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Marangoni stress induced by rotation frustration
in a liquid foam

Antoine Bérut and Isabelle Cantat *

The role of surface tension gradients in the apparent viscosity of liquid foams remains largely

unexplained. In this article, we develop a toy-model based on a periodic array of 2D hexagonal bubbles,

each bubble being separated from its neighbors by a liquid film of uniform thickness. The two interfaces

of this thin liquid film are allowed to slide relatively to each other, thus shearing the liquid phase in

between. We solve the dynamics under external shear of this minimal system and we show that the

continuity of the surface tension around the whole bubble is the relevant condition to determine the

bubble rotation rate and the energy dissipation. This result is expected to be robust in more

complex situations and illustrates that thin film dynamics should be solved at the scale of the whole

bubble interface when interface rheology matters.

1 Introduction

The rheological properties of foams are crucial for most
industrial applications involving flowing or deforming foams.
However, the flows induced in the liquid phase, at the bubble
scale, during the deformation of a foam sample have never
been fully characterized. This explains why the effective foam
viscosity remains difficult to predict, as a function of the
physical parameters of the foam and the physico-chemical
parameters of the foaming solution.1–3 The liquid phase is a
network of thin liquid films and thicker menisci, also called
Plateau borders. The various possible flows in this network
have been well identified by Buzza et al.4 but their relative
importance remains unclear. However, as the viscous dissipa-
tion is an increasing function of the confinement, the effective
viscosity of the foam is expected to be governed for a large part
by the dissipation in the thin films, where the viscous phase is
the most confined.

Pioneering rheological models of foam described bubbles
as soft solid spheres separated by flat films of uniform
thickness,5,6 and obtained important results in the field. How-
ever, a fundamental difference between soft solid spheres and
bubbles is their ability to impose a pressure gradient in these
flat films: a solid can, whereas a bubble cannot. More precisely,
if a gas bubble is at uniform pressure, the pressure in the liquid
phase, at the interface, is given by the Laplace pressure jump,
which vanishes for flat films. Moreover, given the quasi-parallel
nature of the velocity field in the films, pressure gradients
in the direction normal to the interface are negligible.

Consequently, the pressure in a flat film separating two bub-
bles is uniform. The only driving forces for the flow are thus the
surface tension gradient, i.e. the Marangoni forces.

Some numerical models have been able to take into account
all the physical ingredients governing the flow in a 2D periodic
system,7,8 or in a disordered one, at the price of more important
simplifications.9 However, toy models are still of high impor-
tance, as they allow building a simple intuition of the physical
processes governing the flows. We thus revisit the well-known
Princen’s model10 in an out of equilibrium context, to shed
light on the Marangoni forces governing the shear rates in the
films, in the simplest possible example.

We consider a 2D periodic foam made of hexagonal bubbles
of identical area A. We assume that the bubbles are separated
by a film of uniform and constant thickness h much smaller

than the bubble size (h�
ffiffiffiffiffi
A
p

), and that the classical Plateau
equilibrium rules remain valid during the deformation: films
are represented by straight edges and three edges meet at 1201
at menisci of negligible size (see Fig. 1). With these crude
assumptions, the normal velocities of the film interfaces
induced by an imposed shear deformation of the foam is well
known.10 The aim of our model is to establish rules for the
tangential velocities of these interfaces, on both sides of the
films. Tangential velocities are directly related to the thin film
shearing, and thus to the viscous dissipation. They are there-
fore the most relevant quantities needed to build an effective
foam viscosity. In the limit of quasi-inextensible interfaces
addressed in this article, a single degree of freedom remains
on each bubble: the rate at which the interface rotates around
the bubble shape, when the foam is sheared. For a given film
separating two bubbles, it is always possible to choose the
rotation rate of the interface on these two bubbles so that the
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film is not sheared. However, a bubble is in contact with 6
films, as it has 6 neighboring bubbles, and no rotation rate can
ensure a vanishing shear in each of these six films. A geometric
frustration emerges, in a similar spirit to the rolling frustration
introduced in the context of granular flows,11 and the rotation
rate of the bubbles arises from the global optimization of the
system that we make explicit for the simple case of a periodic
array of bubbles.

In that case, we show that a unique rotation rate satisfies the
following physical constraint: the surface tension must remain
continuous around the whole bubble. This seemingly obvious
property actually imposes a non local constraint on the surface
tension gradient, i.e. on the Marangoni forces: the integral of
the Marangoni force around a bubble vanishes. We determine
the interface rotation rate from this global constraint, as well as
the induced surface tension variations around the bubble,
as a function of bubble elongation and its orientation with
respect to the shear. This approach could be extended to more
complex situations, with more realistic interface rheological
properties, or with variable film thicknesses. An important
consequence of the non locality of the constraint, for flows
involving high interface elasticity or viscosity, is that the whole
interface of the physical system must be considered, otherwise
the tangential velocity remains undetermined.

2 Model

We consider a 2D periodic foam made of centro-symmetric
hexagons of area A. Our notations are shown in Fig. 1: we
choose a reference hexagon H0 of center C0 in the periodic
structure and we denote its vertices by Ai, with i A [0–5]; the
segment [Ai�1Ai] is the edge Ei of length Li; the hexagon
perimeter is 2L, with L = L1 + L2 + L3; the edge E1 makes an
angle y with the direction x (counted positively in the anti-clock

wise orientation); and the hexagon sharing the edge Ei with the
reference hexagon is denoted Hi, of center Ci. At each vertex,
and at all times, we assume that the angles between the edges
are 1201 as imposed by the equilibrium Plateau rules.1

The vertex Ai+3 is symmetric to the vertex Ai with respect to
C0, and the foam dynamics thus only needs to be solved along
the edges E1, E2 and E3. The position along these edges
is measured by the curvilinear abscissa S, with the reference
S = 0 at the vertex A0 (at all time). However, the main spatial
variable of the model is the non-dimensional curvilinear
abscissa s = S/L. The abscissa of the vertices are, by definition,
s(A0) = 0, s(A1) = L1/L = a, s(A2) = (L1 + L2)/L = b and s(A3) = 1. There
is no inertia in our model, so the evolution of the foam between
two times t and t + dt does not depend on its history, but only
on its shape at the time of interest, entirely determined by the
three control parameters a, b and y.

A simple shear of rate _eext is imposed on the foam. In a
complex fluid, as a foam, the external shear only controls the
large scale deformation of the structure. If this structure is
periodic, the external shear actually acts on the position of the
periodic cells, i.e. in our case, on the position of the bubble
centers. Between the times t and t + dt, the center xC, yC of each
hexagon thus moves with the rule

xC(t + dt) = xC(t) � _eextyC(t)dt; yc(t + dt) = yC(t). (1)

Note that with this sign convention, a positive value of _eext

induces a positive local rotation rate (see Fig. 1).
In contrast, inside a periodic cell, the local structure follows

a non affine motion. For fast deformations, out-of-equilibrium
angles are expected between the edges.12,13 Here we assume
that the equilibrium rule for the angles remains valid under
shear and we impose that each vertex moves in order to keep an
angle of 1201 between the edges. Note that in a more refined
model, it could be replaced by any other rule, without mod-
ification of the remaining part of the modelization. In this
theoretical frame, the vertex position is given by a unique
function of the position of the three adjacent bubble centers
(given latter in eqn (7)). The foam structure at the time t + dt is
thus a complex, but explicit, function of the various control
parameters at time t. In particular, the new values of the shape
parameters a(t + dt) = a + da and b(t + dt) = b + db can be
expressed as a function of a(t), b(t), y(t) and _eext. If one edge is
too short at time t, it may be observed that no equilibrium
shape exists at t + dt unless a bubble rearrangement T1 occurs.1

We will not consider this case in the following.
The foam structure evolution under shear described above is

simply the one of the classical Princen’s model.10 However,
the novelty is to consider, in the simplest possible way,
the consequences of this given structure deformation on the
relative motion of the foam film interfaces, and thus, on the
internal viscous dissipation and Marangoni stress.

The gas bubble H0 is covered by a continuous surfactant
monolayer of length 2L. The part of this layer located along the
edges E1, E2 and E3 at time t is called L0: using a continuous
medium approach, we consider L0 as a material system in
which each point can be followed along its trajectory. One side

Fig. 1 Example of the 2D periodic hexagonal foam at time t (top) and
t + dt (bottom), and notations used in the text. In this case, at time t, the
control parameters are L1/L = a = 0.1, (L1 + L2)/L = b = 0.7 and y = �541.
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of the liquid film represented by the edge Ei is thus covered
by L0. Its other side is covered by the material system called
Li, which is a symmetric image of L0, as depicted in Fig. 2.
Disregarding the specific role of the Plateau borders located at
each vertex, we assume that the liquid film confined between
these two interfaces has a constant and uniform thickness h.

This thickness is much smaller than the bubble size (h�
ffiffiffiffiffi
A
p

)
and a material point of interface on the edge Ei will be assumed
to be at the same location x, y whether it belongs to the
interface Li or to the interface L0. However, any relative
tangential velocity dv between the two facing interfaces induces
a shear flow in the thin liquid film of viscosity Z, and thus a
viscous stress Zdv/h in which the finite value of the thickness h
is taken into account.

To build the simplest possible model, we further assume
that the small variation DL of the bubble perimeter L, imposed
by the global shear deformation between times t and t + dt,
induces a compression or stretching of the interface which is

homogeneous over the whole layer L0. We show in Appendix
that this happens when the interface has a very large Gibbs
modulus E. In that limit, the mean value of the surface tension
increases with time proportionally to E and DL, but the surface
tension gradients do not depend on E. As we only focus on
the spatial variation of the tension, and not on its temporal
evolution, the Gibbs modulus thus plays no role in the problem.
The validity range of this large E assumption is discussed in
Section 4.

Using this assumption, the rescaled distance s(P) � s(P0)
between two material points P and P0 in L0 remains constant
during the deformation. Consequently, the rescaled position at
t + dt of all points in L0 is fully determined by the position of
any material point P0 in L0. In the following we use arbitrarily
as reference point P0 the point located at A0 at time t, i.e.
verifying s(P0,t) = 0. The rescaled abscissa of P0 at time t + dt,
measuring the rotation of the interface over itself, is the only
degree of freedom we keep in our toy model, and for which an
equation of evolution is established in the next paragraph. We
define s* � u*dt = s(P0,t + dt). If s* 4 0, the point P0 is on the
edge E1 at t + dt and if s* o 0, it is on the edge E6. Note that A0 is
taken as a fixed reference point: A0 is not a material point and
verifies s(A0,t) = 0 at all times.

For the sake of clarity, the interface motion between times t
and t + dt will be arbitrarily decomposed in two steps: step (I),
the bubble shape evolves, the point P0 is maintained at the
position A0 (meaning that s* = 0 is imposed); step (II), the
bubble shape is maintained at its t + dt value and s* is
computed on the basis of the results of step (I). Step (I) thus
addresses the imposed shear deformation, and step (II) the
global rotation of the bubble on itself. By linearity, the viscous
stress induced in the liquid films by step (II) simply adds to the
one obtained in step (I). Therefore, this arbitrary decomposition
of the motion does not introduce any additional approximation.

First, we discuss the motion during step (I), where P0 is fixed
at the position A0 and only the shape of the bubble is modified.
Let P be a point of abscissa s in L0, on Ei. At the time t, it is at
the same position x(t), y(t) as a point Pi(t), called its coincident
point, belonging to Li, on the other side of the thin film Ei.
Despite the fact that P and Pi(t) are at the same spatial position,
the abscissa si(s,t), computed on Li, differs from s, as depicted
in Fig. 2, in the case of i = 2. The value of si(s,t) can be expressed
as a simple function of s, a(t) and b(t) established in Section 3
(eqn (8)), from the symmetry and periodicity rules. At time
t + dt, the point P is still at the abscissa s (because s* = 0 in step (I)),
but at a new position x(t + dt), y(t + dt). For simplicity, we assume
that P has been chosen far away from the vertices to be still on
the same edge Ei at t + dt. A new material point is in front of it:
a point Pi(t + dt), having the abscissa si(s,t + dt) � si(s,t) + dsi. The
two points P and Pi(t) thus moved from a distance dsi relatively
to each other during dt: this is the signature of a local shear rate
in the thin film of amplitude _e = (Ldsi/dt)/h. As the rescaled
distance between two points on the same layer is kept constant,
the quantity dsi is the same for all P points chosen on the same
edge Ei. It is not defined for the P points that go from one edge
to the other during the time interval dt. However these points

Fig. 2 Illustration of the interfacial motion during step (I), with an
increased value of h for readability reasons. The material system L0 (dark
blue online) and its symmetric periodic image L2 (green online) are shown
at time t (top) and t + dt (bottom). Material points belonging to these
different systems are represented by the symbols K, and their rescaled
abscissas are given. By convention, the origin of s is at the vertex A0 on L0

and the origin of s2 is at the symmetric image of A0 on L2. The material
point of interest is P, belonging to L0 and at the position s at t. At that time,
its coincident point on L2 is P2 at s2. The thick line on L0 is the material
system bounded by P0 (with s(P0,t) = 0) and P, followed between times t
and t + dt. Similarly, on L2, the thick line is the material system between
the point verifying s2(t) = 0 and P2. As imposed during step (I), the initial
point P0 stays at the vertex A0 and thus at abscissa s = 0, as well as its image
on L2. As the rescaled length of both material systems remains constant,
the abscissas of P and P2 are still s and s2 at t + dt. However P2 is not in
front of P anymore. It has been replaced by a new point P2(t + dt), at
abscissa s2 + ds2, represented by J.
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lead to a second order contribution that tends to zero at small
dt and can be safely neglected.

The tangential stress balance at the interface, also called
the Marangoni law, imposes that the surface tension gradient
dg/(Lds) balances the viscous stress Z _e. With the orientation
conventions we use, we get, on each edge Ei and for step (I):

1

L

dg
ds

�
I

¼ �ZL
h

dsi

dt
: (2)

The surface tension difference along the half bubble peri-
meter induced by step (I) is thus

gIð1Þ � gIð0Þ ¼ �ZL
h

L1
ds1

dt
þ L2

ds2

dt
þ L3

ds3

dt

� �
: (3)

Points A0 and A3 are periodic images of each other, and, by
continuity of the surface tension, they must have the same
surface tension value, thus imposing g(1) = g(0). This condition
will be fulfilled thanks to the additional viscous stress induced
by step (II) i.e. by the rotation of the interfacial layer around
each bubble, governed by s*. As shown below, this determines a
unique value for the sought parameter s*.

During step (II), the shape of the bubble is fixed, and the
material points only move along the perimeter. The point P
moves over the distance s* = u*dt, whereas its coincident point
moves over the distance �s* as shown in Fig. 3. The local shear
on all edges is thus 2Lu*/h, the surface tension gradient is

1

L

dg
ds

�
II

¼ 2
ZL
h

u�; (4)

and the surface tension difference induced by step (II) is

gIIð1Þ � gIIð0Þ ¼ 2ZL2

h
u�: (5)

The condition g I(1) + g II(1) = g I(0) + g II(0) then provides the
expression for u*:

u� ¼ 1

2L
L1

ds1

dt
þ L2

ds2

dt
þ L3

ds3

dt

� �
: (6)

The determination of this rotational velocity gives access to
the dynamical quantities of interest: the viscous dissipation
and the relative amplitude of the surface tension fluctuations.

Finally, note that
dg
ds

�
I

,
dg
ds

�
II

, and u* depend on the arbitrary

choice of A0 as the reference point for s = 0. However, the actual
motion of the material points, resulting from the sum of step (I)
and step (II), does not depend on this choice, and identical
values are obtained for any other fixed point. In the next
section, we build the explicit relationships between the initial
bubble shape, the imposed shear, and the various physical
quantities introduced in this section.

3 Analytical resolution

The model discussed in the previous section can be analytically
solved for any set of the control parameters a, b and y, which
characterize the initial shape of the hexagon and its orientation with

respect to the shear. For each set of values (a, b, y), we first determine
the foam geometry at time t: the half perimeter L of the corres-
ponding hexagon of area A, and the center position of the different
hexagons in the network. Using eqn (1), we then determine the
positions C0, C1 and C2 of the centers at t + dt. To compute the non
affine motion of the vertices, we define the points M1, M2 and M3,
respectively, as the middles of the segments [C0C1], [C1C2] and [C2C0]
(see Fig. 4). The point A1 that ensures angles of 1201 at the vertex at
t + dt is the Fermat point of the triangle M1M2M3, given by

OA
�!

1 ¼
a1x1
K

OM
��!

1 þ
a2x2
K

OM
��!

2 þ
a3x3
K

OM
��!

3 (7)

where ai = 1/sin(fi + p/3) and K = a1x1 + a2x2 + a3x3. In the triangle
M0M1M2, fi is the angle at the vertex Mi and xi is the length of the
triangle edge opposite to the vertex Mi (see Fig. 4).

Then, the positions of the other vertices are deduced from

the positions of A1, M1, M2 and M3, using A1A
��!

0 ¼ 2A1M
���!

1,

A1A
��!

2 ¼ 2A1M
���!

3, and A2A
��!

3 ¼ �2A1M
���!

2.
These expressions eventually provide a complex but explicit

expression of L(t + dt) = |A0A1| + |A1A2| + |A2A3|, a(t + dt) = |A0A1|/
L(t + dt), and b(t + dt) = a(t + dt) + |A1A2|/L(t + dt) as a function of
the initial values a, b and y.

At this stage, the normal motion of the foam is known, and
the tangential motion of the interface can be computed. In
order to determine the lengths dsi introduced in Fig. 2, let
us consider a point P of L0, of abscissa s, on the edge Ei.
We call sa and sb the abscissas, computed on L0, of the two

Fig. 3 Illustration of the interface motion during step (II), with conven-
tions similar to the one in Fig. 2. At the end of step (I), a point P2 at abscissa
s2 is in front of P at abscissa s. Then the reference point P0 moves a
distance s* along the interface, and so does its symmetric image on L2.
After step (II) the distance between P and P2 is 2s*.
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vertices Ai�1 and Ai bounding Ei, with sa o s o sb. Fig. 5
illustrates the case i = 2 for which sa(t) = a(t) and sb(t) = b(t). The
coincident point Pi is by definition at the same distance of Ai as
P. However Pi belongs to Li and, on this layer, by symmetry, the
abscissa of Ai is sa and the abscissa of Ai�1 is sb. We thus get
the condition

si(t) � sa(t) = sb(t) � s(t). (8)

Using eqn (8) at time t + dt, we get si(t + dt) = sa(t + dt) +
sb(t + dt) � s(t + dt). After step (I) the abscissas of the material
points on L0 are unchanged because s* = 0 in step (I), so
s(t + dt) = s(t). Using s(t) = sb(t) + sa(t) � si(t), we finally get:

si(t + dt) = sa(t + dt) + sb(t + dt) � s = dsa + dsb + si(t) (9)

The relation dsi = dsa + dsb, on the different edges, then leads to
the formulas:

ds1 = da ds2 = da + db ds3 = db (10)

Then, from eqn (6), we get

u� ¼ 1

2
a _aþ ðb� aÞð _aþ _bÞ þ ð1� bÞ _b
� �

: (11)

Finally, the surface tension gradients are obtained by summing
eqn (2) and (4), leading to

@g
@s

�
1

¼ Z
L2

h
ð2u� � _aÞ; (12)

@g
@s

�
2

¼ Z
L2

h
ð2u� � _a� _bÞ; (13)

@g
@s

�
3

¼ Z
L2

h
ð2u� � _bÞ; (14)

respectively on edges E1, E2 and E3.
These expressions can be made more symmetric using the

notations c1 = a, c2 = b � a and c3 = 1 � b, corresponding to the
fraction of the perimeter of each edge. The previous relations
then take the more elegant and symmetric form:

@g
@s

�
i

¼ Z
_eextA
h

L2

A
‘iþ2

d‘iþ1
_eextdt

� ‘iþ1
d‘iþ2
_eextdt

� �
; (15)

with the convention that i + k is computed modulo 3. This
expression clearly underlines that the arbitrary choice of origin
for the abscissa used to establish relations (12)–(14) does not
play any role in the physical quantities, which are expressed
here as a function of physical quantities only. The factor L2/A
and the last factor are non-dimensional and only depend on the
geometrical control parameters a, b and y. The scaling for the
surface tension fluctuations is given by the first factor Z _eextA/h.

The dissipation rate P in the system can be easily deduced
from eqn (15) using the relation

P ¼ 1

Z
Si

1

L

@ g
@s

�
i

� 	2
hLi: (16)

As our model only predicts surface tension gradients, the
surface tensions are only determined to be within a constant.
The mean surface tension hgi, averaged over the whole bubble,
thus remains unknown. We use it as an integration constant to
express g(s).

In our crude model, the surface tension is a continuous
piecewise linear function as shown in Fig. 6. The amplitude of
its fluctuations can be defined by:

Dgmax ¼ max
½0;L�

gð Þ �min
½0;L�

gð Þ (17)

As the tension is a monotonic function on each edge, its
extrema are necessarily on the vertices, and Dgmax is easily
determined by comparison of g(0), g(a) and g(b).

We can also define the film tension on each edge, as the
sum of the tensions on both sides. As shown in Fig. 6 these film
tensions are uniform along a given film and are simply given
by g(0) + g(a) on E1, g(a) + g(b) on E2, and g(b) + g(0) on E3. From
this we deduce that the maximal difference between two film
tensions is equal to Dgmax.

Fig. 4 Determination of the position of A1 at time t + dt. The points C0, C1

and C2 are the bubble centers at time t + dt and the points M1, M2 and M3

are the middles of the edges of the triangle C0C1C2. The edge lengths xi

and angles fi of the triangle M1M2M3 are the quantities involved in eqn (7),
which allows determination of the position of A1 at time t + dt.

Fig. 5 Zoom on the liquid film corresponding to the edge E2 of Fig. 2. The
point P on L0 is characterized by the abscissa s. Its coincident point P2 on
L2 is characterized by the abscissa s2. The distance between P and the
vertex at sb = b on L0 is the same as the distance between P2 and the
vertex at sa = a on L2, leading to eqn (8).
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4 Results

We used this model, implemented in a Matlab code,14 to
determine the dynamical evolution of a large set of bubble
shapes when an increment of shear de = _eextdt = 10�5 is applied.
The initial shape is characterized by the three parameters
(a,b,y). They have been varied in the range {a A [0.1;0.8] and
b A [0.2;0.9] such that b � a Z 0.1} (i.e. the rescaled length of
each edge is at least 0.1), and 01 r y r 1801. As previously
stated, the influence of the other physical parameters such as
A and _eext are simply deduced from a scaling analysis and do
not need to be systematically varied.

The foam dynamics is first quantified by the value of Dgmax.
It is represented in Fig. 7a as a function of the relative lengths a
and b � a of the first and second edges of the hexagon. These
results are obtained after averaging over the third control
parameter y. Similarly the influence of a and y is shown in
Fig. 7b, after averaging over b � a.

A first result is that Dgmax is of the order of (0.15 �
0.10)ZA _eext/h in the whole parameter space. Assuming Z =
10�3 Pa s and h = 10�6 m, we obtain Dgmax E 0.1 mN m�1 for
A = 1 mm2, _eext = 1 s�1. However, at higher shear rates, _eext =
100 s�1 for example, we get Dgmax E 10 mN m�1. Our simple
model thus leads to a first conclusion: if ZA _eext/h { g spatial
fluctuations of the surface tension are negligible, otherwise they
are not. On the basis of this order of magnitude, we can determine
the validity range of two key assumptions of the model.

We first assumed that the angles between films remain
equal to 1201. This rule arises from the surface tension equili-
brium at the vertices and a surface tension difference between
adjacent films Dg induces an angle modification Dy scaling as
Dg/g. The geometry imposed in our model thus requires that

ZA_eext

gh
� 1: (18)

A refinement of eqn (7) would allow taking into account the out-
of-equilibrium foam shape, as was done in ref. 12.

We also assumed the homogeneity of the extension. As shown
in Appendix, this requires that the actual extension x can be
decomposed into a dominant, uniform, term DL/L and a negligible
correction dx, which varies along the bubble contour and has a
vanishing mean value. For an elastic interface, g = g0 + Ex, and thus
dg/ds = Eddx/ds. The inhomogeneous part of the extension dx thus
remains small as long as Dg{ E, leading to a second limitation of
the validity range of the model, already discussed in the Appendix:

ZA_eext

Eh
� 1: (19)

For foaming solution having a Gibbs elasticity smaller than the
surface tension, this second limitation is more restrictive than
the one given by eqn (18).

With this simple scaling argument, we can thus already
conclude that models of foam viscosity based on the simple
shear of the thin films trapped between bubbles moving at
different velocities, as the one developed in this paper, can only
be relevant for small shear rates, small bubbles or thick films.
At the opposite limits, surface tension gradients cannot be high
enough to shear the thin films and another regime should
emerge, based on film extension and compression, and not
only on film shearing.

Fig. 6 Surface tension g � hgi normalised by ZA _eext/h, along the non
dimensional curvilinear abscissa s, for the initial bubble shape represented
in Fig. 1 (a = 0.1, b = 0.7 and y = �541 at t = 0). The surface tension on one
side (bubble H0) is shown in blue. The film tension (the sum of the tensions
on both sides) is shown in red.

Fig. 7 Color plot of the surface tension fluctuation Dgmax, rescaled by
ZA _eext/h, as a function of the parameters fixing the initial shape of the
bubble. (a) Dgmax averaged over the angle y, as a function of a and b � a,
the rescaled length of two edges of the hexagon. (b) Dgmax averaged over
the rescaled length b � a, as a function of a and y.
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Assuming now that the constraint eqn (19) is fulfilled, we use
our model to investigate potential correlations between Dgmax

and the bubble geometry. In this aim, we tried to reduce the
complexity to two parameters only, by using the aspect ratio r of
the bubble and its orientation c to describe the bubble geome-
try, instead of using the three parameters a, b and y. These
quantities are simply obtained from the 2D inertia matrix of
each bubble (taking its center C0 as the origin, and assuming a
uniform mass distribution on the edges): c is the angle between
the eigenvector associated with the lowest eigenvalue and the
x direction (horizontal), and r is the ratio of the square roots of
the two eigenvalues (see Fig. 8). The values of Dgmax as a function
of r and c are shown in Fig. 9 (the same data as in Fig. 7).

A different range of aspect ratios may be of interest. In the case of
small amplitude oscillatory shear, the average bubble aspect ratio
remains close to one, and the surface tension fluctuation is close to
0.2 Z_eextA/h, as shown in Fig. 9b. In the case of a steadily sheared
foam, a yield strain is reached, of the order of e = 1 for disordered 2D
foams.15 It corresponds to a typical bubble aspect ratio of the order of
1.5.12 To analyse the surface tension fluctuations in such a situation,
we focus on the subset of data S having r values in the range
[1.45;1.55] (corresponding to light blue points (online) in Fig. 9b). In
this subset, we get hDgmaxiS = (0.206 � 0.032)ZA_eext/h, 0.032 being
the standard deviation sS. Surprisingly, for this intermediate range
of bubble elongation, Dgmax does not significantly depend on the
bubble orientation with respect to the shear, as shown in Fig. 10. In
this graph, we plot hDgmax(c)i as a function of c, obtained by
averaging over all values of a, b and y in S verifying c in the range
[c� dc;c + dc] with the binning parameter dc = 0.51. For each value
of c we also calculate the standard deviation sc on the same subset.
As seen in the figure, the two quantities hDgmax(c)i and sc only
slightly vary with c. In particular, at any c we have sc E sS, which
shows a poor correlation between the bubble orientation and Dgmax.

Finally, in order to quantify the global rotation of the bubble
on itself, we compute the total angular momentum of the
bubble’s perimeter around its center C0.

O ¼ L

dt

ð1
s¼0

C0P
��!
ðsÞ ^ Pðs; tþ dtÞPðs; tÞ

������������!
ds (20)

This value can be compared with Oaff the total angular momen-
tum of the bubble’s perimeter that is obtained when the
external shear _eext is applied globally to the foam structure (in
this case, the new position of each vertex is simply computed

Fig. 8 Eigenvectors of the 2D inertia matrix of one bubble (the lengths of the
red and blue lines are proportional to the square root of the respective
eigenvalues). c is the angle between the eigenvector associated with the
lowest eigenvalue and the horizontal direction, and the aspect ratio r is the ratio
of the square roots of the two eigenvalues. Here c = 16.271 and r = 2.47.

Fig. 9 Color plot of the surface tension fluctuation Dgmax, rescaled by
ZA _eext/h. (a) As a function of the aspect ratio of the bubble r (all points in
blue), with highlighted regions corresponding to �11 r c r 11 (orange)
and 441 r c r 461 (yellow). (b) As a function of the orientation of the
bubble c (all points in blue), with highlighted regions corresponding to
1.9 r r r 2 (burgundy), 1.45 r r r 1.55 (light blue), and 1 r r r 1.1 (green).

Fig. 10 Average hDgmax(c)i and standard deviation sc of surface tension
fluctuation on the data subset corresponding to aspect ratio r A [1.45;1.55]
and bubble orientation [c � 0.51;c + 0.51], as a function of c.
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using eqn (1), and the angles between the edges are no longer
equal to 1201). The values of O/Oaff as a function of r and c are
shown in Fig. 11. The range of rotation of the bubble is
increased when r is increased, and the biggest rotations are
obtained when c = 01, i.e. when the long side of bubble
is horizontal.

5 Conclusions

In conclusion, we have shown, in the case of a 2D periodic foam
made of hexagonal bubbles of high Gibbs elasticity, that a
global shear applied on the foam necessarily induces a varia-
tion of the surface tension along the bubble perimeter, as well
as a rotation of the bubble on itself. In this very simple case all
the quantities of interest can be analytically computed for any
bubble initial shape and any foam deformation. This model
can easily be extended to more complex 2D situations, where
the surfactant monolayer is described with a more realistic
model than an elastic shell, or for out-of-equilibrium bubble
shapes, even though an analytical solution might be out of
range in these cases. Moreover, despite the simplicity of the
hypotheses made, the resolution of our model highlights the

importance of considering the whole bubble and not simply an
isolated fluid film when dealing with foam deformations. This
crucial question of boundary conditions for the surface tension
should remain valid in 3D. The constraint of surface tension
continuity we used in this model can be extended to the 2D
surface limiting a 3D bubble: the surface tension obtained by
the integration of the Marangoni law along any closed curve on
this surface must come back to its initial value when coming
back to the starting point. This seemingly obvious rule cannot
be addressed on a piece of interface extracted from a larger,
closed, interface, so dealing with the global interface is still
important in 3D situations.
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Appendix

During the shear increment Deext, the total length increases
from L0 at t to L0 + DL at t + Dt. Using a Lagrangian formalism,
we call x(S0) = (dS � dS0)/dS0 the local elongation of the interface
element dS0 at the curvilinear abscissa S0 (measured at t) and

decompose it into x = DL/L0 + dx(S0), so that
Ð L0

0 dxðS0ÞdS0 ¼ 0.
The local rules are the linearised thermodynamic relation-

ship:

g ¼ g0 þ Ex ¼ g0 þ E
DL
L0
þ dx

� �
; (21)

and the Marangoni law:

@g
@S0
¼ Z

h

DS
Dt
ðS0Þ; (22)

with DS(S0) the distance between the two points that were
coincident points at t. This term can be decomposed as
DS(S0) = D0S + dS, with D0S the value obtained for a homo-
geneous extension (this part is the one computed in the article)
and dS the contribution of a non-homogeneous extension dx.

Noting that the term
DL
L0

in eqn (21) is the same at any

curvilinear axis, it follows that:

@g
@S0
¼ E

@dx
@S0

: (23)

And therefore:

E
@dx
@S0
¼ Z

hDt
ðD0S þ dSÞ: (24)

The large Gibbs modulus hypothesis established below is based
on this last equation: a large Gibbs modulus implies that
variations of dx are very small, otherwise any stretching or
compression of the interface would induce an elastic stress
much larger than the internal viscous stress able to occur in the
liquid film.

The deformation scale of the problem is given by _eextL
and (D0S + dS)/Dt is thus at most of this order. This allows

Fig. 11 Color plot of the rotation O rescaled by Oaff. (a) As a function of
the aspect ratio of the bubble r (all points in blue), with highlighted regions
corresponding to �11 r c r 11 (orange) and 441 r c r 461 (yellow).
(b) As a function of the orientation of the bubble c = (all points in blue),
with highlighted regions corresponding to 1.9 r r r 2 (burgundy),
1.45 r r r 1.55 (light blue), and 1 r r r 1.1 (green).
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quantification of the order of magnitude of the elongation
fluctuations

@dx
@S0
� Z

Eh
_eextL: (25)

Using the fact that qdx/qS0 scales as dx/L we obtain that
dx { 1 if

E 	 ZL2

h
_eext: (26)

In this limit, we can use dx as a small parameter to make a
Taylor expansion of the various quantities. In particular, dS in
eqn (24) is of a higher order in dx than D0S. At the lowest order,
eqn (21) and (24) then become:

g ¼ g0 þ E
DL
L
þ dx

� �
; (27)

E
@dx
@S0
¼ Z

hDt
ðD0SÞ: (28)

This implies:

@g
@S0
¼ Z

hDt
ðD0SÞ; (29)

that is the equation we use in the main text.
Note that the Gibbs modulus is large and 1/E is of order 1 in

dx (see eqn (25)). Eqn (28) thus consistently compares two
terms of order 0 and can be used to compute dx, on the basis
of the solutions at dominant order obtained with eqn (29).
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