
PAPER www.rsc.org/softmatter | Soft Matter

D
ow

nl
oa

de
d 

by
 B

ib
lio

th
eq

ue
 d

e 
L

’U
ni

ve
rs

ite
 d

e 
R

en
ne

s 
I 

on
 2

9 
N

ov
em

be
r 

20
10

Pu
bl

is
he

d 
on

 2
2 

O
ct

ob
er

 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

00
65

7B
View Online
Gibbs elasticity effect in foam shear flows: a non quasi-static 2D numerical
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The origin of the dissipation in liquid foams is not fully understood, especially in the large deformation,

large velocity regime. Numerical simulations, now very accurate in the quasi static regime, are still

sparse in the dissipative regime, and are all based on restrictive assumptions or very small bubble

numbers. Here we present the results obtained with 2D numerical simulations involving 500 bubbles

under simple shear, in a non-quasi static regime. The bubble description is kept as simple as possible

and the dissipation is assumed to arise from surface tension variations induced by film area variations.

This model leads to a steady state stress under simple shear that is well fitted by a Herschel–Bulkley law

with an exponent 0.6. We show that small tension dynamical inhomogeneities induce foam structure

modifications responsible for the largest part of the stress increase.
1 Introduction

A liquid foam is a good example of a visco-elasto-plastic mate-

rial.1–3 Extensive studies have been devoted to the elasto-plastic

behavior in the quasi-static regime, which main features are now

well understood (see ref. 1 for a review). In contrast, the origin of

the stress variation with increasing shear rate is still the subject of

an active debate. Experimentally, the flow at constant shear rate

is well described by the Herschel–Bulkley law s ¼ sy + k_3n, with

n an exponent smaller than unity, sy the yield stress and _3 the

shear rate.4–7 Several models predict this shear thinning behavior,

using very different approaches. The SGR model,8,9 the mode

coupling theory10 and the KEP model11 all consider that energy

dissipation only occurs during short plastic events and that the

stress is of purely elastic nature. The shear rate dependency arises

because the system can spend some time above the quasi static

yield stress. At high shear rates, the material can thus reach

higher deformations than at low shear rate. The KEP model

predicts n ¼ 1/2, without assuming any local nonlinearity in the

dissipation law.11 In contrast, Denkov et al. assume that friction

occurs continuously because of the bubble/bubble relative

motion and that the n ¼ 1/2 value can be obtained by compu-

tation at the bubble scale.12,13 In that model, bubble elongation

does not increase with increasing shear rate. This second model

allows for a quantitative agreement with experimental data, and

thus probably captures the main physical processes, for soluble

and highly mobile surfactants and intermediate liquid fractions

(fl around 0.1). Using insoluble surfactants, Denkov et al. show

that the power law is modified and that n z 0.25, which origin

is not entirely elucidated. The disorder, governed by the bubble

size distribution, also plays an important role.14 The bubble

motion induces local interface stretching or compression, varia-

tion of surfactant concentration at the interface and finally

surface tension modification. Solving the full surfactants

dynamics would require to solve a coupled problem involving the
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hydrodynamics equations and the diffusion equations both in the

fluid phase (with free boundaries) and in the interface. This is still

numerically out of reach, but simplified models can be enlight-

ening. Pozrikidis solved the problem for a large fluid fraction and

totally insoluble surfactants, for few tens of bubbles, in two

dimensions.15 In this paper we focus on 2D very dry foams and

we assume that the dynamics are limited by the surfactant

adsorption and desorption. We show that this simple model

predicts a Herschel–Bulkley behavior with n z 0.6. The stress

increase is mainly due to an increase of the bubble deformation

with the shear rate, as already observed on a periodic hexagonal

structure by Kraynik and Hansen.16 The bubble model, which

takes into account a very different source of dissipation, leads to

n z 0.5.17 In both cases, the forces vary linearly with the shear

rate at the bubble scale. The second and third sections of the

paper are devoted respectively to the general presentation of the

model and to its numerical discretization. We present our

numerical results in section 4 and discuss them in section 5.
2 Modeling of the flow

2.1 Two dimensional foam

We consider a single layer of bubbles submitted to a simple shear

deformation, at constant shear rate (in the layer plane). Dissi-

pation in foam may occur through multiple processes that were

first discussed by Buzza and Cates.18 These local processes may

be classified in two classes: those involving the bulk viscosity and

those involving surfactant properties (viscosity or diffusivity).

Here we assume that the slowest process is the surfactant

concentration relaxation: at each time the foam structure is at

mechanical equilibrium under the effect of out of equilibrium

surface tension. This has been proved to be the limiting factor for

the bubble relaxation after a T1 transformation.19 In contrast

with our previous work,20 it is assumed here that the internal

dissipation, due to the relative motion of the bubbles, dominates

and that any external dissipation, due to a friction on walls for

example, is negligible. The focus is on the dry regime limit and

the Plateau borders have negligible sizes.
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Fig. 1 Definition of the subsystem Si, and forces acting on it.

Fig. 2 Example of biperiodic foam with few bubbles. The shear defor-

mation 3 is given by the arrow. The edges with the same kind of line

(thick, dashed or dotted dashed) are periodic images of each other, in

different periodic boxes labelled by (I,J).
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2.2 Surface tension and surfactant concentration

In our model, the evolution of the surfactant concentration at the

interface ~G is limited by an adsorption/desorption characteristic

time s (the indicates a dimensioned variable). This is the only

internal time we put in the model, so it directly controls the shear

rate at which the quasi static regime ends. It may be seen as the

real microscopic time related to the adsorption/desorption

mechanism, or as an effective time scale related to the surfactant

exchange with the bulk, limited by the diffusion. If the second

mechanism is the dominant one, the model is only a crude

approximation and the full diffusion field would need to be

solved. Finally, the concentration is assumed to be uniform on

each edge and the surfactant exchange between adjacent edges is

neglected. The surfactant mass balance thus leads to the relation,

with L̃ the curvilinear edge length

d ~G

d~t
¼ 1

s

�
~Geq � ~G

�
�

~G
~L

d ~L
d~t

(1)

For sake of simplicity, a linear relation is used between the

concentration ~G and the surface tension ~g:

~g ¼ ~geq � E
~G� ~Geq

~Geq

(2)

where E is the high frequency dilatational elastic surface

modulus.

2.3 Dimensionless equations

Using the internal surfactant exchange time s, the equilibrium

surface tension geq and the equilibrium surface concentration Geq

as time, force and concentration units, we get the dimensionless

set of equations

g ¼ 1 � a(G � 1) (3)

dG

dt
¼ ð1� GÞ � G

L
dL
dt

(4)

dg

dt
¼ ð1� gÞ � ðg� ð1þ aÞÞ

L
dL
dt

(5)

with a ¼ E/geq. This parameter has been set to 1 in the presented

results. The unit length chosen for the simulations is the box size.

3 Numerical simulation

Our numerical solution is based on the vertex model.21,20 In this

model, the 2D foam is represented by a set of polygons tiling the

plane: each vertex i is connected to three vertices j, with j ˛ Ji, by

an edge (ij). At equilibrium, the edges between two bubbles in

a 2D foam structure are part of circles. However, there is no

reason for this feature to remain valid in an out of equilibrium

foam, so we chose the most simple representation, i.e. straight

edges. The dynamical parameters are the vertices locations ri ¼
(xi,yi), the connectivity of the vertices network Ji and the surface

tension gij of the edge (ij). The subsystem Si is made of the vertex

i with its three outgoing edges reduced by half, as depicted on

Fig. 1. At each time step, the new structure, corresponding to the

imposed shear 3, is determined by a (not physical) relaxation
Soft Matter
process. At the end of this relaxation loop presented below, the

surface tensions gij have non equilibrium values, but the total

force exerted on each subsystem Si is smaller than 3F, an arbi-

trarily small cut off. This is in agreement with the assumption

that the surfactant dynamics is the slowest process of the foam

dynamics.
3.1 Initial condition

The simulation is made in a biperiodic square box of surface

unity. A Voronoi tessellation first allows one to build a disor-

dered structure. A target area Ak,0 is chosen randomly for each

bubble k with the law Ak,0 ¼ hAi(0.38 + 1.24xran), xran being

a random number equally distributed between 0 and 1. This

target area is kept constant, as coarsening or bubble coalescence

is disregarded. The actual area of each bubble always remains

close to this target value, as discussed below, and the value of

m2(A)¼ hA2i/hAi2�1 is close to 0.12. The structure is then relaxed

toward an equilibrium foam structure (with equilibrium surface

tensions) using the relaxation loop detailed in the next para-

graph. Each periodic box has an index (I,J). The connectivity of

the vertex i is given by the list of three vertices j1(i),j2(i),j3(i), with

the indication of the periodic box they belong to (see Fig. 2).
This journal is ª The Royal Society of Chemistry 2010
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Fig. 3 Foam structures obtained in the steady state for _3 ¼ 10�3 (upper)

and _3 ¼ 4 � 10�2 (lower)(reduced units). The upper boundary moves to

the right.
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3.2 Shearing a biperiodic structure

We want to impose a shear without solid boundary. This is

achieved by translating the periodic boxes with the rule X(I,J)¼ I

+ 3J, Y(I,J) ¼ J, (X,Y) being the position of the lower left corner

of the box. This induces an imposed shear of amplitude 3 in the x

direction, with the velocity gradient oriented in the y direction

(see fig. 2). If the vertex j has the reference position (x,y) in the

box (0,0) but belongs to the box (I,J), its actual position is (x + I

+ 3J,y + J). This allows to compute the edge lengths between

vertices belonging to different boxes.
3.3 Shear and relaxation loop

In order to compute the foam structure at time t + dt, a global

shear increment d3 is imposed to the system. A guessed position

(x0
i ,y

0
i ) is chosen for each vertex i with the law x0

i ¼ xi(t) + d3yi(t),

y0
i ¼ yi(t). Each vertex then follows the direction of the total force

exerted on the subsystem Si, until the maximal force exerted on

a subsystem becomes smaller than the chosen precision 3F.

Below, the subscript n denotes the non physical values obtained

after n iterations of the relaxation loop.

At the step n, the tension force is, with rn
ij ¼ rn

i � rn
j and rn

ij ¼ ||rn
i

� rn
j ||,

Fn
t; i ¼

X
j˛J i

gn
ij

rn
ij

rn
ij

(6)
This journal is ª The Royal Society of Chemistry 2010
where the surface tension gn
ij is obtained from eqn (5), using

a ¼ 1:

gn
ij ¼ gijðtÞ þ

�
1� gijðtÞ

�
dt�

�
gijðtÞ � 2

�rn
ij � rijðtÞ

rijðtÞ
(7)

gij(t) and rij(t) are respectively the surface tension of the

edge (ij) and its length in the previous relaxed structure, at

time t.

With nij, the normal to the edge (ij), oriented arbitrarily,

say from a bubble k towards a bubble k0 and with dPij ¼ Pk0 �
Pk the pressure gap on this edge, the pressure force exerted on

Si is:

Fn
p;i ¼ �

X
j˛J i

rn
ij

2
dPn

ijn
n
ij (8)

The 1/2 factor just arises from the system definition (see

Fig. 1). The pressure in the bubble k is given, at the step n, by

Pn
k ¼ �l

An
k � Ak; 0

Ak; 0

(9)

with An
k the actual area of the bubble k at the step n and Ak,0 its

target area. The constant l is the foam numerical compressibility:

it is devoid of physical meaning and it is chosen large enough to

keep the area relative variation small, and small enough to ensure

the numerical stability.

At each step n the position rn
i becomes rn+1

i ¼ rn
i + drn

i , with drn
i

proportional to the force exerted on Si: Fn
i ¼ Fn

t,i + Fn
p,i. We

obtained stable results using drn
i ¼ 10�3Fn

i . If an edge becomes

smaller than a given cut off 3l, a T1 event is performed,

modifying the connectivity network of the foam. The new

edge is built perpendicularly to the disappearing one, with

an initial length of 1.33l. The relaxation loop ended at the

step nmax when, on each vertex, the total force kFn
i k is smaller

than a chosen value 3F. The vertices positions and edges

tensions at the new time t + dt are then given by the values of

rnmax
i and gnmax

ij .
3.4 Parameters and robustness of the simulation

All the simulations have been performed with N ¼ 500 bubbles.

Their average area is thus hAi ¼ 0.002 and their typical length

scale lb ¼
ffiffiffiffiffiffiffiffi
hAi

p
¼ 0:045. The compressibility factor l ¼ 8/lb ¼

177 is large enough to ensure that dA/A < 10%. The results

presented in the next section do not depend notably on this

parameter. The relaxation process ends when the maximal

residual force on a vertex becomes lower than 3FFref with 3F ¼
0.0002 and Fref a reference force corresponding to a vertex with

an angle of p/2 between two edges and equilibrium tensions. The

smallest edge length before doing a T1 is 3l ¼ 0.08lb ¼ 0.0036.

This parameter gives the 2D liquid fraction of the foam:22

f ¼ 1

hAi

� ffiffiffi
3
p
� p

2

�3

2
32

l ¼ 10�3 (10)

It strongly affects the yield deformation and must be consid-

ered as a physical parameter, in contrast with the other purely

numerical quantities. We chose its value to deal with the limit of

very dry foam.
Soft Matter
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Fig. 4 Average stress in the sample, normalised by the elastic shear

modulus of the honeycomb foam of same average bubble area Gh, as

a function of the shear, for different shear rate values, listed in the legend.

Inset: elastic shear modulus obtained from the same data, by linear fit of

the curves in the domain 3 < 0.1.
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4 Shear start up simulation

The foam is at equilibrium at t ¼ 0 and a simple shear is imposed

for t > 0. The main control parameter is the shear rate that has

been varied between 10�3 and 10�1 (in reduced units, see section

2.3). Higher shear rates lead to numerical instabilities, and lower

shear rates do not provide new information, as _3¼ 10�3 is already

in the quasi static regime. No shear banding has been observed in

the simulations.
4.1 Shear modulus and overshoot

The average stress value in the sample is computed using the

Batchelor expression

slm ¼
1

2

X
i; j˛J i

gij

rij;l rij;m

rij

�
X

k

PkAkdlm (11)

where l and m represent the x or y directions. The stress s¼ sxy is

reported as a function of 3 for various shear rates on Fig. 4. It is
Fig. 5 Steady state value of the stress, normalised by Gh, as a function of

the shear rate, obtained by averaging the data of Fig.4 in the steady state.

The error bars represent the mean square value of the data. The full line is

the best Herschel–Bulkley law, given in the text.

Soft Matter
normalized by the quasi static shear modulus of a hexagonal

network with the same average bubble area: Gh ¼
0:26g

ffiffiffi
p
p

=
ffiffiffiffiffiffiffiffiffiffi
hAhi

p
, with g the surface tension of the film (i.e. twice

the interfacial surface tension) and Ah the average area of the

hexagons.23 With our parameters,
ffiffiffiffiffiffiffiffiffiffi
hAhi

p
¼ 0:045 and g ¼ 1 (see

section 3.4), so Gh ¼ 10.3.

The quasi static shear modulus, obtained by a linear fit of the

curve s(3) in the region 3 < 0.1 for _3 ¼ 10�3, is GQS ¼ 0.87Gh (see

Fig. 4, inset). This value is in agreement with the Surface Evolver

Simulation made on 2D disordered foam having the same

polydispersity (m2(A) z 0.124). The out of equilibrium surface

tension induces visco-elasticity at small deformation. The shear

modulus G, defined here as the slope s/3 at small deformation,

increases with the shear rate, as depicted on the inset of Fig. 4.

The highest stress value smax reached by the system increases

rapidly with the shear rate. This is mainly due to the fact that

the dissipation delays the onset of T1s. This has also been

observed by Green et al. with another source of dissipation.25

The stress then decreases at the end of the transient, as T1s begin

to occur and to relax the structure. The stress overshoot smax/sSS

obtained between the elastic regime and the steady state (SS)

potentially contributes to the phenomenon of shear banding in

foam.26 It is already present in the quasi static regime (smax/sSS¼
1.1 for _3 ¼ 10�3), as observed by Surface Evolver simulations,27

but it is much more pronounced at high shear rates (smax/sSS ¼
1.6 for _3 ¼ 10�1).

4.2 Stress in steady state

For deformations larger than few unities, the stress relaxes

toward a steady value, given on Fig. 5. The data are well fitted by

the Herschel–Bulkley law s/Gh ¼ 0.48 + 1.1030.6. The exponent is

very sensitive to the yield stress value sy ¼ 0.48Gh and its error

bar is thus of the order of�0.1 (as well as for the other exponents

given in the text).

For such visco-elasto-plastic materials, authors commonly try

to identify the elastic and viscous contributions to the total stress.

In our system, as the dissipation arises directly from the surface

tension variation, i.e. from the quantity also responsible for the

elastic response, this separation into two distinct contributions is

far from obvious. We found it interesting to plot the shear stress

that would be obtained with the same structure, but with the

equilibrium surface tension on each edge. This artificial stress,

denoted by sstr is given by:

slm;str ¼
1

2

X
i; j˛J i

rij;l rij;m

rij

�
X

k

PkAkdlm (12)

The value of sstr¼ sxy,str, averaged over the whole steady state,

is plotted on Fig. 6, as well as the difference ds ¼ s � sstr. An

important result is that the largest part of the stress increase in

the non quasi-static regime is due to an increase of the bubble

deformation. The best power law fit for sstr is sstr ¼ sy +

0.64Gh_30.51. The surface tension variation thus has two contri-

butions: (i) it increases the deformation reached by the bubble

when the T1 occurs, which can be seen as an increase of the yield

strain; (ii) the edges having a positive contribution to sxy

(i.e. having an orientation q ˛ [0,p/2]) are, in average, stretched

and thus have a larger tension than the edges with a negative

contribution (i.e. having an orientation q ˛ [p/2,p]): this leads to
This journal is ª The Royal Society of Chemistry 2010
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Fig. 6 �: (s � sy)/Gh, same data as for Fig. 5. -: (sstr � sy)/Gh.

:: (s � sstr)/Gh. The lines are the best power law fits.

Fig. 8 Angular distribution of the edges density, for shear rates in the

range 10�3 � 10�1, in the steady state regime. The data binning has been

made with dq ¼ 5�. The circle represents the isotropic distribution.
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a net increase of the stress, for a given structure. This second

contribution is measured by s � sstr, which best power law fit

is s � sstr ¼ 0.53Gh_30.81. This second term is much smaller

than sstr, which is in agreement with the small variation of the

surface tension with shear rate, always smaller than 15% (see

Fig. 11).
4.3 Foam structure

As the foam structure is responsible for the largest part of the

stress increase with _3, it is important to provide a precise char-

acterization of the structure evolution with _3. We thus plot the

angular distribution of the edge lengths (Fig. 7) and of the edge

density (Fig. 8).

The bubbles are elongated by the shear flow, which induces

a preferential orientation for the longest bubble edges. The other

edges also have preferential orientation, governed by the long

edge orientation and the constraint that angles between edges

must remain close to p/3. The edges density is thus not isotropic,

even if the foam is not crystallized.
Fig. 7 Angular distribution of the edges lengths for shear rates in the

range 10�3 � 10�1, in the steady state regime. The data binning has been

made with dq ¼ 5�. The lengths are rescaled by the edge length of the

honeycomb structure lh ¼ 0.028. The circle represents the isotropic

distribution. Insets (left): maximal edge length value. (right) direction of

the longest edges.

This journal is ª The Royal Society of Chemistry 2010
A synthetic way to characterize the foam deformation has

been proposed by Graner et al.28 The texture tensor M is built on

the links between bubble centers lkk0:

Mij ¼ hlkk0,ilkk0,jik,k0 (13)

For the honeycomb structure, the obtained value is

Mh;ij ¼ Adij=
ffiffiffi
3
p

with dij the Kronecker symbol and A the hexa-

gon’s area. We thus set M0 ¼ A=
ffiffiffi
3
p

and plot the dimensionless

values Mij/M0 on Fig. 9. The same thing can be done using the

edges, instead of the adjacent bubble center links. For the edges

the rescaling must be done with M0;e ¼ A=ð3
ffiffiffi
3
p
Þ. Both tensors

are similar, as depicted in Fig. 9 and we use the one built on links

between bubble centers in the following. The square root of the

rescaled eigenvalues, denoted by l1 and l2, and the direction of

the eigenvectors of these tensors are plotted on Fig. 10, showing

the elongation and the rotation induced by the shear. The elon-

gation l1 and contraction l2 are fitted respectively by l1�1.4 +

1.33_30.6 and l2�0.76 � 0.37_30.5. The angular distribution of

tensions (Fig. 11) shows moderate variations: films oriented in

the direction of elongation have a higher tension, whereas the

other directions exhibit lower tensions.
Fig. 9 Component of the symmetrical tensor M, built on the links

between bubble centers or on the bubble edges (subscript e). They are

rescaled respectively by A=
ffiffiffi
3
p

and A=ð3
ffiffiffi
3
p
Þ.

Soft Matter
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Fig. 10 Square root of the eigenvalues of the tensor M (open symbols)

and Me (full symbols), rescaled by the corresponding honeycomb values.

The lines are the best power law fits. Inset: angle q1 between the x

direction and the direction of the highest elongation eigenvector. +: M;

�: Me.

Fig. 11 Angular distribution of the edges tensions, for shear rates in the

range 10�3 � 10�1. Inset: extremal tension variation |dg|, in a log log plot.

The straight line is |dg| ¼ 2_3. B gmax � 1; , 1 � gmin. The data binning

has been made with dq ¼ 5�.

Fig. 12 Number of T1 per bubble and per unit deformation in the steady

regime, as a function of the shear rate. C: numerical result; B: numerical

value of (Myy/Mxx)0.5.
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4.4 Foam plasticity

The T1 transformations are responsible for the foam plasticity.

Fig. 12 shows that their number per bubble and per unit of

deformation dNT1/d3 decreases with the shear rate. This can be

directly related to the increase of bubble deformation. The foam

structure evolution under simple shear can be seen as bubbles

monolayers (oriented in the x direction) sliding over each other.

When each layer has slid from one bubble size
ffiffiffiffiffiffiffiffiffi
Mxx

p
in the x

direction, each bubble has got in average two new neighbors

and has lost two, which corresponds to one T1 per bubble. As

the layer thickness is
ffiffiffiffiffiffiffiffiffi
Myy

p
, the corresponding strain is

3 ¼
ffiffiffiffiffiffiffiffiffi
Mxx

p
=
ffiffiffiffiffiffiffiffiffi
Myy

p
, leading to dNT1=d3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Myy=Mxx

p
. This

rough estimate is verified numerically within 10%, without any

numerical prefactor (see Fig. 12).
Fig. 13 Schematical bubble shape.
5 Discussion

The foam deformation and the tensions obtained numerically,

and especially their dependency with the shear rate, proved to be
Soft Matter
difficult to rationalize using simple analytical laws. Simple local

analysis, at the bubble scale, are derived in this section, trying to

relate to each other the various quantities obtained numerically.

This provides reference values that can be compared to numer-

ical ones. The relatively poor agreement we obtain underlines the

important role of the correlations, of the non-affine bubble

motions and of the complex collective effects.
5.1 Maximal edge tensions

The tension obtained for a local steady elongation _3loc is, at first

order, g¼ 1 + _3loc (see eqn (5) with a¼ 1). The extremal values of

the tensions (for a data binning made with dq ¼ 5�) are presented

in the inset of Fig. 11. They are adjusted by the linear laws gmin z
1 � 3 and gmax z 1 + 23. The local elongation rate of a segment

oriented in the direction q relatively to the shear direction is, for

an affine deformation at a shear rate _3, _3loc ¼ _3sinqcosq, of the

order of 0.3_3 for q z 20�. The average local elongation rate is

thus much higher than the value corresponding to an affine

deformation. Indeed, high elongation/contraction rates appear

during the relaxation process after the T1.
5.2 Maximal bubble elongation

The tension difference between the three edges meeting at

a vertex is partly responsible for the higher bubble elongation at

higher shear rate. A rough estimate of the expected elongation,

based on a local analysis on a hexagonal bubble, is given below.

Using the simplified geometry shown on Fig. 13, we deduce the

angle f from the force balance g+ ¼ 2g� cosf, with g+ ¼ 1 + dg

the tension of the elongating edges l+ and g� ¼ 1� dg the tension

of the contracting edges l�. The bubble area is given by
This journal is ª The Royal Society of Chemistry 2010
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Fig. 14 C: Average edge length in the most elongated direction (same

data as Fig. 7, inset). B: Prediction of eqn (14), using the numerical value

of gmax � 1 for dg (data from Fig. 11, inset).

Fig. 15 Orientation q1 of the bubbles as a function of their elongation

l¼ (M1/M2)1/4. C: in the steady plastic regime, for _3 ˛ [0.001� 0.1] (data

from Fig. 10); +: in the elastic transient, for _3 ¼ 0.04 and 3 ¼ 0.25; 0.5; 1.

These data are compared to arctan(1/l) (full line, eqn (17)); and to

arccos

�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l�1=4

p �
(dashed line, eqn (15)).
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A ¼ 2l�sinfl+ + 2(l�)2cosfsinf. At first order in dg, we thus get

a geometrical relation between A, l+ and l�:

lþ ¼ Affiffiffi
3
p

l�

�
1þ 2dg

3

�
� l�

�
dgþ 1

2

�
(14)

This relation can be directly compared with the numerical data

extracted from Fig. 7 and Fig. 11. As the orientation of the

minimal edge length corresponds to a minimum of edges density

and is thus not representative, we choose to determine l�min by

setting in eqn (14) the quasi static values of lmax
+ and dg obtained

numerically: l+
max ¼ 0.05 (see Fig. 7) and dg ¼ 0. This leads to

l�min ¼ 0.016 (of the same order of magnitude as 3l ¼ 0.0036 the

numerical minimal edge value before a T1). Assuming that this

minimal value l�min does not change with _3, eqn (14) provides

a rough prediction, only based on local arguments, of the

increase of the maximal edge elongation with increasing shear

rate. This estimate is plotted on Fig. 14 and compared with the

numerical data. The value of dg used for each _3 is given on Fig. 11

(inset).

This simple approach gives the right tendency, but does not

allow to fully reproduce the numerical data. The predicted

elongation increase dlmax(dg) is only a third of the value obtained

numerically. More importantly, the edge elongation has a sub-

linear behavior with the shear rate, whereas the tension increases

roughly linearly with _3. This is not compatible with the relation

we obtain between tension and elongation, eqn (14) (this is

a linearized expression, but higher order terms lead to the wrong

concavity). The increase of the orientational order probably

plays an important role and involves processes at a scale larger

than the individual bubble scale.
5.3 Orientation of the elongated edges

Another interesting quantity is the orientation of the bubbles. At

the very beginning of the deformation, bubbles are elongated

in the direction q ¼ p/4. For affine deformations of finite

amplitude, the relation between the orientation of the most

elongated direction q and the elongation l is given by the eqn

(17), in appendix. The Fig. 15 represents the direction q1 of the

eigenvector associated to l1, as a function of the elongation
This journal is ª The Royal Society of Chemistry 2010
l ¼ (l1/l2)1/2. The values obtained numerically are in agreement

with the affine prediction at the beginning of the elastic regime

and are slightly smaller at the end of the transient.

In the steady plastic regime, the bubbles are much more tilted.

Raufaste et al. predicted that the relation 17 between orientation

and elongation does not remain valid in the plastic regime and

they establish another law for a purely elasto-plastic material:27

cosq1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l�1=4
p (15)

This relation is plotted on Fig. 15 and predicts a smaller angle

than in the elastic regime (at fixed elongation), in agreement with

our numerical observations. This theory provides a much better

estimation of our numerical results than the affine law, even if it

predicts slightly too large angles. Here again, the role of the

viscous dissipation is thus mainly to modify the yield elongation

l. The bubble orientation obtained at a shear rate _3 with our non

quasistatic model is close to the bubble orientation obtained with

a purely elasto plastic model, with a yield strain equals to l(_3).
6 Conclusion

This paper proposes a new numerical technique to deal with the

difficult question of dissipative processes and non equilibrium

surface tensions in sheared liquid foams. Extensive results are

given for a 2D foam under simple shear. We show that the stress

obeys a Herschel–Bulkley law, with n z 0.6 and that the stress

increase with increasing shear rate is mainly due to increasing

bubble elongation that can be interpreted as an increase of the

plastic threshold. We show that the number of T1 is related to the

bubble elongation and that it decreases with increasing shear

rate. This work provides new insights into the coupling between

the local dissipation in films and the visco elasto-plastic response

of the foam at the sample scale.
7 Appendix

The identity between a shear deformation in the x direction of

amplitude 3 and the transformation made of (i) a rotation of
Soft Matter
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angle �q0, (ii) an elongation l in the x direction and (iii) the

rotation of angle q, is given by the relation	
1 3

0 1



¼
	

cosq �sinq

sinq cosq


	
l 0
0 1=l


	
cosq0 sinq0

�sinq0 cosq0



(16)

where

tan(2q) ¼ 2/3; l ¼ 1/tan(q); q0 ¼ p/2 � q (17)

If this transformation is made on an initially isotropic

medium, the first rotation of angle�q0 does not play any role and

the direction of largest elongation, for a shear amplitude 3, is

simply q, between p/4 for small 3 and 0 for 3/N.
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