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Abstract – In dry foam, we investigate the link between coarsening rate and bubble distribution.
Revisiting Mullins’ predictions (Mullins W. W., J. Appl. Phys., 59 (1986) 1341), we predict,
without any phenomenological assumption, that the volume distribution behaves as v(2−D)/D

(where D is the dimension of space) in the limit of small volumes. This is in agreement with
recent experimental results. In the self-similar growth regime, we validate experimentally a relation
between the bubbles’ growth rates and their size distribution. In 2D, we discuss the relation
between the areas distribution and the correlation between edge numbers and bubble area.

Copyright c© EPLA, 2012

Introduction. – Coarsening in cellular systems like
liquid foams and grains in crystals has been studied
for long both experimentally and theoretically. In liquid
foams, for example, the coarsening is due to the gas flow
between neighboring bubbles induced by their pressure
difference [1,2]. The equations governing the dynamics
of those systems has been investigated by Mullins who
focused on the late-stage dynamics assuming the exis-
tence of a Self-Similar Growth Regime (SSGR) of the
volume distribution at different times. This assumption
led Mullins to a now classical prediction on the average
bubble size time evolution [3]:

dv̄

dt
=Cv̄α, (1)

where v̄ is the average bubble volume in 3D and the
average bubble area in 2D, C is a constant that depends
on the physico-chemistry of the foam and α is a constant
that depends on the dimension of the space D: α= (D−
2)/D, so α3D = 1/3 and α2D = 0. A direct consequence
of eq. (1) is that R̄(t)2− R̄(0)2 ∝ t, with R̄∼ v̄1/D the
average bubble radius.
Mullins also established that the growth rate of individ-

ual bubbles can be deduced from the bubble size distribu-
tion (the exact relation is given below eq. (10)), which had

(a)E-mail: isabelle.cantat@univ-rennes1.fr

been successfully tested by Streitenberger et al. using 3D
numerical simulations [4]. In this paper, we show a first
experimental proof of this relation for the case of low-
liquid fraction 3D foams. In addition, we establish new
consequences of the general theory developed by Mullins.
We predict a power law behavior at small volumes for the
3D bubble size distribution and test this prediction exper-
imentally. In the last part of the paper, we focus on 2D
foam. A linear relation between the number of edges aver-
aged over the set of bubbles sharing the same area and
the bubble area is often assumed in the literature, which
implies an exponential decay of the area distribution in
SSGR [5]. It has been recently proposed that this average
number of edges varies as the bubble area to the power
1/2 [6], thus leading to another area distribution [4]. We
compare both area distributions to experimental data, and
get a better agreement with the last one.

Growth rate. – In a dry foam, the bubbles’ shapes
strongly depart from the spherical shape. In the limit of
vanishing liquid fraction, the bubbles are polyhedra with
slightly curved faces and well-defined edges. The curvature
of the faces and the pressure in each bubble are related
to each other through the Laplace law. The pressure
difference between two neighboring bubbles induces a slow
gas flux governed by Fick’s law, and the volume evolution
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is given by [1,2]

dv

dt
=Deff

∫

Kds, (2)

where K is the bubble mean curvature; v and ds are,
respectively, the bubble volume and an element of its
surface in 3D, and the bubble area and an element of its
perimeter in 2D; Deff is an effective diffusion coefficient
depending on the physico-chemistry of the foam and on
the films’ thickness. This last parameter is constant in
time for dry foams.
The growth rate of a bubble is defined as G = v−αdv/dt

and can be expressed as

G =Deff
∫

K

vα
ds. (3)

As K scales as v−1/D, ds as v(D−1)/D and v−α as
v−(D−2)/D, it follows that the integral does not depend
on v, meaning that G is not modified by a homothetic
transformation of the bubble and only depends on its
shape [7]. In 2D, the von Neumann law states that G only
depends on the number of neighbors F [8]:

G2D =D2Deff (F − 6). (4)

The extension of this expression in 3D involves more
complex geometrical quantities, and not only the faces
number [9]. However, statistically, G increases with the
number of faces (see [10–13] and the review [14]). As the
bubble volume, compared to the average bubble volume in
the foam, and the number of faces are strongly correlated,
G also increases with v statistically.

Model: small volume limit of the volume distrib-
ution. – The distribution of G determines the time evolu-
tion of the bubble size distribution as well as the evolution
of the bubble number. We consider N(t) bubbles coarsen-
ing in a closed volume V , and P (v, t) the volume distri-
bution at time t, normalized to unity. Defining Gv as the
growth rate averaged over the set of bubbles sharing the
same volume, we get

1

N

dN

dt
= lim
v→0
Gv(v)vαP (v, t). (5)

This relation, established by Mullins (eq. (6) in ref. [3],
see A) in the appendix) requires a few comments. First,
this relation only makes sense if the foam sample is
large enough so that its various properties can have a
continuous representation. More precisely, the time scale
of the observation must be large enough to consider the
bubble number as a continuous function of time, and
the typical length scale of the description must be large
enough for the limit of vanishing volume to be defined.
Second, even in a very large foam, the smallest bubble
volume may be limited by the finite volume vv of the
vertices in which the bubbles eventually dissolve, so we
only discuss here the limit of very dry foams. Finally, let

us underline the fact that eq. (5) does not assume that the
SSGR is reached.
As the bubble size decreases, its number of faces

decreases and, on average, its internal pressure increases to
a much higher pressure than its neighbors. This explains
why G reaches a finite and strictly negative value in the
limit of small volumes. So we define G0 as the limit of Gv
at vanishing volumes and obtain

1

N

dN

dt
= G0 lim

v→0
vαP (v, t). (6)

For a foam in which the coarsening process is already
established (but possibly still in its transient stage),
the bubble number regularly decreases (dN/dt < 0). This
imposes the asymptotic behavior of the volume distribu-
tion at small scale.
In 3D, α= 1/3 and dN/dt $= 0 only if P (v, t) diverges in

0 as v−1/3:
P (v, t)∼Av−1/3 (7)

with A= G−10 1
N
dN
dt . This consequence of Mullins’ theory

is in good agreement with our experiments as will be
shown hereafter. The theoretical prediction of G0 would
require the knowledge of the foam dynamics at small
volumes, which is not yet described. However, it may be
assumed that tetrahedra dominate the small size bubble
shape distribution. In this case, the high internal pres-
sure enforces equality of the 4 faces’ curvatures and thus a
symmetrical shape for the tetrahedron. This symmetry is
more and more precisely achieved as the volume decreases
and the pressure increases. Under this assumption, the
value of G0 can be calculated from eq. (3) if the prefactor
Deff is known: G0 =−3.97Deff [14]. The same asymp-
totic bubble size distribution is found for bubbly liquids,
governed by Oswald ripening, for the interface limited
case [15]. This comes from the fact that, also in that case,
G reaches a finite limit at small volume. However, the full
distribution is significatively different from what is found
for dry foams.
In 2D, α= 0, leading to the relation

lim
v→0
P (v, t) =

1

NG0
dN

dt
(8)

which simply states that P (v, t) reaches a finite value at
small volume. If G0 is given by the growth rate of 3-faces
bubbles, then G0 =−3D2Deff .
Note that using the bubble radius R instead of the

volume v as variable leads to the same relation in all
dimensions: P (R)∼R at small R.

Model: self-similar growth regime. – In the
SSGR, all scale-independent quantities become statis-
tically time independent. The normalized distribution
of reduced volume x= v/v̄(t), with v̄(t) = V/N(t) the
average volume, is defined as P̂ (x) = v̄(t)P (v, t) and
does not depend on time. The distribution P̂ (x) is likely
to be universal [16] and can thus be considered as a
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well-defined continuous function, independent of the
initial preparation of the foam.
In the SSGR, the time evolution of P (v, t) is entirely

governed by the variation of the bubble number dN/dt,
or equivalently, by the variation of the average volume
v̄(t) = V/N(t). This becomes explicit by using the reduced
distribution which is, by definition, invariant during the
SSGR:

P (v, t) =
1

v̄(t)
P̂ (v/v̄(t)). (9)

On the one hand, we can predict P (v, t+dt) from eq. (9) if
we know P (v, t), v̄(t) and v̄(t+dt). On the other hand, by
definition of the growth rate G, we can deduce P (v, t+dt)
from P (v, t) and the distribution of G at any given time.
Both predictions of P (v, t+dt) must lead to the same

values, which simply implies that, in the SSGR, the bubble
size distribution, the time evolution of the bubble number
and the growth rates distribution are not independent.
The exact relation between these three quantities has been
established by Mullins in 1986 [3]. More precisely, Mullins
gave the prediction of the growth rate averaged over the
set of bubble of same volume, Gv, as a function of the
bubble size distribution, P (v), and of the bubble number
variation:

Gv(v) =
1

N

dN

dt

1

P (v)vα

(
∫

∞

v
P (v)dv− vP (v)

)

. (10)

This relation is the eq. (13) in [3], expressed as a function
of the variables Gv and P (v) for which we recently provided
3D experimental measurement for foams, respectively,
in [17] and [16] (the transformation is given in B) in the
appendix).

Comparison with 3D experimental results in
SSGR. – Experimental data have been obtained with
a dry dishwashing liquid foam, 190 min after its making
(same data as in [16], fig. 3). At this time of its evolu-
tion, the relative variation of the bubble number is
1
N
dN
dt =−1.5 · 10

−4 s−1 and the liquid fraction is 2.0%±
0.2. The volume distribution is plotted in fig. 1. Fixing
the exponent at −1/3, we fit P (v) as Av−1/3 with
A= 13.5 mm−2. Given the value of 1

N
dN
dt , this corre-

sponds to G0 =−11.1µm2 · s−1, in good agreement with
the value found experimentally (see fig. 2). At large
volume, an exponential decay is found. A Gamma distri-
bution Γ(v) = (v/v0)s−1e−v/v0/(v0Γ(s)) is classically used
to fit grain volume distributions, with the shape exponent
s as adjustable parameter [18]. The fact that the distrib-
ution must vary like v−1/3 at small volumes imposes the
value of the shape exponent s= 2/3. The agreement with
the bubble volume distribution is good, as shown in fig. 1.
From the experimental bubble size distribution shown in

fig. 1, we compute Gcalv (v) using eq. (10). Gcalv (v) is plotted
in fig. 2 and compared with the direct measurement
of Gexpv (v) based on the bubble tracking between times
188min and 194min on the same foam. The image
processing method has already been used for a slightly
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Fig. 1: Normalized volume distribution in self-similar
growth regime. The full line is the Γ distribution P (v) =
(v/vΓ)

−1/3e−v/vΓ/(Γ(2/3)vΓ) with vΓ = 0.011mm
3; the dot-

dashed line is the exponential law P (v) = (1/v0) e
−v/v0 , with

v0 = 0.00913mm
3; the dashed line is the power law P (v) =

13.5 v−1/3.
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Fig. 2: (Colour on-line) Bubble growth rate in 3D. The
individual growth rate in a 3D dry foam during the SSGR
is averaged over a set of bubbles having the same volume.
×: Gmesv directly measured from the volume variation of
bubbles followed between t= 188min and t= 194min. Each
point represents an average over 100 bubbles of similar volume.
•: Gcalv obtained from eq. (10) with the distribution plotted
in fig. 1 and 1

N
dN
dt = 1.5 · 10

−4 s−1. Full line: Gexpv given by
eq. (11), based on the assumption of an exponential volume
distribution.

wetter foam in [17] where the different steps of the analysis
are discussed. The difference between Gmesv and Gcalv is
within the statistical fluctuations, without any adjustable
parameter. Equation (10) is thus experimentally verified.
One may simply notice a small discrepancy at very small
volumes: Gmesv is larger than expected at small volumes.
This is very likely due to the non-negligible size of the
meniscus for those volumes. This reduces the accessible
area for gas transfer and leads to a smaller Gmesv in
absolute value [17].
A simple analytical prediction Gexpov is obtained for an

exponential volume distribution:

Gexpov =
1

N

dN

dt

v̄− v
v1/3

. (11)

48003-p3
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Fig. 3: (Colour on-line) Self-similar growth regime in 2D. (a) •: bubble area distribution (fig. 5.22 in ref. [19]). The full line is
the exponential distribution and the dash-dotted line the distribution given by eq. (18). (b) + :F plotted as a function of the
experimental value of x= 〈a〉F /ā (from fig. 3.17a in ref. [19]). The average area is adjusted. •: F obtained from eq. (14), with
the experimental distribution (a) and the adjustable prefactor C/D2Deff = 0.95. The full line and the dash-dotted line correspond,
respectively, to the relations between faces number and average area given by eq. (15) and eq. (17).

Gexpov roughly fits the experimental distribution, with an
underestimation of the smallest volumes (see fig. 1). The
agreement between Gmesv and Gexpov is satisfying, and
eq. (11) is thus a very convenient analytical prediction
for the growth rate in SSGR (see fig. 2).

2D case and correlation between area and edges
number. – In two dimensions, the exponent α is zero and
the bubble area a replaces the volume v. Equation (10)
becomes

G2Dv (a) =
1

N

dN

dt

1

P (a)

(
∫

∞

a
P (a)da− aP (a)

)

(12)

or, using the reduced variable x= a/ā and the constant
C =dā/dt

Gv(x) =−C

(

1

P̂ (x)

∫

∞

x
P̂ (x)dx−x

)

. (13)

Furthermore the growth rate in 2D is an exact function
of F , the face number of the bubble (see eq. (4)).
Averaging over the set of bubbles having the same area
we get, from eq. (13) (see also [6], eq. (49))

〈F 〉a = 6+
C

D2Deff

(

x−
1

P̂ (x)

∫

∞

x
P̂ (x′)dx′

)

. (14)

Experimental data have been obtained by Pignol [19]
on 2D foam in SSGR. We plot the area distribution of a
coarsening 2D foam in SSGR in fig. 3(a). The quantity
that is usually plotted to characterize the foam structure
is 〈a〉F (see, e.g., [19]). Despite the fact that this average
may differ from 〈F 〉a, we compare 〈a〉F to the predictions
obtained with eq. (14) in fig. 3(b). As neither the kinetic

factors C/D2Deff nor the average area are available, these
quantities are taken as adjustable parameters.
For an exponential area distribution, eq. (14)

becomes [5]

〈F 〉a = 6+
C

D2Deff
(x− 1) . (15)

In the SSGR, there is thus an equivalence between a linear
behavior of the average edge number 〈F 〉a as a function
the area and an exponential area distribution. Both laws
are represented in fig. 3 using full lines and compared to
experimental data.
Recently, the relation

〈F 〉a = 3(1+
√
a/〈
√
a〉) (16)

has been predicted theoretically [6], thus questioning the
exponential behavior of the area distribution in coarsening
foams.
The general expression of the area distribution in a foam

as a function of an arbitrary growth rate has been derived
in [4]. We provide below the explicit expression for the
distribution corresponding to the growth rate of interest
here, obtained by approximating eq. (16) by

〈F 〉a = 3(1+
√
x). (17)

Inverting eq. (14) with C/D2Deff = 0.95 (see fig. 3(a), dash-
dotted line) leads to the semi-analytical area distribution:

P̂ (x) = P̂ (0)
exp[−1.94+3.87 arctan (1.94− 1.23

√
x)]

(3.16− 3.16
√
x+x)

2 .

(18)
This distribution provides a better agreement with

experimental data than an exponential decay for large
bubbles. For small bubbles this law is less satisfying.

48003-p4
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Nevertheless, the experimental distribution in SSGR
shown in [20] (fig. 6) differs significantly from fig. 3 for
small bubbles and is in qualitative agreement with the
prediction (eq. (18)).

Conclusion. – In this paper we highlighted the strong
relation between the bubble’s growth rates and their size
distribution in the self-similar growth regime. One can
be deduced from the other and the other way around.
This opens new perspectives both in the theoretical and
experimental fields. On the experimental ground, P (v) is
far easier to measure than Gv since the latter quantity
requires the correlation of two successive images. In
contrast one theoretical challenge is to predict P (v) in the
SSGR. Most attempts to derive P (v) rely on assumptions
like maximum entropy [21]. However, another way to
proceed could be based on a local estimation of Gv. This
way has been less investigated despite many efforts to
predict G [9–14] and might be revealed as productive.

Appendix

Hereafter, as in Mullins’ paper, f(v, v̇, t) is the density of
bubble of volume v and volume variation v̇=dv/dt, with
∫

f(v, v̇, t)dvdv̇= 1 and
∫

f(v, v̇, t)dv̇= P (v); ρ(v, v̇, t) =
Nf(v, v̇, t); φ(x, y) is the reduced density (normalized to
unity) defined by φ(x, y) = v̄(1+α)f(v, v̇, t), with x= v/v̄
and y= v̇/v̄α, so that φ(x, y) does not depend on time in
the SSGR; finally, φ̃(x) =

∫

∞

−∞
φ(x, y)dy= v̄P (v).

A) Transformation of eq. (6) from [3] into the rela-
tion (5):

dN

dt
= lim
v0→0

∫ 0

−∞

dv̇v̇ρ(v0, v̇, t) (A.1)

=N lim
v0→0

P (v0)〈v̇〉v=v0 (A.2)

= lim
v0→0

NP (v0)Gv(v0)v
−1/3
0 . (A.3)

B) Transformation of eq. (13a) from [3] into the rela-
tion (10). Equation (13a) is

−C
d

dx

(

x

∫

∞

x
φ̃(x′)dx′

)

=

∫

∞

−∞

φ(x, y)ydy. (A.4)

We get for the right-hand side

∫

∞

−∞

φ(x, y)ydy=

∫

∞

−∞

f(v, v̇, t)v̄(1+α)
v̇

v̄α
dv̇

v̄α
(A.5)

= v̄(1−α)vα
∫

∞

−∞

f(v, v̇, t)v−αv̇dv̇

(A.6)

= v̄(1−α)vαP (v)Gv (A.7)

and for the left-hand side, using eq. (1)

−C
d

dx

(

x

∫

∞

x
φ̃(x′)dx′

)

=−C
(
∫

∞

x
φ̃(x′)dx′−xφ̃(x)

)

(A.8)

=−
dv̄

dt
v̄−α
(
∫

∞

v
P (v)dv− vP (v)

)

. (A.9)

Finally

v̄(1−α)vαP (v)Gv =−
dv̄

dt
v̄−α
(
∫

∞

v
P (v)dv− vP (v)

)

,

(A.10)

Gv =
1

N

dN

dt

1

P (v)vα

(
∫

∞

v
P (v)dv− vP (v)

)

. (A.11)
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