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Liquid foam exhibits surprisingly high viscosity, higher than each of its phases.
This dissipation enhancement has been rationalized by invoking either a geometrical
confinement of the shear in the liquid phase, or the influence of the interface viscosity.
However, a precise localization of the dissipation, and its mechanism, at the bubble scale
is still lacking. With this aim, we simultaneously monitored the evolution of the local flow
velocity, film thickness and surface tension of a five-film assembly, induced by different
controlled deformations. These measurements allow us to build local constitutive relations
for this foam elementary building block. We first show that, for our millimetric foam
films, the main part of the film has a purely elastic, reversible behaviour, thus ruling
out the interface viscosity in explaining the observed dissipation. We then highlight a
generic frustration at the menisci, controlling the interface transfer between neighbour
films and resulting in the localization of a bulk shear flow close to the menisci. A model
accounting for surfactant transport in these small sheared regions is developed. It is in good
agreement with the experiment, and demonstrates that most of the dissipation is localized
in these domains. The length of these sheared regions, determined by the physico-chemical
properties of the solution, sets a transition between a large bubble regime, in which the
films are mainly stretched and compressed, and a small bubble regime, in which they are
sheared. Finally, we discuss the parameter range where a model of foam viscosity could
be built on the basis of these local results.

Key words: foams, thin films, viscoelasticity

1. Introduction

A foam, made of inviscid gas and Newtonian liquid, has an effective viscosity that may
reach a thousand times the viscosity of the foaming solution (Princen & Kiss 1989;
Prud’homme & Khan 1996; Marze, Langevin & Saint-Jalmes 2008; Krishan et al. 2010).
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A. Bussonnière and I. Cantat

Liquid phase confinement is classically assumed to be the origin of this spectacular
viscosity enhancement, with a local shear rate scaling as the imposed one multiplied by
the confinement factor d/h, with d the bubble size and h the film thickness. However, how
and where the imposed stress is transmitted to the liquid phase remain open questions. In
the absence of any solid part in the foam structure, the degrees of freedom of the liquid
phase are numerous, and an imposed external deformation can lead to many different local
deformations and flows, which have been listed in the seminal work of Buzza, Lu & Cates
(1995).

The problem has been addressed experimentally both at the bubble scale and at the foam
sample scale. In the first approach, an assembly of few millimetric films are deformed,
either due to the structure relaxations after a triggered exchange of neighbouring bubbles
(T1 event) (Durand & Stone 2006; Biance, Cohen-Addad & Höhler 2009; Petit et al.
2015), or due to the controlled motion of the supporting frame (Besson & Debrégeas
2007; Costa et al. 2013a; Seiwert et al. 2013; Bussonnière et al. 2020). In most of these
studies, the local film tensions are deduced from the film structure geometry, and/or the
local film thicknesses measured using absorption or interferometry. The observations are
rationalized with models involving film extensions and compressions of the bulk phase of
the films (Kraynik & Hansen 1986; Khan & Armstrong 1987; Schwartz & Princen 1987;
Reinelt & Kraynik 1989), or a viscoelastic response of the surfactant monolayer, and a
relaxation of the interface area variations by the surfactant monolayer transfer from the
compressed films to the stretched ones (Durand & Stone 2006; Besson & Debrégeas 2007;
Grassia, Embley & Oguey 2012; Satomi, Grassia & Oguey 2013). The viscous dissipation
induced by a different velocity on each side of a film is not considered. In contrast,
at the sample scale, with typical bubble sizes of the order of 100 μm, the rheometric
measurements are usually modelled using the assumption of bubbles sliding on top of
each other and thus shearing the liquid film that separates them, without any interface
extension (Denkov et al. 2008). Depending on the physico-chemistry, different scaling
laws are experimentally observed, which are difficult to interpret in terms of one model or
the other (Denkov et al. 2005, 2008; Krishan et al. 2010; Costa, Höhler & Cohen-Addad
2013b).

There is thus a clear need for a full characterization of the flows induced in the foam
films by an imposed deformation, with a synchronized measure of both the kinematic
quantities (local interface extension and extension rate, interface transfer velocity) and of
the local tension in the films, in order to discriminate between both approaches, involving
either film shearing or film extension. This is an unavoidable milestone to fully elucidate
the local origin of foam viscosity.

To this end, we built a dedicated set-up that allows us to impose controlled deformations
to a five-film assembly. In a previous paper, we measured the transfer velocity from
one film to its neighbour due to this deformation, as well as other kinematic quantities
(Bussonnière et al. 2020). The aim here is to relate these kinematic quantities to the
film tensions, in order to build a constitutive law for each part of the foam structure and,
eventually, to build the resulting constitutive law for the foam sample.

The main results of this paper are the following: (i) the films are shown to be governed
by a perfectly reversible elastic law, with no influence of the shear or extensional interface
viscosities. This proves that the viscoelastic response of the interface is not, as often
assumed, the origin of the foam dissipation; (ii) we measure the relationship between
the interface transfer velocity, from one film to its neighbour, and the tension difference
between these films. We evidence a generic geometrical frustration at the meniscus: as
it prevents the free transfer of the interface, this frustration is the origin of the largest
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part of the dissipation; (iii) we predict that this dominant dissipation is localized in a
small part of the films that is close to the meniscus and that is sheared. In this domain,
a well-controlled scale separation is used to simplify the hydrodynamics and transport
equations, which become easily numerically solvable. One important prediction of our
model is the scaling law for the length � of this sheared part of the film, as a function
of the physico-chemical properties of the foaming solution. This length increases when
the surfactant solubility decreases and is typically of the order of 100 μm. Importantly, it
defines a boundary between the foams having bubbles smaller than �, in which the whole
film should be sheared, and the foams having bubbles larger than �, in which the main film
deformation should be an extension/compression. This reconciles the various classes of
model, based either on extension or on shear, found in the literature.

On these bases, we built a model of foam viscosity for the large bubble regime and/or
high surfactant solubility, e.g. for a bubble radius larger than �. It reproduces the variations
of the foam loss modulus as the square root of the frequency, and as the inverse of
the bubble size, which are observed for a large class of foams (Krishan et al. 2010;
Costa et al. 2013b), and predicts the prefactor as a function of well-defined measurable,
physico-chemical properties.

The paper is organized as follows. We first introduce the dedicated experimental set-up
in § 2 and then describe the measurement of the relevant kinematic quantities in § 3. In § 4,
we describe the technique used to measure the evolution of the tension of the five different
films. In §§ 5 and 6 we build the constitutive relationships of the thin film and of the
meniscus, respectively. In § 7, we unravel and model the dominant dissipation mechanism
associated with the film/meniscus exchange and compare our model to the experiments in
§ 8. Finally in § 9 we discuss the relevance of our findings in a foam context and in § 10
we offer conclusions.

2. Experimental set-up and foaming solution

The same experimental set-up has been used previously in Bussonnière et al. (2020), and
the measure of the kinematic properties of the film (velocity, extension) has already been
presented in this former article for a restricted range of the control parameters. We recall
here the main features and describe the physico-chemical properties of the solution.

2.1. Mechanical device
The film assembly is made of five foam films held by two metallic X-shaped pieces, as
shown in figure 1. The central horizontal film has a width dc = 6 mm and a length W =
41.5 mm. The length has been chosen such that W � dc, so the middle part of the central
film is not influenced by the boundary effects on the solid frame. The short edges of
the central film form menisci with the metallic frames (the supported menisci) while its
long edges are menisci connected to the four peripheral films at an angle of 120◦ (the
free menisci). The external edges of the peripheral films are connected to metallic pieces
of length W (black pieces in figure 1) which can translate along the lateral arms of the
X-shape pieces. The mobile edge positions are controlled by four linear piezo motors (PI
U-521.23). This geometry ensures that each film remains flat and stays in the same plane
whatever the position of the motor, if the films are at mechanical equilibrium. Unless
otherwise specified, an invariance in the y direction will be assumed for all quantities.
They are expressed as a function of the curvilinear abscissa s, defined for each film as the
position along a line in the (x, z) plane.
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Figure 1. Schematic of the experimental set-up showing the mechanical device controlling film deformation
and the different optical devices used to monitor the film motion.

As in Bussonnière et al. (2020), the deformation studied consists of a compression of
the left peripheral films from an initial length d−(0) = dm + Δd/2 to d− = dm − Δd/2
and a simultaneous symmetric extension of the right films from d+(0) = dm − Δd/2 to
d+ = dm + Δd/2 at a constant velocity V . In this study, we explore the influence of the
motor velocity V , of the deformation amplitude Δd and of the mean position dm.

2.2. Optical device
Three cameras are used to monitor the dynamics induced by the film deformations, as
shown in figure 1. The meniscus camera records the size and vertical position of one
free meniscus. It is magnified with a telecentric lens (Edmund Optics SilverTL × 4) and
illuminated with a collimated white LED. The free menisci position in the (x, y) plane
and the gross thickness variations of the central film are recorded with the fluorescence
camera located on the top of the set-up. The fluorescein added in the foaming solution is
excited with a 488 nm laser (Oxxius LBX 200 mW) and its emission is filtered using a
band-pass filter. Finally, more precise thickness profiles h are monitored along the line Lc
in the central film or Lp in a peripheral film with a hyperspectral camera (Resonon Pika
L). This camera, described in Bussonnière et al. (2020), measures the interfered spectrum
intensity I(λ) of the light emitted by a halogen lamp and reflected by the thin film. The
thickness is extracted using the relation (Born & Wolf 1999)

I(λ) ∝ 1 − cos

⎛
⎝4πhn
λ

(
1 − sin2 θ

n2

)1/2
⎞
⎠ , (2.1)

where n = 1.33 is the film refractive index, λ the wavelength and θ the light incident angle.
In our set-up, θ is 45◦ for the central camera position and 58.5◦ for the peripheral one.
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Local origin of the visco-elasticity of a elementary foam

2.3. Physico-chemical properties of the foaming solution
The foaming solution is a mixture of sodium dodecyl sulphate and dodecanol, that we
chose to optimize the film rheological response. Some glycerol is added to improve the
film stability and fluorescein is used to visualize the thickness patterns. To prepare the
solution, the sodium dodecyl sulphate (SDS) (cSDS = 5.6 g l−1), the dodecanol (DOH)
(cDOH = 0.05 g l−1) and the fluorescein (cfluo = 0.8 g l−1) are dissolved in a solution of
distilled water–glycerol (15 % by volume). The equilibrium surface tension was measured
at γ0 = 33 ± 1 mN m−1 using the pendant drop method and the viscosity is η = 1.5 mPa s.
Four needles located on the top mobile edges of the peripheral films can be used to supply
solution to the film assembly during the entire experiment. Two sets of experiments have
been performed, one where the foaming solution is injected at a rate of 0.2 ml min−1

(0.05 ml min−1 per needle) and one without injection.
Such a mixture has been extensively studied for its relevance in foam science and

is thus well documented (see the review by Lu, Thomas & Penfold 2000). However,
its physico-chemical properties remain difficult to model due to the strong interactions
between the anionic surfactant and the non-ionic alcohol, which can lead to the formation
of a complex (Lu et al. 1995; Nguyen & Nguyen 2019; Vollhardt & Emrich 2000;
Kralchevsky et al. 2003). Moreover, above the critical micelle concentration (CMC =
2.33 g l−1 for pure SDS), DOH molecules can be solubilized in SDS micelles. These
interactions lead to co-adsorption processes and mixed diffusion (Fang & Joos 1992).
As the chemistry has not been varied in this study, the potentially complex equation of
state of the interface, adsorption and transport laws, taking into account the different
species, cannot be addressed by our experimental results. We thus choose to keep our
thermodynamic model of interface as simple as possible by linearizing the different laws.

Surface tension of pure SDS remains almost constant above the critical micelle
concentration (Elworthy & Mysels 1966). The significant variations observed in our
experiments are therefore assumed to be associated with the DOH only. At thermodynamic
equilibrium, the surface tension γth is related to the DOH surface excess Γ by

γth = γ0 + ∂γth

∂Γ

∣∣∣∣
Γ0

(Γ − Γ0) = γ0 − E
Γ − Γ0

Γ0
, (2.2)

with γ0 the surface tension of the foaming solution, Γ0 the corresponding surface excess
and E = −(∂γth/∂Γ )|Γ0Γ0 the so called Gibbs–Marangoni elasticity. This elasticity can
be estimated using the Langmuir model of DOH/micellar SDS solution proposed in Fang
& Joos (1992) which leads to E ≈ 10 mN m−1 (see Appendix A).

The adsorption of DOH at the interface is characterized by

Γ = Γ0 + ∂Γ

∂c

∣∣∣∣
c0

(c − c0) = Γ0 + hΓ (c − c0), (2.3)

where c is the local dodecanol bulk concentration, c0 the initial concentration and
hΓ = (∂Γ /∂c)|c0 , hereafter called the reservoir length. Based on Fang & Joos (1992),
we estimated hΓ ≈ 5.4 μm (see Appendix A). For processes faster than the micellization
(Patist, Axelberd & Shah 1998), we need to consider instead the equilibrium between
the surface excess and the concentration cm of DOH in its monomer form, involving the
parameter hm

Γ = (∂Γ /∂cm)|cm
0

≈ 370 μm (see Appendix A).
The disjoining pressure as a function of the film thickness is also an important

physico-chemical property of the system. However, it is negligible in our study as the
films are always larger than 100 nm.
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A. Bussonnière and I. Cantat

Finally, on each interface, we define γ (s) as the full interfacial stress which includes the
surface tension γth(Γ ) as well as the potential contributions associated with the surface
extensional and shear interfacial viscosities, respectively ηs and κs. Note that the interfacial
stress is thus a priori of tensorial nature, and γ (s) represents its projection in the direction
orthogonal to the direction of invariance y. For the thin films, we also define the film
tension σ that takes into account the contribution of both interfaces and of the film bulk
(see § 4.2).

2.4. Control parameters and experimental protocol
In this study we explored the influence of the deformation parameters on the film assembly
dynamic by performing around 480 experiments.

A first experimental campaign was performed with the fluorescence camera used at
a frame rate of 130 f.p.s., for Δd varying between 2 and 12 mm, V between 1 and
100 mm s−1 and dm between 7 and 17 mm. Each set of parameters has been repeated at
least 3 times with and without solution injection representing a total of 186 experiments.
For some parameter values, the measurements have been refined in a second campaign, by
increasing the frame rate to 300 f.p.s., increasing the number of experiments and/or using
the spectral camera in the peripheral position, instead of the central position only.

The experimental protocol is as follows: a bucket full of foaming solution is placed
on a motorized translation stage below the set-up. We first move the bucket up until the
deformable frame is entirely immersed, then we move it down to produce the five films.
This process leads to reproducible out of equilibrium films, rapidly draining under gravity.
We let them evolve during 15 s before deforming the frame. The frame deformation is
synchronized with the different cameras which record the film assembly dynamics during
30 s for the first campaign and 10 s for the second. Note that after the initial 15 s delay,
the films are still out of equilibrium, but evolve on a time scale larger than the duration
of the investigated deformation and relaxation. Moreover central (respectively peripheral)
film remains thicker than 400 nm (respectively 1.5 μm) during the entire experiment so
the disjoining pressure is negligible in this study.

3. Determination of the kinematic quantities

As shown in our previous study (Bussonnière et al. 2020) and summarized in figure 2,
the typical dynamics is composed of an extension of the peripheral films on the stretched
side, and a compression of the peripheral films on the pushed side, at the first instants
(figure 2b). The imposed deformation then relaxes through interface transfers between
adjacent films (figure 2c). A visible signature of this transfer is the appearance of thick
films, extracted from the menisci, in the central and stretched films.

3.1. Definition of the kinematic quantities
The extension of the films and the transfer velocity at the menisci are the two relevant
kinematic quantities of the problem and they will be related to the film tensions through
constitutive relationships in §§ 5 and 6. To properly define and measure the extensions and
the transfer velocities we first clarify here different assumptions.

In the films, the relative velocity of the bulk phase with respect to the interfaces is a
Poiseuille flow governed by the gravity forces and by the Laplace pressure gradients. As
quantitatively discussed in § 6.2, these relative velocities are negligible far enough from
the menisci, and the velocity can be assumed to be constant across the film (figure 2f ).
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Figure 2. (a–c) Schematic of the typical dynamics of the foam assembly. The coloured dots represent
elementary material systems at the interface which are followed along their trajectories, thus illustrating film
compression/extension as well as interface transfers from one film to the other. Films thicknesses evolve
because of the compression/extension and because of the extraction of thick film from the menisci, associated
with the interface transfers. (d,e) Zoom on a film element of volume dΩ before and during the deformation.
( f ) Zoom on a meniscus showing the interface transfer dynamics, at velocity U.

In the central part of each film, we can therefore define a film element S as an elementary
material system of volume dΩ = h dS = h dy ds (see figure 2d,e) spanning the film from
one interface to the other. It is a closed system which can be followed along its trajectory
and which is entirely determined by the shape and position of its interface. The invariance
in the y direction imposes that dy is constant. However, stretching or compression modifies
ds. In such a film element, the film extension, or equivalently the interface extension, can
be defined as

ε(t) = ds(t)
ds0

− 1 = h0

h(t)
− 1, (3.1)

with h0 and ds0 the initial characteristic of the film element, before deformation. The
second equality is deduced from the volume conservation of the system, which imposes
h(t) ds(t) dy = h0 ds0 dy. With this definition ε > 0 for an extension and ε < 0 for a
compression.

The transfer velocity is a dynamical property associated with each free meniscus. In
Bussonnière et al. (2020) we experimentally checked that, for the imposed deformation,
when some film is extracted from one side of a free meniscus, a similar amount of film is
absorbed on the other side, at the same rate, as schematized in figure 2( f ). The surfactant
monolayer slides on the meniscus interface, from one film to its neighbour, with negligible
deformation. This allows us to define the transfer velocity U as, indifferently, the velocity
of the film entering the meniscus at one side, the velocity of the film extracted on the other
side or the velocity of the surfactant monolayer at the meniscus interface connecting both
films. Experimentally, U is measured in the central film. The model of § 7 goes beyond
this first-order description and provides a prediction for the interface velocity difference
between both sides of the free menisci, thus refining this first definition of the transfer
velocity.
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Figure 3. (a) Image of the fluorescence camera (top view) after the deformation showing the Frankel film
extraction. This Frankel film is invariant in the y direction and the black parts on both sides are due to the
fact that the illuminated domain size is smaller than W. (b) Typical Frankel film length LFr (blue) and velocity
U = dLFr/dt (black) evolution with time for Δd = 10 mm, V = 50 mm s−1 and dm = 12 mm. Yellow shaded
area indicates when the motors move.

3.2. Measure of the transfer velocity
An image of the central film is shown in figure 3(a). In this film, the relaxation of the
peripheral film deformation by interface transfer results in an extraction of a new film
from the free meniscus on the compressed side (see figure 3a) and in a film entry in the
free meniscus on the stretched side. The film extraction is governed by Frankel’s theory
(Mysels, Shinoda & Frankel 1959; Bussonnière et al. 2020) and the new film, called
hereafter Frankel’s film, is thicker than the remaining part of the film, which is the film
initially present (denoted the initial film hereafter). Frankel’s film therefore appears bright
on the fluorescence camera, with a very well defined boundary at a distance LFr(t) from the
pushed meniscus. The extraction begins as soon as the motors start and accelerates until
the motors stop. The velocity is maximum at this time (figure 3b) and then the extraction
slows down over a characteristic time scale of 1 s.

This motion occurs without compression or extension of the central film, which simply
translates in the x direction (Bussonnière et al. 2020). The central film dynamics is thus
fully resolved by tracking the position LFr(t) of Frankel’s film boundary, with respect to
the pushed meniscus position. For experiments recorded at a high frame rate (300 f.p.s.),
the central film velocity is computed by smoothing the time derivative of LFr. For longer
experiments with slower frame rate (130 f.p.s.), this velocity is extracted by first fitting the
evolution of LFr with a fourth-order polynomial during motor motion and a logarithm
function after the motor stops. This uniform central film velocity is our experimental
definition of the transfer velocity U, which happens to be identical at both free menisci,
for the deformation we impose.

3.3. Measure of the film extension
The fact that the films may be absorbed by or extracted from the menisci implies that
each individual film cannot be considered as a closed material system. Consequently, the
distance d between the menisci on both sides of a film does not provide a measure of its
extension ε.

A first method to determine ε is based on thickness measurements. A film thickness
profile in the stretched film, measured with the spectral camera, is shown in figure 4(a).
After deformation we can see a thin part, corresponding to the initial film, in contact with
a thicker part, corresponding to a newly extracted Frankel film, with a sharp transition
between both. As shown in Bussonnière et al. (2020), a Frankel film is extracted both at
the free meniscus (at the origin position in figure 4a) and at the supported meniscus, on the
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Figure 4. (a) Thickness profiles of the stretched bottom film at the initial time (black) and after the deformation
(blue), as measured with the spectral camera between the right free meniscus (at the origin position) and the
meniscus on the bottom right moving edge. The shaded areas correspond to the initial volume of the film (per
unit length). (b) Extension as a function of time. Blue: film extension based on the thickness (see (3.2)); red:
approximated film extension obtained from the transfer length LFr (see (3.3)); black: geometrical extension
imposed by the motor positions. Averages (solid line) and standard deviations (shaded area) are calculated over
5 experiments for the thickness definition and 50 for the transfer length definition. The control parameters are
Δd = 10 mm, V = 50 mm s−1 and dm = 12 mm. The dashed line delimits the validity range of the extension
based on the transfer length.

bottom right moving edge. However, gravity imposes a stratification of the non-horizontal
films, and both Frankel films merge at the film bottom (Shabalina et al. 2019), thus
explaining the film profile. The key point here is that the initial film is a well-identified
material system, which does not leave or enter the film during the experiment, and which
is well separated from the Frankel film by a measurable boundary.

To follow this material system, we proceed as follows: the volume V0 (per unit length
in the y direction) of the initial film is calculated by integrating the thickness profile
at t = 0 over the total length d+(0) = Δs0 of the film. During the dynamics, its length
Δs(t) is deduced from the volume conservation: the thickness profile is integrated from
the free meniscus at s = 0 to the position Δs(t) at which the integral equals V0. Note
that, consistently, Δs(t) coincides with the position of the thickness transition, which is,
however, known with a smaller precision.

As discussed in § 5.1, the extension is uniform in the film, thus allowing us to integrate
(3.1) over the whole initial film to obtain

ε(t) = Δs(t)
Δs0

− 1, (3.2)

which is plotted in figure 4(b) as a function of time.
On the compressed side, the initial film is absorbed by the meniscus and the previous

method unfortunately fails. Moreover, marginal regeneration plumes form at the bottom
meniscus, move upward and merge with the film, draining the compressed film much
faster than the other ones and making the extension measure based on (3.1) impossible.
In that case, the actual size of the monolayer initially covering the film is estimated as
d−(t) + LFr

1 (t) + LFr
2 (t), with d−(t) the imposed film length at time t and LFr

1 and LFr
2 the

monolayer areas (per unit length in the y direction) that have been lost by the compressed
film respectively at the free meniscus and at the supported meniscus. As previously
discussed, it is shown in Bussonnière et al. (2020) that LFr

1 ∼ LFr(t); at short times, we
also observed that LFr

2 ∼ LFr(t). The same assumptions can be made for the stretched
film to take into account the gain of area on both film sides. The extension can finally be
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estimated by, using the appropriate sign for each case,

ε(t) = d±(t) ∓ 2LFr(t)
d±(0)

− 1. (3.3)

The values of ε in the stretched films, obtained using both definitions ((3.2) and
(3.3)), are plotted in figure 4(b) for one series. As expected an excellent agreement is
obtained at short times, but the two curves become different at longer times. Based on this
comparison, we define a cutoff length Lc = 0.1(dm + Δd/2), represented by the dashed
line in figure 4(b): for LFr(t) < Lc, the extension can be calculated using (3.3). Then LFr

1
and LFr

2 begin to significantly differ from LFr and (3.3) becomes invalid.
In the following, the extension is computed for one parameter set using (3.2), in the

stretched film and for the whole time range. For the other cases, extension and compression
are computed with (3.3), at short times only, for LFr(t) < 0.1(dm + Δd/2). As this
measure is much faster, it allows us to scan a large set of deformation parameters.

4. Determination of the film tensions

The set-up is designed so that, as long as the film structure is at equilibrium, the two
free menisci stay at a constant position whatever the motor position. A meniscus motion
is therefore the signature of some dynamical forces (Besson & Debrégeas 2007). We
demonstrate in this section that the dominant forces are the tension differences between the
films, which can therefore be modelled by a minimal surface of vanishing mean curvature
during the dynamics. The position and shape of the free menisci, that we have extracted
over time, can thus be used to measure the film tensions.

4.1. Meniscus motion
During the dynamics, both free menisci delimiting the central film move in the (x, y) plane
toward the stretched side. As shown in figure 5, the meniscus ends slide on the solid frame
and the whole meniscus curves in the direction of motion. The displacement δ±( y) of
each free meniscus (the symbols − and + refer to the compressed and stretched sides,
respectively) can be fitted at each time by a second-order polynomial, from which we
deduce the sliding motion (the constant term δ±

1 ) and the meniscus curvature (from the
quadratic term δ±

2 ( y))

δ±( y) = δ±
1 + δ±

2 ( y) = δ±
1 + δ±

2 (0)

(
1 − 2y

W

)2

. (4.1)

In this expression y = 0 is chosen in the middle of the film. The motion in the z direction
is measured with the meniscus camera (see figure 1) and is negligible.

4.2. Estimation of the tangential forces and film tension definition
To estimate the value of the external forces acting on the films, we use the following orders
of magnitude, corresponding to our observations: the film in-plane velocity scales as the
transfer velocity U ∼ 10−2 m s−1, the film normal velocity scales as the meniscus velocity
Um ∼ 10−3 m s−1, the film extension is up to |ε| ∼ 1 and the fastest deformation time
scale is T ∼ 10−1 s, corresponding to an extension rate ε̇ ∼ 10 s−1. Finally, we anticipate
that the film tension differences between the different films Δσ , that is deduced from the
meniscus shape in § 4.5, are of the order of 10−3 N m−1.
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Figure 5. (a) Fluorescence image of the central film at the initial state showing the position of the free menisci
(yellow dashed line). (b) Fluorescence image at the end of the motor motion. New positions of the menisci are
highlighted by dashed blue lines.

n̂
t̂

Ft
g

σ (s) σ (s + ds)ds

Figure 6. Schematic of a thin film with the tangential forces. The variable s in used along the direction t̂ and
the variable ζ along n̂.

As shown in figure 6, we use on each thin film the normal and tangential unit vectors n̂
and t̂, along the thin film profile (in the (x, z) plane), associated with the spatial variables
ζ and s, respectively. We define the film tension σ(s)t̂ as the force exerted by the film at
an abscissa larger than s on the film at an abscissa smaller than s. This quantity takes into
account the interfacial stress γ on both interfaces, and the contribution of the pressure in
the liquid bulk, governed by the Laplace pressure (the latter term being negligible in the
central part of each film). The tangential force balance on the piece of film located between
s and s + ds is

ρ

(
∂(h〈u〉)

∂t
+ ∂(h〈u2〉)

∂s

)
= ∂σ

∂s
+ ρgsh + Fg

t , (4.2)

with ρ the solution density, gs the gravity component along t̂, 〈u〉 the tangential velocity
averaged in the normal direction, scaling as U, and Fg

t the tangential stress due to the gas
phase at both interfaces.

The first inertial term scales as ρhU/T ∼ 10−4 Pa, the weight as ρgsh ∼ 10−2 Pa (for
the peripheral films) and the airborne stress as Fg

t ∼ ηgU/δbl, with δbl the thickness of
the Blasius visco-inertial boundary layer, ηg ∼ 10−5 Pa s the gas shear viscosity and
ρg ∼ 1 kg m−3 the gas density (Rutgers et al. 1996). The value of δbl is of the order
of
√

ηgT/ρg ∼ 10−3 m (or
√

ηgd/(Uρg) of similar order) and thus Fg
t ∼ 10−4 Pa. The

convection term arises from the fact that we considered an open system and scales as
ρhU2/d ∼ 10−5 Pa.

In the horizontal film, it results from these orders of magnitude that the Marangoni term
∂σ/∂s, also appearing in (4.2), cannot be larger than 10−4 Pa. Its variation between both
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Figure 7. Schematic of the pushed film with the normal forces applied.

ends of the film is thus below 10−6 N m−1, which is much smaller than Δσ . The surface
tension variation induced by the gravity in each peripheral film simply balances its weight
and is easily determined as Δσ grav ∼ ρgshd ∼ 10−4 N m−1, which is negligible too (and
could be easily taken into account if needed).

One important consequence is that, in the parameter range we explored, the film tension
is necessarily uniform on each thin film, whatever its physico-chemical properties (Durand
& Stone 2006). We thus define the film tension σ− in the two compressed peripheral films
(top and bottom films are identical by symmetry, as gravity is negligible), σ+ in the two
stretched peripheral films, and σ c in the central film.

The contribution of both interfaces and of the film bulk to this film tension will be
discussed in § 7. Note that, as tensions and extensions are related to each other, the tension
uniformity validates the assumption of uniform extension in each given film made in § 3.3.

4.3. Estimation of the normal forces
We now consider the normal motion of the peripheral films in order to show that they
keep a negligible mean curvature during the deformation. Disregarding gravity effects
(as discussed in § 4.2), the (x, y) plane is a symmetry plane, so the central film remains
flat and stay in the (x, y) plane. As shown in figure 7, the normal velocity of a piece of
peripheral film is of the order of the meniscus velocity Um. The Newton law in the normal
direction applied to this system involves thus an inertial term (per unit film area) scaling
as If = hρUm/T ∼ 10−5 Pa. The normal forces are the gas pressures on both sides and the
Laplace pressure, i.e. the normal component of the film tension contribution (Salkin et al.
2016). The convection term is, as for the tangential projection, negligible.

In our set-up, the gas constitutes a continuous phase and the pressure variations are thus
of dynamical origin only. The inertial gas pressure scales as Pg = ρgU2

m ∼ 10−6 Pa 
 If .
The gas phase can thus be assumed to be at rest. In the following, the atmospheric pressure
is chosen as pressure reference and all the pressures defined in the liquid phase are the
actual pressure minus this uniform atmospheric pressure.

The force balance thus only involves the film inertia If and the Laplace pressure σC.
This provides a scaling law for the film mean curvature C

C ∼ hρUm

σT
∼ 10−3 m−1. (4.3)

This mean curvature is much smaller than the observed curvature in the (x, y) plane,
of the order of 20 m−1 (see figure 5) and is therefore negligible. The peripheral films
remain thus minimal surfaces of vanishing mean curvature, even during the motor motion,
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Figure 8. (a) Three-dimensional schematic of the pushed film shape ensuring zero mean curvature.
(b) Cutting scheme of the pushed film at the middle of the film.

and their entire shape can be deduced from the position of their boundaries, i.e. from the
position and shape of the free menisci.

4.4. Determination of the angles between the films
Figure 8 shows the scheme of the pushed film shape ensuring vanishing mean curvature
and geometrical constrains (see also Embley & Grassia 2007). The relevant geometrical
quantity is the angle 2θ− (respectively 2θ+) between the tangent vectors of the top and
bottom pushed (respectively stretched) film, measured at the free meniscus position, in the
y = 0 plane (i.e. in the middle of the film). Its expression as a function of the free meniscus
shape in the (x, y) plane (figure 8) is derived in Appendix B and is given by

θ± = tan−1

(
d± sin θ0

d± cos θ0 + δ±
1

)
− δ±

2 (0)

w
π sin θ0

tanh
(

πd±

w

) . (4.4)

The first term on the right-hand side is due to the meniscus sliding displacement (δ1) and
the second term is a correction induced by the meniscus curvature (δ2), as defined in (4.1).
Note that, free menisci translate (displacement δ1) due to the finite frame thickness (1 mm)
which allows peripheral films to accommodate such deformation. The initial equilibrium
angle is θ0 = π/3.

4.5. Determination of the film tensions
The film tensions σ+, σ− and σc in the stretched, compressed and central films can now
be obtained from the force balance on the meniscus. As the film tensions are uniform, they
can be measured at any arbitrary point: we write the force balance on the elementary piece
of free meniscus located around y = 0 (middle of the film). Importantly, at this point, the
plane y = 0 is normal to the meniscus, so the tension forces acting on the system are in
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Figure 9. Typical time evolution of the film tension variation of the stretched (in red) and compressed (in blue)
sides for Δd = 10 mm, V = 50 mm s−1 and dm = 12 mm. Solid lines (respectively shaded areas) represents the
average (respectively the standard deviation) over 50 experiments. These values are deduced from the meniscus
displacement using (4.4) and (4.6).

this plane. After a projection in the x direction we get

ραmenr2
m

d2δ±(0, t)
dt2

= ±(2σ± cos θ± − σc), (4.5)

with αmenr2
m the section area of the meniscus. The meniscus inertia scales as ρr2

mUm/T ∼
10−6 N m−1 and is much smaller than Δσ . We thus obtained the sought relationship

σ± = σc

2 cos θ± , (4.6)

with θ− and θ+ expressed as a function of the meniscus displacement in (4.4).
We show in the next section that any variation of film tension is associated with a film

extension ε. As the central film is never stretched or compressed, we can assume σc =
σ0 = 2γ0. The film tension variations in the stretched and compressed peripheral films,
with respect to their equilibrium values, are thus given by

Δσ±

σ0
= 1

2 cos θ± − 1. (4.7)

An example of film tension variation is shown in figure 9 as a function of time. We
find, as anticipated, an order of magnitude of a few mN m−1 for Δσ . As soon as the
motors start, the film tension begins to deviate from its equilibrium value. It reaches a
maximum/minimum when the motors stop and then relaxes.

Note that, by symmetry, the final state reached by the system is identical to its initial
state. The total amount of dissipated energy D (per unit length) is therefore the total work
provided by the motor to the system

D = V
∫ tm

0
2(σ+ − σ−) dt, (4.8)

with V the motor velocity and [0 − tm] the duration of the motor motion. The tension
difference between the stretched and compressed films is thus a direct signature of the
system dissipation.
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Local origin of the visco-elasticity of a elementary foam
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Figure 10. Film tension relative variation as a function of ε deduced from the film thickness (using (3.2))
during the motor motion (blue) and after motor stops (purple) for Δd = 10 mm, V = 50 mm s−1 and dm = 12
mm. The solid lines (shaded areas) represent the averages (standard deviations).

5. Constitutive relation for the film

In the previous sections we determined the tension and the extension of the different
films, which now allows us to build the film experimental constitutive relation, i.e. the
relationship between the two quantities.

5.1. Experimental results
We first plot, in figure 10, the tension variation in term of the film extension for the
experiments where the extension has been deduced from the thickness measurements
in stretched films. This allows us to monitor the relationship over the entire experiment,
during 10 s. The film is first stretched (blue data) and then relaxes toward its initial length
(purple data). The most noticeable result of the paper is that the two parts of the curve are
perfectly superimposed, thus proving unambiguously the purely elastic behaviour of the
film.

To investigate further the role of the extension rate, we varied the motor motion
parameters in a large range. The amount of data was too large to use the definition (3.2) of
the extension (which requires manual check during the data processing) and we used the
definition (3.3) instead, for the stretched and compressed films, at short times (i.e. during
motor motion and just after).

At each time, for each experiment and each film, we measure the data set (ε, ε̇, σ ). All
data points are then considered together, whatever the values of the control parameters.
They are binned by extension rate |ε̇|, and averaged. The bins have been chosen to show
the whole range of extension rate while keeping a significant number of points in each bin.
Most of the points are associated with a small |ε̇|, but there are still 8500 data points for
the [5; 25] s−1 bin.

The obtained results are shown in figure 11. Negative ε corresponds to a compression
and positive ε to an extension. Note that to provide a better readability of the data, we
shifted the x and y axis of the two lowest extension rates. The three curves would otherwise
be perfectly superimposed, as indicated by the theoretical law (dashed black lines) plotted
on each graph, which is each time the same curve. For the investigated parameters, i.e. |ε̇|
in the range [0; 25] s−1 and ε in the range [−0.5; 2], the film tension is thus a function
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5 < |ε∙| < 25 s–1
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�
σ

/σ
0

ε

Figure 11. Film tension relative variation as a function of the local film extension ε. Each colour corresponds to
the average over all the data having an extension rate in a given range. The 3 curves are perfectly superimposed
and the red and blue curves have been shifted for the sake of visibility: the corresponding axis origins are the
cross of the same colour. The error bar (shaded area) is the standard deviation and is less than 10 % on average.
The dashed lines are 3 copies of the same curve: the theoretical prediction of (5.5), with the relative elasticity
E/γ0 = 0.16. The solid line corresponds to the nonlinear model using Langmuir adsorption of reference (Fang
& Joos 1992), derived in Appendix C, with an initial DOH concentration of 0.6c0.

of the extension only. The relationship between both quantities is discussed in the next
section, on the basis of the classical models.

5.2. Gibbs–Marangoni elasticity
The full interfacial stress γ of an interface involves the thermodynamic definition of the
surface tension γth which depends solely on the local surfactant interfacial excess (Γ )
and the intrinsic surface extensional and shear viscosities, respectively κs and ηs. In our
y-invariant geometry, similar to a Langmuir trough geometry, this stress is (Edwards,
Brenner & Wasan 1991; Stone 2010)

γ = γth(Γ (s)) + (ηs + κs)ε̇. (5.1)

The local surface excess might deviate from its initial equilibrium value and depends on
the surfactant transport processes. In the general case, the surfactant advection–diffusion
and the exchanges between the bulk and the interface result in an elastic and an apparent
viscous behaviour due to, respectively, the in-phase and out-of-phase (delayed) response
of the surface excess with the deformation.

Here, the diffusion time scales of the surfactants in the directions parallel or transverse
to a thin film scale as τ p ∼ d2/D ∼ 106 s and τ t ∼ h2/D ∼ 10−2 s, respectively, whereas
the experimental time scale is of the order of 1 s. This scale separation allows us to assume
that (i) there is no diffusive transport along the film; (ii) at a given location s in the film,
the equilibrium between the bulk concentration and the interface excess is immediately
reached. From these assumptions, and following Prins, Arcuri & Van Den Tempel (1967)
and Couder, Chomaz & Rabaud (1989), we can deduce the relation between the surface
excess and the film extension.

As established in § 4, the film tension σ is homogeneous in each film. However, some
important dynamical processes, discussed in § 7, occur close to the meniscus and lead to
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Local origin of the visco-elasticity of a elementary foam

variations of the interface tension γ on both film interfaces, while keeping the resulting
film tension constant. Here, we focus on the central part of the films, where the bulk
pressure is the reference pressure, both interface tensions are identical and the velocity
field across the film is homogeneous (see § 6.2 for more details). In this domain we
thus simply have σ = 2γ . Moreover, the interface dS(t) of a film element S of volume
dΩ = h(t) dS(t) is always in contact with the same liquid bulk. At our experimental time
scale τ t 
 T 
 τ p, we can thus assume that (i) the film element S is a closed system
(both for the liquid phase and for the surfactants); (ii) the bulk concentration c has a
homogeneous value c0 + Δc in dΩ and is at equilibrium with the interface concentration,
so that Γ = Γ0 + hΓ Δc (see (2.3)). The surfactant mass conservation leads to (Prins et al.
1967; Couder et al. 1989)

Γ = Γ0
1 + h0/(2hΓ )

1 + ε + h0/(2hΓ )
. (5.2)

The surface tension γth is related to the local surface concentration through (2.2) and,
using (5.2), the interfacial stress in (5.1) becomes

γ = γ0 + E
ε

1 + ε + h0/(2hΓ )
+ (ηs + κs)ε̇. (5.3)

Finally, the relative film tension variation is predicted to be

Δσ

σ0
= σ± − σc

σc
= E

γ0

ε

1 + ε + h0/(2hΓ )
+ (ηs + κs)

γ0
ε̇. (5.4)

This prediction is plotted in figure 11, using κs + ηs = 0, h0/hΓ = 0 and E/γ0 = 0.16
as fitting parameters. The agreement with experimental data is excellent for the whole
range of deformation and deformation rate explored, and the constitutive relation for the
films is thus

σ = σ0 + 2E
ε

1 + ε
. (5.5)

A first important consequence of this agreement with the experiments is that the films
do not exhibit any measurable viscous behaviour, neither intrinsic nor effective. The
potential viscous contribution is actually hidden by the experimental error estimated at
approximately 0.5 mN m−1. The viscous term is thus below 0.5 mN m−1 for extension
rates reaching ε̇ ≈ 10 s−1, which provides the upper limit for the surface viscosities
κs + ηs ≤ 5 × 10−5 kg s−1. This result is consistent with different measurements reported
in the literature (Wantke, Fruhner & Örtegren 2003; Drenckhan et al. 2007; Zell et al.
2014). Therefore, the dissipation observed in our experiments cannot be attributed to the
viscosity of the interface.

A good fit of the experimental results by (5.4) is obtained for a large range of hΓ (5 μm
< hΓ < ∞) while the relative elasticity remains in a narrow range 0.16 < E/γ0 < 0.18
corresponding to an elasticity E ≈ 5–6 mN m−1. This indicates that the film tension
variation arises from insoluble surfactants (significant hΓ ) and validates our assumption
that the DOH is at the origin of the observed tension variations. SDS molecules are
mainly passive to the deformation due to the high bulk concentration as well as the fast
adsorption/desorption dynamic of the order of 1 ms 
 T (Chang & Franses 1992).

The elasticity E extracted from the experiments is close to the one estimated by using the
physico-chemical model of Fang & Joos (1992) (Eth = 10.6 mN m−1, see Appendix A).
However, E is slightly lower than this estimated value. This deviation may be due to the
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Figure 12. Relative film tension variation in term of the transfer velocity U for Δd = 10 mm, V = 50 mm s−1

and dm = 12 mm. Solid lines (shaded areas) represent the averages (standard deviations) over 50 experiments,
respectively in blue and purple for the short times (during the motor motion) and the long times (after the
motors stop). The black line is the theoretical tension relative variation associated with a Frankel film extraction
at velocity U, given by (6.6).

fact that the DOH is depleted during the film formation. Such a DOH depletion would
indeed results in a decrease of the elasticity, in agreement with the experimental trend.

A refined model based on the nonlinear Langmuir adsorption (see Appendix C) gives
also a good fit of the experiment, assuming depletion of DOH from c0 to 0.6c0 during
the initial film formation, as shown by the solid line in figure 11. At the present, it is
not possible to discriminate between the different models of adsorption isotherms, nor to
determine hΓ . In the following, for the sake of simplicity, we choose the simplest linear
model with E/γ0 = 0.16 obtained in the limit hΓ → ∞. Note that this choice introduces
only a small error on E, as hΓ is much larger than h0 and thus has little influence on the
fit.

6. Flow properties in the meniscus and around

As shown in the previous section, the thin films far from menisci confer a pure elastic
behaviour to the foam assembly. In this section, we show that the viscous, dissipative,
behaviour arises from a generic geometrical frustration at the meniscus.

6.1. Experimental relationship between the transfer velocity and the tensions
A surface tension difference between films arises from the extension/compression of the
peripheral films at short times, and this tension difference tends to relax through interface
transfer from one film to its neighbour at later times. Figure 12 shows the experimental
relationship between the tension difference and the transfer velocity, i.e. the observed
viscous response of the film assembly. By convention, the velocity U is positive on the
stretched side, and negative on the compressed one.

The surface tension evolution is asymmetric between the compressed and stretched
sides: on the stretched side, surface tension rises rapidly with the transfer velocity
and seems to reach a plateau at Δσ/σ0 ≈ 0.1; on the compressed side, tension keeps
decreasing at higher velocity. The curves obtained during the motor motion and afterwards,
are qualitatively the same. Similar plots are obtained for our whole parameter set (see § 8).
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Local origin of the visco-elasticity of a elementary foam

So, in a first approximation, there is a relationship between Δσ and U, which plays the
role of a constitutive relation for the meniscus.

However, the tensions (in absolute value, and for a given velocity) are significantly
smaller during the motor motion than during the relaxation, for both sides, and U does
not depend uniquely on Δσ . Anticipating the results of the model of § 7, this feature
can be explained by a transition between two regimes: at short times the menisci are good
surfactant reservoirs and limit the surfactant concentration variations at the interfaces; then
the bulk concentration departs from its initial value in the meniscus subphase (meniscus
saturation or depletion), allowing for larger concentration gradients at the interface and
thus for larger tension differences. This is at the origin of the hysteresis observed in
figure 12. The precise localization in the film/meniscus structure of these tension gradients
is governed by the complex coupling between the hydrodynamics and transport processes
described in § 7.

Note that, as the interface transfer is the process allowing the relaxation of the elastic
energy stored in the peripheral films, it is a dissipative process. The only dissipative
features in the system are the viscous and diffusive transports, the first contribution scaling
as the square of the velocity gradients, and the second as the square of the concentration
gradients. The dissipative processes in the central part of the peripheral films have been
shown to be negligible in the § 5: the interface and bulk viscosities do not contribute to the
dynamics, and the diffusion in the films is either to fast or to slow to induce a significant
dissipation. The dissipation is thus localized in the menisci or in their vicinity, as shown
below.

6.2. Meniscus frustration – domain definitions
The prediction of the relationship between the velocity transfer and the tension difference
between adjacent films first requires us to analyse where the tension gradients are located.
This is performed using specific approximations in the different domains defined in this
section.

The surface tension variation along an interface is related to the bulk velocity v(s, ζ )

beneath it through the continuity of the tangential stress. We showed in § 4.2 that air drag
is negligible and the stress continuity thus simplifies into the Marangoni relation

∂γ

∂s
= ±η

∂v

∂ζ
. (6.1)

respectively for the interface at ζ > 0 and for the one at ζ < 0 (see the notation convention
in figure 6). The variation of the surface tension is thus coupled to the flow profile which
depends on the liquid confinement. Figure 13 represents the different domains and their
corresponding flow profiles. Note that the schematic is not to scale for clarity and that
the central film size, the meniscus radius of curvature and the film thickness verify dc �
rm � h.

The domain A is usually called the static meniscus, in which the curvature remains close
to the equilibrium one. Elsewhere, the liquid is confined in thin films characterized by a
thickness profile h(s), in which ∂sh 
 1 so that the classical lubrication approximations
apply. One important consequence is that the pressure in the films does not depend on ζ

and is only controlled by the Laplace pressure

P(s) = −γ0

2
∂ssh, (6.2)

with ∂ssh/2 the curvature of each interface. The reference surface tension γ0 is used in this
expression as tension variations would lead to higher-order corrections. The film tension
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Figure 13. Schematic of the velocity profiles and of the different domains. The interface colour codes for the
surface tension: the lower value is γ −

ml in dark blue and the higher value is γ +
ml in dark red.

σ , defined in figure 6, is the sum of both film interface tensions γ1(s) and γ2(s), and of the
action of the pressure,−P(s) = (γ0/2)∂ssh, integrated over the film thickness h(s)

σ (s) = γ1(s) + γ2(s) + γ0

2
h(s)∂ssh. (6.3)

The domain B, usually called the dynamical meniscus, of extension �m, is defined as
the part of the films in which the Laplace pressure is non-negligible. It connects the static
meniscus at low pressure to the films at reference pressure. A Poiseuille flow results from
the Laplace pressure gradient, which controls the volume exchanges between the films and
the meniscus.

The domain D is the central part of the film, where the only degree of freedom is a
stretching/compression deformation. The tensions satisfy γ1 = γ2 = σ/2 and the velocity
field is a plug flow. The film elements used in the previous section can only be defined in
this domain.

The novelty of our approach is to define the domain C, of length �, between the domains
B and D, in which the Laplace pressure is negligible, but the tensions on both film sides
are different. The tensions γ1(s) and γ2(s) are equal by symmetry in the central film but
may indeed differ in the peripheral films.

These domains are called the sheared film in the following. They arise from a mismatch
of surface velocity appearing on the peripheral films in the vicinity of the meniscus, due
to a geometrical frustration. On the stretched side for example, the interface coming from
the central film slips almost freely over the meniscus whereas, on the other interface, the
velocity must vanish on the symmetry plane (at the point P+

s in figure 13). This results
in the shearing of the thin film close to the meniscus and in a tension difference between
both interfaces. This domain C is far enough from the meniscus for the Laplace pressure to
be negligible, but close enough from it so that the boundary condition difference on both
interfaces is not screened. Such behaviour has already been observed and quantified for a
meniscus in contact with a solid wall (Cantat 2011; Reichert, Cantat & Jullien 2019), and
was conjectured in Petit (2014) for a free meniscus.
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Local origin of the visco-elasticity of a elementary foam

Note that this geometrical frustration is not specific to our deformation, and is a generic
feature for any meniscus connected to three (or any odd number of) films: it is not possible
to impose a uniform velocity on each of the three meniscus interfaces without getting a
velocity difference between both interfaces in at least one film.

The sizes of each domain are solution of the hydrodynamical problem and a
priori depend on the physico-chemical properties of the solution. However, from our
experimental observations, we assume that the sheared film length is much larger than the
dynamical meniscus length, and much smaller than the peripheral film size, thus leading
to the condition d± � � � �m, which allows us to separate the regions B, C and D. These
conditions will be discussed and verified in § 7. The approximations relevant for each
domain are discussed below.

6.3. Tension in the static menisci – domain A
On each of the three interfaces of the static meniscus, the surface tension variation is
given by the flow profile in the bulk through (6.1). The length over which the bulk velocity
v varies in the normal direction is a priori unknown, and can be much smaller than the
meniscus size rm, thus potentially leading to high velocity gradients. In that case, this
length should be the viscous boundary layer thickness �vbl given by

�st
vbl =

√
ηrm

ρU
or �tr

vbl =
√

ηT/ρ, (6.4)

respectively for the steady case and the transient case with T the fastest experimental
variation time scale. Both lengths are of the order of 0.1 mm, which is comparable to the
meniscus size. Consequently, the bulk flow is a recirculation extending over the whole
meniscus and rm is the relevant length scale for velocity gradient as well as for tension
variation along the interface. The corresponding interfacial stress difference between the
point in contact with the peripheral film and the point in contact with the central film scales
as Δγ ∼ ηU ∼ 10−5 N m−1, which is much smaller than the tension difference observed
in our experiments between the peripheral and the central films (Δσ ∼ 10−3 N m−1).

We can thus conclude that the meniscus has a uniform tension on each of its 3 interfaces,
γ ±

ml on the lateral sides, and γ ±
mc on the interfaces connected to the central film.

6.4. Tension in the dynamical menisci – domain B
This part of the film has been extensively studied for films having the same velocity and
the same tension on both interfaces. For incompressible interfaces moving at the velocity
U toward the thin film, the asymptotic thickness is given by Frankel’s law (Mysels et al.
1959)

hFr = 2.66rm

(
ηU
γ0

)2/3

. (6.5)

The associated surface tension difference between the film and the meniscus is

Δγ out = 3.84γ0

(
ηU
γ0

)2/3

. (6.6)

These results are valid in the limit of an infinitely large elasticity (incompressible
interfaces). Some corrections have been obtained for a finite interface elasticity E (Seiwert,

922 A25-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

52
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

th
eq

ue
 d

e 
l'U

ni
ve

rs
ite

 d
e 

Re
nn

es
 1

, o
n 

08
 S

ep
 2

02
1 

at
 1

3:
08

:4
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.529
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


A. Bussonnière and I. Cantat

Dollet & Cantat 2014; Champougny et al. 2015). These corrections are negligible if

E
γ0

�
(

ηU
γ0

)2/3

, (6.7)

which is always the case in our experiments.
When the film is pushed toward the meniscus at the velocity U, a steady solution also

exists but the tension difference between the film and the meniscus not only depends on
the capillary number Ca = ηU/γ0 but also on the asymptotic thickness in the film h∞,
through the non-dimensional parameter αFr = (h∞/rm)(3Ca)−2/3. For αFr in the range
[1, 5], the result is well fitted by Mysels et al. (1959)

Δγ in = γ0(3Ca)2/3(2.55α
1/3
Fr − 2.68). (6.8)

A steady solution has been observed in the Landau–Levich geometry, showing a
quantitative agreement between the theoretical and experimental film thickness profiles
(Denkov et al. 2006; Cantat 2013). However, we recently evidenced that this solution is
unstable for suspended film, and that the invariance in the y direction is spontaneously
broken. We show in Gros et al. (2021) that the tension difference Δγ in between the
film and the meniscus is positive even when U is oriented toward the meniscus, and
that Δγ in 
 Δγ out at a given capillary number. The tension jump associated with a film
motion toward the meniscus will thus be neglected.

Consequently, the tension difference between the peripheral films and the central one
arising from the dynamical meniscus is given by (6.6). This viscous response of the
dynamical menisci is plotted in figure 12, and it clearly appears that this contribution is
not large enough to explain our experimental results: a given transfer velocity U requires
a higher tension difference than the one predicted by Mysels’s theory.

Note that, in our case, the interface velocities on each side will be shown to be different
in the peripheral films. We show in Appendix D that the prediction of (6.6) still holds
if the velocity U is replaced by the mean velocity (U1 + U2)/2, U1 and U2 being the
velocities on both interfaces in the dynamical meniscus. As this mean velocity is lower
than the transfer velocity measured in the central film (see § 7.4.4), this reinforces the
conclusion that the observed tension difference between adjacent films cannot be explained
by this contribution only. The tension variations in our foam assembly, and equivalently
its dissipation, must originate from the domains C where thin films are sheared. The
prediction of this flow and of the induced dissipation is the aim of the next section.

7. Constitutive relation for the meniscus

It results from the previous analysis that the main dissipation should be localized in
the sheared films, in the peripheral films, close to the free menisci. In this section, the
surfactant and liquid transports are modelled in order to predict the relationship between
the transfer velocity and the tension difference between adjacent films. This relationship,
coupling a velocity and a force, rationalizes the effective viscosity of the system and
constitutes the constitutive relation for the meniscus.

7.1. Equation set
The key fact at the origin of the dissipation is the dead-end role played by the lateral
side of the free meniscus. In the top left film in figure 13, for example, the top interface
can slide over the meniscus and be transferred to the central film, whereas the lateral one
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Local origin of the visco-elasticity of a elementary foam

ζ

u∞

u2(s)

c(s,ζ)j h (s,ζ)v (s,ζ)

u1(s)

u2(sm)

u1(sm)

Pm

u∞

P0

Film side Meniscus
side

Γ∞

Γ2(s)

Γ1(s)

Γ∞

Figure 14. Scheme of the sheared film (domain C in figure 13) and notations used in the text. The peripheral
film is on the left side of the figure (s < 0) and the free meniscus on the right side (s > sm). The interface (2)
is connected to the interface of the symmetric peripheral film, whereas the interface (1) is connected to the
central film. The case u∞ > 0 represented here corresponds to the compression case.

encounters the interface coming from the bottom left peripheral film. The meniscus cannot
instantaneously absorb the surfactant flux and the lateral interface must slow down when
reaching the meniscus. This breaks the symmetry between both interfaces and shears the
film.

The model quantifies this mechanism by solving the coupled Stokes and surfactant
transport equations in the appropriate limits. With this aim, we consider the piece of
peripheral film shown in figure 14. The abscissa s and the film tangent t̂ are oriented from
the peripheral film to the free meniscus, and the indices 1 and 2 indicate, respectively, the
interface connected to the central film and the interface connected to the other peripheral
film. The normal to the film is n̂, oriented from the interface 2 to the interface 1 and the
corresponding variable is ζ , with an origin in the middle of the film. The film thickness
is h(s), the bulk velocity is v(s, ζ )t̂, the interface velocities are u1(s) and u2(s) and the
surface coverages are Γ1(s) and Γ2(s). The notation ∂x indicates the partial derivative with
respect to any variable x.

For the sake of simplicity, and in an attempt to build a relationship between the transfer
velocity and the film tension at a given time, independently of the film history, we assume
that the liquid and surfactant transports are stationary. This requires that the transient
regime is shorter than the experimental time scale.

We start from the lubrication theory and neglect the Laplace pressure. The velocity
field is therefore governed by ∂ζζ v = 0, and the velocity profile is equal to, with um =
(u1 + u2)/2 and Δ f u = u1 − u2

v(s, ζ ) = Δ f u
h

ζ + um. (7.1)

The flow rate at the position s is

Q =
∫ h/2

−h/2
v dζ = umh, (7.2)

and, from the mass conservation, we find

h∞u∞ = h
2
(u1 + u2), (7.3)

with h∞ and u∞ the thickness and velocity in the central part of the peripheral film, where
both interfaces are identical.

922 A25-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

52
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

th
eq

ue
 d

e 
l'U

ni
ve

rs
ite

 d
e 

Re
nn

es
 1

, o
n 

08
 S

ep
 2

02
1 

at
 1

3:
08

:4
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.529
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


A. Bussonnière and I. Cantat

The shear flow in the film imposes a viscous stress at the interface, coupled to a surface
tension gradient by the Marangoni law

η
Δ f u

h
= ∂sγ1 and ∂sγ2 = −∂sγ1. (7.4a,b)

The surface tension is related to surface coverage Γ using (2.2) leading to

− E
Γ0

∂sΓ1 = η
Δ f u

h
and ∂sΓ2 = −∂sΓ1. (7.5a,b)

As already discussed in § 5.2, surfactant diffusion along the film is slower than the
convection, and surfactant diffusion across the film is faster than the convection. The
convection diffusion equation thus simplifies into ∂ζζ c = 0. We assume a fast adsorption
process (no adsorption barrier) so that the equilibrium relation between the interface
and the bulk, (2.3), can be used. The boundary conditions at the interfaces are thus
ci = c0 + (Γi − Γ0)/hΓ (with i = 1 or 2) and the bulk concentration is

c(s, ζ ) = c0 + Γ1 − Γ2

hhΓ

ζ + Γ1 + Γ2

2hΓ

− Γ0

hΓ

. (7.6)

Using this profile and neglecting surface diffusion, the surfactant conservation on each
interface gives, with j the diffusive flux coming from the bulk to interface 1,

∂s(Γ1u1) = j = −D
Γ1 − Γ2

hhΓ

, (7.7)

∂s(Γ1u1) = −∂s(Γ2u2). (7.8)

Equations (7.5b) and (7.8) imply that the two quantities Γ1 + Γ2 and Γ1u1 + Γ2u2 are
conserved along the film so

Γ1 + Γ2 = 2Γ∞, (7.9)

Γ1u1 + Γ2u2 = 2Γ∞u∞, (7.10)

leading to

Γ2 = 2Γ∞ − Γ1, (7.11)

u2 = 2Γ∞u∞
2Γ∞ − Γ1

− u1Γ1

2Γ∞ − Γ1
. (7.12)

The whole dynamics is finally controlled by a set of two coupled differential equations,
deduced respectively from the Marangoni law and from the surfactant mass balance at
interface 1

∂sΓ1 = −ηΓ0

E
Δ f u

h
, (7.13)

∂s(Γ1u1) = −2D
Γ1 − Γ∞

hhΓ

, (7.14)

where

Δ f u = u1 − u2 = (u1 − u∞)
2Γ∞

2Γ∞ − Γ1
, (7.15)

h = 2h∞u∞
u1 + u2

= h∞u∞(2Γ∞ − Γ1)

Γ∞u∞ + u1(Γ∞ − Γ1)
. (7.16)
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Local origin of the visco-elasticity of a elementary foam

7.2. Boundary conditions
The model applies only in the sheared film defined in § 6.2 and depicted as the domain
C in figure 13. The problem is thus solved between the point P0, chosen as the abscissa
origin s = 0, at the boundary between this domain and the central part of the peripheral
film (domain D), and the point Pm at s = sm at its boundary with the dynamical meniscus
(domain B).

By definition, the conditions at s < 0 are u1 = u∞ and Γ1 = Γ∞ imposed in the central
part of the peripheral film (see figure 14). If the peripheral film is compressed Γ∞ > Γ0
and u∞ > 0; the signs are opposite if the film is stretched.

These boundary conditions are sufficient to solve the system ((7.13) and (7.14)).
However, the aim of the solution is to determine the relationship between the surface
coverage Γ∞ (related to the tension in the peripheral film) and the film velocity u∞
(related to its transfer velocity). In the following, Γ∞ will thus be considered as our control
parameter, and u∞ as an unknown quantity. As expected, the problem should thus be
closed with additional conditions, at the meniscus. These conditions quantify the dead-end
role of the meniscus for the interface 2 and thus provides the sought relationship between
u∞ and Γ∞.

For large values of s, the meniscus is reached and the assumption of vanishing Laplace
pressure fails. The boundary conditions must therefore be imposed at the boundary Pm
shown in figure 14, where the used approximations are satisfied, and not in the central
film (for interface 1) nor in the symmetry plane z = 0 (for interface 2, at the point Ps
of the meniscus lateral interface shown in figure 13). We thus need to make additional
assumptions.

For interface 1, the tension in the central film is the equilibrium tension, and does
not vary much along the static meniscus interface, nor along the dynamical meniscus
interface, as shown in §§ 6.3 and 6.4. We therefore impose the condition Γ1(sm) = Γ0,
which determines sm.

On interface 2, the velocity vanishes at the point Ps by symmetry. This information must
be used to build the condition at the required point Pm. The surfactant mass balance made
on the piece of interface between Pm and Ps imposes

Γ2(sm)u2(sm) + jm = 0, (7.17)

with jm the amount of surfactant adsorbed from the bulk along the meniscus interface, per
unit time, between Pm and Ps. This quantity is difficult to predict and its modelling would
require a better control of the solution transport along the axis of the meniscus (i.e. in the
y direction). In our model, we use the simplest phenomenological relationship

jm = −rm

τ
(Γ2(sm) − Γ0), (7.18)

with τ the characteristic adsorption time of the surfactants, from the meniscus bulk at
the reference concentration c0 to the interface 2 at a concentration Γ2(sm). For a purely
diffusive case, this flux would be jm = −rmD(Γ2(sm) − Γ0)/(hΓ �mbl), with �mbl ∼ √

Dt
the thickness of the mass boundary layer, of the order of 10 μm after one second. This leads
to τdiff ∼ hΓ �mbl/D ∼ hΓ

√
t/D ∼ 1 s and Udiff

m = rm/τ diff ∼ 5 × 10−4 m s−1. However,
convection and recirculation are important in the meniscus, and a faster transport can a
priori be achieved. The comparison with the experimental results of figure 19 will evidence
a posteriori that Um = rm/τ evolves during the dynamical process. It is larger than Udiff

at short time and becomes negligible afterwards.
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The boundary condition at sm for the interface 2, which closes the model, is thus finally

Γ2(sm)u2(sm) = rm

τ
(Γ2(sm) − Γ0). (7.19)

In order to perform a numerical solution, the asymptotic conditions u1 = u∞ and Γ1 =
Γ∞ at s → −∞ need to be replaced by a condition at s = 0. As shown below, Γ1 converges
exponentially to Γ∞ when s → −∞. We thus define the position origin s = 0 as the point
satisfying

Γ1(0) = Γ∞ + α(Γ0 − Γ∞), (7.20)

with α a small parameter. The corresponding value u1(0) is determined in § 7.4.2 by
linearization of the equation set. Numerically, the problem is solved with α = 0.05,
without loss of generality. The length sm, used in the numerical solution, then depends
on the arbitrary choice of α. To correctly characterize the sheared film length we therefore
introduced the characteristic length � extracted a posteriori from an exponential fit of the
numerical solution.

The system ((7.13) and (7.14)), with the boundary conditions both in the thin film and
in the meniscus constitutes a closed problem, with Γ∞, h∞ and the physico-chemical
constants as known parameters and u∞ and the length sm (or �) of the sheared film as
solutions.

7.3. Scaling laws
Before performing the whole numerical solution, some scaling laws can be anticipated. In
the following, we use the notation δ for a difference X(sm) − X(0) for any variable X, in
order to estimate the spatial derivative of X. In contrast the notation Δ indicates a variation
from the equilibrium value. Finally Δ f indicates a difference between the interfaces 1 and
2 across the film, close to the meniscus. We thus define δΓ1 = Γ1(sm) − Γ∞ = Γ0 − Γ∞
and δu1 = u1(sm) − u∞. Note that (7.11) imposes that Γ1(sm) − Γ2(sm) = 2δΓ1 so the
same scaling and the same sign hold for both δΓ1 and Δ f Γ , representing respectively
the concentration variation along the interface 1 and the concentration difference between
both interfaces. Similarly, (7.15) imposes that Δ f u between both interfaces is of the same
order as δu1, as long as δΓ1 
 Γ0.

With these definitions, we have u∞ > 0, δΓ1 < 0, δu1 > 0 for the pushing case, and
the opposite for the pulling case. The different scaling laws obtained below are built on
three characteristic velocities, the capillary velocity Uc, the diffusion velocity Ud and the
reservoir velocity associated with the meniscus Um defined as

Uc = E
η

, Ud = D
hΓ

, Um = rm

τ
. (7.21a–c)

The orders of magnitude established in § 8 lead to Uc ∼ 3 m s−1 and Ud ∼ 5 × 10−7

m s−1. The film thickness always remains close to its asymptotic value (see figure 16c).
Scaling laws for � and for U = −u1(sm) (given our conventions these two velocities are
defined with an opposite sign, see figure 14), are proposed below, in the three different
regimes that we identified.

7.3.1. Vanishing flux at the meniscus
We first assume that the meniscus does not play any reservoir role, the flux jm thus being
negligible in (7.17). This limit, which can be reached either because of a vanishing velocity
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Local origin of the visco-elasticity of a elementary foam

ζ

Φ1 = u∞Γ∞ Φ1 = 2u∞Γ∞η	(u∞/h)

Φ2 = u∞Γ∞

Φd = 	 j

γ∞ γ0 = γ∞ – E δΓ1/Γ0

γ∞ + E δΓ1/Γ0
γ∞

h Film
side

Meniscus
side

	

Figure 15. Scheme of the dynamics in the limit of vanishing velocity at the meniscus on interface 2 (bottom
interface). Interface 1 (top interface) is connected to the peripheral film (on the left) and to the central film
(on the right) through the free meniscus. For the compression, the surfactant excess is lower in the central film
than in the peripheral film, so δΓ1 < 0 and u∞ > 0. The signs are opposite for the stretching. Surfactant fluxes
initially coming from interfaces 1 and 2 are illustrated by the blue and red arrows, respectively. Black arrows
illustrate the tension and the viscous forces.

or because of a vanishing DOH surface excess at the meniscus on interface 2, is explored
first in the compression case, and then in the stretching case.

In compression, the surface excess Γ2(sm) is larger than its equilibrium value and
cannot vanish. It is, however, usually observed that the velocity may vanish in such
cases, this effect being known as the stagnant cap limit (Cuenot, Magnaudet & Spennato
1997; Cantat 2011; Reichert et al. 2019). In this limit, and in steady state, the whole
flux Φ2 = u∞Γ∞ advected on interface 2 must diffuse to interface 1, which imposes
Γ∞u∞ ∼ �j ∼ −D�δΓ1/(h∞hΓ ) (as depicted in figure 15). The length � of the sheared
film can thus be seen as an exchange length, which must be large enough for the whole flux
Φ2 to reach the interface 1 by diffusion, before reaching the stagnant cap at the meniscus.
Then, on the interface 1, the flux at the meniscus must be twice the flux advected on
the interface at the peripheral film side. As Γ remains of the order of Γ0, the velocity
u1(sm) is of the order of 2u∞ ((7.10)), which leads to δu1 ∼ u∞. The viscous force between
both interfaces is thus of the order of ηu∞�/h. A second coupling between the unknown
quantities � and u∞ is given by the Marangoni law −EδΓ1/Γ∞ ∼ ηu∞�/h∞.

Combining both relationships, we get the following scaling laws:

δΓ1

Γ0
∼ − u1(sm)√

UcUd
so

Δσ

2E
∼ U√

UcUd
, (7.22)

� ∼ h∞
(

EhΓ

ηD

)1/2

∼ h∞

√
Uc

Ud
. (7.23)

In this regime, the relevant velocity scale is
√

Uc Ud ∼ 10−3 m s−1. Using the
experimental order of magnitude Δσ/E ∼ 1, the scaling (7.22) predicts a transfer velocity
of the order of 10−3 m s−1, as expected. The length � of the sheared film is independent of
the tension and its order of magnitude is 103h∞ ∼ 1 mm. This validates the different
assumptions made: � 
 d ensuring that the film is not entirely sheared and � � h∞
ensuring that the lubrication approximation can be used. Moreover, � > �m ∼ 100 μm,
the extension of the dynamical meniscus, so that Laplace is negligible in the sheared
film. However, these two length scales may become similar for different solutions and
the coupling between the sheared film and the dynamical meniscus should probably be
considered in a more refined model.

In the stretching case, we need to consider two situations: the flux at the meniscus
may vanish because (i) the velocity vanishes or because (ii) the concentration vanishes.
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A. Bussonnière and I. Cantat

In the limit of small tension in the film (Δσ 
 E), the surface excess satisfies the condition
δΓ1 
 Γ , and only the first case needs to be considered. It leads to the same scaling as in
the compression case: (7.22) and (7.23), with δΓ1 > 0 and u1(sm) < 0.

However, at some critical tension, the surface excess vanishes on interface 2, at the
meniscus, and the stretching dynamics strongly differs from the compression dynamics:
the tension does not vary linearly with the transfer velocity anymore and saturates at
an upper limit, whatever the value of the transfer velocity. From (7.11) we deduce,
as the surface excess Γ2(sm) must remain positive, that this critical case occurs for
Γ1(sm) = 2Γ∞, i.e. Γ∞ = 0.5Γ0. This corresponds to Δσ/(2E) = 0.5, which constitutes
an upper limit for this control parameter. From (5.5), the corresponding upper limit for
the deformation is εmax = 1. The divergences associated with this particular regime are
investigated in § 7.3.3.

In summary, when the meniscus cannot supply or adsorb any surfactant flux (small Um)
the dynamics induced by a meniscus can be described by a well-defined constitutive law:
the tension difference Δσ varies linearly with the transfer velocity; in the extension case,
this tension saturates at Δσ = E, and does not depend on the velocity at larger velocity
values.

7.3.2. Fast meniscus transport
Here, we consider the limit Um � √

UcUd, in which the meniscus plays the role of a
reservoir for the surfactants and almost entirely absorbs (or provides in the stretching case)
the flux Φ = Γ∞u∞ advected on the interface 2. In that case, u1(sm) ∼ u2(sm) and (7.19)
directly provides the relationship between the velocity at the meniscus and the surface
excess

u1(sm) ∼ u∞ ∼ −δΓ1

Γ0
Um so

Δσ

2E
∼ U

Um
. (7.24)

The scaling for � can be deduced from the flux conservation (7.14) leading to u∞δΓ1 +
Γ0δu1 ∼ −�DδΓ1/(h∞hΓ ). Coupled to the Marangoni law η�δu1/h∞ ∼ −EδΓ1/Γ0 it
simplifies into

u∞ − Uc
h∞
�

∼ −Ud
�

h∞
. (7.25)

The various limits discussed below each corresponds to one of these three terms within
(7.25) being negligible. The term u∞ is the smallest in the limit Um|δΓ1|/Γ0 
 √

UcUd.
In that case, the scaling is the one of (7.23). The two other cases are discussed below,
and depend on the sign of u∞. In the pushing case, u∞ is positive and can thus only
balance Uch∞/�. Physically, it means that the diffusive transport between both interfaces
is negligible. This limit is consistent with the mechanical constraints because (i) the
interface flows from the peripheral film at large surface excess to the central film at
equilibrium coverage so δΓ1 < 0, (ii) on the other hand, δu1 > 0, leading to an increase of
the area on interface 1, and thus a decrease of the surfactant excess Γ1 along the sheared
film. A consistent solution can thus be reached without any diffusion, the convection and
the interface deformation providing the required Marangoni stress. The scaling obtained
in the limit of large Um, in compression, is thus

� ∼ h∞
(−δΓ1

Γ∞

)−1 Uc

Um
. (7.26)
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Local origin of the visco-elasticity of a elementary foam

The length � diverges at small δΓ1, which may seem surprising. However, in this limit
the velocity difference between both interfaces decreases, and the shear, even if spread
over a large part of the film, is very small.

The dynamics is entirely different in the stretching case, as both terms of the left-hand
side of (7.25) have the same sign. Indeed, as |u∞| < |u1(sm)|, the interface 1 is surprisingly
compressed during its transport through the sheared film. However, the positive tension
associated with the film stretching imposes δΓ1 > 0. This can only be achieved with a
non-negligible diffusion from the interface 2. In the limit Um � √

UcUd, the obtained
scaling for the stretching case is

� ∼ h∞
δΓ1

Γ∞
Um

Ud
, (7.27)

whereas the scaling of (7.23) is recovered in the other limit.
It should be noted that � becomes large for large Um. As for the small δΓ1 limit in

compression, the velocity difference between both interfaces decreases and the dissipation
induced by the meniscus frustration becomes negligible.

In this second regime, governed by the meniscus, the tension difference increases
linearly with the transfer velocity, with a prefactor 2E/Um. As in this regime Um �√

UcUd, this prefactor is smaller than the prefactor 2E/
√

UcUd obtained in the first regime
(see (7.22)). The meniscus acts as a reservoir for the surfactants, and attenuates the film
shear. A strong asymmetry arises for the exchange lengths: in the compression case, the
surface excess gradients establish on each interface with a negligible diffusion from one
interface to the other, and the sheared film length vanishes at large Um. In contrast, these
gradients require a large exchange between interfaces in the stretching case, and � increases
with Um.

7.3.3. Diverging behaviour in the stretching case
In this last regime, observed at large δΓ1, the tension in the stretched film becomes
independent of the velocity and saturates at Δσ = E. The assumption δΓ1 
 Γ0 used
in the previous section is not valid anymore and a different scaling applies.

We define Γ∞ = (Γ0/2)(1 + ε̂), with ε̂ a small parameter, so that the concentration at
the meniscus is Γ2(sm)/Γ0 = ε̂. At large Um, the velocities in the stretched film are much
higher than their gradients and u2(sm) ∼ u∞. The condition (7.19) thus becomes

u∞ ∼ −Um

ε̂
. (7.28)

The sheared film extension is obtained from (7.25), in which the term proportional to
Uc can be neglected. This leads to

� ∼ h∞
ε̂

Um

Ud
. (7.29)

All the scalings obtained in this section are obtained numerically in the following
section.

7.4. Numerical solution

7.4.1. Non-dimensionalization
In order to reduce the number of parameters to explore, we now build a dimensionless
form of the problem using u1 = |u∞|ū, Γ1 = Γ∞Γ̄ , h = h∞h̄ and s = (Eh∞/η|u∞|)s̄.
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A. Bussonnière and I. Cantat

The scaling chosen for s comes form (7.13). In the dimensionless form, and combining
(7.13) and (7.14), the new system writes

∂s̄Γ̄ = − 1
χ∞

Δ f ū
h̄

, (7.30)

∂s̄ū = 1
χ∞

ūΔ f ū
Γ̄ h̄

− 2A
Γ̄ − 1
Γ̄ h̄

, (7.31)

with χ∞ = Γ∞/Γ0, A = DE/(ηu2∞hΓ ) = UcUd/u2∞ and

Δ f ū = 2
2 − Γ̄

(ū − ū∞), (7.32)

h̄ = ū∞
2 − Γ̄

ū∞ + ū(1 − Γ̄ )
. (7.33)

The asymptotic velocity in the film at small s is ū∞ = 1 if the film is pushed toward the
meniscus; in that case, the condition χ∞ > 1 must be fulfilled to ensure the existence
of solutions. If the film is pulled, we have ū∞ = −1 and χ∞ < 1. In both cases the
asymptotic concentration in the film is Γ̄ = 1. Note that A, more precisely 1/

√
A, is

a dimensionless velocity comparing the peripheral film velocity u∞ and the intrinsic
physico-chemical velocity

√
UcUd as identify in § 7.3.1.

The conditions at the meniscus become

Γ̄ (s̄m) = 1
χ∞

, (7.34)

(ū − Δ f ū)(s̄m) = K
√

A
χ∞ − 1
2χ∞ − 1

, (7.35)

with

K = 2rm

τ

√
ηhΓ

DE
= 2Um√

UcUd
, (7.36)

which compares the reservoir velocity to the physico-chemical velocity. For K � 1
meniscus behaves as a reservoir as analysed in the fast meniscus transport case in § 7.3.2
while for K 
 1 the dynamics is governed by the physico-chemical process as described
in § 7.3.1.

Equations (7.30) and (7.31) are dimensionless analogues of the system (7.13) and (7.14)
and (7.34) and (7.35) are the dimensionless boundary condition defined in (7.19) and (7.20).
Finally, the limit discussed in § 7.3.3 is obtained in the stretching case, for χ∞ → 1/2.

7.4.2. Linearization and boundary conditions at s̄ = 0
To solve the system (7.30) and (7.31), one needs to impose compatible boundary conditions
at s̄ = 0, which we obtain by linearizing the equations. We introduce ū = ū∞ + εu and
Γ̄ = 1 + εΓ with εu, εΓ 
 1. At first order in these small parameters, we get Δ f ū = 2εu,
h̄ = 1, ∂s̄εΓ = −(2/χ∞)εu and ∂s̄εu = (2ū∞/χ∞)εu − 2AεΓ , having the solutions εΓ =
aΓ eks and εu = aueks. Using the convention chosen in (7.20) to define the origin of s, this
imposes aΓ = α(1 − χ∞)/χ∞ where α = 0.05 is a small arbitrary constant involved in
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Local origin of the visco-elasticity of a elementary foam

the numerical solution. Injecting these solutions in the linearized equations gives

aΓ k + au
2

χ∞
= 0, (7.37)

2AaΓ + au

(
k − 2ū∞

χ∞

)
= 0, (7.38)

which characteristic equation is

k2 − 2
ū∞
χ∞

k − 4A
χ∞

= 0. (7.39)

Since A > 0, χ∞ > 0 and ū∞ = 1 for the pushing case and ū∞ = −1 for the pulling case,
the only positive solution, compatible with the asymptotic behaviour at s → −∞, is in
both cases

k = 1
χ∞

(
√

1 + 4Aχ∞ + ū∞), (7.40)

leading to the initial conditions

Γ̄ (0) = 1 + α
1 − χ∞

χ∞
, (7.41)

ū(0) = ū∞ − α
1 − χ∞

2χ∞
(
√

1 + 4Aχ∞ + ū∞). (7.42)

7.4.3. Definition of the relevant numerical quantities
The nonlinear coupled equations (7.30) and (7.31) are first solved with the Matlab solver
ode45 with the initial conditions (7.41), (7.42), for a given value of χ∞, K and A. The upper
s value sm is determined with (7.34). This solution is performed with different values of
the parameter A until the condition (7.35) is satisfied too, for the specific value A∗(K, χ∞).
The obtained parameter A∗(K, χ∞) eventually provides the film velocity as a function of
its asymptotic film tension, by simply using the definition of A in (7.31)

|u∞| =
√

UcUd√
A∗(K, Γ∞/Γeq)

. (7.43)

Note that the sign of u∞ must be prescribed a priori, as ū reaches ū∞ = ±1, in the pushing
and pulling cases respectively, at large negative s. Figure 16 shows the typical spatial
evolution in the sheared domain of the surface coverages, velocities of both interfaces
and of the film thicknesses for both the extension and compression cases.

From A∗(K, χ∞) we can now predict the quantities experimentally measured in
figure 12. The film tension difference Δσ between the peripheral film and the central
film can be expressed as a function of the Gibbs elasticity and the numerical parameter
χ∞ with the relation

Δσ

2E
= δΓ1

Γ0
= 1 − χ∞. (7.44)

The velocity in the central film U, defined as negative for the compression and positive
for the extension, is identified with −u1(sm), the velocity being assumed to be constant
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u/
�– U d

/U
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(b)(a)

(c)
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Figure 16. Evolution of the dimensionless surface concentrations (a), surface velocities (b) and film
thicknesses (c) in terms of the dimensionless coordinate (s/h∞

√
Ud/Uc) for |δΓ |/Γ0 = 0.2 and K = 10−3

(solid lines) and K = 0.39 (dashed lines). The extension case is represented in blue and the compression in red.
The curves stop at different s = sm since sm depends on K and δΓ . The K = 10−3 example is representative of
the small K regime discussed in § 7.3.1, whereas the K = 0.39 case is a generic example, in which all effects
compete.

along the meniscus side (on interface 1). This velocity is thus expressed as

U√
UcUd

= − |u∞|√
UcUd

ū1(s̄m) = − ū1(s̄m)√
A∗ . (7.45)

The other significant dynamical quantity is the length � of the sheared film. Its
non-dimensional value �̄ is obtained by fitting the evolution of Γ̄ (s̄) with an exponential
function. Then we get

�

h∞

√
Ud

Uc
= �̄h∞Uc

h∞|u∞|

√
Ud

Uc
= �̄

√
A∗. (7.46)

7.4.4. Numerical results
The numerical results for compression and extension are shown in figure 17. The
relationship between the tension difference and the transfer velocity is shown in (a) for
the compression. For all the values of the parameter K = 2Um/

√
UcUd the tension is

proportional to the velocity. As expected from the scaling laws analysis, the prefactor
is constant at small K ((7.22)) and decreases with K at large K ((7.24)). As shown in
figure 17(b), all numerical data fall on a single master curve

Δσ

2E
= U

U∗ , (7.47)

if the velocity is rescaled by

U∗ =
√

UcUd(2 + K) = 2(
√

UcUd + Um), (7.48)

which nicely interpolates between the asymptotic behaviours at small and large K.
This is the sought constitutive relation for the meniscus, based on the microscopic
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Figure 17. Numerical solutions for the compression (top) and the extension (bottom). The control parameter
K = 2Um/

√
UcUd has been varied logarithmically from 10−3(blue curves) to 103 (red curves). (a), (d) Film

tension difference Δσ between the peripheral film and the central film, rescaled by the film elasticity 2E, as
a function of the transfer velocity U in the central film, rescaled by

√
UcUd . The slope of the black lines

corresponds to a linear law. For the compression, Δσ and U are negative and we plotted their absolute values.
(b), (e) Same data, with the velocity rescaled by U∗ = 2.0

√
(UdUc) + 2.0 × Um, which provides the best fit of

the numerical data and smoothly interpolates between the scalings 7.22 and 7.24. The dashed line corresponds
to Δσ/(2E) = U/U∗ and the horizontal dashed line in (e) is Δσ/(2E) = 0.5. (c), (f ) Length � of the sheared
film, rescaled by h∞

√
Uc/Ud , as a function of the tension rescaled by 2E. The black dashed lines in (c)

corresponds to �/(h∞
√

Uc/Ud) = 0.57/(KΔσ/(2E)), for two values of K, corresponding to the closest curve
(K = 81 and 208). This is the scaling of (7.26), with a fitted prefactor. Similarly, in ( f ) they correspond to
�/(h∞

√
Uc/Ud) = 0.57KΔσ/(2E), for the same K values (scaling of (7.27)).

physico-chemical properties of the system. This prediction nevertheless relies on the
linearized (2.2), which fails at large compression, as will be discussed in § 8.6.

The same behaviour is recovered for the extension case (figure 17d,e) at small tension.
The master curve of (7.47) is still obtained, which is consistent with a linear relationship
between U and Δσ , expected in the limit of vanishing Δσ . However, at larger tension, the
saturation at Δσ/(2E) = 0.5 breaks the symmetry between stretching and compression. It
corresponds to a vanishing interface concentration at the meniscus, on the lateral side
(interface 2). The tension reaches a plateau and the velocity diverges, as discussed in
§ 7.3.3 and in Appendix E.

The sheared film length � is plotted in figure 17(c) as a function of the film tension
difference for the compression case. It is independent of the tension at small K value
and it decreases with Δσ at large K, as expected from (7.23) and (7.26). Its upper bound is
h∞

√
Uc/Ud ∼ 10−3 m, much smaller than the film size, as a priori assumed by the model.

At large Um, � can becomes of the order of the dynamical meniscus length �m. In that case,
some corrections related to the Laplace pressure are expected in the sheared film domain.
Finally, for significant tension variations the length reaches another constant value, which
depends on Um and is not captured by our scaling analysis.

For the extension case, figure 17( f ), the sheared length at small K (2Um 
 √
UcUd) is

constant and is the same as in compression. A significant difference with the compression
appears at large K where � increases with Δσ as predicted by (7.27). Moreover, the sheared
length diverges close the tension saturation Δσ/(2E) = 0.5 with a scaling law predicted in
(7.29) and verified in Appendix E. When � becomes significant, the sheared film invades
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the entire peripheral film and our model breaks down as the domain D represented in
figure 13 entirely disappears.

On the basis of these numerical results, we can now refine our description of the transfer
velocity. Its value U is defined here as the velocity of the central part of the central film.
The velocity Up of the central part of the peripheral films has been assumed to be close
to U in § 3.1, on the basis of the observations reported in Bussonnière et al. (2020).
The corresponding numerical quantities are U = −u1(sm) and Up = −u∞, which actually
differ from each other. Indeed, using (7.11) and (7.19) at s = sm we get

u2(sm) = 2Um
Γ∞ − Γ0

2Γ∞ − Γ0
, (7.49)

so from (7.12) and (7.47) we deduce

U = −2u∞

1 + 2
Um

U∗ − 2
u∞
U∗

= Up
2
√

UcUd + 2Um

Up + √
UcUd + 2Um

. (7.50)

At small tension (U and Up much smaller than U∗), we thus find U ∼ 2Up if Um 
√
Uc Ud and U ∼ Up in the opposite limit. Physically, if 2Um 
 √

UcUd, the top interface,
sliding at velocity U toward the central film, must carry the total flux coming from both
interfaces of the peripheral film. At small tension, the flux variations along the interfaces
are only due to velocity variations and not to surface excess variations (see § 7.3.1), so
U ∼ 2Up. In contrast, in the case 2Um � √

UcUd, the flux on the external interface of the
peripheral film is entirely absorbed/provided by the meniscus, and the top interface carries
the same flux all along the sheared zone, so U ∼ Up. Note that figure 4 of Bussonnière
et al. (2020) shows that both velocities U and Up are of comparable value but does not
allow us to make a quantitative comparison.

8. Comparison with experimental data

In this section, all the experiments performed at different deformation amplitudes (Δd),
motor velocity (V) and mean position (dm) are compared to the model developed in the
previous section.

8.1. Compared quantities
The model developed in § 7 predicts the tension field on both interfaces in the sheared film,
i.e. in the domain C of the figure 18. The film tension difference Δσ (=2Δγs) discussed
in this section is thus only the film tension difference between the central part of the
peripheral film and its boundary with the dynamical meniscus. It represents the dominant
contribution to the film tension difference between the peripheral film and the central film.
However, the tension jump in the dynamical meniscus, associated with the film extraction,
is not entirely negligible and will be added as a correction. As shown in figure 18, this
correction Δγ out is located in the peripheral film for the stretched side, and in the central
film for the compressed side. Its value is given by (6.6) (Mysels et al. 1959).

Following the scheme of the surface tension distribution along the interfaces (figure 18),
we get the full theoretical prediction for the tension in the compressed film as

Δσ−
th

2E
= 2γ − − 2γ0

2E
= 2Δγ −

s − 2Δγ out−
2E

= Δσ−

2E
− 3.84

γ0

E

(
η|U|
γ0

)2/3

, (8.1)
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Local origin of the visco-elasticity of a elementary foam
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U

Figure 18. Localization of the different surface tension gradient in the experiments. Here, the symbol Δ

corresponds to the difference between the two ends of the associated arrows; Δγ out± are the tension differences
induced by the Frankel film extraction (domain B, (6.6)); Δγ ±

s = 1
2 Δσ± are the tension differences predicted

in § 7 for the sheared film (domain C). The transfer velocity U is by convention positive on the stretched side
and negative on the compressed side.

with Δσ− the film tension associated with the sheared film and predicted as a function
of U = −u1(sm) by the model of § 7 (see figure 17). It should be noted that the tension
of the meniscus interface connected to the central film is γ −

mc = γ0 − Δγ out as shown in
figure 18, and thus differs from the boundary condition γ0 imposed in the shear model.
However, this correction would only provide a second-order correction while greatly
complicating the numerical solution.

The extension case is similar, but the tension jumps associated with the Frankel film
extractions are located in the peripheral films. The extraction velocity is thus not identical
on both interfaces: it is U = −u1(sm) on the top interface of the stretched film, and U+

2 =
−u2(sm), on the external interface (figure 18). In that case, we show in Appendix D that
(6.6) remains valid if the averaged velocity is used.

The total film tension difference is finally given by

Δσ+
th

2E
= 2γ + − 2γ0

2E
= 2Δγ +

s + 2Δγ out+
2E

= Δσ+

2E
+ 3.84

γ0

E

(
η(U + U+

2 )

2γ0

)2/3

, (8.2)

with Δσ+ the film tension associated with the sheared film.
Note that, in both cases, the absolute value of Δσ is increased by the additional term.

8.2. Time evolution and fitting procedure
The data associated with the experiments of the first campaign are plotted in figure 19.
The time resolution of this campaign is not good enough to compute the transfer velocity
U during the motor motion and only the relaxation phase (i.e. after the motors stop) is
shown. A good reproducibility is observed for each set of parameters (each colour) but the
relationship between Δσ and U differs from one parameter value to the other, especially
when Δd and dm vary, at early time (i.e. for large velocities). Moreover, at early time,
experiments with injection consistently exhibit higher transfer velocities than the ones
without injection which suggest that the velocity Um plays an important role in this regime.
At later time, i.e. for smaller velocity, all the experiments remarkably converge toward a
single master curve.

The model is built on the three parameters Uc = E/η, Ud = D/hΓ and Um = rm/τ

(see § 7.3). The capillary velocity Uc = 3 m s−1 has been precisely determined from
the experimental results of § 5. The diffusion velocity Ud is also a well-defined constant
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Figure 19. Comparison between the experimental and the theoretical viscous responses of an elementary
foam. The solid lines and dashed lines are the predictions of (8.1) and (8.2), based on the numerical results
shown in figure 17, with Uc = 3 m s−1, Ud = 5 × 10−7 m s−1 and, respectively Um → 0 mm s−1 and
Um = 3 mm s−1. Experimental points correspond to the relaxation phase only (after the motor stops) and the
large velocities thus correspond to the small times. Three control parameters were independently varied: the
amplitude Δd in (a,d) with dm = 12 mm and V = 50 mm s−1; the motor velocity V in (b,e) with Δd = 6 mm
and dm = 12 mm; and the mean position dm in (c,f ) with Δd = 5 mm and V = 50 mm s−1. Each colour
corresponds to one set of parameters. Experiments represented on the top (a–c) were performed without
injection while liquid was supplied to the foam for the bottom experiments (d–f ).

quantity. However, hΓ cannot be deduced from our measurements in § 5 and different
theoretical definitions may be relevant, leading to different possible values, as discussed
in § 2.3. It is thus kept as an adjustable parameter, assumed to be the same for all the data
sets. Finally, the velocity Um has been introduced as a phenomenological parameter, to
quantify the ability of the meniscus to provide or absorb surfactants. This quantity can
vary with time, the meniscus being a priori a more efficient reservoir at the beginning of
the deformation. As shown in figure 17(a) and (d) all curves collapse on a single master
curve at small Um, this master curve being an upper limit for Δσ . We thus interpret the
superposition of the different curves in figure 19 at long times as the limit Um = 0 m s−1.

On the basis of this assumption, we thus fit the late relaxation phase, when menisci are
potentially depleted/saturated, using Um = 0 mm s−1 and Ud as a fitting parameter. We
use the numerical predictions shown in figure 17, with the corrections given by (8.1) and
(8.2). The best fit is obtained for Ud = 5 × 10−7 m s−1 and the resulting law is the solid
line shown in the six graphs of figure 19. As expected from the model, all data points are
close or below this limiting case. The dashed line corresponds to the prediction obtained
with Um = 3 mm s−1 while keeping Ud and Uc fixed. This law is a lower boundary for all
data points, thus indicating that Um = 3 mm s−1 is the maximal reservoir velocity reached
by the system, when menisci can supply/adsorb a large quantity of surfactant. A more
detailed discussion of the agreement between theory and observations and of the fitted Ud
value is made below.
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Local origin of the visco-elasticity of a elementary foam

8.3. Small velocity – long time regime
First, experiments are compared to the model when velocity (and tension difference) is
small (|U| < 1 mm s−1) which corresponds to the late time relaxation. In this regime, the
results shown in figure 19 are well captured by our model for all the motor parameters with
Ud = 5 × 10−7 m s−1 and Um → 0 m s−1 excepting the experiments with the shortest
film lengths (small dm in figure 19c–f ). For these extreme deformations we suspect that
the shear length becomes of the same order as the film length (d ∼ 5 mm), thus breaking
down the assumptions of the model. For all other experiments, the velocity transfer is well
captured by the simple law (from (7.47) and (7.48), with Um = 0 m s−1)

U = 2

√
ED
ηhΓ

Δσ

2E
. (8.3)

Note that the corrections associated with the Frankel film extractions ((8.1) and (8.2)) are
sublinear and should thus be dominant below a critical velocity Ũ. In the regime where
Δσ−/(2E) ∼ U/

√
UcUd we get, from (8.1) and neglecting any prefactor,

Ũ ∼ γ0

E
U−1/2

c U3/2
d ∼ 10−9 m s−1. (8.4)

This regime is thus never observed. The correction is actually non-negligible only when
the tension in the stretched film saturates at high velocity, and it can be omitted in (8.3).

The fitted parameter Ud = D/hΓ = 5 × 10−7 m s−1 can be discussed on the basis of
the transport properties of the DOH given in § 2.3. A part of the DOH is solubilized
in SDS micelles and the other part is in the monomeric form which leads two possible
diffusion velocities: (i) if the transport is dominated by the micelles of 1.8 nm (Duplatre,
Ferreira Marques & da Graça Miguel 1996), the Stokes–Einstein formula imposes DM ≈ 8
× 10−11 m2 s−1 and, using hΓ ≈ 5.4 μm, we get UM

d = DM/hΓ ≈ 1.5 × 10−5 m s−1;
(ii) if only the monomers participate in the dynamics, Dm = 5 × 10−10 m2 s−1, hm

Γ ≈
370 μm and Um

d = Dm/hm
Γ ≈ 10−6 m s−1, closer to the fitted value. This suggests that

the Marangoni stress induced by the shear flow is controlled by the diffusion of DOH
monomers only.

This result might seem surprising as the majority of DOH is solubilized in SDS
micelles. However, micelle-assisted transport for significant concentration variation (large
film deformation) is limited by the micelle formation/disintegration step (Patist et al. 2002;
Colegate & Bain 2005) which has a characteristic time scale of ∼200 ms for SDS/DOH
mixture (Patist et al. 1998). This time is much longer than the monomer diffusion time
scale across the film: τm

d ≈ h2/Dm ≈ 2 ms, which may explain that only monomers are
involved in the diffusion process across the films.

8.4. High velocity – short time regime
At early time (still after the motors stop), experiments systematically deviate from the
prediction associated with Um → 0 mm s−1, and the tension observed are smaller than
this prediction. These deviations are reproducible and depend on the imposed deformation.
This can be qualitatively rationalized if we consider that the meniscus interface behaves
as a reservoir at the beginning of the experiments and get saturated or depleted over time.
Indeed, as qualitatively discussed in § 6.1 , and summarized by (7.47), the tension decreases
with Um, when other parameters are kept constant. Apart from extreme deformations
(small dm), all the experimental data are bounded by the model predictions obtained
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with Um → 0 and Um = 3 mm s−1 (respectively the solid and dashed lines in figure 19).
This suggests that the system response is governed by the surfactant transport in the
meniscus at early times and by the transport in the films at later times. This scenario
is corroborated by the difference between experiments with and without injection: for a
given transfer velocity, a smaller tension is observed in the first case, in which the menisci
are potentially less depleted, thus having a larger Um value.

Importantly, a key experimental feature is captured by the model: a clear asymmetry
is observed between the extension and compression at high velocity: for a given U,
the tension difference reached in the compressed films is higher than in the stretched
films. As shown in figure 19, their ratio reaches a factor around two at the highest
velocities. This symmetry breaking is predicted by the shear model. Moreover, the highest
tensions obtained in extension (at large deformation and at large film size) are in excellent
agreement with the saturation predicted in the sheared film. With the correction of the
(8.2), the upper bound Δσ+/(2E) = 0.5 becomes

Δσ
+,max
th = E + 7.68γ0

(
η(U + U+

2 )

2γ0

)2/3

≈ E + 7.68γ0

(
ηU
γ0

)2/3

. (8.5)

It corresponds to the high velocity limit of the numerical solution (the black solid line
in figure 19). As this limit does not depend on Ud or on Um, it is predicted without any
free parameter and its quantitative observation during the relaxation process is thus an
important validation of the model.

Nonetheless, note that this limit is exceeded at the beginning of the most extreme
experiments, before the motors stop. Indeed, the predicted limit corresponds to a maximal
deformation εmax = 1 (see § 7.3.1) and some data points in figure 11 show a higher
deformation. These points correspond to the first instants of the deformation, for Δd > 10
mm and V > 50 mm s−1. In these transient conditions, our steady model cannot correctly
predict the viscous behaviour. A transient time is required to deplete the meniscus
interfaces and reach a vanishing dodecanol concentration at the lateral meniscus interface.

8.5. Influence of the reservoir velocity Um of the meniscus
Predicting the evolution of Um with time would require a model of the flow inside the
menisci (along the menisci and in the cross-section), involving especially the uncontrolled
drainage flow along the solid parts of the set-up, and is out of the scope of this study.
However, if we assume that resupplying (or discharge) of surfactants by flow along
the menisci is slow compared with the experiment time, menisci depletion (saturation)
depends on the amount of surfactant delivered (absorbed) since the start of the experiment.
In the limit of large Um this latter quantity is characterized by the interface transfer length
LFr defined in § 3.2 as the width of the Frankel film in the central film. Consistently with
the experimental definition of U, LFr = ∫ t

0 U(t) dt.
In order to test qualitatively the correlation between this length LFr and the reservoir

velocity Um, the data of figure 19(b,e) have been replotted in figure 20 using a different
colour code: for each data point, the colour represents the actual value of the transfer
length. We only kept the data series with V < 20 mm s−1 to have enough data points
during motor motion, so that both the behaviours during motor motion and during
the relaxation are measurable. No definitive conclusion can be deduced from this
representation, but it nevertheless provides some hints, that may serve as a basis for future
improvements of the model.
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Local origin of the visco-elasticity of a elementary foam
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Figure 20. Evolution of the film tension variation, without (a) and with injection (b), as a function of the
transfer velocity for dm = 12 mm, Δd = 6 mm and V ranging from 1 to 12.5 mm s−1. The colour represents
the transfer length LFr (between 0 and 1.5 mm). Curves are averaged over 3 experiments. The solid and dashed
black lines are the numerical predictions obtained for Ud = 5 × 10−7 m s−1, and, respectively U → 0 mm s−1

and Um = 3 mm s−1. Coloured dashed lines in (b) correspond to model predictions for different Um ranging
between 0 and 3 mm s−1.

The data shown in this figure are still comparatively far from the saturation regime in
extension so the model predicts a linear relationship between U and Δσ , with a slope
controlled by Um only. If Um were a function of LFr only, all points sharing the same
colour (so same LFr) should be on the same line (passing through the origin). These lines
are represented in figure 20(b).

Some correlation between Um and LFr appears, but only for LFr > 0.4 mm. This is more
visible for the experiments with injection (figure 20b). Indeed points sharing the same
colour (same LFr) roughly fall onto the same theoretical line, corresponding to a given
Um. For LFr = 0.4 mm, we find Um ≈ 3 mm s−1 and, as LFr increases, Um decreases,
and reaches the saturation Um = 0 for LFr ∼ 1.5 mm. These observations consolidate our
hypothesis that Um decreases with LFr, as the meniscus is less and less able to play its role
of reservoir.

The extraction velocity observed at the beginning of the experiment (dark blue part of
the curves) is, however, in contradiction with this interpretation: the extraction velocity is
lower than predicted, and even the expected hysteretic loop shown in figure 12, observed
for most series, is not observed at the shorter times for the series shown in figure 20. There
seems to be a time delay between tension variation and transfer length, which is more
pronounced when meniscus radius are smaller, i.e. for foams without injection shown in
figure 20(a). This phenomenon might be ascribed to unsteady effects either in the film
extraction dynamics, or in the sheared film dynamics, which have been modelled in a
steady regime. Such effects prevent a proper comparison with our model at early time.

To summarize, the decreasing reservoir role of the menisci is able to rationalize the
largest part of our experiments. The hysteretic loop shown in figure 12, and observed for
most series, is captured by this decrease of Um. The reservoir velocity Um shows some
correlation with the transfer length at large transfer length.

8.6. Nonlinearities in compression
As shown in figure 21, under significant deformations the viscous response in compression
of the films assembly greatly deviates from the model with Um → 0 mm s−1. We
previously discussed the possible influence of Um on these behaviours. However, for the
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Figure 21. Evolution of the tension variation in term of the transfer velocity for experiments with dm = 12 mm,
Δd = 10 mm and different motor velocities: V = 10 mm s−1, V = 50 mm s−1 and V = 100 mm s−1. Coloured
dots correspond to the average over 50 experiments. The colour represents the transfer length LFr (between 0
and 2.5 mm). The model is represented in black for Um → 0 mm s−1 (solid line), Um = 3 mm s−1 (dashed
line) and Um = 8 mm s−1 (dotted line).

more extreme deformations, Um needs to increase from 3 to 8 mm s−1 in order to capture
the early dynamic which is inconsistent with surfactant transport and accumulation in the
menisci, and with the observations in extension.

Similar discrepancies are observed in figure 19 where experiments consistently deviate
from the linear behaviour in compression at high tension difference (Δσ/(2E) > 0.5).
These deviations may arise from the large compaction of the surfactant monolayer which
is limited by the maximum surface coverage. This limit corresponds to the parameter Γm
of the Langmuir adsorption isotherm in Appendix A and is not captured by the model,
as the physico-chemistry equations have been linearized. Some trends on the influence
of these nonlinearities can be anticipated from the evaluation of E and hm

Γ at larger Γ

using the (nonlinearized) (A5) and (A7): one can see that the elasticity diverges close to
the maximum surface coverage. However, the reservoir length decreases faster, and the
product Ehm

Γ tends to 0. Simply substituting these quantities E(Γ ) and hm
Γ (Γ ) in the law

Δσ ∼ (E/
√

UcUd)U = (
√

ηEhm
Γ /Dm)U obtained with the linearized model shows that

the slope of the viscous relation Δσ(U) should decreases when Δσ increases, which is
consistent with the experimental trend. Note that in extension a decrease of the slope
is also expected as E → 0 while hm

Γ tends to a constant value. However, this effect is
hidden by the saturation predicted in the linear case. Incorporation of the full nonlinear
physico-chemistry in the model is needed to better capture viscous behaviour at high
tension variations.

Another possible failure of the model in compression at large velocity is the marginal
regeneration instability, which has been shown to be triggered by a compression in Gros
et al. (2021). This instability breaks the invariance along the meniscus and may modify
the relationship between the tension difference and the velocity.
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Local origin of the visco-elasticity of a elementary foam

9. Relevance for the foam rheology

The aim of this last section is to discuss the relevancy of the local constitutive laws,
obtained in § 5 for the film and in § 7 for the meniscus, to set the bases of a consistent
dissipative model for a foam, which can be seen as a complex network of films and menisci.
The geometry of the deformations in a sheared three-dimensional foam obviously differs
from the specific one we impose to our five-film sample; characteristic time and length
scales are also different. For these reasons, only scaling properties are discussed at the
foam sample scale and, for the sake of the simplicity, we will only keep the most salient
features of our model and discuss their robustness with regard to scale modifications.

9.1. A closed dynamical model for the film assembly
Before extrapolating our conclusions to three-dimensional foam samples, a first step is
to show that the two constitutive laws are sufficient to build a closed set of equations
governing the dynamics of the five-film assembly, able to predict, for example, the time
behaviour shown in figure 9.

The systems we use are the compressed, central and stretched films, respectively of
lengths L−, Lc and L+ (equal to the set-up dimensions d−, dc and d+). Their lengths at
rest (i.e. the length of the material that is currently on each film, back when the system was
at rest) are denoted L−

0 , Lc
0 and L+

0 and, for each system ε = (L − L0)/L0. As the systems
are open systems, exchanging interface with each other, their rest length vary with time
with the rules

dL−
0

dt
= −U− 1

1 + ε− , (9.1)

dLc
0

dt
= U− − U+, (9.2)

dL+
0

dt
= U+ 1

1 + ε+ , (9.3)

and the evolution of total film lengths obeys, for each film,

dL
dt

= (1 + ε)
dL0

dt
+ L0ε̇. (9.4)

Finally, the film lengths are controlled by the motor motions and dL/dt = 0, −Vm(t) and
Vm(t) respectively for the central, compressed and stretched films. The motor velocity Vm
is V during the time [0 tm] and 0 otherwise.

These kinematic laws are coupled to the constitutive equations. Restricting the model to
small deformations, we only keep terms of first order in ε and we get Δσ = σ − σ0 = 2Eε

from (5.5) and, from (7.47) and the definition of U∗ in (7.48),

U− = U∗

2E
(σ c − σ−), (9.5)

U+ = U∗

2E
(σ+ − σ c). (9.6)

Building a quantitative prediction would require us to propose a physical law for the time
evolution of U∗, which is controlled either by

√
Ud Ud or by Um (see (7.48)). At long times
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A. Bussonnière and I. Cantat

Um tends to 0 so U∗ = 2
√

DE/(hΓ η) ∼ 2 × 10−3 m s−1, and at short times U∗ = 2Um,
which upper bound has been found experimentally to be of the order of 6 × 10−3 m s−1.
However, the transition from one value to the other is not predicted by our model.

In order to build a simple and illustrative analytical solution, we thus assume a constant
value for U∗, and we obtain a closed set of coupled equations, governing the five-film
dynamics

−Vm = U∗

2E
σ− − U∗

2E
σ c + L−

0
2E

σ̇−, (9.7)

0 = −U∗

2E
σ− − U∗

2E
σ+ + 2

U∗

2E
σ c + Lc

0
2E

σ̇ c, (9.8)

Vm = U∗

2E
σ+ − U∗

2E
σ c + L+

0
2E

σ̇+. (9.9)

Simplifying further the problem by assuming the same initial length d for each film,
and linearizing the last terms, we obtain a symmetrical situation in which Δσ c = 0 and
Δσ− = −Δσ+. The system becomes, with ηe = 2E/U∗ and ke = 2E/d,

Vm = Δσ+

ηe
+ Δ̇σ+

ke
, (9.10)

which is the equation governing a Maxwell viscoselastic fluid. The solution is

Δσ+ = ηeV(1 − e−t/τ∗
) for t < tm, (9.11)

Δσ+ = ηeV(e(tm−t)/τ∗ − e−t/τ∗
) for t > tm, (9.12)

where the characteristic time of the system is τ ∗ = ηe/ke = d/U∗.
This solution captures the most important properties of the dynamical behaviour

observed in figure 9 and it especially brings out the dissipative role of the parameter
ηe = 2E/U∗, which has the dimension of a bulk viscosity. The possibility of an upscaling
of the local laws at the scale of a foam sample will be discussed on the simple basis of
(9.10).

9.2. From a few films to a foam sample
Most of the foam effective viscosity measurements are obtained either under steady
shear at the rate ε̇ or in an oscillatory regime at the pulsation ω. The foam viscosity
ηf is defined from the expression of the stress T f : in the first case, T f = Tp + ηf (ε̇)ε̇

with Tp the quasistatic plastic threshold; in the second case T f = G′(ω)ε + ηf (ω)ε̇ (with
ηf (ω) = G′′(ω)/ω).

The link between the local and global scales is a central question in the rheology of
complex systems. In steady regime, the relationship between the viscous stress ηf ε̇ and
the film tension differences in the foam involves both a direct influence of the tension
difference, and a nonlinear variation of the plastic threshold Tp with this tension difference
(Cantat 2011; Grassia et al. 2012). This last contribution greatly complicates the upscaling
of local laws to steady experiments and therefore is out of the scope of this section.
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Local origin of the visco-elasticity of a elementary foam

In the oscillatory regime, on the other hand, the geometrical effects are a priori simpler,
as the plastic threshold is never reached. At low frequency, the foam loss modulus G′′(ω)

is governed by the coarsening-induced plasticity, which is entirely decoupled from the
local dissipative modes of the system and has its own time scale (Cohen-Addad, Höhler &
Khidas 2004). At higher frequency (usually above a few Hz), foam exhibits an anomalous
dissipation with a loss modulus scaling as

√
ω (Gopal & Durian 2003; Krishan et al.

2010). The origin of this peculiar behaviour is still a matter of debate. As assumed in
Liu et al. (1996), this scaling might arise from the effect of the disorder and the local
scalings may be entirely screened at the sample scale. In this case, the internal time scale
of the foam sample differs from the local internal time scale, and is governed by weak
domains, close to the yield stress. However, this generic scaling predicted by the weak
plane region model does not hold for solution with large interface ‘rigidity’ (Costa et al.
2013b). Moreover, experiments in ordered foam exhibit a similar anomalous dissipation,
suggesting a different origin (Costa 2012).

In the frame of this paper, we thus choose to restrict the discussion to the
behaviour under oscillatory stress of a foam without an internal dynamics, and far
enough, everywhere in the sample, from its local yield stress. In that case, we deduce
three-dimensional scalings from our local scalings and we reveal in § 9.3 a new possible
origin for the

√
ω scaling of the foam dissipation.

During a simple shear deformation of the foam, thin films experience compression,
extension and simple in-plane shear (at a constant film area). Although meniscus
constitutive law has been built in the case of a specific imposed deformation, the meniscus
frustration avoiding free film relaxation by interface transfer has been shown to be generic.
The associated scaling laws (9.6) are thus expected to hold for any generic deformation
leading to film area variations. Dissipation associated with the simple film shear has been
studied in Costa et al. (2013a) but has been shown to be negligible in our case (see § 5)
and is thus neglected in the following.

During foam shearing, the film size varies at the characteristic velocity ε̇d, with d the
bubble diameter and ε̇ the strain rate imposed at the sample scale (Cantat et al. 2013).
In (9.10), the motor velocity V = dL+/dt should thus be replaced by ε̇d. Similarly, for
dimensional reasons, the film tension difference is the origin of a stress T f scaling as
Δσ/d. Once extrapolated at the foam scale, equation (9.10) governing the five-film sample
thus leads to a viscous stress Tvisc ∼ ηeε̇, allowing us to identify ηf = ηe as the effective
foam viscosity.

9.3. Predicting three-dimensional foam viscosity?
In our experiment, the effective viscosity is ηe = 2E/U∗. The parameter U∗ depends on
the solution physico-chemical properties and on the film length scales and should thus be
reconsidered using typical foam parameters. Especially, the bubble size is usually smaller
in a three-dimensional foam than our millimetric films. The orders of magnitude of the
various quantities will be built using a liquid fraction φ = 5 %, a bubble size d ∼ 10−4m
and a meniscus size rm ∼ d

√
φ ≈ 20 μm (Cantat et al. 2013).

The average film thickness may also strongly differ. It is not precisely known in a
three-dimensional foam. However, assuming that the capillary suction is high enough to
drain the films toward their equilibrium thickness faster than the dynamical time scales,
the parameter h∞ would be governed by the disjoining pressure and be of the order of a
few dozen of nanometres. Importantly, this length scale does not appear in the constitutive
relationship governing the meniscus, which should therefore not be modified significantly
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A. Bussonnière and I. Cantat

if the disjoining pressure effects were included in the model. The length of the sheared
domain would in contrast be affected and will be discussed at the end of the section.

The physico-chemical properties greatly differ from one experiment to another, and
are not always easy to evaluate quantitatively. Here, we first consider the values obtained
with our foaming solution and we then discuss qualitatively the influence of the different
physico-chemical parameters.

The velocity U∗ is equal to the largest value between the two possible characteristic
velocities 2

√
UcUd and 2Um. The first one,

√
UcUd = √

DE/(hΓ η) ∼ 10−3 m s−1,
depends on the foaming solution but not on the foam geometry. Using simple Langmuir
adsorption, its value is expected to decrease for more insoluble surfactant.

The velocity Um is discussed in § 7.2. In the purely diffusive case, it scales as
(rm/hΓ )

√
Dω and thus depends on the bubble size through rm. Note that, here, hΓ and D

correspond to the combined transport of monomeric and micellar form of DOH (defined in
Appendix A) as both forms are expected to contribute to the menisci exchange. In the case
of our millimetric foam, this prediction leads to a value for Um smaller than the observed
one, the transport being potentially dominated by the convection. However, we expect the
diffusive processes to become dominant at smaller scale. Using Um ∼ (d/hΓ )

√
φDω, we

get Um ∼ 10−4 m s−1 at 1 Hz and Um ∼ 10−3 m s−1 at 100 Hz. These velocities are of
the same order as

√
UcUd, so the dominant term is difficult to determine a priori, and may

vary from one foaming solution to the other.
In the regime Um <

√
UcUd, the scaling for the loss modulus G′′ = ωηe is

G′′ ∼ ω

√
ηEhΓ

D
, (9.13)

whereas if Um >
√

UcUd,

G′′ ∼ ω
E

Um
∼ EhΓ

d
√

φD

√
ω. (9.14)

Using our physico-chemical parameters E = 5 × 10−3 N m−1, hΓ = 5.4 × 10−6m and
D = 8 × 10−11m2 s−1 and for a bubble size of 100 μm at 100 Hz, the second law (9.14)
leads to G′′ ∼ 1000 Pa which is the order of magnitude found for usual foams. More
importantly, it recovers the scaling G′′ ∝ √

ω/d found in Krishan et al. (2010), Costa et al.
(2013b), which clearly indicates that the local laws established in this paper may be the
origin of the foam anomalous dissipation scaling.

Our dissipative model is based on the coexistence of a symmetrical part at the centre
of the films, and a sheared domain close to the meniscus, of size �. The local scalings we
predict are thus valid only if � < d, with d the bubble size. For small tension values, we
have � ∼ h∞(Uc/Ud)

1/2 ∼ 103h∞ (see (7.23) and figure 17). Assuming an average film
thickness of 50 nm in the foam, our model should thus be relevant for bubbles larger than
50 μm, which corresponds to most of the usual foam samples. Note that, if the Frankel
film extractions, induced by large deformations, increase the average film thickness to a
larger value, despite the large capillary suction present in the foam, the lower bubble size
limit would be more restrictive. For bubbles smaller than this lower limit, the whole film
should be sheared, and leading to some coupling between the neighbouring menisci, as
assumed in Denkov et al. (2008) and Bérut & Cantat (2019). The induced dissipation is
expected to be qualitatively different in this regime.

Such a transition between film extension and film shear can also be observed at constant
bubble size, when the foaming solution varies (Titta et al. 2018). Indeed, the product EhΓ

appearing in � (in (7.23)) can vary over several orders of magnitude with the solubility
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of the chemical species at the origin of the tension variations, leading to large � values
at poor solubilities. For a given bubble size, poorly soluble species would lead to entirely
sheared films, whereas more soluble ones would obey the laws established in this paper.

10. Conclusion

In this paper, we demonstrate that, at the millimetric scale and for the investigated foaming
solution, the main part of a foam film has a perfectly reversible elastic behaviour, with a
negligible viscous contribution. The main part of the dissipation is, in contrast, localized
in a small domain of the film, close to the meniscus, which is predicted to be sheared. This
local shearing is the direct consequence of a generic geometrical frustration occurring at
the meniscus, which forbids the free transfer of interface from one film to its neighbour. A
model where the Marangoni stress induced by the shear is coupled to surfactant transport
across the film is developed to capture this shear dissipation. The numerical solutions
reproduce the experimental relationship between the transfer velocity and the tension
difference between the adjacent films and confirms the scaling laws that we establish.

Our model also predicts the length � of the sheared region which is determined by
the physico-chemical properties of the foaming solution. This length sets a transition
between films shorter than � where the whole film is sheared, as usually assumed in
rheological models of foam, and films longer than � where the sheared regions coexist
with a film extension/compression, as observed in millimetric film experiments. This
reconciles the different classes of model proposed in the literature and rationalizes the
different experimental observations.

For foams with a bubble size larger than �, our local constitutive laws are upscaled and a
new possible origin of the foam anomalous dissipation is proposed. The scaling obtained
also qualitatively captures the order of magnitude and the dependency with the bubble
size of the foam loss modulus. Nonetheless, efforts are still needed to develop a complete
model of foam dissipation. In particular, it will be required (i) to extend our shear model to
bubble smaller than �; (ii) to take into account the foam disorder and the influence of the
weak regions; (iii) to build a more quantitative constitutive law for the meniscus surfactant
exchange velocity (Um). The resulting model will have to be quantitatively compared to
foam experiments with different well calibrated solutions, with known physico-chemical
properties.
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Appendix A. Estimation of E and hΓ

The co-adsorption of DOH and SDS in a micellar SDS/DOH solution has been modelled
using a generalized Langmuir–Von Szyszkowski equation in Fang & Joos (1992),
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leading to the following results:

γth = γSDS − RTΓm ln
(

1 + cm

a

)
, (A1)

with γSDS = 40.5 mN m−1 the surface tension of pure SDS, R the ideal gas constant,
T the temperature, Γm = 6 × 10−6 mol m−2 the maximum surface coverage, cm the
DOH concentration in the monomer form and a = 5.55 × 10−3 mol m−3 the adsorption
equilibrium constant. Here, only the concentration of monomer influences the surface
tension as DOH molecules solubilized in SDS micelles are not surface active. The partition
coefficient β = cM/cm, with cM the concentration of DOH solubilized in micelles,
depends linearly on the SDS micelle concentration. It has been measured in Fang & Joos
(1992), and for our solution, with cSDS = 19.4 mol m−3, we obtained β = 67.2 indicating
that almost all the DOH is solubilized in micelles. The monomer concentration can be
expressed in term of the total DOH concentration c, cm = c/(1 + β) and (A1) becomes

γth = γSDS − RTΓm ln
(

1 + c
(1 + β)a

)
. (A2)

The corresponding DOH surface coverage is given by a Langmuir-type adsorption

Γ = Γm
cm

a + cm = Γm
c

a(1 + β) + c
. (A3)

The surface tension can then be expressed in term of surface coverage

γth = γSDS + RTΓm ln
(

1 − Γ

Γm

)
, (A4)

and the Gibbs–Marangoni elasticity is estimated by linearizing (A4) around the
equilibrium state, at c0 = 0.27 mol m−3, the initial bulk DOH concentration

E = − ∂γth

∂Γ

∣∣∣∣
Γ0

Γ0 = RTΓ0Γm

Γm − Γ0
= RTΓm

c0

(1 + β)a
, (A5)

which gives E = 10.6 mN m−1. The reservoir length hΓ = ∂Γ/∂c characterizing the
adsorption is given by

hΓ = Γm
a(1 + β)

(a(1 + β) + c0)2 = Γm

a(1 + β)

(
Γm − Γ0

Γm

)2

, (A6)

leading to hΓ = 5.4 μm. This length assumes an equilibrium between the monomer and
the solubilized DOH concentrations. If the monomer transport is faster than the exchange
time with SDS micelles (Patist et al. 1998), as discussed in § 8, DOH transport only
involves monomers and the reservoir length becomes

hm
Γ = ∂Γ

∂cm

∣∣∣∣
c0

= Γm
a

(a + cm
0 )2 = Γm

a(1 + β)2

(a(1 + β) + c0)2 , (A7)

and hm
Γ = (1 + β)hΓ ≈ 370 μm.
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Local origin of the visco-elasticity of a elementary foam
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–
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–
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– (y)

θ0
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Figure 22. Scheme of the pushed film deformation. (a) Black lines: equilibrium plane of the pushed film
(denoted by −) and of the central film (denoted by c). Blue lines: shape of the compressed film obtained for
a uniform displacement δ−

1 of the free meniscus. The actual free meniscus displacement is δ−
1 only on the

boundary (blue arrow) and an additional displacement δ2( y)− (red arrow) leads to a curved free meniscus (red
line). (b) View in the y = 0 plane of the same system showing the angle δθ−

1 and δθ−
2 induced by the respective

displacements (same colour code) and the resulting angle θ−.

Appendix B. Film shape and calculation of the angles

The upper pushed film is initially in the plane (t−, ey), and the pushed free meniscus is at
the intersection between this plane and the plane (tc, ey) of the central film (see figure 22).
After deformation, the meniscus stays in the plane (tc, ey) (by top/bottom symmetry) and
is at the distance sm

c ( y) = δ−
1 + δ−

2 ( y) from its initial position, with δ−
1 the displacement

of both ends of the meniscus, δ−
2 ( y) the variable part of the displacement and sc the

coordinate along tc (with an origin at the initial meniscus position).
We define the intermediate plane (t̂, ey) as the plane containing the moving solid frame,

at the position s− = d− in the plane (t−, ey) and the line sc = δ−
1 in the (tc, ey) plane (in

blue in figure 22). Without the variable part of the displacement, the upper left film would
be in this plane after deformation.

The tilt angle δθ−
1 satisfies, from simple geometry

tan(θ0 − δθ−
1 ) = d− sin θ0

d− cos θ0 + δ−
1

, (B1)

with θ0 = π/3.
We now address the three-dimensional shape of the deformed film, using the variables

(ŝ, y, ẑ) in the (t̂, ey, n̂) reference frame. For convenience, the origin of ŝ is now chosen
at the external edge, with a positive direction toward the deformed film. We characterize
the film shape by the equation ẑ = f (ŝ, y). Its curvature, at the linear order is simply the
Laplacian of f so the vanishing curvature condition becomes

∂2f
∂ ŝ2 + ∂2f

∂y2 = 0. (B2)

The free meniscus is the red line in figure 22(a) parameterized by (ŝm( y), ẑm( y)) with
ŝm( y) = d− (at order 0) and ẑm( y) = δ−

2 ( y) sin(θ0) (at order 1).
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A. Bussonnière and I. Cantat

At linear order in δ−
1 and δ−

2 , the boundary condition at this meniscus is thus

f (d−, y) = δ−
2 ( y) sin(θ0). (B3)

The meniscus position along the solid frames cannot be measured. The meniscus can
slide on the frame, thus explaining the non-vanishing value of δ−

1 , but this sliding motion
is limited by uncontrolled viscous or geometrical stresses, which explain the free meniscus
curvature and the non-vanishing value of δ−

1 . However, we know that the displacement of
the menisci at y = ±w/2 varies from 0 at the external edge to δ−

1 at the free meniscus
(with respect to the undeformed shape in the (t−, ey) plane), with a smooth variation
along the whole film. We thus simply assume a linear increase of this displacement, which
corresponds to the condition

f (ŝ, ±w/2) = 0 and f (0, y) = 0. (B4a,b)

The film shape is entirely determined by these boundary conditions. A simple analytical
solution is obtained by fitting the free meniscus motion by δ−

2 ( y) = δ−
2 (0) cos(πy/w) and

its equation is

f (ŝ, y) = δ−
2 (0) sin(θ0)

sinh
(

πŝ
w

)

sinh
(

πd−

w

) cos
(πy

w

)
. (B5)

The angle δθ−
2 satisfies

δθ−
2 = ∂f

∂ ŝ
(d−, 0) = δ−

2 (0)

w
π sin(θ0)

tanh
(

πd−

w

) . (B6)

The angle θ− needed to compute the tension differences is eventually

θ− = θ0 − (δθ−
1 + δθ−

2 ), (B7)

with δθ−
1 and δθ−

2 functions of δ−
1 and δ−

2 (0) given by (B1) and (B6). The expressions are
valid for positive or negative displacement of the meniscus and are thus identical for the
right side.

Appendix C. Nonlinear Langmuir film elasticity

The derivation of the nonlinear film elastic behaviour relies on the same assumptions as
the ones made in § 5.2, but the Langmuir equation is used instead of its linearized form.
The surfactant mass balance is

2Γ0 + c0h0 = 2(1 + ε)Γ + ch0, (C1)

which can be expressed in term of Γ only, using (A3)

2Γ0 + (1 + β)aΓ0h0

Γm − Γ0
= 2(1 + ε)Γ + (1 + β)aΓ h0

Γm − Γ
. (C2)

This equation can be reorganized into a second-order polynomial using χ̂ = Γ/Γm

2(1 + ε)χ̂
2 −

(
2(1 + ε) + 2χ̂0 + (1 + β)ah0

Γm(1 − χ̂0)

)
χ̂ + 2χ̂0 + (1 + β)ah0

Γm(1 − χ̂0)
= 0, (C3)
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Local origin of the visco-elasticity of a elementary foam

and its roots provide the required relation between the surface coverage Γ and the
extension. Finally, (A4) gives the surface tension evolution with ε shown in figure 11
associated with a nonlinear elasticity.

Appendix D. Frankel law’s for different interface velocities

The extraction of a liquid film from a meniscus at a velocity U is a classical problem, and
imposing different velocities U1 and U2 on both interfaces only leads to straightforward
modifications of the usual equations (see the review Cantat 2013). In the lubrication regime
(∂sh 
 1), the Stokes equation becomes

∂2v

∂ζ 2 = 1
η

∂p
∂s

= − γ0

2η
h′′′, (D1)

with h′ = ∂sh. The interface velocity v is assumed to be constant over the dynamical
meniscus (which is equivalent to � � �m), and v(s, h/2) = U1 and v(s, −h/2) = U2.
Integrating two times (D1) over ζ gives the velocity field

v(s, ζ ) = − γ0

4η
h′′′
(

ζ 2 − h2

4

)
+ U1 − U2

h
ζ + U1 + U2

2
. (D2)

The flow rate in the dynamical meniscus is

Q =
∫ h/2

−h/2
v dζ = γ0

24η
h′′′h3 + U1 + U2

2
h, (D3)

and must equate the outgoing flux Q = (U1 + U2)h
f
∞/2 with h f

∞ the film thickness
leaving the dynamical meniscus (that differs from the thickness at the end of the sheared
film h∞). Then, mass conservation leads to

h′′′h3 = 12
η

γ0
(U1 + U2)(h

f
∞ − h) = 24Ca(h f

∞ − h), (D4)

with Ca = η(U1 + U2)/(2γ0) the capillary number based on the averaged velocity.
Equation (D4) is the well-known Landau–Levich–Derjaguin equation in which the
interface velocity U has been replaced by (U1 + U2)/2. The surface tension difference
between the meniscus and the film is calculated by integrating the Marangoni relation

Δγ =
∫

men

∂γ

∂s
ds =

∫
men

η
∂v

∂ζ
(s, h/2) ds (D5)

= −
∫

men

γ0

4
h′′′h ds +

∫
men

η
U1 − U2

h
ds. (D6)

The second term on the right-hand side is the dissipation induced by the shear flow. It has
been taken into account in our model of the sheared film and is disregarded here to avoid
counting it twice. The first term is the classical term in the Frankel problem which can be
found in Cantat (2013). Finally we obtained

Δγ out = 3.84γ0

(
η(U1 + U2)

2γ0

)2/3

. (D7)
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∞
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c)
1
/2
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Figure 23. (a) Velocity U at the meniscus, rescaled by
√

UcUd , as a function of the concentration in the
film, ε̂ = 0.5 − δΓ/Γ0 = 0.5 − Δσ/(2E), for the pulling case. The parameter K = 2Um/

√
UcUd has been

varied logarithmically from 10−3 (blue curves) to 103 (red curves). The black lines correspond to U/
√

UcUd ∼
0.25K/ε̂, for three values of K, corresponding to the closed curve (K = 0.73; 1.87; 4.8 from bottom to top) (see
the scaling of (7.28)). (b) Similar plot for �, with the dashed black lines corresponding to �/(h∞

√
Uc/Ud) =

0.12K/ε̂, as predicted by (7.29).

Appendix E. Divergence

For the extension case, the velocity diverges in the limit Δσ/(2E) = 0.5, as shown in
figure 23. The scaling predicted in (7.28) is recovered, as emphasized by the dashed lines.
Similar behaviour is observed for the shear length � which divergence follows the expected
scaling law (7.29).
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