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Marginal regeneration in a horizontal film: Instability growth law in the
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Marginal regeneration is the process at the origin of the thinner patches produced at the
bottom of vertical soap films and slowly rising to the top. It controls the film drainage,
and thus its lifetime, and ultimately the life span of the whole foam sample. Despite its
importance, the dynamical properties of this original hydrodynamical instability remains
to be elucidated. Using a deformable frame, we identify a way to trigger the instability in
a horizontal film; as the gravity-induced rising motion of the patches is suppressed in this
case, we are able to study its long time dynamics for the first time, in a well-controlled
situation. The predictions made by Mysels et al. [Soap Films: Study of Their Thinning
and a Bibliography (Pergamon, New York, 1959)] are successfully tested on our data
and are extended by an original coarsening model we develop. This model quantitatively
reproduces the patch growth in the horizontal geometry and, when adapted to the vertical
situation, is consistent with the known properties of the instability.
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I. INTRODUCTION

When a liquid film has just been pulled out from a foaming solution, its thickness is usually much
greater than its equilibrium value, which causes a drainage. The film is bounded by menisci which
connect the film either to a solid frame, to the liquid reservoir or, in a foam, to the neighboring
films. In this last case, the meniscus is called a Plateau border. These menisci are at a pressure
lower than the film and thus drain it. The drainage dynamics, induced by this capillary suction or by
the gravity, is slowed down by the interface elasticity (Gibbs elasticity) [1,2] or interface viscosity,
which reduces or suppresses interface stretching. The drainage governs the film lifetime and is thus
crucial for most applications involving foam or bubbles [3].

The relevant systems to address the drainage dynamics are the film elements, defined as elemen-
tary volumes of film spanning from one interface to the other, of volume h dS. If the Poiseuille flows
between the interfaces are negligible, which is usually the case outside a small domain close to the
menisci, these elements are closed systems, of conserved volume. For large Gibbs elasticity, which
will be assumed in this paper, the area dS is conserved too, leading to the conservation of h. One
key degree of freedom remains nevertheless present in the film: the deformation and recirculation
motion of the film elements in the plane of the film. This sliding puzzle dynamics is only damped
by the interface shear viscosity and may consequently be driven by tiny forces [4,5].

In their seminal study, Mysels, Shinoda, and Frankel [6] proposed a subtle mechanism to explain
the drainage, dominated by exchanges of film elements between the film and the meniscus, the
so-called marginal regeneration. This theory predicts that along a meniscus, one finds alternatively
some thick film elements plunging into the meniscus, and, at the same time, thinner film elements
being extracted from the meniscus: the invariance of the flow along the meniscus direction is broken
by a hydrodynamical instability. The film area conservation imposes a vanishing net flux of interface
between the film and the meniscus, film elements leaving the film being replaced by film elements
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FIG. 1. (a) Scheme of the setup. Three foam films (in blue) are produced on a metallic frame and are
connected to each other along a free meniscus. The red parts of the frame are immobile, whereas the gray edge
can move, which modifies the length L of the horizontal film. (b) Top view of the film, before the instability
onset. Colors indicate the film thickness [same color scale as in (d)]. (c) Evolution of film thickness profile as
a function of y, averaged in the x direction at every 0.8 s, from t = 0 (instability onset, dark blue profile P0),
to t = 8.8 s (yellow). Same experiment as in (d). (d) Top view of the film, close to one meniscus, for the times
(0, 0.2, 1, 2.6, 7.4) s, from (A) to (E). A meniscus appears in yellow (saturation of the thickness scale) at the
bottom of the images and a homogeneous thick film at the top. A pinch (in blue) is visible at the meniscus
boundary in (A), and it destabilizes in (B). Then patches of thin film grow along the meniscus (C–E). The local
structure of the flow close to the meniscus is depicted in (E).

entering the film. However, as the elements leaving the film are thicker than the ones entering the
film, the volume flux toward the meniscus is positive, which results in an efficient drainage [7–9].

The determination of the instability wave length and of the extracted film thickness is a long-
standing question, and the respective roles of gravity, surface tension gradient, and initial film
thickness in the control of these parameters are still controversial [7,10,11]. In this paper, we provide
quantitative observations of a horizontal foam film drainage and confirm that marginal regeneration
stands even without gravity effect. We observe a surprisingly regular pattern along the meniscus,
consisting in semicircular patches of thin film invading the initially present thick film, separated by
small channels through which the thick film flows toward the meniscus (see Fig. 1). We identify the
condition allowing to close Mysels et al. set of equations, and we develop an original model which
succeeds in predicting the patch thickness, shape, and growth rate.

II. EXPERIMENTAL RESULTS

The foam film is produced on a deformable frame similar to the one used in Ref. [12], supporting
three flat rectangular films and a free meniscus [see Fig. 1(a)]. The film of interest is horizontal
and limited by two immobile metallic edges (the lateral edges), by a free meniscus, and by a mobile
metallic edge of length W = 65 mm which can translate along the lateral edges. We vary the distance
L between the free meniscus and the mobile edge to prepare the film, and the dynamics is then
observed with the motor at rest. The free meniscus and the meniscus on the mobile edge play the
same role and are not distinguished in the article.

Using a dedicated preparation protocol we produce a horizontal film, invariant along the menis-
cus (x direction), having a vanishing velocity and a uniform thickness in a large margin close to a
meniscus [the green/yellow domains in Fig. 1(b)]. The dark blue profile, shown in Fig. 1(c), is an
example of the film profile P0 just before the instability begins. It is obtained as follows. First, a
film is produced by plunging the frame into a foaming solution; the central part of P0 of thickness
hcenter ≈ 0.5 μm (hereafter the central film) is produced at this step. Second, the film is deformed by
pulling the mobile edge of the frame; the thick parts on both sides of P0 (hereafter the thick films),
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of average thickness close to 1.2 μm in the example of Fig. 1(c), are extracted from the menisci,
the film thickness being controlled by the motor pulling velocity. Last, the film deformation is
stopped by a pushing step. The whole film thickness increases during the pushing step and reaches
its final profile P0 at a time close to the instability onset. The average thick film thickness obtained
at this stage is denoted hin. The details of the procedure are given in Appendix A. In particular, we
detail there the role of the pushing step, we provide the used parameter values, and we describe the
averaging procedure used to define hin.

The foaming solution is made of deionized water, sodium dodecyl sulfate (SDS, cmc = 2.36
g/L) at 5.6 g/L, dodecanol at 0.05 g/L, glycerol at 15% in volume, and fluorescein sodium salt at
0.8 g/L. The viscosity is η = 1.52 mPa s, and the equilibrium surface tension is γ = 32 mN/m.
After the motor has stopped, and the film has stabilized at large scale, we measure the evolution of
the film thickness close to the menisci from the emission intensity of the fluorescein dissolved in
the foaming solution. The calibration of the relationship between the fluorescence intensity and the
thickness has been performed by measuring the film thickness along a line using a spectral camera
(see Ref. [12]).

At the end of the film preparation, a pinch is visible close to the menisci, and it grows with time, in
qualitative agreement with the asymptotic growth laws predicted in Ref. [13] (the fast destabilization
of the pinch and our space resolution do not allow us to make quantitative comparisons). This
pinch is initially invariant in the x direction, as shown in Fig. 1(d,A). At some point, chosen as
reference time t = 0, the pinch destabilizes [Fig. 1(d,B)] and turns into circular spots of very
thin film. These initial spots, of typical diameter 300 μm, seem to define nucleation points for
the instability observed afterwards (see the movie in the Supplemental Material [26]). After this
pinch destabilization, very regular semicircular patches of thin film, of typical thickness 1 μm,
appear along the meniscus. Theses patches are extracted from the meniscus at a velocity vout. This
velocity represents the film element velocity at the frontier between the patch and the meniscus. It
will be shown to be homogeneous along the meniscus and close to the patch radius time derivative.
The radius of the patches increases with time, and they progressively invade the film, as shown by
the evolution of average thickness profiles in Fig. 1(c). When two patches become too close they
coalesce and a larger patch is produced, with the total patch area being conserved [see Fig. 1(d, D)].
The patch radii R are measured by image processing of the top views. The mean patch radius R̄,
averaged over all patches, is plotted as a function of time in Fig. 2(a), for two thicknesses hin of the
thick film surrounding the patches (see Appendix B for details on the image processing and on the
averaging procedure of the patch radii and extraction velocities). The wavelength of the marginal
regeneration is 2R̄ + b̄ ≈ 2R̄, with b̄ the average width of the channel between two patches, and
thus evolves with time during this coarsening process. The dynamics is faster for thicker films and
sublinear with respect to time. As dR̄/dt ∼ vout [see Eq. (10) in Sec. III]; this indicates that the
extraction velocity slows down with time.

As shown in Fig. 1(c), the frontier between the central film and the thick film stays at
the same position, and the central film thickness does not vary. This indicates an absence of
compression/dilatation in this central region of the film during the patch growth, and thus a
conservation of the local interface area. Importantly, the stretching or compression deformations are
homogeneous in a foam film [14]. The patch dynamics, occurring on the lateral sides of the same
film, thus verifies the interface area conservation too: the assumption of incompressible interface is
verified during the patch growth.

Consequently, after its extraction from the meniscus, the thickness of a film element remains the
same during the whole dynamics, and the patch thickness distribution deduced from the color scale
in Fig. 1 contains the memory of patch formation history: the darkest spots, which are the thinnest
part of the patches, are produced by the initial pinch destabilization; around these small spots, we
find concentric domains of equal thicknesses. These domains correspond to the film extracted at
successive times, from the thickest domains close to the dark spot, to the thinnest ones far from it,
and later reorganized by the sliding puzzle-like recirculation motion in the patches. The darkest spots
provide passive tracers and clearly show this recirculation in Fig. 2(c): the central part of the patch

024004-3



GROS, BUSSONNIÈRE, NATH, AND CANTAT

2 4 6 8
0

0.2

0.4

0.6

0.8

0 2 4 6 8
0

1

2

3

1 mm

(c)(a) (b)

FIG. 2. (a) Average patch radius as a function of time, for hin = 0.66 ± 0.08 μm (blue, averaged over four
series) and hin = 1.2 ± 0.1 μm (red, averaged over 12 series). The shaded areas are the standard deviations. The
darkest lines are the power law (12) with the adjustable parameter λ = 1.8 ± 0.05 (blue) and λ = 1.6 ± 0.05
(red). All series have been synchronized at the time t0.5 at which R̄ = 0.5 mm (experimentally less noisy than
t = 0). (b) Thickness of the film extracted from the meniscus in the period of time [t − �t, t], as a function
of time, with �t = 1.4 s. The circles are the experimental results, with the same convention as for (a). The
darkest solid lines are the power law (13) with λ = 1.8 ± 0.05 for both series. (c) We selected a patch without
coalescence between t = 3 s and t = 8 s, and rescaled their images at successive times to keep the patch
radius and position constant. This allowed to follow trajectories, with respect to the patch boundary position:
the colored circles are the successive rescaled positions of a passive tracer, shown in the last image. We also
computed (on the original, nonrescaled, images) the tracer velocity, which amplitude is indicated by the color
code. In this example, it varies from 0.2 mm/s (blue) to 2 mm/s (red).

moves away from the meniscus at a typical velocity of the order of 0.2 mm/s, while its side parts
move toward the meniscus at a higher velocity, of the order of 2 mm/s. Note that patches can contain
several dark spots as patches coalesce over time. Despite this spatial reorganization, the thickness of
the film elements extracted from the meniscus at the time t , denoted hout (t ), can be measured from
the comparison of the thickness distribution in the patches between two successive times (see the
details of the image processing in Appendix B). As shown in Fig. 2(b), the extracted thickness
averaged over all patches h̄out (t ) decreases with time and is thinner for a thinner surrounding
film hin.

When some film is extracted from the meniscus at the velocity vout, an additional interface area
is brought to the film, and the interface area conservation in the film thus imposes that the same
amount of area flows back into the meniscus. This is fulfilled by the thick film flowing back toward
the meniscus through the small channels between the patches. The channel velocity at the meniscus
is denoted vin. This velocity is more difficult to measure directly but is close to the velocity measured
on the sides of the patches [see Fig. 2(c)], by velocity continuity. The channel width b is much
smaller than the patch diameter, imposing that vin is significantly larger than vout.

The theoretical predictions plotted in Fig. 2 are established from the model developed in the next
sections, which extends and closes the model proposed by Mysels et al. [6].

III. MODEL

A. Lubrication equations

The flow in the domain located between a meniscus of radius rm and a thin film of uniform
thickness h is a classical problem [6]. Let us consider (1) a steady situation, (2) with incompressible
interfaces, and (3) invariant in the x direction. The static meniscus of uniform curvature is reached
at y → −∞, the asymptotic flat film is reached at y → ∞, and the whole dynamics occurs in the
so-called dynamical meniscus, spanning over a length � � rm from the static meniscus, in which the
interface curvature varies. In this simplest case, the film profile ĥ(y) is the solution of the equation

v0

8
ĥ3 ∂3ĥ

∂y3
+ v(h − ĥ) = 0, (1)
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FIG. 3. Scheme of the flow and notations used in this paper. Each black semicircle represents a patch
indexed by i, of radius Ri, and bounded on one side by a dynamical meniscus of width �, and on the other side
by its frontier with the thick film, of width δ. The gray lines shown on the left are flow lines: the dashed lines
are open lines beginning at the meniscus in the patch and ending at the meniscus in the channel; the solid lines
are closed lines, associated with the recirculations visible in the patches. The uniform velocities at the meniscus
in the patches (resp. in the channel) are symbolized by the red (resp. blue) arrows. The channel between the
patches i and i + 1 is indexed by i and has a width bi.

where v0 = γ

3η
is the visco-capillary velocity and v is the uniform interface velocity defined such

as v < 0 when the interface flows towards the meniscus (“in”) and v > 0 otherwise (“out”) (see
Fig. 3).

The velocity vout ∼ dR̄/dt varies slowly with time (see Fig. 2), and the capillary number
Ca = vout/v0 is at most of the order of 10−4 in our experiments. The assumption of incompressible
interface is valid if the Gibbs modulus E verifies E/γ � Ca2/3 ∼ 2.10−3, which is the case for our
foaming solution [12,15,16]. Our experiments therefore verify the theoretical assumptions (1) and
(2). The observed flow is, however, obviously not invariant along the meniscus, and the problem
should in principle be solved numerically in the (x, y) plane. In order to provide simple analytical
predictions, we assume in the following that the velocity profile in the dynamical meniscus is binary,
i.e., that the flow is invariant along x inside each patch on one hand (with v = vout > 0), and in the
channels between the patches on the other hand (with v = −vin < 0) (see Fig. 3). This simplification
allows us to use the Eq. (1) to predict the dynamics in each domain.

The solution for the pulling case (v > 0) verifies [6]

hout = 1.28 rm

(
vout

v0

)2/3

, (2)

δγ out = 1.85 γ

(
vout

v0

)2/3

, (3)

with δγ out ∼ 1 mN/m, hereafter called film tension, the surface tension difference between the film
and the meniscus assumed to be at a uniform reference tension γ .

To the best of our knowledge, only the pulling case has been studied experimentally so far,
leading to a quantitative agreement with the theoretical prediction of Eq. (2) [17,18].

When v = 0 a steady solution is never reached, and the evolution of the film profile with time in
this case is given in Ref. [13].

In the pushing case (v < 0), the solution depends on the imposed velocity vin and on a given
asymptotic film thickness hin, which is, in contrast to the pulling case, a control parameter. The film
tension is given by

δγ in = 2.5 γ

(
vin

v0

)2/3

H(α), (4)

where α =
(

hin

2rm

)(
vin

v0

)−2/3

. (5)
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The function H does not have an analytical expression, but its numerical value is well fitted by
H(α) = λα1/3 − 1.05, as proposed in Ref. [6] with λ = 1 (Fig. 5.5 of the reference). The film
tension is negative for small values of α, which is achieved for thin films, large menisci, or high
velocities. In such cases, the tension in the film is lower than the tension in the meniscus and is
therefore a driving force for the motion toward the meniscus. An important transition occurs at
α = 1.16/λ3: at greater values, the tension in the film is higher than the meniscus tension, i.e.,
δγ in > 0 as in the pulling case, and the driving force is the meniscus capillary suction only.

The surface tension gradients, at the origin of the surface tension difference δγ , are localized in
the dynamical meniscus spanning over � ∼ rm(Caout )1/3 ∼ 100 μm. For greater values of y (further
from the meniscus), the Laplace pressure becomes negligible. As the dynamical meniscus width
is much smaller than the patch radii (� � R), the pressure in the patches is thus the reference
pressure and the tension obeys ηs�

2Dvs + ∇2Dγ = 0, with ηs ∼ 10−7 kg/s [19] the interface shear
viscosity, and vs the interface velocity in the (x, y) plane. The observed recirculations in the film
occur over a characteristic distance equal to the patch radius R, and with a velocity vin ∼ 10−3 m/s
[see Fig. 2(c)]. The associated tension variations thus scale as ηsv

in/R ∼ 10−7 N/m.
The surface tension in the film is also modified by the line tension T ∼ 10−10 N induced by

the film thickness variation across the frontier between the thin and thick parts of the film, in a
transition region of width δ ∼ 100 μm [20]. This line tension imposes a surface tension jump across
the frontier, which is the 2D equivalent of the 3D Laplace pressure jump: in a patch of radius R, the
tension is slightly smaller than in the thick film on the other side of the frontier, and the tension
jump is T/R ∼ 10−7 N/m.

The semicircular patch shapes we experimentally observed indicate that the line tension T
dominates in the film, over the viscous interface stress associated to ηs: the patches are very mobile
and adjust immediately their shapes to ensure the minimization of their perimeters. Anyway, as both
surface tension variations associated to T and to ηs are much smaller than δγ , the patch growth can
be predicted by assuming that the tension is uniform in the entire film and that it varies only across
the dynamical meniscus from γ in the static meniscus to γ + δγ in the film.

We deduce from Eq. (3) that the extraction velocity vout, which depends only on δγ out, is
homogeneous along the frontier with the meniscus. The relationship between δγ in and vin involves
in contrast the additional parameter hin. In the following, we assume that the film thickness in the
channels is homogeneous and equal to the thickness of the incoming film, which thus imposes
a uniform value of vin. As discussed below, this assumption may need further theoretical and
experimental improvements. Finally, using δγ in = δγ out in Eqs. (3) and (4), we obtain

1.85

(
vout

v0

)2/3

= 2.5

(
vin

v0

)2/3(
λ α1/3− 1.05

)
, (6)

with α given by Eq. (5).
Using our experimental values rm = 320 μm, hin ∼ 1 μm, vin ∼ 2 mm/s, we get α = 0.36,

leading to a negative value of H if λ = 1, as established in Ref. [6]. This corresponds to a negative
value of δγ in, which can therefore not be equal to δγ out ∼ 10−3 N/m obtained from Eq. (3).
The same inconsistency between the theory and the experimental observations has already been
noticed in Sec. 5.12 of Ref. [6]. We believe that the channel width is not large enough for the
assumption of invariance along x [assumption (3)] to be verified. The x-invariant model predicts
thickness oscillations along the steady profile [6]. As we observe that the x-invariant pinch shown
in Fig. 1(d,A) is unstable, we believe that the pinch of this theoretical profile may be unstable too.
The actual profile along the y direction in the middle of the thick film channels may thus differ from
the x-invariant profile, the thinnest parts of this invariant profile being repelled on the lateral sides
of the channel. Note that without pinch in the thickness profile, we expect the viscous dissipation
to be lowered, and the film tension to be higher. The nonuniformity of the film thickness across the
channels also implies, from Eq. (4), the nonuniformity of vin. In this simple model, vin should thus
be considered as an average value across the channels (identical in each channel).
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FIG. 4. The black curves are the velocities vout/v̂ (solid line) and vin/v̂ (dashed line) given by Eq. (8), as
a function of ξ . The red curve is δγ /γ̂ , given by Eq. (3), with γ̂ = γ λ3hin/(2rm ) and λ = 1.8. The shaded
domain highlights the experimentally relevant values of ξ .

These remarks led us to the introduction of the ad hoc free parameter λ in the fitting expression
of H [nonexistent in Ref. [6] and thus taken as 1 when introduced in Eq. (4)], arbitrarily keeping
the functional dependency proposed in Ref. [6] for H. A good agreement between theory and
experiments is obtained for a value of λ around 1.8, as presented in the following results.

B. Interface area conservation

The interface area conservation imposes that the net interface area flux between the film and the
meniscus vanishes (see Fig. 3), leading to the relation

voutξ − vin(1 − ξ ) = 0, (7)

with ξ the length fraction of meniscus in contact with the patches. Using Eq. (6), we get

vin = v̂F (ξ ); vout = v̂
1 − ξ

ξ
F (ξ ) (8)

with v̂ = v0

(
λ3 hin

2 rm

)3/2

and

F (ξ ) =
[

1.85

2.5

(
1 − ξ

ξ

)2/3

+ 1.05

]−9/2

.

The film tension δγ is eventually expressed as a function of ξ solely, using Eqs. (3) and (8). As
shown in Fig. 4, the family of solutions (vin, vout ), obtained for given ξ values in the range [0 − 1],
has a film tension in the range [0 δγmax], with δγ max = 0.17 γ λ3hin/rm. For tension differences
out of that range, the coexistence between the patches and the thick film is not possible, and an
x-invariant solution should be observed.

The patch thickness, given by Eq. (2), can be expressed as

hout = 0.64λ3hin

[
1 − ξ

ξ
F (ξ )

]2/3

< 0.11 λ3 hin. (9)

For λ = 1.8, the upper bound of thickness ratio is hout/hin < 0.7 < 1. For any value of ξ , the
marginal regeneration thus leads to a decrease of the film volume, as expected from the drainage
behavior.

C. Growth model

The whole dynamics is eventually governed by the sole dynamical parameter ξ , which remains to
be determined. Mysels et al. [6] proposed to close the problem by assuming that the selected ξ value
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should minimize the dissipation, leading to the prediction αmysels = 3.5 in eq. (6) (with λ = 1). Here
we propose instead an argument of kinematic nature to predict ξ as a function of time, from which
we deduce all other observable quantities.

We first model the dynamic based on the averaged quantities and discuss the patch distribution
in the next section. Note that patch size distribution is peaked, with a maximum close to its average,
which justifies this approach. In this section we therefore assume a large number N of patches of
homogeneous radius R̄ along a meniscus of length W , separated by channels of width b̄ (see Fig. 3).
The parameter ξ equals 2NR̄/W = 1 − Nb̄/W . Assuming b̄ � 2R̄ as observed experimentally,
W ≈ 2NR̄ and ξ ≈ 1 − b̄/(2R̄). The patch area is Ā = π R̄2/2 and varies between coalescences
as dĀ/dt = π R̄(dR̄/dt )grow = 2R̄vout.

The patch size increases until the channel width reaches a critical value bmin, leading to the
coalescence of two neighboring patches. The channel width observed on the image just before the
coalescence is bmin ≈ 0.2 mm, which corresponds to a few pixels. We expect the coalescence to be
triggered by an attractive force, of capillary nature [21], arising when two interface deformations
associated to the thick/thin film frontier overlap. The characteristic length bmin should thus scale as
the frontier thickness 2δ ∼ 0.2 mm so the orders of magnitude are consistent.

Let us consider the coalescence of a single pair of patches. It obviously breaks the patch size
uniformity and leads to new average quantities, which are, however, considered as the new uniform
size of all patches just after the coalescence. The coalescence leads to a new patch, of area An = 2Ā
and radius Rn = √

2R̄. The average radius jumps from R̄ to R̄ + δRc, with δRc = (
√

2 − 1)R̄/N .
The average distance between patches increases from bmin just before the coalescence to bmin +
δbc just after, with δbc = 2(2 − √

2)R̄/N . Assuming that the free space between patches is equally
redistributed between all patches, the time δt c before the next coalescence is the time needed for
b̄ to reach bmin again. So δt c = δbc/(4vout/π ) = π/(2vout )(2 − √

2)R̄/N . The average patch size
increase is the sum of the growing and coalescence contributions, so dR̄/dt = dR̄/dtgrow + δRc/δt c,
leading eventually to the rule

dR̄

dt
= 2

π (2 − √
2)

vout ∼ 1.1vout. (10)

The value of ξ , which determines vout, varies between 1 − bmin/(2R̄) and 1 − (bmin + δbc)/(2R̄).
Experimentally, R̄ varies in the range [0.5–3] mm. With W = 65 mm, the total number of patches is
in the range [100–20]. Consequently δbc is much smaller than bmin for small patches and becomes
of the same order for the largest ones. We thus get ξ ≈ 0.8 at the beginning of the experiment and
ξ is in the range [0.94–0.97] at the end (see the shaded domain in Fig. 4).

Simple laws are obtained at large R̄ where b̄ → bmin with bmin � R̄. In this limit, we have ξ →
1 − bmin/(2R̄) and F (ξ ) → 0.8, and by writing Eqs. (8) and (9) we get

dR̄

dt
= 2

π (2 − √
2)

vout = 0.29
γ

η

bmin

2R̄

(
λ3 hin

2 rm

)3/2

, (11)

R̄(t ) =
[

0.29
γ bmin

η

(
λ3 hin

2 rm

)3/2

t + R̄(0)2

]1/2

, (12)

h̄out (t ) = 0.55 hin

[
bmin

2R̄(t )

]2/3

λ3. (13)

The computed values of these scaling laws [R̄(t ) and h̄out (t )] are compared to the experimental
mean radius and thickness of the patches in Fig. 2.

The theoretical prediction shown in Fig. 2(a) is obtained by fitting the parameters λ and R̄(0)
(for both series independently) in Eq. (12), assuming bmin = 200 μm. The uncertainty on λ is
deduced from the error bar on R̄(t ). For h̄out (t ), shown in Fig. 2(b), we determine λ from the time
average 〈h̄out (t )R̄(t )2/3/hin〉t . The error bar on λ can be obtained from the standard deviation of

024004-8



MARGINAL REGENERATION IN A HORIZONTAL FILM: …

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
0.2
1.2
2.2
3.2
4.2

FIG. 5. Normalized distribution of the patch area for different times given in seconds in the legend,
averaged over all the series having hin = 1.2 μm. The light gray line is the distribution obtained using the N0

patches measured at t = 0.2 s and making random coalescences between them until the patch number of the
time t = 4.2 s is reached (we averaged the process over 100 realizations). The dark gray line is the exponential
law corresponding to a random coalescence process for an infinite number of patches.

h̄out (t )R̄(t )2/3/hin at the different times, or from the error bar on h̄out (t ), which are of the same
order. The prediction shown in Fig. 2(b) is obtained using Eq. (13), with the fitted λ value and
the experimental value of R̄(t ). The agreement between experiment and theory is good, and the
obtained λ values are all in the range 1.6–1.8. This value depends on the value of bmin which is
poorly determined, and on the arbitrary choice of the function H. However, this adjustable parameter
is close to one and does not significantly depend on hin nor on the quantity considered [R̄(t ) and
h̄out]. We thus believe that this simple model captures the main physical processes governing the
dynamics.

Note that the thickness slightly decreases with y in the thick film, as visible in Fig. 1(c),
potentially leading to the decrease of the film thickness in the channel hin as the patches invade
the film. We carefully checked that this effect is negligible. The sublinear behavior of R̄(t ) is thus
due to the predicted dynamics and not to this thickness heterogeneity.

D. Patch radius distribution

To investigate further than the average values, we now focus on the radius distribution, plotted
in Fig. 5. At initial time the size resolution is very poor, which artificially produces a very peaked
distribution. At later times, however, the distribution is well resolved and remains surprisingly stable
in time. This significantly differs from the behavior expected from a random coalescence process,
leading to an exponential size distribution, with a maximum at the initial patch size [22], as shown in
Fig. 5 (see Appendix C for further details). This proves that the probability of coalescence depends
on the patch size and that the smallest patches are more likely to coalesce. We identify below the
physical process at the origin of this patch size stabilization.

The flow lines in the vicinity of two patches are represented in Fig. 3. The patches, labeled i and
i + 1, are separated by a channel of width bi. The patch centers are respectively at the position xi

and xi+1, and their radii are Ri and Ri+1. The frontiers x = xi and x = xi+1 are local symmetry axes
of the flow, so the x-component of the velocity vanishes along these lines. The interface flux balance
[Eq. (7)] can therefore be written locally in the subsystem limited by these frontiers as

vout (Ri + Ri+1) − vinbi = 0. (14)

The velocities vout and vin are determined by the uniform film tension, and thus by the global value
of ξ : they do not depend on the pair of patches we consider. This means that the local quantity
ξi = 1 − bi/(Ri + Ri+1) does not depend on i and is everywhere equal to ξ .
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This analysis leads to the prediction that the channel width is proportional to the average radius
of the neighboring patches: the smallest patches are limited by the narrowest channels and thus
coalesce with a higher probability. This explains the narrow patch size distribution observed and
justify our approach based on averaged quantities.

Finally, let us mention the stabilizing effect of ξ on the channel widths. In the range of ξ observed
experimentally, the film tension decreases with ξ , as shown in Fig. 4. Consequently, if a fluctuation
decreases the distance between two patches (thus imposing locally ξi > ξ ), then δγi < δγ , and the
lateral forces on the patches are unbalanced: the two patches are pulled apart, with counteracts
the initial fluctuation. The additional free space δbc induced by a coalescence should be rapidly
redistributed equally between all patches by this mechanism, thus supporting the assumption made
in the model.

E. Extension of the model to the vertical case

In a vertical film, gravity induces an effective buoyancy force [23]: the thinnest film elements rise
in the film, which is the most visible and popular signature of the marginal regeneration occurring
at the bottom of a film. At small scale, however, gravity is negligible [7] and our model should be
relevant: we suggest that the patches may grow according to the dynamics described in this paper,
until they reach a critical size Rmax at which they are torn away the meniscus by the gravity. At this
critical size, the line tension should balance the buoyancy force, which is compatible with the recent
observations made in Ref. [24]. The capillary condition (bmin) is thus replaced by a gravitational
condition (Rmax) in vertical films.

The removal of a patch from the meniscus produces an empty space in which a new patch
appears. Note that the apparition of such a new patch in a free space is neglected in our model
because it is rare enough in horizontal films, but is clearly visible in some examples [see Fig. 1(c),
for example]. Importantly, the qualitative observation of such events suggests that the thickness
of the new patch is the current extracted thickness hout (t ) imposed by the dynamics in the rest of
the film [see Eq. (2)], and not the thickness observed at the onset of the instability, governed by a
different law. The steady dynamics of marginal regeneration under gravity would in that case obeys
the laws established in this paper, the average patch radius being stabilized at Rmax.

An important remark is that the pattern shown in Refs. [7,24] has a distance between patches and
a patch size of the same order of magnitude, so a value of ξ ∼ 0.5. For this value, vout does not vary
much with ξ and stays close to its maximal value (see Fig. 4). The patch thickness should thus be
close to hout = 0.7hin [see Eq. (9)], which is very close to the observations hout = 0.8hin reported in
Ref. [25] and used in subsequent models [7,24].

IV. CONCLUSION

Using an original setup and a well-controlled horizontal foam film, we provide the first direct
and quantitative observations of the alternate velocities associated to marginal regeneration, and
we exhibit a coarsening process inducing a time dependency of the instability wave length. Film
thicknesses and velocities are consistent with Mysels’ model if a phenomenological correction in
the viscous resistance of the film is introduced. Further 3D simulations would be required to predict
the value of the added prefactor λ, which is determined here by fitting the experimental data.

We believe that our theoretical work sheds a new light on the marginal regeneration process. It
provides predictions for the patch size and thickness in fairly good agreement with our experimental
data. Moreover, first considerations for an adaptation to a vertical film provide a good agreement
with data of the literature for the thickness ratio between the foam film and the marginal regeneration
patches. This ratio is the key ingredient controlling the film drainage rate.

Finally, the precise physical process which initially triggers the destabilization of the invariant
pinch remains to be elucidated, and the domains of stability and/or metastability of the x-invariant
solutions of Eq. (1) (or its unsteady variant) still need to be identified.

024004-10



MARGINAL REGENERATION IN A HORIZONTAL FILM: …

ACKNOWLEDGMENTS

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 725094).
We thank M. Le Fur for technical support and A. Saint-Jalmes and E. Rio for fruitful discussions.

APPENDIX A: INITIAL CONDITION IN THE HORIZONTAL FILM

1. Film preparation

A film is first produced with L0 = 2.5 mm by plunging the frame into the foaming solution (the
central film of thickness hcenter). After a short drainage time, L is increased up to Lmax at a velocity
V pull. During this step two films, called the thick films in the article, are extracted from the two
menisci, with a thickness hin controlled by the extraction velocity [6,18], which depends on V pull

and of the central film elasticity. If the motor is stopped just after this pulling step, the extraction
keeps going during few seconds, at a slower velocity. Indeed the central film, which was stretched
during the pulling step, relaxes to a smaller area. To avoid this relaxation, and thus to get a better film
thickness uniformity close to the meniscus, we reverse the motor motion when reaching Lmax and
decrease L at the velocity V push down to L = Lmax − �L. This pushing step stops the film extraction
and systematically triggers the instability observed. It induces a transient film compression which
modifies hcenter and hin.

We used Lmax = 18.5 mm for all series. The final thickness hin is 0.66 ± 0.08 μm for V pull = 2
mm/s and 1.2 ± 0.1 μm for V pull = 3 mm/s. We used V push = 2 or 3 mm/s and �L in the range
[6–10] mm. This modifies the time at which the film velocity vanishes but not the final thickness. No
correlation has been observed between the parameters V push and �L and the measured dynamics, in
the investigated range.

2. Condition of vanishing velocity

The condition of vanishing velocity and vanishing extension/compression in the thick film is
difficult to obtain and requires to tune the frame deformation used to prepare the film by trial and
error. Both conditions are coupled. Indeed, if we denote L0 the width (in the y direction) that the
horizontal film would have at the equilibrium tension and ε its extension with respect to L0, we have
L = εL0 and

dL

dt
= L0

dε

dt
+ 2〈v〉men , (A1)

with 〈v〉men the average film velocity along the menisci (with the convention v > 0 if oriented toward
the meniscus). Once the motor has stopped, dL/dt = 0 by definition, and 〈v〉men can be determined
from a measure of dε/dt .

The mass conservation in the central film imposes

dε

dt
= − hcenter

0

(hcenter )2

dhcenter

dt
, (A2)

with hcenter
0 the central film thickness at long time (taken as arbitrary reference). The measure of the

central film thickness thus provides information on the evolution of the extension (or compression)
state of the film. Using Eq. (A1) it provides the average velocity close to the meniscus. In this paper,
we only kept data series for which the variation of ε is less than 5% during the 8 s of patch evolution.
This corresponds to an average velocity in the thick film at the meniscus below 0.1 mm/s during
the measure.

024004-11



GROS, BUSSONNIÈRE, NATH, AND CANTAT

100 200 300 400 500 600 700

20
40
60

FIG. 6. On this raw image, the color indicates the thickness and the frontier automatically detected is shown
in yellow. Axes are in pixels.

3. Thickness profile in the thick film

The thick film characteristics are measured on the last image before the destabilization of the
pinch (defined as t = 0). For each series, the profile is first averaged in the x direction to obtain
hav1 (y) [see the first profile in Fig. 1(c)]. On each side of the film, we define

hav2 = 〈hav1 (y)〉[y1y2] , (A3)

with y1 and y2, respectively, at the distance 1 mm and 3 mm from the meniscus. The obtained value
hav2 is finally averaged over all series sharing the same pulling velocity, and on both sides of each
film, leading to

hin = 〈hav2〉series. (A4)

The error bar given in the text is the standard deviation of hav2 on the different series.

APPENDIX B: IMAGE PROCESSING AND AVERAGING PROCESS

The mean radii and extracted film thicknesses are determined from the experimental data, to be
compared to the output of our model.

1. Patch radius

We analyze all the patches in the domain of width �x = 30 mm in the center of the film, in which
the boundary effects are negligible and the lightening homogeneous. The position of the meniscus
is automatically detected as well as the frontier between the thin and thick parts of the film. The
channel positions are determined as the points of the frontier at minimal distance from the meniscus
(see Fig. 6). The frontier shape between two successive channels is close to half ellipses, which radii
Rx and Ry (in the directions x and y) are measured. In average, large patches are slightly elongated
in the y direction, with Ry being up to 20% larger than Rx. This effect is not discussed in the paper,
and the patch shape is considered as being semicircular. We use arbitrarily Ry in the analysis.

In order to filter artifactual small patches produced by the automatic contour detection, we
suppressed from the averaging process the patches of radius smaller than 20% of the largest ones. We
checked that the results do not depend on the threshold chosen. Note that, after the destabilization
of the initial pinch, the appearance of new patches are rare events. However, when a fluctuation
produces a large channel during an especially long time, a new patch can be produced in the
middle of the channel. These patches, suppressed by the filtering process, coalesce rapidly with their
neighbor and do not participate to the global dynamics. An example of patch radius distribution is
shown in Fig. 7.

2. Extracted film thickness

The image processing used to determine the thickness hout (t ) of the film extracted from the
meniscus between the times t and t − �t is the following. We select all the pixels between the
meniscus and the frontier separating the thin and the thick parts of the film (i.e., the area inside the
patches) and make a histogram of film thicknesses in this domain at time t : this quantifies the film
area A(h, t, dh) having a thickness in the range [h; h + dh] at time t .
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FIG. 7. (Left) Size of all patches observed at a time t after the instability onset, for one series. (Right) Patch
number as a function of time for the same series.

The film extracted from the meniscus between the time t − �t and t has the thickness distribution
Aextr (t,�t, h, dh) obtained as

Aextr (t,�t, h, dh) = A(h, t, dh) − A(h, t − �t, dh). (B1)

As the patches grow and as each film element in the patch keeps its area and thickness, this
quantity is expected to be positive. The negative parts of the histogram shown in Fig. 8 are due to
the experimental noise. The average thickness of the film extracted between the time t − �t and t
is given by

h̄out (t ) =
∫

h Aextr (t,�t, h, dh) dh∫
Aextr (t,�t, h, dh) dh

. (B2)

APPENDIX C: DISTRIBUTION INDUCED BY A RANDOM COALESCENCE PROCESS

Random coalescences lead generically to exponential distributions (see the review [22]) when
the initial distribution is peaked and the initial and final numbers of object N1 and N2 verifies N1 �
N1 − N2 � 1.

As we have experimentally relatively small initial and final numbers of patches we performed
numerical simulations with the experimental values N1 = 300 (at t = 0.2 s) and N2 = 140 (at t =
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FIG. 8. Representation of Aextr (t,�t, h, dh) in arbitrary units, for dh = 50 nm, �t = 1.4 s. The values of
t are given in the legend (in s). The extracted thickness is greater at shorter times.
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4.2 s) used in Fig. 5 (i.e., all the patches measured in the region of interest of all series having
hin = 1.2 μm).

We generate a list of N1 patches with a Gaussian area distribution having the same average and
standard deviation than the experimental patch area distribution at t = 0.2 s. Then we sum the areas
of randomly chosen neighboring patches, until only N2 patches remain. The distribution shown in
Fig. 5 is the final distribution obtained after averaging over 100 identical simulations. It is already
close to the asymptotic exponential law and clearly differs from the experimental distribution.

APPENDIX D: CAPTION OF THE MOVIE

The movie in the Supplemental Material [26] shows the top view of the film, from t = 0 to
t = 8.4 s. The ROI is cropped at the limit of the meniscus (at the top of the image) and its dimensions
are 4 × 42 mm2. The thick film (at the bottom of the image) has a thickness hin = 1.2 μm.
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