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We investigate the motion through a wet tube
of transverse soap films, or lamellae, of high
surface dilatationnal modulus. Combining lo-
cal thickness and velocity measurements in the
wetting film, we reveal a zone of several cen-
timeters in length, the dynamic wetting film,
which is significantly influenced by a moving
lamella. The dependence of this influence length
on lamella velocity and wetting film thickness
provides a discrimination among several possi-
ble surfactant minimal models. A spectacular
jumpy mode of unsteady motion of a lamella is
also evidenced.

1 Introduction

The motion of a liquid meniscus sliding over a
wet wall is ubiquitous in many industrial and
biological contexts, among which dip coating
[1], bubble or droplet motion in pores (e.g. in
enhanced oil recovery) and microfluidic chan-
nels [2], foam friction on solid boundaries [3],
as well as lung diseases [4]. The problem has
first been studied by Landau and Levich [5] and
Derjaguin [6] (LLD) for a solid plate pulled out
of a liquid bath at small velocity. For pure liq-
uids, the dynamics is controlled by the dynamic
meniscus that forms between the static menis-
cus and the wetting film withdrawn by the plate.
The LLD model leads to a wetting film thick-
ness hLLD = 0.945!cCa

2/3, with !c the capillary
length and Ca = ηU/γ the capillary number (γ:
surface tension, η: liquid viscosity, and U : plate

velocity); the extension of the dynamic menis-
cus along the plate scales like LLLD ∼ !cCa

1/3.
These predictions are based on the lubrication
approximation hLLD/LLLD " 1, and on a free
shear boundary condition at the air/liquid in-
terface.

If the liquid phase is a solution of surfactants,
the interfacial stress depends on the surface con-
centration of surfactants Γ and on the rheol-
ogy of the surfactant layer. This stress reacts
against the local area variation of the interface,
with a dependence quantified by a surface di-
latational modulus E. The friction against a
wall of foams made of solutions with high E
is well predicted by the limiting case of a lo-
cally incompressible interface [3]: the whole in-
terface then moves with the foam, resulting into
a strong shearing of the wetting film between
the foam and the wall. For single bubbles and
foams, the total interface area of each bubble is
constant during the motion, which is compatible
with the local incompressibility of the interface.

In other geometries, like dip coating or motion
of a lamella (a soap film across a tube), the
total area of each connected part of the inter-
face varies, and the location and extension of
the zone where area variations occur becomes a
central question. A classical assumption is that
the area variations are localized in the static
meniscus, and that, in contrast with the model
by Denkov et al. [3], the interface of the wet-
ting film and of the dynamic meniscus move
with the plate. The hydrodynamical problem
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is then governed by the same equations as for
pure liquids, after a well adapted rescaling [7].
Several models go beyond these limiting cases,
by including surfactant adsorption/desorption
[8], diffusion in the bulk [9] or an intrinsic sur-
face viscosity [10]. Recently, the full problem
was numerically solved without the lubrication
approximation, which allowed to include the
whole meniscus into the simulation, with sur-
face diffusion [11] or surface diffusion and ad-
sorption/desorption [12]. However, no clear ex-
perimental evidence allows to discriminate be-
tween these different models.
Using a surfactant solution with high surface
modulus and low bulk viscosity, we bring the
first direct experimental evidence that a lamella
moving in a wet tube can push the wetting film
over centimetric distances, i. e. more than two
orders of magnitude larger than LLLD. We thus
introduce the concept of dynamic wetting film.
We show that its lateral extension, that we call
the influence length, depends on the initial film
thickness and on the lamella velocity. More-
over, we show that the various processes that
may govern the influence length lead to very
different scalings, discriminated by our exper-
imental data. Finally, we demonstrate a sur-
prising jumpy behavior at high velocity, where
the meniscus intermittently slips over its wet-
ting film.

2 Experimental set-up

Single lamellae are created and pushed at pre-
scribed velocity U in a wetted vertical tube
of inner diameter 2a = 8.8 mm following the
method of [13]. In order to maximize E, we
use a mixture of sodium lauryl dioxyethylene
sulfate, cocoamidopropyl betaine, and myristic
acid (MAc) in ultrapure water (solution S1), or
the same with 40% wt glycerol (solution S2),
following the protocol of [14]. The wetting film
thickness h is measured by white light inter-
ferometry using the commercial spectrometer
USB4000 (Ocean Optics). Neglecting multiple
reflections within the film, the collected light in-
tensity obeys I(λ) = I0[α+β cos(4πnh/λ)] with
I0 a reference intensity, n = 1.33 the optical in-

dex of the solution and λ the wavelength. The
film thickness hfib(t) is determined by comput-
ing the dominant Fourier component of I(1/λ).
Assuming a steady film profile in the lamella
frame, we set h(x) = hfib(t0 − x/U), with t0
the time at which the lamella is in front of the
fiber. The direction x is oriented downstream,
with x = 0 at the lamella position (see Fig.1,
right). A camera is synchronized with the spec-
trometer and records the film shape and velocity
(Fig. 1, left).
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Figure 1: (left) Lamella passing in front of the
fiber. (right) Scheme of the meniscus and nota-
tions used in the text.

3 Experimental results

Typical wetting film profiles are given on Fig. 2.
The signal modulation is destroyed for too high
thickness gradients, hence the meniscus profile
is not accessible. The wetting film thickness
h0, far ahead the lamella, depends on the time
elapsed since the previous lamella has passed.
Its evolution by drainage is slow enough for h0

to remains uniform and constant on the experi-
mental space and time scales, in the range 1 to
20 µm. The thickness h1 of the film deposited
by the lamella does not need to be equal to h0.
If h0 $= h1, the meniscus volume changes, but
slowly enough for the steady state assumption
to remain valid.
Most remarkably, the wetting film begins to
swell several centimeters in front of the lamella,
at a distance L0, that we henceforth call the in-
fluence length. Some profile shapes are roughly
exponential, but the thickest ones display a
sharp transition between the flat wetting film
and the swollen part of the film close to the
meniscus, of typical thickness h ≈ 2h0. The
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rear influence length L1 is significantly smaller,
but still centimetric.
In order to extract L0 from the experimental
data, we have fitted the profile at x > 0 by
the following phenomenological function, with
five fitting parameters: f(x) = h0 + [a3 +
a5(x−a2)]{1−tanh[(x−a2)/a4]}. This function
was chosen for its compatibility with the main
features observed on the experimental profiles.
First, since 1− tanh[(x−a2)/a4] & 2e−2(x−a2)/a4

at large x, it captures the decay of h(x) towards
the flat wetting film of thickness h0, over a char-
acteristic length scale a4. Second, for the pro-
files showing an inflection point, like the two
upper curves of Fig. 2, it captures the decrease
of h(x) at small x, with a slope a5, followed
by the inflection point at a2. For the profiles
showing no inflection point, like the two lower
curves of Fig. 2, the fit works with a2 < 0. We
have checked by visual inspection that this fits
correctly all experimental data. We have then
chosen to define L0 as L0 = a2 + 2a4. Since
the rear experimental profiles showed no inflec-
tion point, we used a simpler fitting function for
x < 0: f(x) = h1 + a′2e

x/a′3 and we have chosen
L1 = 2a′3.
The length L0 is plotted as a function of U
and h0 on Fig. 3. The data are somewhat
scattered, due to the significant uncertainty on
the location of the influence length, since the
matching with the flat wetting film is smooth
(Fig. 2). Still, they exhibit a clear tendency:
L0 increases with h0, and decreases with both
η and U . A similar trend was obtained for L1

(data not shown).
In some experiments, the presence of tiny bub-
bles within the wetting film enabled the simul-
taneous measurement of the film thickness and
of the surface velocity. These bubbles are con-
vected at a velocity ūb = αūs, with ūs the sur-
face velocity (the bar indicating velocities in
the laboratory frame) and α ! 1 an unknown
friction parameter. Comparison with the film
thickness profile proves that, as the film begins
to swell, the velocity rapidly increases from al-
most zero to a value of the order of U (Fig.
4). The velocity gradient in the dynamic wet-
ting film is thus close to U/h, and the fric-
tion force per unit length (in the z direction)
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Figure 2: Wetting film profiles obtained with
different initial thicknesses and U = 0.6 cm/s
(solution S1). The values obtained for Li and
hi (i = 0, 1) after the profile analysis described
in the text are indicated resp. by thick segments
and dashed lines. The central box corresponds
to the meniscus and x = 0 is the lamella posi-
tion.
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Figure 3: Influence length L0 as a function of
the wetting film thickness h0 for two bulk vis-
cosities (full symbols: ηS1 = 1.0 mPa·s, open
symbols: ηS2 ,= 4.0 mPa·s) and various veloci-
ties (in cm/s, ◦, •: 0.32, ",#: 0.60, ♦,%: 1.15,
(,&: 2.35, ),': 4.20).
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Figure 4: Velocity and thickness profile in the
film. (thick line): Film profile obtained with
U = 1.7 cm/s, S1, (•): ūs measured by tracer
tracking for the same experiment, using α =
0.45 and (dotted line): ūs deduced from the film
profile using Eq. (7).

can be estimated as fv ≈ ηU(L0/h0 + L1/h1).
This estimate, in the range 10 to 30 mN/m
for all our experiments, is in good qualitative
agreement with the value extracted from the
film images (Fig. 1) fv = 2γ0a/R [13], with
γ0 = 23.8 mN/m the equilibrium surface ten-
sion [14] and R the radius of curvature of the
lamella (data not shown). The friction in the
dynamic meniscus alone is given by the Brether-
ton law fv,B = 4.70γ0Ca

2/3 [18] and is at most
1.6 mN/m in our range of velocities. It is thus
negligible compared to the dynamic wetting film
contribution for this solution.
We also tested a SDS solution, with η = 1.2
mPa·s and E < 1 mN/m and a solution of
12-hydroxy stearic acid with ethanolamine as
a counterion [19], with E = 38 mN/m and a
rheothinning behavior with a high viscosity η
varying between 20 and 10−2 Pa.s for shear rates
between 10−2 and 300 s−1. In both cases, no
measurable influence length has been observed.
This gives a strong hint that a large L0 is as-
sociated to solutions of high E and low η. The
influence length results from a competition be-
tween the resistance of the surface against com-
pression, and the viscous resistance of the bulk
against shear. The former may arise from var-
ious microscopic mechanisms, governed by the
surface viscosity or elasticity, coupled with the
surfactant desorption rate or diffusion. We now
investigate them in their simplest form, at the
expense of a quantitative modeling; however,

this scaling approach appears to be sufficient
to identify only one scenario able to capture the
main dependencies experimentally observed, in
the investigated parameter range.

4 Modelling

In this Section, we first set the equations de-
scribing the experimental situation. We then
discuss the dimensionless numbers and orders of
magnitude of the various parameters involved.
Next, we provide a simple analysis of different
limits of the full models to obtain different scal-
ings of the influence length, and we compare
these scalings to the experiments. Finally, we
provide a full numerical simulation of the lim-
iting model which seems the closest to experi-
ments.

4.1 Equations of the problem

We model the region x > 0, ahead of the
lamella, in the frame of the lamella. We con-
sider a steady regime. Since h " a, the tube
curvature is negligible and we assume an invari-
ance in the z direction. Experiments show that
|∂xh| " 1, hence we can apply the lubrication
approximation, which simplifies the equation of
motion: 0 = −∂xp + η∂yyu, where the pres-
sure p does not depend on y and where u is
the x-component of velocity. In this approxi-
mation, continuity of normal stress at the in-
terface imposes a Laplace pressure difference:
p− p0 = −γ∂xxh, with p0 the air pressure. The
boundary conditions are: u(y = 0) = −U , and
u(y = h) = us, from which we deduce the veloc-

ity profile and the flow rate q =
∫ h

0 udy, which is
constant since the flow is incompressible. Since
u = −U and h = h0 at x = ∞, q = −Uh0,
hence:

∂x(γ∂xxh) = −6ηU

h2

(
2h0 − h

h
+

us

U

)
. (1)

Continuity of tangential stress writes:

η∂yu = ∂xγ + µ∗∂xxus, (2)

where µ∗ is the surface viscosity (strictly speak-
ing, µ∗ = µs+κs is a combination of the surface
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shear and dilatational viscosities µs and κs).
The surface tension depends on the surface con-
centration of the surfactants. The surface mod-
ulus of a mixture of SLES and CAPB without
MAc was shown to be two orders of magnitude
lower [14]. Therefore, it is reasonable to assume
that ∂xγ is only related to ∂xΓMAc, hence to use
a one-component model. Assuming for simplic-
ity a linear relation for the surface tension:

γ = γ0 − E
Γ− Γ0

Γ0
, (3)

with Γ = ΓMAc and Γ0 the equilibrium surface
concentration in MAc. Neglecting surface diffu-
sion, the conservation of surfactants at the in-
terface yields:

∂tΓ + ∂x(usΓ) = j, (4)

with j the exchange flux from the subphase to
the interface. The latter equals the diffusive flux
in the subphase, and obeys a kinetic sorption
law [21] that we assume linear. Then:

j = −D∂yc = k

(
c− Γ

hΓ

)
, (5)

at y = h, with c the bulk concentration in
MAc, c0 its equilibrium value, hΓ = Γ0/c0, D
the diffusion coefficient, and k the sorption ve-
locity, both assumed to be the ones of the mi-
celles in which MAc is solubilized [14]. Finally,
the bulk concentration of surfactants obeys the
diffusion–convection equation:

∂tc+ u∂xc+ v∂yc = D(∂xxc+ ∂yyc), (6)

where v is the y-component of the velocity.

4.2 Dimensionless numbers and
orders of magnitude

The film velocity U and the wetting film thick-
ness h0 naturally fix the orders of magnitude
of the velocities and thicknesses. Hence, after
(1), the thickness varies significantly over the
dynamic meniscus, of length !LLD = h0Ca

−1/3.
The velocities are in the range U = [5 10−3 −
10−1] m/s and the capillary number is thus
Ca = [2 10−4 − 4 10−3], with γ = 23 mN/m

and η = 10−3 Pa.s. Since h0 ≈ 10 µm in our
measurements, !LLD ≈ 102 µm. The dynamic
meniscus extension is thus two orders of magni-
tude shorter than the influence length. Hence,
in the influence zone, Laplace pressure is negli-
gible and (1) reduces to:

us = U

(
1− 2h0

h

)
, (7)

in agreement with experimental data shown on
Fig. 4. Furthermore, from the continuity of
tangential stress (2) and the surface equation of
state (3),

u(x, y) =
1

η

(
µ∗∂xxus −

E

Γ0
∂xΓ

)
y − U. (8)

A relevant dimensionless number is the
Marangoni number, Ma = E/γ0. The coeffi-
cient E, as defined in our model, is the ratio
between the surface tension variation and the
surfacic concentration relative variation. With
the oscillating bubble method we measure ED,
the ratio between the surface tension variation
and the interface area relative variation. These
are the same quantities if the frequency is high
enough for the surfactant exchange with the
bubble to be negligible. The measure at 0.2 Hz
gives EDS = 110 mN/m, and EDL = 285 mN/m
for the storage and loss modulus [14]. Myristic
acid alone, deposited on a water surface (at pH
2) in a Langmuir trough, has a very low solu-
bility: the variation of area A is thus directly
connected with the surface concentration. It
has a higher surface tension (of the order of
50 mN/m at the monolayer collapse) than its
mixture with SLES and CAPB, and from the
slope of the curve γ(A), we estimate its elastic
modulus as E ≈ 60 mN/m [16, 17]. From these
different data we can set E ≈ 102 mN/m in our
model, and Ma ≈ 4.
As underlined by D. Quéré and A. de Ryck [20],
the ratio hΓ = Γ0/c0 is an important length
scale in the problem. SLES and CAPB are sol-
uble surfactants above their cmc and their equi-
libration time scales are much smaller than the
MAc equilibration time scale. Only the MAc
concentration should thus be taken into account
to build hΓ. The MAc maximal surfacic con-
centration before collapse is known [16, 17], but
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corresponds to a much higher surface tension
(γ = 50 mN/m) than the tension measured for
the surfactant mixture (γ = 23 mN/m). SLES
and CAPB are thus present at the surface and
the MAc surfacic concentration is a priori un-
known. For MAc solution, a measurable vari-
ation of surface tension is obtained for surfacic
concentration above Γ = 3 × 10−6mol/m2 and
the collapse occurs for Γ = 8 × 10−6 mol/m2.
We thus set Γ0 ≈ 5 × 10−6 mol/m2. With
c0 = 0.88 mol/m3, the MAc concentration we
get hΓ = Γ0/c0 = 5 µm.
If there is a coupling with the bulk concentra-
tion, another relevant dimensionless number is
the Péclet number Pe = h0U/D. The diffu-
sion coefficient is rather difficult to estimate.
Diffusivity of short single molecules in water is
of the order of 10−9 m2/s. However, the MAc
is mainly solubilised in SLES/CAPB micelles
[14]. Their size is unknown, but the mixture
is transparent and its viscosity is indistinguish-
able from that of pure water, hence the micelles
are likely to be very small. We will thus assume
D ≈ 10−10 m2/s, leading to Pe ≈ 103.
Finally, to our knowledge, there is no experi-
mental data on sorption velocities for MAc.

4.3 Scaling analysis

Interfacial stresses build up either due to surface
elasticity, or surface viscosity. If the interfacial
dynamics was dictated solely by surface viscos-
ity, Eq. (8) would become, for y = h and E = 0:

1 +
us

U
=

µ∗h

ηU
∂xxus. (9)

The thickness and surface velocity profiles can
then be solved analytically (see Appendix).
From experiments, the variation of us is of the
order of U (Fig. 4), leading to the scaling:

L0,v =

(
µ∗h0

η

)1/2

, (10)

which does not capture the observed depen-
dence of L0 on the lamella velocity. We hence-
forth neglect the interfacial viscosity to focus on
the other contributions from the surfactants.
We first estimate the surface convection of sur-
factant term ∂x(usΓ). The dynamic wetting

film is compressed by the moving lamella, in-
ducing a typical surface concentration increase
∆Γ > 0. Hence, us∂xΓ ∼ U∆Γ/L0. More-
over, Eq. (8) leads to: us ∼ −U − Eh∂xΓ/ηΓ0,
from which we deduce Γ∂xus ∼ −Eh0∆Γ/ηL2

0.
Therefore, Γ∂xus/us∂xΓ ∼ Eh0/ηUL0. Exper-
imentally, the latter parameter equals 3 with
h0 ≈ 10−5 m, U ≈ 1 cm/s and L0 ≈ 3 cm,
showing, as expected, that the convective term
∂x(usΓ) is dominated by the velocity variation,
which tends to accumulate surfactant in front
of the lamella. The concentration gradient only
reduces this effect. If we neglect this last term,
we get the following scaling law, as already ob-
tained in [8]:

∂x(Γus) ∼ −Eh0∆Γ

ηL2
0

< 0. (11)

This term is balanced in (4) by the exchange
term with the bulk j, which obeys (5).
If k is small, the exchange is limited by the
desorption kinetics, and c & c0. Then j ∼
−k∆Γ/hΓ, hence from (4) and (11):

L0,a ∼
(
Eh0hΓ

ηk

)1/2

. (12)

This scaling is exactly the same as in the vis-
cous case (10), with an effective surface viscosity
µ∗
eff = EhΓ/k.

If desorption is fast, the surface is in equilib-
rium with the subphase and, close to the menis-
cus, the concentration increase in the subphase
scales as ∆c(h) = ∆Γ/hΓ. Then we are in a dif-
fusive regime: j = −D∂yc at y = h. If the gra-
dient is established over the diffusive distance
hd ∼

√
DL0/U , this leads to the scaling behav-

ior:

L0,d ∼
(
EhΓ

η

)2/3 h2/3
0

(DU)1/3

= h0
Ma

Ca

(
PeCa

Ma

)1/3 (hΓ

h0

)2/3

, (13)

which agrees qualitatively with the experimen-
tal dependencies of L0 on h0 and U .
This is only valid if hd < h0. Injecting (13) in
the expression of hd, we get the condition

K =

(
EDhΓ

ηU2h2
0

)1/3

=

(
Ma

CaPe

hΓ

h0

)1/3

< 1 .

(14)
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Figure 5: Influence length L0 as a function of
the diffusive length L0,d given by Eq. (13) (full
symbols: ηS1 = 1.0 mPa·s, open symbols: ηS2 ,=
4.0 mPa·s) and various velocities (in cm/s, ◦, •:
0.32, ",#: 0.60, ♦,%: 1.15, (,&: 2.35, ),':
4.20). The black line corresponds to L0 = L0,d.

With the experimental parameter values (see
section 4.2), we get K ≈ 2. If hd * h0, the gra-
dient ∂yc becomes small and j is estimated from

surfactant conservation: j = ∂x
(∫ h

0 ucdy
)

&

∂x
(
c
∫ h

0 udy
)
. From mass conservation, the

flow rate
∫ h

0 udy is a constant, equal to −Uh0.
Hence, j ∼ −Uh0∆c/L0, and L0 in this convec-
tive regime is thus governed by:

L0,c ∼
EhΓ

ηU
= h0

Ma

Ca

hΓ

h0
, (15)

which does not capture the observed depen-
dence of L0 on h0.

Overall, the only regime compatible with our
experimental results is the diffusive one. The
rescaling by (13) shown in Fig. 5 provides a rea-
sonable agreement with the experimental data,
without adjustable parameter. The discrepancy
at large L0 probably arises from nonlinear ef-
fects neglected in our simple approach, espe-
cially in the relation γ(Γ).

Moreover, we do not explain why L1 is signif-
icantly shorter than L0 (Fig. 2); this suggests
that the interface resists more compression than
extension.

u(x,y)

−U

u (x)

h(x)

y

c(x,y) h c

Γ(x)
Γ

x

su (0)=u(0,h)=0

s

0 0

0

Figure 6: Sketch of the fluid film and notation
used in the text.

4.4 Numerical simulation

Here we solve the full model in the diffusive
regime, with negligible intrinsic surface viscos-
ity µ∗. We deal with the unsteady equations, as
a mean to provide a smooth numerical conver-
gence towards the steady solution.
We have to solve the surfactant mass balance at
the interface (4) and in the bulk (6), and mass
conservation under the form ∂th = −∂xq. In
these equations, u obeys (8) with µ∗ = 0. From
the continuity equation, ∂xu + ∂yv = 0, hence
v = Ey2∂xxΓ/2ηΓ0.
An important assumption of the model, merely
based on experimental evidence, is that the in-
terface moves at the film velocity close to the
film, so we impose us(0) = 0.
The initial conditions are, at t = 0: h = h0,
Γ = Γ0, c = c0; and the boundary conditions
are, at x = 0: us = 0, i.e. E h∂xΓ = −ηUΓ0;
at x = ∞: h = h0, Γ = Γ0, c = c0; at y = 0:
∂yc = 0; at y = h: c = c0Γ/Γ0, consistently
with the hypothesis of fast desorption.
The variables are rescaled using t = αh0t̄/U ,
y = h0ȳ, h = h0h̄, x = αh0x̄, Γ = Γ0Γ̄, c = c0c̄,
with α = Ma/Ca. Substituting the expressions
of the velocities, we get:

∂tΓ̄ = Γ̄∂x̄Γ̄∂x̄h̄+ h̄Γ̄∂x̄x̄Γ̄ + (∂x̄Γ̄)
2h̄+ ∂x̄Γ̄

−K1∂ȳ c̄, (16)

∂th̄ = h̄∂x̄h̄∂x̄Γ̄ +
1

2
h̄2∂x̄x̄Γ̄ + ∂x̄h̄, (17)

∂tc̄ = ∂x̄c̄+ ȳ∂x̄c̄∂x̄Γ̄ +
1

2
ȳ2∂ȳ c̄∂x̄x̄Γ̄

+
K1

K2
∂ȳȳ c̄+K3∂x̄x̄c̄, (18)

with dimensionless parameters K1 =
h0Ma/(CaPehΓ) and K2 = h0/hΓ, and
the boundary conditions at t = 0: h̄ = 1, Γ̄ = 1,
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Figure 7: Numerical value of the wetting film
thickness in steady regime for K1/K2 = 1 and
K1 = [0.42, 0.82, 1.89, 4.35, 10] (from top curve
to bottom curve).

c̄ = 1; at x̄ = 0: ∂x̄Γ̄ = −1/h̄; at x̄ = ∞: h̄ = 1,
Γ̄ = 1, c̄ = 1; at ȳ = 0: ∂ȳ c̄ = 0; at ȳ = h̄:
c̄ = Γ̄. Finally, a condition on c̄ is needed at
x̄ = 0: we choose to impose ∂x̄c̄ = 0.
We solved the equation set (16,17,18) with a
finite difference model. The explored param-
eter range is chosen accordingly to the previ-
ous order of magnitude analysis which leads to
K1 = [0.1− 40]; K2 = [0.1− 10]. The term pro-
portional to K3 is negligible, but plays an im-
portant role to stabilise the numerical scheme.
We thus kept it, with an artificial value of
K3 = 10−2. This term does not modify the so-
lutions, but suppresses artificial small high fre-
quency oscillations.
The wetting film thickness is roughly exponen-
tial for small influence length, but an inflexion
point appears at larger influence length. How-
ever the plateau is more pronounced experimen-
tally than in the numerical result (see Fig. 2 and
7).
The influence length, defined with the same cri-
terion as for the experimental data, is plot-
ted on Fig. 8 as a function of K2 for differ-
ent values of K1/K2 and compared to the scal-
ing laws discussed in section 4. The equations
(13, 14, 15) predict that if (K1/K2

2)
1/3 " 1,

L = h0Ma (K2K1)
−1/3 /Ca, and in the other

limit L = h0MaK−1
2 /Ca. Both regimes are ob-

tained numerically, and the transition occurs
at the expected value. The scaling approach
is thus robust and the full resolution confirms

1 10
K2= h0 / hΓ

1

L 0 
 C

a 
/ (

M
a 

h 0)

Figure 8: Numerical value of the influence
length in steady regime for K1/K2 = 0.5 (•),
1 (#, " ), 3 (%, ♦), 9 (+) and 18 ((). The full
symbols verify K1/K2

2 < 1 and are fitted by the

law 3.5K−2/3
2 (K1/K2)−1/3 (full lines). The open

symbols verify K1/K2
2 > 1 and are fitted by the

law 2.9/K2.

the power law predictions in the diffusive and
convective regimes.

5 Unsteady regime

Finally, the most deformed lamellae deviate
from steady motion by a striking scenario: they
undergo periodic “jumps” between phases of
constant velocity (Fig. 9). These jumps are
quick (less than 10 ms) and macroscopic (of or-
der 1 mm), which make them easily observable
by naked eye. The curvature is partially re-
leased during jumps, and builds up again dur-
ing the phases of constant velocity. Integrat-
ing Eq. (2) (with µ∗ = 0) along the front
part of the dynamic wetting film yields γ− =
γ0 −

∫∞
0 η∂yudx ∼ γ0 − ηUL0/h0, with γ− the

value of the surface tension close to the menis-
cus. The largest values obtained for UL0/h0 are
close to γ0, which shows that surface tension sig-
nificantly decreases towards the meniscus. It is
likely that the interface becomes unstable be-
low a certain value of γ− and collapses as in
Langmuir monolayers [22], and that the jumps
are macroscopic manifestations of such an in-
stability. This unsteady behavior is in marked
contrast with that of SDS films, which never
showed such jumps [13].
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Figure 9: Time evolution of the position of the
meniscus (plain line) and of the leading point
of the lamella (dashed line), in the laboratory
frame and in the jumpy regime. Two snapshots
show the shape of the lamella just before, and
just after, a jump.

6 Conclusion

As a conclusion, we have identified the influence
length L0 over which an air/liquid interface of a
wetting film is entrained by a lamella. We have
quantified its dependencies on the lamella veloc-
ity, the wetting film thickness and the viscosity.
We have shown that such a experimental char-
acterisation helps discriminating between differ-
ent surfactant models; this may be helpful, since
not many experimental observations enable to
discriminate among the various surfactant pro-
cesses.
Furthermore, our study may provide a quan-
titative criterion for the transition between
tangentially immobile and mobile interfaces in
foam/wall friction [3]. With ! a typical bubble
size, these two limits correspond respectively to
L0 * ! and L0 " !, and the transition criterion
L0 = ! may be expressed from our predictions,
in terms of the material parameters of the sur-
factants. Experimental tests of this hypothesis
are under way.

7 Appendix: analytical so-
lution with surface vis-
cosity

In this Appendix, we derive an analytical solu-
tion in the case where interfacial dynamics is

dictated solely by surface viscosity. Although
this limit is rarely met in practice [10], and in
particular not in our experiments, it is a sim-
ple way to quantify the influence of surfactants,
since it does not require to solve the concentra-
tion fields; surface viscosity can then be thought
as an effective parameter mimicking more com-
plex surfactant dynamics [23].
After (9), ∂xxus = ηU(1 + us/U)/µ∗h, hence
after (7), the surface velocity obeys a differential
equation: ∂xxus = ηU(1 − u2

s/U
2)/2µ∗h0, with

boundary conditions: us = −U at x = ∞, and
us = 0 at x = 0. We use the rescaling: ω =
(us + U)/U and ξ = x/L0,v with L0,v given by
(10) to obtain:

∂ξξω = ω − ω2

2
, (19)

with ω = 0 at ξ = ∞, and ω = 1 at ξ = 0.
Multiplying (19) by 2∂ξω and integrating, we
get: (∂ξω)2 = ω2 − ω3/3, the additive constant
being dropped since ∂ξω = 0 at ξ = ∞. Since
ω is expected to be a decreasing function of ξ
from the boundary conditions, we have there-
fore: ∂ξω = −ω

√
1 + ω/3. Integrating once

more and using the condition at ξ = 0, we get
the velocity profile:

ω(ξ) = 3




1−
[
(1 +

√
2/3)eξ − 1 +

√
2/3

(1 +
√
2/3)eξ + 1−

√
2/3

]2



 .

(20)
The thickness profile follows from (7). Both pro-
files are plotted in Fig. 10. The thickness profile
is convex, and resembles the two profiles of low-
est h0 in Fig. 2.
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