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Dry liquid foams coarsen like other diphasic systems governed by interfacial energy: gas slowly dif-

fuses across liquid films, resulting in large bubbles growing at the expense of smaller ones which even-

tually shrink and disappear. A foam scatters light very effectively, preventing direct optical observation of

bubble sizes and shapes in large foams. Using high speed x-ray tomography, we have produced 4D movies

(i.e., 3Dþ time) of up to 30 000 bubbles. After a transient regime, the successive images look alike,

except that the average bubble size increases as the square root of time: This scaling state is the long

sought self-similar growth regime. The bubble size and face-number distributions in this regime are

compared with experimental distributions for grains in crystals and with numerical simulations of foams.
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Diphasic systems governed by interfacial energy, like
dispersed emulsions, grains in polycrystals and foams,
coarsen. The dispersed phase diffuses through the continu-
ous one to reduce the total area of interface. On average,
large domains, which have lower pressure, expand at the
expense of smaller ones that shrink and eventually disap-
pear one by one. Hence the number of domains steadily
decreases and the average size of the remaining domains
increases.

For very dilute emulsions, domains are separated
spheres entirely characterized by their radii. Their coarsen-
ing dynamics is known as ‘‘Ostwald ripening’’ or ‘‘LSW’’
after Lifshitz, Slyosov, and Wagner [1–3]. At long times,
the distribution of domain volumes relative to their average
V=hVðtÞiWS reaches a universal distribution, independent
of the initial one, where h�iWS designates an average over
the whole set of domains. After a transient, the growth
regime becomes self-similar. The statistical distributions of
topological and dimensionless geometrical quantities re-
main invariant in time while the characteristic scales con-
tinue to increase. As a consequence, the local diffusion law
[2,3] implies that hVðtÞiWS � t.

In the opposite limit, for a dry diphasic system, the
continuous matrix occupies a much smaller volume than
the dispersed phase and domains resemble closely packed
polyhedra (see Fig. 1). Dry diphasics include concentrated
emulsions, grains in crystals, and ‘‘dry’’ liquid foams with
low (typically <5%) water volume fractions [4]. In dry
diphasics diffusion takes place through thin walls of
roughly constant thickness. In 2D, the growth rate of
each domain depends only on its number of neighbors,
not on its size (von Neumann’s law [5]). 2D self-similar

growth has been observed experimentally and in simula-
tions [6]. 3D growth is difficult to analyze theoretically,
since the growth rate of a 3D bubble depends in a complex
way on its size and shape [7,8]. Many numerical simula-
tions have sought the self-similar growth regime in 3D [9–
15]. 3D experiments are difficult. Grains in crystals are
hard to follow in real time [16–18]. In dry foams, most of
the liquid accumulates at the junctions of thin films, form-
ing a continuous network of liquid channels called Plateau
borders [4] (Fig. 1). Films and Plateau borders absorb light
weakly but diffract it strongly, making the structure diffi-
cult to image. Thus observed signatures of a self-similar
growth have been indirect [19,20]. Magnetic-resonance
imaging (MRI) [21,22] and optical tomography [23] ex-
periments have visualized the evolution of the Plateau
borders in liquid foams, with 200 and 48 bubbles, respec-
tively, too few to establish whether the coarsening regime
is self-similar, which requires at least several thousand
bubbles at each sampling time to compute meaningful

FIG. 1 (color online). (a) 300� 300 pixels (2:25� 2:25 mm3)
2D gray-scale cut extracted from a complete 3D raw image of a
dry liquid foam. (b) 3D view of a binary reduction of the same
3D foam image. (c) Image with individual bubbles color coded.
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statistics [12]. In this Letter, we determine experimentally
the distribution of bubble sizes and face numbers for such a
foam: we show that, at long times, they remain constant,
proving that 3D dry foams reach a self-similar growth
regime. Because foams are a good model of generic di-
phasic growth, our results suggest that other diphasic ma-
terials which coarsen due to interfacial energy should also
reach self-similar growth regimes.

Our optimized tomography technique based on [24]
achieves 4� 109 voxel images (with a 7:5 �m voxel linear
dimension) of dry foams within 30 s using the FReLoN
camera devised at ESRF. The acquisition time is much
faster than the characteristic coarsening time, itself much
smaller than the total duration of the experiment. The
sample cell is a Plexiglas cylinder: 15 mm in outer diame-
ter, with a subregion of 7.5 mm height in the x-ray beam,
and a wall thickness of 0.5 mm. Most of our measurements
used a dry dishwashing liquid foam (hereafter foam 1),
which we observed beginning at t ¼ 30 min after foam
fabrication until t ¼ 1100 min . The foaming solution
consists of distilled water, 4% commercial dishwashing
liquid (Dreft, Procter & Gamble), and traces of C6F14 to
slow down coarsening. We form the foam using a com-
mercial kitchen foamer, then transfer it to the sample cell
being careful not to introduce large gaps or bubbles.
Drainage during the first half-hour after foam fabrication
induces bubble motion, preventing imaging for t <
30 min . To reduce the liquid fraction and keep it uniform
and stable throughout the duration of our experiments, we
applied a negative pressure difference to the foam via
porous plates at the bottom of the experimental cell. As
in [24], we verified that bubble coalescence was negligible.
We also measured distributions for another sample pro-
duced the same way (foam 2) and shaving foam (foam 3)
produced using a commercial aerosol device (Gillette).

We segmented and analyzed the images using the
APHELION software package following the procedures in

[24]. Figure 1 shows different views of foam 1 at t ¼
100min. The Plateau borders are clearly resolved as seen
in Fig. 1(a), which shows a 2:25� 2:25 mm2 gray-scale
slice of height 7:5 �m. The films, which are smaller than
the pixel size, are invisible, indicating that their liquid
content is negligible compared to that of the Plateau bor-
ders. The liquid fraction is thus approximately the fraction
of water containing voxels in the binary reduction of the
raw image [see Fig. 1(b)], which preserves only the Plateau
border mesh. For all samples and observation times, the
measured fluid volume fraction is 2:0%� 0:5%. Using a
custom-written 3D image analysis toolkit, we approxi-
mated each bubble’s faces by planar plaquettes. Since the
curvature of the films is small, approximating the faces as
flat introduces an error in the estimated volume of less than
5% for most bubbles. Figure 1(c) shows color-coded indi-
vidual bubbles. We estimate the volume V and number of
faces F for each bubble.

In each successive image, we extract and analyze bub-
bles in a characteristic subregion of the sample cell, avoid-
ing the cell walls. Computer capacity limits the number of
analyzed bubbles at early stages and sample size at later
stages. Figure 2 shows the average bubble volume as a

function of time for foam 1. We plot hVðtÞi2=3WS vs time to

emphasize its linearity at long times. Dimensional argu-
ments based on the local diffusion law [25,26] show that

self-similar growth in dry foams implies that hVðtÞi2=3WS � t
[19,20] as we observe. However, the converse need not
hold. Recall that for Oswald ripening, hVðtÞiWS � t [25].
We can measure bubble volumes ranging from a few

voxels to the sample size. To compute comparable distri-
butions at various times, we must apply upper and lower
volume cutoffs scaled consistently with the average bubble
volume. At early times, the lower cutoff eliminates small
artifactual bubbles created by the image analysis software.
We set the lower cutoff volume to V� ¼ hVðtÞiWS=120,
which coincides with a few voxels at t ¼ 30min. We adjust
our analyzed subregion so that it always contains around
3000 bubbles with volumes larger than V� (except for t ¼
1133min when only 1700 bubbles remain). Averages de-
noted h�i and the distributions which we present in the
remainder of this Letter include only bubbles with volumes
larger than the lower cutoff which are fully embedded in
the subregion and do not touch its walls.
Figure 3 shows the distributions of the nondimensional

length ‘� ¼ V1=3=hVðtÞ1=3i and of the number of faces per
bubble for foam 1 for 7 times between t ¼ 300 and t ¼
7650. After a transient, the distributions stabilize. The
length distribution differs from that calculated analytically
for a dilute emulsion according to the LSW theory as
shown in Fig. 3(a). It agrees reasonably well with distri-
butions obtained with various simulations and experimen-
tal observations of normal grain growth, even if all these
data lie outside our error bars [see Fig. 3(a)] The same
observation is made for the face-number distributions
[Fig. 3(b)]. The agreement with the lognormal distribution
found in [9,17,27] is better for the face-number distribution
[Fig. 4(b)] than for the length distribution [Fig. 4(a)].

FIG. 2. hVi2=3WS vs time for foam 1 (points). Linear fit to experi-
mental data for t > 250min, corresponding to the self-similar
growth regime (solid line).
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The evolution of the standard deviation of the ‘� distri-
bution and the average number of faces hFi [Figs. 3(a) and
3(b) upper insets] show that the transient regime lasts about
200 min. The lower insets in Figs. 3(a) and 3(b) show the
distributions in the transient regime. The steady state lasts
from t ¼ 200min to t ¼ 800min, during which the aver-
age volume of the bubbles increases by a factor of 10.

The average volume hViF of sets of bubbles sharing the
same F correlates with F (data not shown). For large F,

hViF / Fð2:5�0:3Þ, which is compatible with the exponent
2.25 observed in simulations [12,28].

For a given foam image, the errors due to imaging,
image processing, and analysis produce error bars smaller
than the size of the symbols in the plot of the distributions
[Figs. 3(a) and 3(b)]. The plotted error bars represent
expected statistical fluctuations due to counting error, esti-
mated as follows: the error bars �y drawn for a point at
position (x, y) on a graph are �y ¼ �y=

ffiffiffi

n
p

, where n is the
number of bubbles analyzed at that time point. In the self-
similar growth regime, �‘� ¼ 0:40� 1% and hFi ¼
12:7� 1%. These fluctuations lie within the expected sta-

tistical fluctuation due to counting error of 1=
ffiffiffiffiffiffiffiffiffiffiffi

3000
p ¼

1:8%, except for the last point (t ¼ 1133min).
The finite size of the sample suppresses contributions of

bubbles with volumes more than a few % of the volume of
the analyzed subregion, creating a statistical bias, since a

bubble’s center cannot be closer than V1=3=2 to the box

FIG. 3. (a) Probability density of the nondimensional length ‘�
averaged over t ¼ 301, 348, 386, 765, and 1133 min in the self-
similar growth regime. We plot the lognormal distribution (LN)
with first and second moments matching the experimental aver-
ages. We also show a variety of theoretical results (T) [2,3,12],
simulation distribution results (N) [9–12] and an experimental
distribution (E) for crystal grains obtained by serial sectioning

[27]. Upper inset: �‘� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð‘� � 1Þ2ip

vs t. The line is a guide for
the eye at �‘� ¼ 0:402. Lower inset: ‘� distributions in the
transient regime. The distribution at t ¼ 765min is given as a
reference. (b) Probability density of face numbers for the same
samples. Upper inset: hFi vs t, raw data (solid symbols) and
unbiased data (open symbols, see text). The horizontal lines are
at hFi ¼ 12:75 and hFiUB ¼ 13:05. Lower inset: F distributions
in the transient regime, for the same times as in (a).

FIG. 4 (color online). (a) Probability density of ‘� for foam 1
(4931 bubbles in the sample), foam 2 (dishwashing liquid, 2986
bubbles, t ¼ 540min), foam 3 (shaving foam, 4957 bubbles, t ¼
1440min) in the self-similar regime. Inset: lin-log plot of the
probability density of the bubble volume (foam 1). The line
shows a least square fit to exponential decay. (b) Probability
density of the face number for the same samples at the same
times. Inset: log-log plot of the same data. The line shows a
least-squares fit to a parabola.
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boundary [29,30]. We estimate the unbiased (UB) value of
hFi analytically by assuming that the volume distribution
takes the form PðVÞ ¼ exp�½V=hViWS�=hViWS (see Fig. 4,
inset), extrapolating to V ! 1 and using the relation
hFiV ¼ 14:57ðV=hViWSÞ0:3 obtained by averaging the ex-

perimental values. We find hFiUB ¼ hFi þ 4:2=N1=3, to
leading order in 1=N, where N is the number of bubbles
in the sample subregion. hFiUB ¼ 13:05 in the self-similar
growth regime [Fig. 3(b), upper inset]. The correction

computed for �‘� , of the order of 0:1=N1=3, is negligible.
The corrections to the distributions are small in compari-
son with the statistical noise.

Foams 2 and 3, for which we do not have data in the
transient regime, have the same distributions as foam 1.
The foams differ in their preparation and chemical compo-
sition [foam 2 (dishwashing liquid) and foam 3 (shaving
foam)], so they also differ in their local diffusion coeffi-
cients controlling the gas flux through their thin films. This
parameter is 8 times smaller in the shaving foam than in the
dishwashing liquid foams. Nevertheless, their distributions
are the same within error, as shown in Fig. 4. Thus the self-
similar regime distributions are robust to differences in
preparation and material parameters. In addition, the
curves shown in the inset of Figs. 4(a) and 4(b) (close to
linear and parabolic, respectively) are similar to those
provided by theory and simulations (Fig. 13 and the inset
of Fig. 19 of [12]). This agreement is compatible with the
hypothesis that the growth of foam is self-similar, univer-
sal, and robust.

Because the transient regime is brief, many industrial
foams should be in the self-similar regime during their use.
The distributions we provide allow us to infer the statistical
properties of a foam from the average volume, which can
be easily measured. These distributions may also serve as
inputs for more realistic numerical simulations, e.g., of
foam’s properties.
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