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Abstract –We report an experimental study of 2D microfoam coarsening confined in a micrometer
scale geometry, the typical bubbles diameter being of the order of 50–100µm. These experiments
raise both fundamental and applicative issues. For applicative issues: what is the typical time of
foam ageing (for a polydisperse foam) in microsystems in scope of gas pocket storage in lab-on-a-
chips? Experimental results show that a typical time of 2–3mn is found, leading to the possibility
of short-time storing, depending on the application. For fundamental interests, 2D foam ageing is
generally described by von Neumann’s law (von Neumann J.,Metal Interfaces (American Society
of Metals, Cleveland) 1952, p. 108) which is based on the hypothesis that bubbles are separated
by thin films. Does this hypothesis still hold for foams confined in a 40µm height geometry? This
problematic is analyzed and it is shown that von Neumann’s law still holds but that the diffusion
coefficient involved in this law is modified by the confinement which imposes a curvature radius at
Plateau borders. More precisely, it is shown that the liquid fraction is high on a film cross-section,
in contrast with macrometric experiments where drainage occurs. An analytical description of the
diffusion is developped taking into account the fact that soap film height is only a fraction of the
cell height. While most of microfoams are flowing, the experimental set-up we describe leads to
the achievement of a motionless confined microfoam.

Copyright c© EPLA, 2008

Introduction. – Microfluidics is on the way to be one
of the most stimulating research field for chemical, medical
and pharmaceutical industries. In this paper we study the
static evolution of a multiphase flow (a foam) in a microflu-
idic system. Multiphase flows occur in many processes
and are very promising for biotechnologies and especially
for their applications in a lab-on-chip setting. They may
be used, for example, for the storage of gas micropock-
ets or for amphiphilic molecules transport (like proteins
which generally adsorb on the walls when there is only
one liquid phase [1,2]). For these purposes, the time scale
associated to foam coarsening is crucial. As the 3D foam
coarsening process significantly differs from the 2D one,
the average coarsening time scale obtained for a 3D micro-
foam [3,4] does not directly apply in confined geometries.
The study of 2D dry foams has been largely analyzed both
theoretically and experimentally (see [5] for a review) since
Plateau’s first experiments in 1873. At millimetric scale or
above, there is a general agreement between theory and

experiments for foam ageing, which is essentially governed
by von Neumann’s law [6,7], but, to our best knowledge,
nothing has been reported in this field for 2D microfoams.
Von Neumann’s law includes the hypothesis that bubbles
are separated by a thin film; due to confinement, the foam
structure is modified and one can ask if the macroscopic
law still holds.
Most of the papers dealing with microfoams in 2D
devices, focuses on flowing microfoams [8,9]. In this paper,
we show that it is possible to build experiments on
motionless microfoams, allowing for ageing studies. Typi-
cal sample contains about 100 bubbles at the initial
time, some of which touch the boundary of the container.
Boundary effects are therefore carefully discussed. We
determine the order of magnitude of coarsening time scale,
which is directly useful for applications, and we also
define a statiscally stationary regime at first 10mn. We
re-establish von Neumann’s law for the specific foam struc-
ture encountered in microchannels and we show that the
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confinement has an important effect on the effective diffu-
sion coefficient.

2D foam coarsening in macrosystems. – In the
case of a two-dimensional unbounded dry foam, the
analysis can be based on von Neumann’s law, for each
individual cell of area A and number of sides n:

dA

dt
=Deff(n− 6). (1)

The effective diffusion coefficient Deff is related to k, the
permeability constant of the films which separate bubbles,
and to γ, the surface tension of a single interface, through
the equation [10]

Deff =
2π

3

γ k

P 0
. (2)

Here P 0 is the average pressure in the gas. The local
volume flux of gas through a film of area A, submitted
to a pressure difference ∆P is given by

dV/dt= kA∆P/P 0. (3)

von Neumann’s equation is accurate for inner bubbles
in a 2D foam [11], i.e. for bubbles that are surrounded by
other bubbles (no contact with lateral walls). In the case
of a foam confined by walls, this law has to be adjusted,
due to the fact that two types of bubbles have to be
considered: peripheral or edge bubbles (E-bubbles) and
inner bubbles (I-bubbles). Rosa and Fortes proposed a
model with modified equations for E-bubbles [12]. In the
following study, statistics will be specified on I-bubbles,
while it has been previously checked that E-bubbles evolve
as expected.

Macrofoam vs. microfoam. – First, due to a
large surface/volume ratio, volumic forces are negligible
compared to surface forces. This leads to the absence of
vertical drainage (due to gravity) on such small length
scales. Note that Stavans [13] found good agreement with
von Neumann’s law while Plateau borders are kept nearly
constant and thin at all times, i.e. for a drained foam.
Radii of curvature are smaller due to confinement
so pressures and pressure differences are much higher
than in macrofoam. Surprisingly, von Neumann’s law
(eq. (1)) shows that this is without direct influence on
the coarsening rate, which only depends on the foam
topology. Nevertheless, this law assumes that a thin film
between two bubbles adopts a cylindrical shape (without
curvature in a plane perpendicular to the plates) and
that the menisci along its contact with each plates (called
Plateau borders) are of negligible thickness (see fig. 1c).
This is usually verified in macroscopic 2D dry foams, but is
a priori wrong at microscale, as discussed in the next part:
top and bottom Plateau borders are very close, if not in
contact. Finally, the coarsening rate is strongly influenced
by the film thickness through the permeability k. This
thickness, of the order of 10–30 nanometers, depends
on the pressure difference between the liquid phase and
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Fig. 1: Bubble shape between 2 plates for various liquid
fractions. The value of the principal curvature is estimated
in the text. (a) Wet limit: no contact between the bubbles.
(b) Intermediate liquid fraction: contact between bubbles along
very elongated surfaces. (c) Dry limit. The estimation of the
film height ε compared to the Hele-Shaw cell height h is given
in the text.

the gas phase, and is probably very thin in microscopic
situations.

Modelisation of the film shape. – When a single
bubble in water is squeezed between two plates separated
by a distance h, the gas pressure increases in the bubble.
This pressure can be roughly estimated if the air/water
interface is approximated by a piece of torus of minor
radius h/2 and major radius R−h/2, R being the radius
of the bubble, seen from above (see fig. 1a). As a torus
does not have a constant mean curvature, it is not the
exact shape taken by the bubble, but if R≫ h this
approximation is justified and it will allow us to make
simple estimations. The mean curvature determined in
the plane y= 0 between the two plates (the equatorial
plane) is 2/h+1/R, so the pressure difference between
air and water scales like ∆P ≈ γ(2/h+1/R). If another
bubble comes into contact, a thin film is created between
the bubbles. At this point we assume that every bubble
has the same internal pressure, so the thin film is flat.
At point A in fig. 1b, one principal curvature vanishes,
while the other is 2/(h− ε), with ε the height of the thin
film between the bubbles. At point B the two principal
curvatures are approximately 2/h and 1/Rb, with Rb the
radius of the vertical Plateau border (in the equatorial
plane). The disjoining pressure is negligible at these
two points, so the pressures must be equal, which leads
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Fig. 2: Scheme of the experimental set-up including the foam
generation part and the observation part.

to 2/(h− ε) = 2/(h+1/Rb). At first order in ε, it leads
to ε/h= h/(2Rb). Finally, as long as h≪Rb, the bubbles
are in contact only along lines of negligible thickness with
respect to the channel height. When the liquid fraction
decreases and bubbles come even closer to each others,
the usual structure of a macroscopic 2D foam is recovered
and the vertical and horizontal Plateau borders have the
same shape. They have a single non-vanishing principal
radius, smaller than h (fig. 1c).
von Neumann’s law has been established for this third

case.
Let us now consider the case in which two bubbles touch

each other along a line instead of a thin film (fig. 1b).
Gas diffusion from a bubble 1 to a bubble 2 will occur
if this contact line is curved toward bubble 1. In this
case, the pressures are indeed P1 = Ps+ γ(2/h+1/Rl) and
P2 = Ps+ γ(2/h− 1/Rl), with Ps the solution pressure, Rl
the contact line curvature and P1 and P2 the pressure in
the two bubbles. The driving force for the gas diffusion
is then ∆P = 2γ/Rl. This relation is identical to the
equation obtained in the presence of thin films between
the bubbles. Nevertheless the diffusion coefficient, which
a priori depends on both the film thickness and its
height may be very different from the one measured in
a macroscopic 2D experiment where the average thickness
of the film is much larger with a relative height over the
Plateau border also larger than in a 40µm cell height. It
will be shown in the following that the diffusion coefficient
we measure is indeed smaller than the values found in the
literature.

Experimental set-up. – Flow focusing: micro-
foams start to be largely studied in microsystems. The
traditional way to produce in situ two-phase flows in
microsystems consists in using a flow-focusing geome-
try [14]. This geometry is shown in fig. 2. It is composed
of a cross-channel intersection, in which the continuous
phase enters from each side of the dispersed phase inlet.
Garstecki et al. [8] showed that the dispersity of bubble

sizes generated by this procedure can be controlled by
different flow rates of liquid and gas. As coarsening in
monodisperse foams exhibits a very specific behavior, we
will focus on a relatively polydisperse foam for this study.
The PDMS device is composed of an inlet channel (consti-
tuted of two embranchments) for the liquid and another
one for the gas, both ending near an orifice (smaller
than the two inlets channel width = 50µm). At the
entrance of the orifice the liquid and gas phases form an
interface and the pressure drop along the longitudinal
axis of the device forces the tip of the gas stream into
the orifice. The tip proceeds through the orifice and
chases the liquid in the capillary tube. In the orifice,
because of the hydrophilic character of the walls (PDMS)
the gaseous thread is surrounded by liquid and due to
energetics instability, the thread breaks and releases
a bubble into the outlet channel. The procedure to
manufacture soft lithography microsystem is detailed
in [15]. It roughly consists in a PDMS block (transparent
polymer), containing the microfluidic circuit. First, a
mould is manufactured in a negative photosensible resin
(Su-8 2100) and then an imprint is realized in a polymer
(PolyDiMethylSiloxane, PDMS RTV 615) which is finally
glued on a PDMS surface thanks to a plasma cleaner, thus
every wall of the system is in PDMS. The channel height
is h= 40µm, and the width is either w= 100 or 200µm.
The continuous liquid phase is composed of deionized
water (93.86%, in mass), glycerol (5.86%) and an anionic
surfactant (SDS 0.27%). The surfactant concentration is
thus 0.009 mol/L, which is just above the critical micel-
lar concentration —cmc— (0.008 mol/L). The surface
tension of the solution was measured by the pendant drop
technique and found to be 36mN/m at 20 ◦C. Different
syringes were used to push the liquid: Terumo (2 and
5mL) and Upchurch (500µL). The dispersed gas phase is
compressed air and the pressure is controlled by a SMC
regulator. This geometry produces flowing foam. Indeed,
even if the experimentalist shut all the valves off, the foam
keeps moving due to the upstream gas decompression. For
this reason, the device is divided into two parts: i) foam
production (containing the flow focusing), ii) foam storage
(observation room). After production, the foam is thus
led into a microtank (reservoir: 1500× 2500µm) using a
tygon tubing (50µm). Once the observation room is filled
by foam, the tygon tubing is disconnected so that the
foam can be isolated and can be observed with a Leica
microscope (DMIRB) and a CCD camera (COHU, 25Hz).
Images are stored using NIH image, binarised (ImageJ)
and are further processed using Aphelion software. It is
possible, using this software, to measure the individual
bubbles area as well as their number of faces (number of
neighbors) on successive images or to discern internal from
peripheral bubbles. Figure 3 shows a typical ageing foam
at the beginning of its evolution (a) and at later stages.

Results: typical time for foam ageing. – Figure 4
concerns the total number of internal bubbles N(t).
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Fig. 3: (a) Initially 190 bubbles, (b) 66 bubbles remaining after
∆t(a→ b) = 10′, (c) 23 bubbles remaining after ∆t(a→ c) =
30′.
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Fig. 4: Number of internal bubbles as a function of time.
A characteristic time can be defined for both populations of
bubbles.

We plotted N(0)/N(t) as a function of time for four
different experiments. This law is expected to be linear
in a scale-invariant regime [16], if the effective diffusion
coefficient is constant, which is observed experimentally,
before boundary effects become non-negligible. This is in
good agreement with the fact that the Plateau border
size observed on the images is constant since the liquid
can be exchanged with an external reservoir. We are thus
confident that this coefficient is constant.
Several effective diffusion coefficient lead to various
slopes, probably corresponding to slightly different liquid
fractions, as discussed in the conclusion. From these curves
we extract two characteristic times: i) the time for which
half of the bubbles have disappeared, which we define as
an order of magnitude of a characteristic time for practical
issues in a standard situation (thickness of microfluidic
system, size of storing chamber). This time is found to
be around 2 or 3 minutes, but polydispersity is much
more higher than other microfoams [8,9]. ii) The time after
which we cannot extract pertinent information, due to a
lack of statistics and due to boundary effects. This time,
around 10 minutes, is characterised by the departure from
the linear law in fig. 4.

800

1200

1600

-400

400

-5

a)

b)

0

d
A

/d
t 

(µ
m

².
s-

1
)

n-6

1

2

3

4

5

-3 0 3 5

<
A

>
 (

1
0

5
µ

m
2
)

n

-200

200

400

600

800

n-6

d
A

/d
t 

(µ
m

².
s-

1
)

-2 -1

Fig. 5: dA/dt as a function of n− 6 for a) all internal bubbles,
b) large internal bubbles. The inset is the Lewis law: mean area
of n-sided bubbles as a function of n.

0

100

200

Distance (µm)

G
ra

y
 V

al
u

e

40 80 120 160

a) b)

2l=33±2 µm

Fig. 6: a) Estimation of the curvature radius at the Plateau
borders and b) the length l is half-thickness at the minimum
of the Gray level.

Results: von Neumann’s law. – We now turn to
von Neumann’s law (eq. (1)). Figure 5 is a scatter plot
of dA/dt as a function of neighbors n− 6, followed during
ageing process. This plot is an average on all inner bubbles,
for four different experiments. It is noticeable that there
is a departure from the linear law at small face number.
This variation is easily understood; indeed, almost all
smallest bubbles circumference is part of Plateau borders,
where the foam is locally wetter (see fig. 6a), thus
leading to a smaller diffusion coefficient. The mean area of
n-sided bubbles follows a linear fit as a function of n as
shown in the inlet of fig. 5a. The discrepancy at large n
is due to a lack of statistics (bounded foam), while the
discrepancy at small n is due to the presence of Plateau
borders (higher liquid fraction). In order to measure the
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diffusion coefficient corresponding to bubble edges and
to check the validity of von Neumann’s law, we plot in
fig. 5b the evolution of dA/dt= f(n− 6) for larger bubbles
(of area larger than the mean area), i.e. for dryer bubbles.
Since dA/dt vs. n is linear, von Neumann’s law is valid
in microfoam, and the statistical analysis gives a diffusion
coefficient Deff = 128µm

2 · s−1. This value is one order
of magnitude smaller than the coefficient measured by
Princen for similar solutions [10]. This discrepancy arises
from geometrical effects that are detailed in the next
section.
In order to explain this discrepancy, Glazier and
Stavans [7,17] introduced a correction to von Neumann’s
law which takes into account the fact that angles at the
Plateau borders junction can deviate from 120◦ (taking
into account additional non-linear curvature energy),
and the corresponding angle depends on the number of
neighbors of the bubble. However, another explanation
arises from Weaire [18] who proposed that the finite size
of the Plateau border is responsible for this discrepancy.
As we recover a linear regime on fig. 5 by keeping only the
larger bubbles, we believe that this second explanation is
in better agreement with the experimental results, which
thus provide here a possible experimental answer to an
old controversy.

Liquid film height and thickness —determina-

tion of film shape by image analysis. – The light
intensity profile across the Plateau border (see fig. 6)
exhibits a sharp transition between two Gray levels,
allowing us to extract a well-defined characteristic length
l= 17± 2µm (see fig. 6), which is invariant with time.
The relation between r and l depends in a complex way
on the light refraction by the gas/fluid interface, but if
l is constant with time, then r is constant too. This
allows us to conclude with a good precision that Plateau
borders have a constant size during the experiments. A
quantitative image processing can be performed in order
to deduce r from a measurement of l [19], but only with
pictures of higher resolution.
The extracted length can thus be only considered as the
order of magnitude of the Plateau border radius, leading
to r∼ 10–30µm. This is compatible with the channel
thickness but does not enable us to conclude whether the
adjacent bubbles are in contact along a line or along a
thin film (see fig. 1). However, even with an improved
optical set-up, it would probably be difficult to predict the
height ε of the thin film, which, if present, is very small.
It will be deduced indirectly from the diffusion coefficient
measurements.
From the estimation of the Plateau border radius, we

deduce an estimation of disjoining pressure, which is
Πd = 2γ/r∼ 4.5 103 Pa in our case. The film thickness is
thus e0 = 16nm [20,21], corresponding to the first common
black film.

Diffusion coefficient for any liquid phase shape. –

In this section, the diffusion coefficient Deff is determined
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Fig. 7: Parametrisation of liquid phase shape for the calculation
of Deff .

theoretically as a function of the film shape for the geom-
etry of fig. 1b and compared to the diffusion coefficient of
a thin film of constant thickness e.
From eq. (2), applied to a variable film thickness, we
get1

Deff =
2πγ

3P0

1

h

∫ h

0

k(z) dz. (4)

The integral factor contains the information on the shape
of the film. Princen and Mason derived the following
expression for the permeability k of an e-thick liquid film:

k(z) =
DwH

e(z)+ 2hML
, (5)

where hML is the effective thickness of an interface
(∼ 1 Å), Dw ∼ 2 · 10−9m2/s is the gas diffusion constant
inside the liquid, and H ∼ 1.6 · 10−2 is the gas concen-
tration ratio between the gas and the fluid phases, i.e.
HP/(RT ) =C, with C the concentration of gas in the fluid
phase.
For a film of constant thickness e, Deff is thus

Deff =
2πγ

3P0

DwH

e+2hML
. (6)

Let us now consider the situation of fig. 7, in which there
are two regions: one is a film of height ε and thickness e0,
and a second region is a film of non-constant thickness
e(z). Considering the parameterization given in fig. 7, the
thickness at height z is

e(z) = e0+(h− ε)−
√

(h− ε)2− (h− ε− 2 z)2, (7)

for 0< z <
h− ε
2

1Indeed this is an approximation: we assume that the gradient of

concentration is perpendicular to the film interfaces. This approxi-

mation is easy to justify in the case of a slowly varying thickness.

64006-p5



J. Marchalot et al.

and

e(z) = e0, for
h− ε
2
< z <

h

2
. (8)

Since we may assume that e0≫ hML, this leads to

Deff =
2πγ

3

DwH

P0

2

h

[

∫ (h−ε)/2

0

1

e(z)
dz+

∫ h/2

(h−ε)/2

1

e0
dz

]

.

(9)
This integral is expanded using the small parameter
e0/(h− ε) leading to the result:

Deff =
2πγ

3

DwH

hP0

(

π

√

h− ε
2 e0

+
ε

e0

)

. (10)

The influence of both terms, arising, respectively, from
the Plateau borders and from the thin film, depends on ε.
With h=40 ·10−6m, P0=105 Pa,Deff=128 ·10−12m2 · s−1,
γ = 36 · 10−3N · s−1, Dw = 2 · 10−9m2 · s−1 and H =
1.6 · 10−2, we get, assuming the thin film is a common
black film and e0 = 16 · 10−9m,

ε∼ 10−1h. (11)

In this case, the largest part of the gas diffusion occurs
through the thin film. This is the case as long as ε≫√
he0. The permeability coefficient k (see eq. (3)) is
usually measured on a single bubble trapped below a
liquid/gas interface by monitoring the radius decrease [10].
In this situation, the disjoining pressure is of the order
of γ/lc, with lc the capillary length, so Πd ∼ 10Pa. For
this pressure, the thin film may be in a relatively thick
metastable state (typically e0 ∼ 30 nm [21]).
In our situation, the height of the thin film is much
smaller than the foam thickness, which reduces the
effective diffusion coefficient (here by a factor 10). In
contrast, the film thickness is reduced by a factor 2.
According to the Princen model, this increases Deff .

Conclusion. – This work was motivated by two main
questions: i) From an applicative side: is it possible to store
gas pockets in a microfluidic system? ii) From fundamental
interests: does a foam confined in a microcell behaves
following traditional constitutive laws? To answer the
first question, we were able to extract a typical time
of foam ageing of about 2–3mn for polydispersed foam.
This means that storing gas pocket should not exceed
this typical time for practical applications, at least for
a polydisperse foam; considering that the typical time
increases while decreasing polydispersity.
To answer the second question, we found that Deff

is one order of magnitude smaller than the one found
in 2D macrofoam coarsening. The estimation of the
radius of curvature allows to estimate the film thickness
being two times smaller than the usual 2D macrofoam.

Furthermore, a calculation providing the contribution of
gas diffusion from either a thin-film thickness or a non-
constant film thickness shows that most diffusion occurs
through the thin film as expected. We finally came to the
conclusion that the film height is about one tenth of the
channel height.
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