3(c), with hðx; yÞ half

the thickness of the film. The thickness of the thick and thin
films are, respectively, of the order of 7 μm and below the
resolution obtained with our current signal analysis, based
on maxima detection in the spectrum of the light reflected
by the film. Near the thin film, the thickness profile is steep
enough to blur the interference pattern and the thickness is
also not measurable. However, the light patterns corre-
sponding to the thin, flat film and to the steepest part of the
thick film clearly differ, and the boundary C between the
two is well defined, even if the thickness is not. To
reconstruct the missing part of the thick film profiles,
we interpolate the thickness profile by a parabola, imposing
continuity of thickness and thickness derivative at the edge
of the measured part of the thick film profile, and zero
thickness at the boundary with the thin film. This choice of
a parabola is arbitrary and other choices, e.g., a linear or
order 3 interpolation, would lead to similar results.
The capillary forces governing the dynamics can be de-

duced from these profiles. The thickness varies on char-
acteristic horizontal distances of the order of l ∼ 1 mm,
yielding∇h ∼ 10−2 [where∇ is the gradient operator in the

FIG. 2. Top view of the film before, during, and after defor-
mation, at times ½−1;−0.6; 0; 1; 3; 6� s. The colored central part is
the thin film, the gray part is the thick film. The black boundary is
the meniscus.

FIG. 3. Shape of the thin film as a function of time. (a) L is half
its diameter measured in the x direction, and (b) A is its area. As
for the other figures, the data are averaged over 13 experiments,
and the shaded area represents the standard deviation. (c) Example
of thickness profiles at times 0 s (blue), 0.5 s (green), 1 s (yellow),
and 1.5 s (red). The experimental resolution is indicated by the
gray zone, and the width of the thin film is indicated by the
continuous line at thickness 0. The dotted lines are parabolic
interpolations between the measured domains.
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ðx; yÞ plane]. In this small slope limit, the pressure in the
film, controlled by the Laplace pressure, scales as γ0h=l2

and the associated Poiseuille flow velocity scales as
ðγ0=ηlÞh3=l3 ∼ 10 μm=s, which is negligible in the proc-
ess. Moreover, as the flow occurs with negligible area
variations [see Fig. 3(b)], we assume incompressible
interfaces, as classically made for spontaneous soap film
dynamics [2]. In this frame each elementary film element of
volume hdS is a closed system of constant thickness and
constant area dS, moving at the uniform velocity vðx; yÞ.
We define δγ as the difference between the local surface
tension γ and the reference value γ0, chosen in the middle of
the film. This tension variation δγ ensures the constraint of
incompressibility ∇ · vðx; yÞ ¼ 0.
The 2D stress tensor acting on such film elements is

computed in [19], in the local basis Be ¼ ðn; tÞ, defined in
the ðx; yÞ plane so that ∇h ¼ j∇hjn (adapting to our speci-
fic case the general theory developed in [20]). At order 2 in
∇h, this tensor can be expressed as σcap ¼ σ�cap þ σfI, with
I the identity matrix. The isotropic term is, using δγ ≪ γ0,

σf ¼ 2ðγ0 þ δγÞ þ 2γ0hΔh; ð1Þ

where Δ indicates the 2D Laplacian operator. The devia-
toric part is, as determined in [19],

σ�cap ¼ γ0

�
−ð∇hÞ2 0

0 ð∇hÞ2
�

Be

ð2Þ

and comes from the projection of the surface tension force
in the ðx; yÞ plane. The dominant term in the stress tensor is
the surface tension γ0 which is positive, thus indicating a
traction. However, the contribution of σ�cap shows that this
traction is slightly smaller in the direction of the thickness
gradient, and slightly larger in the perpendicular direction,
which is at the origin of the line tension.
The damping forces (per unit film area) are the friction

on the gas phase 2fg and on the surrounding film ηfΔv with
ηf ¼ 2ηs þ 2hηl the film shear viscosity. It results from
[15] that the air friction dominates if ηf < 4 × 10−8 kg=s,
which is verified here, as ηs < 10−8 kg=s and
hηl ∼ 10−8 kg=s. However, ηs depends on the foaming
solution and may be much larger. In order to provide a
general prediction, valid for a wide range of foaming
solutions, we thus keep the air friction and the interfacial
viscosity in the model.
The equation of motion is finally, as already established

in [21] using another approach,

2γ0h∇ðΔhÞ þ 2∇δγ þ 2ηsΔv þ 2fg ¼ 0; ð3Þ

with the first two terms equal to ∇ · σcap, as derived in [19].
As the capillary forces are localized along the thin film

boundary C, they can be interpreted as arising from a line

tension, which considerably simplifies the problem. To this
end, we define the local coordinates ðξ; sÞ, in the vicinity of
C. The variable ξ is zero on C, and varies in the normal
direction n whereas s varies in the tangential direction t.
The definition of a line tension requires the localization
condition l ≪ 1=κ with κ the curvature of C: this is verified
on the straight parts of C, but not at the tips, where the
curvature radius is R ∼ l. For the sake of generality, the
tension is determined below for a generic curve C of small
curvature, and will eventually be used in our case for the
straight parts of C only.
The line tension is defined as the excess of capillary

stress, with respect to the surface tension γ0, integrated
along a line perpendicular to the thickness transition. It can
thus be written as, for each interface,

T ¼ 1

2

Z
l∞

l−∞

t · ðσcap − 2γ0IÞ · tdξ; ð4Þ

with l−∞ and l∞ the lower and upper bounds of the inte-
gration domain, larger than the transition width.
This integral depends on h but also on δγ, which is

determined below using Eq. (3) in the domain jξj < l.
There, the first term in Eq. (3) scales as γ0h2=l3. In the limit
of small l, it is much larger than the viscous forces which
vary smoothly across the transition domain. Equation (3)
thus becomes ∂δγ=∂ξ ¼ −γ0h∂3h=∂ξ3. By integration, we
obtain at first order in lκ and for small ξ,

δγ ¼ γ0

�
1

2

�
∂h
∂ξ

�
2

− h
∂
2h
∂ξ2

�
: ð5Þ

Inserting this expression into Eq. (4) we obtain

T ¼ γ0

Z
l∞

l−∞

�
∂h
∂ξ

�
2

dξ: ð6Þ

Note that the tension value is twice the energy excess per
unit length of line associated to the thickness gradient.
The experimental line tension values shown in Fig. 4(a),

have been determined with Eq. (6), using the experimental
thickness profiles at each time, averaged over all the
experiments, and with the integration boundaries discussed
below. As the angle between n and the y direction is
negligible, we have ξ ¼ �y, respectively, for the left and
right parts of the profile. The thickness gradients are
negligible in the thin film, so we impose l−∞ ¼ 0. The
relevant upper boundary is more difficult to chose: the inset
of Fig. 4(a) shows the partial tension values obtained when
using an arbitrary upper integration bound lint in Eq. (6)
instead of l∞. A plateau value is obtained for lint between
2 and 3 mm, so we choose l∞ ¼ 3 mm to define the
experimental tension. Additionally, the width of the
transition domain is defined as l80ðtÞ, the upper boundary
value for which the tension reaches 80% of its total
value.
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In this frame, the dynamical effects of thickness varia-
tions are captured by a line tension acting along the line C�
located in the middle of the transition domain at the
distance l80=2 from C [see Fig. 4(b)]. The resulting force
(per unit line) acting on the film is −Tκ�ðsÞnþ ð∂T=∂sÞt,
with κ�ðsÞ the boundary curvature of C�.
The gradient ∂T=∂s is experimentally unknown.

However, the thick film extraction velocity is very homo-
geneous all around the thin film, as well as the meniscus
size. We can thus safely assume that the initial transition
profile, and consequently Tðt ¼ 0Þ, does not depend on s.
A strong assumption of the model is that the tension
remains uniform at longer times. In that case, the capillary
force vanishes outside the region of the thin film tips and an
analytical solution can be obtained.
To this end, we define around each thin film tip a

subdomain Ω� limited by a flat cylinder, centered at rM� ¼
½�ðL − RÞ; 0� and of radius R� ¼ Rþ l80=2 so that the
curved parts of C� are in Ω� [see Fig. 4(b)]. The
deformations of the tips, associated to the increase of R�
with time, are much slower than dL=dt and the whole
subdomains Ω� are moving at the uniform velocity
∓ dL=dt.
Outside these domains Eq. (3) becomes

2∇δγ þ 2ηsΔv þ 2fg ¼ 0: ð7Þ

The gas Reynolds number is of the order of
RðdL=dtÞρg=ηg ∼ 1, with ρg ¼ 1.2 kg=m3 and ηg ¼
1.810−5 kg=m=s the density and viscosity of the air.

To obtain an analytical prediction for the air damping
force fg, we will neglect the air inertia, which should be
taken into account in a more refined model.
In this viscous limit, and if only Ω− moves, Eq. (7) can

be solved by a simple mapping on the problem solved in
[15], i.e., a flat cylinder translating in a viscous liquid
membrane, as discussed in [19]. The corresponding velo-
city field has been determined numerically in [22], and
scales as dL=dtR�=rwith r the distance to the center ofΩ−.
In our case, the velocity induced by the Ω− motion at the
Ωþ position is negligible and the flow is thus the super-
position of the flows induced by the motion of each
subdomain separately. The force FD acting on the boundary
ofΩ−, due to the viscous friction of the gas phase and of the
soap film, is determined in [15] and expressed as
FD ¼ ζdL=dtex, with ζ a friction coefficient which
depends on the Boussinesq number Bq ¼ ηs=ðRηgÞ (see
[19]). The force balance on the subdomainΩ− involves this
friction force FD and the driving force 4Tex due to the 4
intersections between C� and the boundary of Ω−. This
imposes ζdL=dtþ 4T ¼ 0.
Assuming ηs < 10−8 kg=s as measured in [13], and

using R� ∼ 2 mm we find Bq < 0.25. In this low
Boussinesq limit, the friction coefficient ζ reaches its
asymptotic value ζ0 ¼ 16ηgR� [15], leading to

dL
dt

¼ −
4T

16ηgR� ð8Þ

which involves only experimentally known quantities.
The experimental relaxation velocity dLexp=dt is obtained
by differentiation of LðtÞ shown in Fig. 3(a). Its theoretical
value dLth=dt, given by Eq. (8), is obtained from the
independent measurements of T and R�. The largest uncer-
tainty arises from R�, and is of the order of the width l80 of
the thickness transition domain. We thus plot in Fig. 5 the
predictions obtained with R� ¼ R and R� ¼ Rþ l80.
We find that ðdL=dtÞexp=ðdL=dtÞth ¼ 1 is within our

error bar for the time range [0.5, 1.5], which validates our

FIG. 4. (a) Line tension T as a function of time, determined
from the thickness profiles using Eq. (6), with l−∞ ¼ 0, l∞ ¼
3 mm and ξ ¼ y. The vertical dotted lines are color-matched in
time with the thickness profiles of Fig. 3(c). Inset: partial values
of the tension as a function of the integration upper bound lint,
obtained for the profile at t ¼ 1 s. The tension reaches 80% of its
total value for lint ¼ l80. (b) Mapping of the observed flow on
the problem solved in [15]. The thickness transition is shown in
gray, with its center line C� (bold black line), at the distance l80=2
outside C (red line). The subdomains Ω� are the red discs.

FIG. 5. Experimental value of the tip velocity dLexp=dt, divided
by its theoretical value given by Eq. (8), in which R� ¼ Rþ
l80=2 (bold line), R� ¼ R (bottom thin line), and R� ¼ Rþ l80

(top thin line). Each curve is plotted with a shaded area showing
its standard deviation.
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line tension measurement, and its role as the driving force
for the relaxation dynamics. At shorter times, the relaxation
velocity is larger than predicted. A potential explanation for
this reproducible deviation could be a residual air motion
due the mobile edge, that may last a fraction of second after
the motor stop as Regas ∼ 1.
To conclude, this experiment quantifies the forces

induced by thickness fluctuations, in a regime where
disjoining pressure is negligible, and shows that a localized
thickness gradient results into a line tension acting perpen-
dicularly to the thickness gradient. As this tension is of a
purely geometrical nature, its expression Eq. (6) should
remain valid for nonhorizontal films, in the presence of
gravity. In foam films, z-invariant in-plane motions occur
with nearly no damping, and a tiny line tension, of the order
of 0.1 nN for our thickness profile, induces a thickness
pattern relaxation toward a circular shape at a velocity
reaching 10 mm=s, only damped by air friction. An exten-
sion of our analysis, based on the result of [15], relates the
pattern relaxation velocity to the value of the Boussinesq
number. We show in [19] that for foaming solutions having
an interface viscosity above 4 × 10−8 kg=s, the interface
viscosity should be the dominant damping factor. In that
case, a measure of a thickness pattern relaxation may
provide a measure of the interface viscosity, which is an
appealing application of our device.
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