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The transport of droplets in microfluidic channels is strongly dominated by interfacial
properties, which makes it a relevant tool for understanding the mechanisms associated
with the presence of more or less soluble surfactants. In this paper, we show that the
mobility of an oil droplet pushed by an aqueous carrier phase in a Hele-Shaw cell
qualitatively depends on the nature of the surfactants: the drop velocity is an increasing
function of the drop radius for highly soluble surfactants, whereas it is a decreasing
function for poorly soluble surfactants. These two different behaviours are experimentally
observed by using two families of surfactant with a carbon chain of variable length.
We first focus on the second regime, observed here for the first time, and we develop a
model which takes into account the flux of surfactants on the whole droplet interface,
assuming an incompressible surfactant monolayer. This model leads to a quantitative
agreement with the experimental data, without any adjustable parameter. We then propose
a model for a stress-free interface, i.e. for highly soluble surfactants. In these two limits,
the models become independent on the physico-chemical properties of the surfactants,
and should be valid for any surfactant complying with the incompressible or stress-free
limit. As such, we provide a theoretical framework with two limits for all the experimental
physico-chemical configurations, which constitute the bounds for the droplet mobility for
intermediate surfactant solubility.
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1. Introduction
Understanding the droplet migration in microchannels is crucial as it plays a fundamental
role in many microfluidic applications (Joanicot & Ajdari 2005; Teh et al. 2008; Seemann
et al. 2011). In these systems, droplets act as a micro-reactor for biochemical, chemical,
mixing and mass transfers at a controlled volume and composition. Importantly, droplet-
based microfluidics are also used as model systems for studying fundamental interfacial
properties of fluid–liquid interfaces (Stone, Stroock & Ajdari 2004; Huerre et al. 2015;
Miralles et al. 2016). As the droplet transport strongly depends on the channel geometry
and on the hydrodynamic regime, we focus here on the motion of droplets in the
low-Reynolds-number and low-capillary-number regime, in a horizontal Hele-Shaw cell
defined as a rectangular channel with a width l much larger than its height H . We consider
droplets of volume much larger than H3, so that they are confined in the vertical direction
and adopt a pancake-like shape. The surrounding fluid (phase 2) flows at an imposed
average velocity U∞ and the droplet (phase 1), pushed by this external flow, eventually
reaches a constant migration velocity Ud , see figure 1. Taylor & Saffman (1959) first in-
vestigated this problem, modelling the droplet by a wetting cylinder of height H and radius
R � H , and assuming that the dissipation occurs only in the external phase. More recently
Afkhami & Renardy (2013) and Gallaire et al. (2014) took into account both the external
fluid viscosity η2 and the droplet viscosity η1. Using this framework, the theoretical
mobility of the droplets, defined as β = Ud/U∞, is found to be β0 = 2/(1 + η1/η2).

However, the mobility is impacted by the detailed geometry of the droplet shape, which
deviates from a cylindrical shape. Indeed, the interface is deformed by the confinement
and forms a meniscus, governed by the Laplace pressure. We consider here the case of an
external phase wetting the walls, so that a thin film of the external phase is trapped between
the wall and the drop by the droplet motion, stabilised by repulsive lubrication forces,
see figure 1. By exploring the motion of bubbles confined in a capillary tube, Bretherton
(1961) highlighted that a specific dissipation occurs in the dynamical meniscus, i.e. at
the transition between the meniscus and the thin film. This dissipation is controlled by
the geometry of the dynamical meniscus and in particular by the thickness of the film,
which is determined by the balance between the surface tension γ and the viscous stress
in the thin film. The surface tension tends to reduce the curvature of the droplet interface
and brings it closer to the wall, while the viscous stress tends to create a gap between the
droplet and the wall. Therefore, the capillary number Ca = η2Ud/γ , representing the ratio
of the external phase viscosity to surface tension forces, plays a crucial role in determining
the thickness of the film and the dissipation in the meniscus (Eri & Okumura 2011; Huerre
et al. 2015; Ling et al. 2016; Zhu & Gallaire 2016).

Based on the work of Burgess & Foster (1990) on the fluid velocity field around a
circular object in a Hele-Shaw cell, Dangla (2012) has developed a model which takes
into account the dissipation obtained for a cylindrical droplet shape, and the additional
dissipation due to the specific shape of the meniscus. Considering only the former leads
to the mobility β0, whereas the whole model predicts a smaller mobility, observed
experimentally (Kopf-Sill & Homsy 1988; Roberts et al. 2014; Shen et al. 2014). The
model also predicts that the droplet mobility increases with the droplet radius R. Indeed,
the hydrodynamical forces acting on the cylinder scale as R2 whereas the additional
damping forces located in the dynamical meniscus scale as R, thus playing a more
important role for smaller droplets. This theoretical prediction results from a simple ratio
between the droplet perimeter and the droplet area (seen from above) and should a priori
remain valid whatever the precise properties of the meniscus dissipation. Numerically,
a small but significant influence of the droplet radius on the droplet mobility is indeed
observed, always with a mobility being an increasing function of the droplet radius R
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Figure 1. Schematic representation of the pancake droplet in the Hele-Shaw cell, and notations used in the
text. The problem is solved in the laboratory frame, in which the droplet moves at velocity Ud , pushed by the
external phase,of velocity U∞ far from the droplet.

(Zhu & Gallaire 2016). Similarly, a mobility increasing with R is found experimentally
by Reichert, Cantat & Jullien (2019), with surfactant-free air bubbles in fluorinated oil,
and with oil droplets in a solution of decyl tetramethyl ammonium bromide (C10-TAB).
Any departure from this trend is the signature of additional mechanisms. For example, in
the work by Maruvada & Park (1996) the entire drop interface is assumed to move at the
same velocity as the drop. In that case, the wetting film between the drop and the wall is
uniformly sheared and the main drag force is the resulting viscous friction, which scales as
η2Ud R2/h, where h corresponds to the wetting film thickness. As the driving force scales
as R2, the drop radius scales out in the force balance, which leads to a velocity independent
of the drop size. Experimentally, a negligible influence of R on the mobility is reported
in Shen et al. (2014) in agreement with the assumptions by Maruvada & Park (1996).
However, as discussed in Reichert (2017), the droplet mobility is also observed to decrease
with the droplet radius, when pushed by an aqueous solution of sodium dodecylsulphate
(C12-sulphate). To our best knowledge, this regime has never been systematically
investigated nor rationalised in the literature. The variety of mobilities obtained
experimentally stems from different physico-chemical conditions that are presumably not
fully captured by the existing models.

In this paper, we study the mobility of a droplet using surfactants of varying solubility
in order to understand the origin of the opposite trends in mobility as a function of the
droplet radius. By firstly focusing on the novel regime observed by Reichert (2017), which
is obtained for poorly soluble surfactants, we will show that it is governed by Marangoni
flows, i.e. flows induced by surface tension gradients (Scriven & Sternling 1960), strong
enough to lead to an incompressible interface. In a similar geometry, Gallaire et al.
(2014) analytically predicted the droplet velocity induced by an externally imposed surface
tension gradient along a Hele-Shaw cell. However, in our situation, the surface tension is
governed by the convective transport and therefore by the droplet motion. This leads to a
coupled problem, which is addressed in the present paper. Interestingly, by replacing the
assumption of incompressible interfaces with a condition of uniform surface tension in
our model, we find the droplet mobility in the case of a stress-free interface (exchanges
between the volume and the interface are instantaneous compared with the characteristic
time of any transport mechanism). Thus we provide an upper bound of the droplet mobility
for highly soluble surfactants, which is consistent with the observations obtained for the
most soluble surfactants in our experiment.

We first present an experimental investigation of the mobility of a pancake oil droplet
pushed by an aqueous carrier phase in the presence of ionic surfactants. We investigated
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two surfactant families: alkyl ammonium bromides with 10, 12 or 14 carbons in the alkyl
chain and the alkyl sulphates with 8, 10, 11 or 12 carbons. The experimental set-up is
discussed in § 2 and the experimental results are presented in § 3. The main experimental
result is that the droplet mobility increases with the droplet size for the most soluble
surfactants (11 carbons or less for both families), whereas it decreases for the less soluble
ones (12 carbons or more for both families). This second regime is in clear contradiction
with the existing models of the literature. In § 4, we propose to model the droplet
interface as a two-dimensional (2-D) incompressible liquid, which is the relevant limit
for monolayers of poorly soluble surfactants (Mysels, Shinoda & Frankel 1959; Seiwert,
Dollet & Cantat 2014). In this limit, the interface is able to produce a large Marangoni
stress. The problem then involves three liquid phases: the droplet, the external phase
and the interface, whose respective velocity fields are strongly coupled. Using analytical
solutions built by Gallaire et al. (2014) for a cylindrical drop when the surface tension
gradient is imposed (a decoupled problem), we solve the coupled problem and predict
analytically the droplet mobility and the surface tension gradient without any adjustable
parameter. This model quantitatively predicts the experimental mobility obtained for the
less soluble surfactants and captures its variation with the droplet size and the capillary
number. We thus believe that the variation of the droplet mobility with its size is an
indication of the influence of the surface tension gradients induced by the droplet motion
itself: in this regime, the droplet motion is limited by the surfactant flux from its rear to the
front, on its lateral sides. Interestingly, our approach shows that when the incompressibility
assumption is relaxed and the interface is considered stressfree, it is possible to derive a
maximum mobility for the more soluble surfactants, in agreement with the experimental
data. Our analytical approach can therefore predict the droplet velocity for poorly soluble
surfactants. For more soluble surfactants, the droplet velocity is bounded between the two
limits of stress-free interface and incompressible interface, respectively.

2. Experimental methods

2.1. Experimental set-up
The microfluidic chips are manufactured in polydimethylsiloxane (PDMS) using standard
soft lithography (Xia & Whitesides 1998). Sylgard 184, bought from NEYCO company,
is mixed with a curing agent at a 1:10 ratio and placed in a vacuum desiccator for half an
hour. The mixture is then poured on a mould, fabricated using a photolithography SU8
photoresist layer and put in an oven at 70 ◦C for 2 hours. The resulting PDMS microfluidic
chip is then permanently bonded to a glass slide via oxygen plasma. The glass slide has
been previously cleaned of any dust and biological contamination by being immersed in a
Piranha solution with a ratio of 1/3 hydrogen peroxyde (H2O2 50 %) and 2/3 of sulphuric
acid (H2SO4) for 5 minutes, rinsed with milli-Q water and dried using compressed air.

The oil droplets are generated at the T-junction shown in the inset of figure 2. The
internal phase (phase 1) is fluorinated-oil FC72 (C6F14, Sigma Aldrich) and is injected in
inlet (1) while an aqueous phase (phase 2) is injected in inlets (2a) and (2b). The various
surfactant solutions used for this external phase are listed in table 1. The viscosity of
the two solutions are η1 = 0.3 mPa.s and η2 which varies from 1–1.5 mPa.s, leading to a
viscosity ratio η1/η2 ∼ 0.3 down to 0.2.

Experiments are performed with several microfluidic chips with microchannels at inlets
(1) and (2a) of width between 60 μm and 150 μm. As such, it is possible to vary
the radius of the generated droplets from 45 to 130 μm by adjusting both the imposed
pressures at inlets (1) and (2a) and the microchannel widths. The external flow rate is
independently controlled using the second inlet of aqueous solution (2b). This additional
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Figure 2. Design of the experimental set-up. The PDMS chip is shown in purple, with an enlarged schematic
picture of the T-junction (top red circle) used to produce the droplets, and an experimental picture of the droplets
in the Hele-Shaw cell (bottom red ellipse). The three pressure controllers and two flowmeter are shown on the
left.

Surfactant Number of
carbons

Polarity CMC (mmol l−1) C (CMC) γ0 (mN m−1) η2 (mPa.s)

C8−sulphate 8 - 133 2 21 1
C10−sulphate 10 - 32 2 15.6 1
C11−sulphate 11 - 16 2 17 1
C12−sulphate 12 - 8 2 18.2 1
C12−sulphate (+NaCl 0.2 M) 12 - 0.9 0.45 17.9 1
C12−sulphate (+NaCl 0.2 M) 12 - 0.9 0.9 14 1
C12−sulphate (+NaCl 0.2 M) 12 - 0.9 2.7 14 1
C12−sulphate (+NaCl 0.2 M) 12 - 0.9 18.2 14 1
C10−TAB (+NaCl 0.1 M) 10 + 60 2 18 1
C10−TAB (+NaCl 1 M) 10 + 22 2 15 1.1
C12−TAB (+NaCl 0.1 M) 12 + 7.5 2 15.6 1
C14−TAB (+NaCl 1 M) 14 + 0.1 2 15 1.1

Table 1. Properties of the aqueous solutions depending on the surfactants used in the preparation. All the data
have been determined using the pendant-drop method for the interface properties and Couetter heology for the
viscosity.

aqueous solution is progressively injected in the main channel through a comb of lateral
channels to avoid droplet breakup that would otherwise occur at high flux with a single
lateral channel.

The pressures at the 3 inlets are controlled by a MAESFLO pressure controller, and the
aqueous flow rates Q2a and Q2b, respectively, at inlets (2a) and (2b) are measured with a
Fluigent flowmeter. The total flow rate of phase 2 is in the range [1–100] μl min–1 and the
flow rate of phase 1 is of the order of a few μl min–1. The pressure at the inlets are in the
range [50–500] mBar, so the actual pressure in the Hele-Shaw cell is below this value.
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The droplets eventually reach the Hele-Shaw cell of height 2H = 15 μm, length L = 1.5
cm in the direction of the flow (the x direction, as shown in figure 2 ) and width l = 2.5 mm
in the transverse direction (the y direction). The outlet of the Hele-Shaw cell is directly
connected to the atmospheric pressure, to minimise the average pressure in the cavity and
thus avoid deformations of the PDMS chip. This was checked by measuring the shape of
the cavity using a fluorescein absorbance method (Huerre et al. 2015; Baué 2022) and we
found no deformations by the flow, even at the highest flow rates. The room temperature
is kept constant at 20 ◦C. The average velocity of the external phase in the Hele-Shaw
cell can therefore be computed as U∞ = (Q2a + Q2b)/(2H l), the oil flow rate being
negligible.

2.2. Image recording and processing
The droplets are observed through a Leica DMIRB Microscope and recorded with a Zyla
(Andor) camera with a sCMOS sensor connected to the microscope, at 50 frames per
second, with a resolution of 1.3 μm pixel–1. The droplets are separated by a distance
larger than ten times their radius in order to avoid any hydrodynamic interactions between
them (Shen et al. 2014). There are typically 2 or 3 droplets in the video camera’s field of
view. The droplet shape is determined by image processing. The diameters in the x and y
directions differ by less than 3%, indicating a very good circularity. The droplet radius is
determined as R = √

A/π , with A corresponding to the droplet area. For each data series,
the droplet radius is controlled with a precision of ±5 μm.

Each droplet is followed along its trajectory by image correlation, and the instantaneous
droplet velocity is computed. We first verify that the velocity varies by less than 5% along
the whole trajectory, if the first and last millimetre of the Hele-Shaw cell are disregarded.
Then trajectories are recorded within the observational window of length 3 mm near the
centre of the cell, and the mean droplet velocity is measured along these trajectories.
Each droplet velocity Ud shown below has been obtained by averaging the velocity over
50 droplets. The dispersion of the data obtained on the different droplets provides the
error bars. The highest measurable droplet velocity is of the order of Ud = 2 cm s–1, and
is limited by the image acquisition rate.

2.3. Aqueous solution preparation
Two series of surfactants are used in the experiments: sodium alkyl sulphates, with an
anionic head, noted Cn-sulphate with n = [8, 10, 11, 12] being the number of carbons
in the alkyl chain; and alkyl trimethylammonium bromides, with a cationic head, noted
Cn-TAB with n = [10, 12, 14]. All surfactant provided by SigmaAldrich have a 99 %
purity, except for the C14−TAB which is 95 % pure. They were dissolved in milli-Q water.
The properties and concentration of the surfactant solutions used are listed in table 1. Due
to the positive charge of the ammonium, the wetting film separating the oil droplet from the
wall tends to rupture, especially at low velocity, as the glass substrate is charged negatively.
In order to avoid the wetting of the droplets on the glass at low capillary numbers,
salt is added in the solutions between 0.1 and 1 mol l–1 to decrease the Debye lengths
and therefore lower the range of the electrostatic interactions. Moreover, the experiments
with CnTAB surfactants needed to be started at high pressure to de-wet the oil from the
microchannels. To understand how the addition of salt influences the interface properties,
C12−sulphate experiments were carried out with and without the salt.

1009 A23-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

CO
LE

 N
O

RM
AL

E 
SU

PE
RI

EU
RE

 D
E 

RE
N

N
ES

 - 
EN

S 
de

 R
en

ne
s,

 o
n 

16
 A

pr
 2

02
5 

at
 0

6:
41

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2025.167
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Journal of Fluid Mechanics

16

14

12

10

8

6

(a)
U

d  
(m

m
 s

−
1
)

Uf  (mm s−1) Ca

β

(b)

4

2

0

0.32

0.30

0.28

0.26

0.24

0.22

0.20

0.18

0.16
0 0.0004 0.00080 10 20 30 40 50

0.41 mM 0.2 M NaCl

0.82 mM 0.2 M NaCl

0.26 mM 0.2 M NaCl

164  mM 0.2 M NaCl

164 mM

0.41 mM 0.2 M NaCl

0.82 mM 0.2 M NaCl

0.26 mM 0.2 M NaCl

164  mM 0.2 M NaCl

164 mM

Figure 3. Droplet velocity Ud for different concentrations of C12−sulphate and of NaCl. (a) Value of Ud as
a function of the carrier phase velocity U∞. (b) Mobility β = Ud/U∞ as a function of the capillary number
Ca = η2Ud/γ . The droplet radius is R = 90 ± 5 μm.

3. Experimental results
We first address the effect of the surfactant concentrations on the mobility of the droplet.
To this end, we used C12−sulphate solutions of concentration in the range [0.41–16.4] mM
with NaCl at concentration 0.2 M. The surfactant concentration was thus varied from 0.45
CMC (critical micellar concentration) up to 18.2 CMC, i.e. on either side of the CMC. The
concentrations are expressed relatively to the CMC in table 1. Note that the CMC depends
on the salt concentration, see column 4. The effect of salt was also investigated with the
C12−sulphate solution at the largest concentration, which was prepared without salt or
with a concentration of 0.2 M NaCl. In figure 3(a) we plot the velocity of the droplet Ud
as a function of the velocity of the carrier phase U∞ for all these solutions, for a droplet
radius R = 90 ± 5 μm. The droplet velocity varies faster than linearly with U∞, which
is more visible in figure 3(b) where we plot the mobility β = Ud/U∞ as a function of
Ca = η2Ud/γ . No significant influence of the salt concentration has been observed for the
investigated range of parameters. When the concentration of C12−sulphate increases, a
slight increase of the droplet velocity is observed in figure 3(a). Some dispersion remains
in figure 3(b), of the order of 3 × 10−2 at Ca = 5 × 10−4, but with a different trend: as
Ca is increased, the mobility seems to first increase and then decrease with the surfactant
concentration.

In figure 4 we focus on the influence of the droplet size, for different surfactants. The
Cn-sulphate solutions are all prepared at 2 CMC, without salt, and the Cn-TAB solutions at
2 CMC with salt at 0.1 M or 1 M, as specified in the figure legends (see table 1). For each
solution, the mobility β of the droplets is plotted for several droplets radii. The mobility of
the droplets increases with the capillary number as already shown in figure 3, and depends
on the droplet size.

In order to highlight this radius dependency, the data of figure 4(a–g) have been
interpolated in the capillary number range [10−4–10−3] so that we get a mobility value
for all the solutions at the same capillary number chosen at Ca = 5 × 10−4. The resulting
mobilities are plotted in figure 4(h) as a function of the droplet radius. The variations with
the droplet radius are small but clear trends are emerging, and the variation of the mobility
with the nature of the surfactant is larger than the variation obtained by changing the salt or
surfactant concentrations in figure 3(b). In the following, we thus focus on the variations of
the mobility with the droplet radius, the capillary number and the nature of the surfactants
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Figure 4. Mobility β = Ud/U∞ as a function of the capillary number for several radii for (a) C8−sulphate,
(b) C10−sulphate, (c) C11−sulphate and (d) C10−TAB, (e) C12−sulphate, (f ) C12−TAB, (g) C14−TAB.
(h) Mobility of the droplets as a function of their radii for Ca = 5 × 10−4.
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Phase 2

2H

R

Fmen Ffilm

Flat

Phase 1

y

x

z

Ω
θ

Figure 5. The control volume Ω is a cylinder of axis Oz, in contact with the top and bottom walls, and of
radius R, so that its lateral side is just outside the drop, represented in yellow (through transparency). The
external forces acting on Ω are decomposed into F f ilm , acting on the top and bottom faces of the cylinder,
Flat , acting on its side, and Fmen , localised at the top and bottom faces, in the dynamical meniscus.

and disregard the effect of the surfactant or salt concentrations. For the surfactants having
a carbon chain with 11 carbons or less, in both surfactants families, we observe that the
mobility increases with the droplet radius. This is the expected regime discussed in § 1.
The central result of this paper is that, for the surfactants having a carbon chain with
12 carbons or more, the mobility of droplets in contrast decreases with the droplet radius.
This observation confirms preliminary observations made in Reichert (2017). This regime,
observed for the longest carbon chains, is in contradiction with the existing models in the
literature, but is quantitatively predicted by the model developed below.

4. Modelling

4.1. Main assumptions of the model
In our experimental regime, the viscous stress remains smaller than the capillary forces
so the drop can be assumed to remain circular, as shown in § 2.2. It is separated from the
wall by a film of thickness h that is assumed to be uniform, as discussed in § 4.5. The
drop’s shape can thus be decomposed into a cylindrical part of radius R − H ∼ R � H
and thickness 2(H − h)∼ 2H � h, bounded by a meniscus with a semi-circular section
of radius H − h ∼ H (see figure 5).

Our model involves three main unknowns, the drop velocity Ud , the interface velocity in
the wetting film Us , assumed to be uniform as discussed in § 4.4, and the tension difference
between the front and the rear of the drop 2�γ . These unknowns are coupled to each
other through (i) the force balance on the drop, (ii) the interface area conservation, which
expresses the surfactant conservation, and (iii) the consistency of the tension difference
computed either along the drop side or along the wetting films. These three couplings
allow us to predict the drop velocity as a function of the imposed velocity U∞.

The force balance on the drop is thus made on the control volume Ω , shown in figure 5,
which shape is known. It is a cylinder of axis Oz, in contact with the top and bottom walls,
and of radius R, so that its lateral side is just outside the drop. The force Flat exerted on
Ω is governed by the viscous flows inside and outside the drop. They are calculated in
§ 4.2 by identifying the shape of Ω and the shape of the drop. Indeed, for this part of
the problem, we assume that the viscosities are equal to η1 and η2, respectively, inside and
outsideΩ and that the surface tension acts on the lateral side ofΩ and does not depend on
z. On the scale of the droplet, the interface velocity in the wetting film Us , assumed to be
proportional to Ud , plays the role of a sliding velocity for the drop. These simplifications
neglect some viscous contributions in the meniscus domain, i.e. in the volume between
the lateral side ofΩ and the actual position of the drop interface. Therefore, this approach
accounts for all physical effects (Nagel & Gallaire 2015), but cannot be considered as
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Rear Front

Figure 6. Schematic showing the velocity field on the drop interface, in the frame of the drop. In this frame,
the top and bottom walls move to the left at the velocity −Ud and the drop interface in the thin film moves
almost at the same velocity (if Us � Ud ), inducing a surfactant flux to the left which scales as −RUd . This
tank-treading motion of an incompressible interface corresponds to the rolling case in Cantat (2013). This flux
must be balanced by a flux on the drop side.

a rigorous H/R expansion. However, the largest viscous forces in these volumes are
actually localised close to the walls and are taken into account quantitatively in § 4.5,
where Fmen is determined using the lubrication equations on the wetting film scale. Finally,
the contribution F f ilm of the wall in the wetting film domain is determined in § 4.4.

The key assumption of the model is the interface area conservation. Deformation of
the interface (compression or extension) does not occur because it would lead to high
surface tension variations. The interface behaves as a perfectly incompressible 2-D fluid
and the surface tension is computed as the Lagrange multiplier associated with the
incompressibility constraint. This corresponds to the limit of high Gibbs modulus, and
is thus more likely to be reached for poorly soluble surfactants.

The flow pattern obtained in the regime of incompressible interface is schematically
anticipated in figure 6 for the simple case where the interface velocity Us remains much
smaller than Ud (rolling case in Cantat (2013)). Then, in the frame of the drop, the pieces
of interface covering the wetting films move at a velocity of the order of −Ud , inducing
an interface flux to the rear of the drop which scales as −Ud R. The constraint of interface
incompressibility imposes that this flux is balanced by a flux toward the front, which
occurs on the lateral sides of the drop, as proposed in Park, Maruvada & Yoon (1994)
and observed in Lee, Gallaire & Baroud (2012). In this region, the velocity scales as U∞
(as U∞ � Ud ), the flux as U∞H and the flux balance thus leads to Ud ∼ U∞H/R. This
qualitative scaling law identifies the origin of the decrease in droplet velocity as a function
of droplet size. However, it does not account for the observed dependence on Ca. The
quantitative model developed below will show that the coupled dependencies on R and
Ca of droplet mobility do not follow a scaling law, and result instead from a complex
balance between different terms.

Note that the assumption of negligible surface tension difference between the front
and the rear of the drop used in Dangla (2012) corresponds to the opposite limit: any
extension or compression of the interface induces sufficiently fast surfactant adsorption
or desorption to avoid surface tension variations, which is expected to be valid for high
surfactant solubility.

4.2. Solutions of Brinkman’s equation for a circular profile
Firstly, we determine the expression for the velocity field inside and outside the drop as a
function of U∞ and of the unknowns Ud , Us and �γ . The Hele-Shaw equation is usually
used in our geometry to model the flow. However, it entirely neglects viscous effects due
to in-plane velocity gradients, which implies that tangential velocities are not prescribed
at the drop interface and may be discontinuous. This precludes any coupling between
the surfactant motion at the drop interface and the external velocity field, which is the
main physical process governing the drop motion. The coupling is accounted for using
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Brinkman’s equation (Nadim, Borhan & Haj-Hariri 1996; Boos & Thess 1997; Bush 1997;
Gallaire et al. 2014). As already mentioned, here, we assume that the droplet is cylindrical.
The effects of the meniscus and of the thin film are taken into account in §§ 4.4 and 4.5.

The Stokes equations in each phase i are

ηi

(
∂2ui

∂z2 +�2Dui

)
= ∇ pi and div ui = 0 , (4.1)

where ui is the velocity of the phase i in the laboratory frame and pi is its pressure.
The indices i = 1 and i = 2 indicate the internal and external phases, respectively. For the
external phase, the velocity vanishes at y = 0 and y = 2H . Brinkman’s assumption is that
the velocity field remains parabolic as for the classical Hele-Shaw problem. We therefore
have

u2 = U2
3z(2H − z)

2H2 , (4.2)

where U2(x, y) is the depth-averaged velocity in the phase 2 and

η2

(
�2DU2 − 3

H2 U2

)
= ∇ p2 . (4.3)

The phase 1, in the drop, obeys similar equations. However, the top and bottom boundary
conditions differ from the ones used for the external phase. The drop is separated from the
wall by a thin layer of the external phase of thickness h, and the oil/water interfaces, at the
positions h and 2H − h, respectively, move at the velocity Us . We assume that Us = μUd ,
where μ is a constant, and that h is uniform in the wetting film. Brinkman’s solution of
(4.1) is slightly modified to take into account this specific constraint

u1 = (U1 − Us)
3(z − h)(2H − h − z)

2(H − h)2
+ Us , (4.4)

where U1(x, y) is the depth-averaged velocity in the phase 1 and

η1

(
�2DU1 − 3

(H − h)2
(U1 − Us)

)
= ∇ p1 . (4.5)

Following Gallaire et al. (2014), we define in each phase a streamfunction Ψi (r, θ), with
the origin of the polar coordinates (r, θ) at the centre of the circular drop and θ = 0 in
the direction of motion ex (see figure 7a). The velocity field is Ui = (Ur,i ,Uθ,i ), with
Ur,i = (1/r)∂θΨi and Uθ,i = −∂rΨi .

The equations of motion (4.3) and (4.5) can be expressed as

�2D

(
�2D − k2

R2

)
Ψi = 0 , (4.6)

with k = √
3R/H . For the internal phase, we use the assumption that Us is uniform and

that h � H .
The fluid motion in both phases is driven by the boundary conditions. At the drop lateral

boundary, the average normal velocity is Ur,i (R, θ)= Ud cos θ in both phases and the
tangential velocity is continuous so Uθ,2(R, θ)= Uθ,1(R, θ). At large r , the velocity is
U2 = U∞ex . Finally, the tangential stress continuity imposes that

η1

(
r∂r

(
Uθ,1

r

)
+ 1

r
∂θUr,1

)
− η2

(
r∂r

(
Uθ,2

r

)
+ 1

r
∂θUr,2

)
= 1

r
∂θγ , (4.7)
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Figure 7. Flow around a drop moving in the x direction, in the laboratory frame. (a) Velocity field around the
droplet computed from (4.8) using e = RU∞, d = R(Ud − U∞) and c = 0, for the case Ud = 1 and U∞ = 2.
(b) Streamlines around the droplet for the same parameters. The colour code indicates the value of U2,x/Ud .

where γ is the surface tension, averaged over the cell thickness, on the side of the
drop. From the symmetry of the problem, we assume that γ (θ)= γ0 +�γ x/R = γ0 +
�γ cos θ .

The general solutions of (4.6) for these boundary conditions are established in Gallaire
et al. (2014), where Ud , U∞ and �γ are considered as external control parameters
independent of each other. The solutions are of the form

Ψ1(r)=
(

a
I1(kr/R)

I1(k)
+ b

r

R

)
sin θ ,

Ψ2(r)=
(

c
K1(kr/R)

K1(k)
+ d

R

r
+ e

r

R

)
sin θ , (4.8)

where I1 and K1 are the modified Bessel functions and a, b, c, d and e are five constants
determined by Gallaire et al. (2014) and given in Appendix A as a function of our unknown
quantities Ud , U∞ and �γ . The whole velocity field is thus known as a function of the
parameters Ud , U∞, �γ and Us and can be used to express the three couplings that relate
these parameters to each other.

Note that the Hele-Shaw equation, in which the Laplacian term is removed from (4.1),
has solutions of the form (4.8) with a = c = 0, b = RUd , d = R(Ud − U∞) and e = RU∞.
In that case, the velocity field in the drop is simply a uniform velocity Ud ex and the
velocity field outside the droplet is shown in figure 7. This solution does not satisfy the
continuity of the tangential velocity at the lateral interface, which can only be achieved
with the additional Bessel functions. However this simpler solution is close to the actual
solution and the Bessel function terms are non-negligible only close to the droplet lateral
boundary, for r in the range [R − H, R + H ].

4.3. Force on the drop side
From the velocity field obtained in § 4.2, and the results of (44), (55) and (63) in Gallaire
et al. (2014), we can derive the force Flat ex exerted by the external fluid on the lateral side

1009 A23-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

CO
LE

 N
O

RM
AL

E 
SU

PE
RI

EU
RE

 D
E 

RE
N

N
ES

 - 
EN

S 
de

 R
en

ne
s,

 o
n 

16
 A

pr
 2

02
5 

at
 0

6:
41

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2025.167
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Journal of Fluid Mechanics

γ (R,π)

γ film (R,π)

x
γ film (R,0)

γ (R,0)

2�γ film

2�𝛾

Figure 8. Schematics of the bottom of the drop in the (x, z) plane, with �γ f ilm defined.

of Ω (due to the pressure and viscous stresses)

Flat = 12πη2U∞
R2

H
− 6πη2Ud

R2

H
− 4π�γ H

η2

η1 + η2
. (4.9)

Note that the interface sliding velocity Us is zero in Gallaire et al. (2014) so the internal
pressure p1, given by (4.5), is not the same in our case. However, this pressure is not used
to compute Flat , so the results of Gallaire et al. (2014) directly apply in our case as well,
even for Us of the order Ud . By contrast, the friction on the top and bottom walls F f ilm

determined below does depend on the sliding velocity.

4.4. Contribution of the wetting film
The wetting film thickness h is much smaller than the cell thickness 2H and the velocity
in the wetting film thus corresponds to the velocity of a simple shear flow. In the bottom
film

u f ilm(x, y, z)= z

h
Us(x, y) . (4.10)

The tangential stress continuity in the flat film imposes a relationship between the
tension and the velocity gradients along z

η2
Us

h
− 3η1

(U1 − Us)

H
= ∇γ f ilm , (4.11)

where γ f ilm(x, y) is the tension in the bottom wetting film (or, by symmetry, in the top
one).

In the central part of the droplet, i.e. at a distance at least H from the drop boundary,
the depth average velocity field U1 is Ud ex (see (4.8)). For sake of simplicity, Us is
determined by assuming that this remains true in the whole film. Similarly, the surface
tension gradient on the drop lateral side is uniform and oriented along x and we assume
that this remains true in the wetting film. Equation (4.11) thus implies that Us = Usex ,
where Us is a constant.

We thus get

η2
Us

h
− 3η1

(Ud − Us)

H
= �γ f ilm

R
, (4.12)

with �γ f ilm the surface tension difference between the front of the drop and the drop
centre, in the wetting film, and �γ f ilm/R ex the uniform tension gradient in the wetting
film.

As shown in figure 8, �γ f ilm slightly differs from the quantity �γ introduced before
as the surface tension varies across the dynamical meniscus, where the Poiseuille flow
contribution becomes non-negligible. This will be discussed in § 4.5.

Finally, the force exerted by the wall on the top and bottom boundaries of Ω is simply
due to the shear flow in both films

F f ilm = −πR2 η2

h
Us × 2 . (4.13)
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4.5. Contribution of the meniscus motion
The surface tension difference between the front and the rear of a bubble in the same
geometry is given in Cantat (2013) as a function of the interface velocity, in the limit of
incompressible interface. This surface tension difference is the sum of a term proportional
to the drop size, due to the simple shear in the film, and a second term, independent of the
drop size, due to the flows in the meniscus. The contribution of the simple shear in the film
is already taken into account in (4.12) and we will only consider the meniscus contribution
here, i.e. for the front meniscus, the difference between the meniscus tension γ (R, 0) and
the tension at the front of the thin film γ f ilm(R, 0) (see figure 8). This term comes from
the fact that the interface at the front of the drop moves towards the wall (if Us <Ud ), and
thus expels the external phase out of the meniscus. This flow exerts some viscous friction
on the interface, which reacts via a surface tension gradient: the tension is thus larger in
the film than in the meniscus.

The tension difference obtained for a bubble can be used here, as it does not depend on
the internal viscosity as long as η1/η2Ca1/3 � 1 (Park & Homsy 1984), which is verified
in our case.

So, from (22) in Cantat (2013)

γ f ilm(R, 0)− γ (R, 0)= γ0(3αCa)2/3
(

1.85
2

− 1.27
Us

3αUd

)
, (4.14)

with α = 4 − 2(Us/Ud).
Similarly, at the rear

γ f ilm(R, π)− γ (R, π)= γ0(3αCa)2/3
(

−0.53
2

+ 4
Us

3αUd

)
. (4.15)

In both equations, the first term is the contribution of the Poiseuille flow localised in
the dynamical meniscus, which connects the flat film to the static meniscus of curvature
∼ 1/H , while the second term corresponds to the simple shear induced by Us in the same
domain.

The external tension difference �γ = (γ (R, 0)− γ (R, π))/2, coupled to the external
velocity field through (4.9), is finally

�γ =�γ film + 1
2

(
γ film(R, π)− γ (R, π)− (γ film(R, 0)− γ (R, 0))

)
. (4.16)

The terms proportional to Us are neglected in (4.14) and (4.15) as higher-order
corrections (since they are also multiplied by Ca2/3) and we assume α= 4 corresponding
to the tank-treading motion of an incompressible interface shown in figure 6 and denoted as
the rolling case in Cantat (2013). By matching the surface tension difference along the film
and along the lateral meniscus, i.e. from (4.12), (4.14) and (4.15), we get the coupling (iii)

�γ = η2Us
R

h
− 3η1(Ud − Us)

R

H
− ξ

2
γ0(3αCa)2/3 , (4.17)

with ξ = (1.85 + 0.53)/2 = 1.19.
The wetting film thickness is predicted by the same approach and is

h = ζH(3αCa)2/3 , (4.18)

with ζ = 0.634. As the meniscus normal velocity varies with θ , the wetting film is slightly
thinner at large |y| (Reichert et al. 2018). This effect is not taken into account here.
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Equation (4.17) thus provides a coupling between our unknown quantities Ud , Us and
�γ .

Following (13) in Cantat (2013), we get the force exerted by the wall on the top and
bottom boundaries of Ω , along the top and bottom menisci

Fmen = −ξγ0(3αCa)2/3 × 2R × 2 , (4.19)

where the factor 2R comes from the front (or rear) meniscus length (projected on the x = 0
line), and the factor 2 from the top and bottom menisci.

4.6. Force and flux balances
The force balance in the domain Ω around the drop is Flat + Fmen + F f ilm = 0, so from
(4.9), (4.13), (4.19), the coupling (i) becomes

0 = 12πη2U∞
R2

H
− 6πη2Ud

R2

H
− 4π�γ H

η2

η1 + η2
− 4ξ Rγ0(3αCa)2/3 − 2πη2Us

R2

h
.

(4.20)

Finally, the coupling (ii) between the sliding velocity Us and the drop velocity Ud is
given by the interface conservation. In the drop frame, the interface flux across the plane
x = 0 is zero due to the assumption of interface incompressibility. The lateral velocity in
the laboratory frame is ulat = −uθ (R, π/2)ex . It is computed from the velocity field in
Appendix B and we get

ulat = 2η2

η1 + η2
(U∞ − Ud)+ Ud + �γ

η1 + η2

H√
3R

, (4.21)

so the lateral flux in the drop frame is

Φlat = 4H

(
2η2

η1 + η2
(U∞ − Ud)+ �γ

η1 + η2

H√
3R

)
. (4.22)

Note that this flux assumes that the meniscus side is a simple cylinder, with a section
in the plane x = 0 of length 2H and that the velocity does not depend on z. This simple
calculation is consistent with the use of the depth average velocities in our model. Note
that integrating the velocity field (4.2) along the actual semi-circular shape of the meniscus
leads to an additional prefactor 3π/8 ∼ 1.17 in (4.22).

The flux in the two wetting films in the drop frame is

Φ f ilm = 4R(Us − Ud) , (4.23)

leading to the conservation condition

2η2

η1 + η2
(U∞ − Ud)+ �γ

η1 + η2

H√
3R

+ R

H
(Us − Ud)= 0 . (4.24)
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5. Resolution of the equation set and comparison with the experiments
The tension consistency, (4.17), the force balance on the drop, (4.20), and the surfactant
conservation, (4.24), can be rewritten as

Us

U∞

(
R

ζH
(3αCa)−2/3 + 3

η1

η2

R

H

)
− �γ

η2U∞
− Ud

U∞

(
3
η1

η2

R

H
+ 3α

2
ξ(3αCa)−1/3

)
= 0 ,

(5.1)

Us

U∞
1
ζ
(3αCa)−2/3 + �γ

η2U∞
2η2

η1 + η2

H2

R2 + Ud

U∞

(
3 + 6αξ

π

H

R
(3αCa)−1/3

)
= 6 , (5.2)

Us

U∞
R

H
+ �γ

η2U∞
η2

η1 + η2

H√
3R

− Ud

U∞

(
R

H
+ 2η2

η1 + η2

)
= − 2η2

η1 + η2
. (5.3)

This constitutes a set of three linear equations with Ud/U∞, Us/U∞ and �γ/(η2U∞)
as unknown parameters. Note that Ud also implicitly appears in Ca = η2Ud/γ . The
problem is solved by considering Ca as an independent parameter: this leads to the exact
solution of the system, but in the form of an implicit expression.

5.1. First-order solution
The problem is first solved in a simplified form by assuming that β = Ud/U∞, H/R and
Ca1/3 are small parameters of the same order ε∼ 0.1, as observed experimentally. The
consistency of the system (5.1)–(5.3) imposes, under these assumptions, that Us/U∞ is of
order 2 and �γ/(η2U∞) of order −1. The small value expected for Us is consistent with
the value α= 4 chosen for this parameter in § 4.5, and kept in the following. At the leading
order, the equation set is then given by⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Us

U∞
R

ζH
(12Ca)−2/3 − �γ

η2U∞
= 0 ,

Us

U∞
1
ζ
(12Ca)−2/3 = 6 ,

�γ

η2U∞
η2

η1 + η2

H√
3R

− Ud

U∞
R

H
= − 2η2

η1 + η2
,

(5.4)

leading to the leading-order solution

�γ 0 = 6η2
R

H
U∞ , (5.5)

U 0
s = 6ζ(12Ca)2/3 U∞ , (5.6)

U 0
d = U∞

2(1 + √
3) η2

η1 + η2

H

R
. (5.7)

This first-order solution reveals the dominant couplings. The tension difference verifies
�γ ∼�γfilm and can be deduced from the consistency of the pressure field. The pressure
drop between the rear and the front of the drop can first be calculated in the external
flow field. As the drop is almost static, the parameters (A3) determine the flow, and (4.3)
then leads to �p = 12η2U∞ R/H2. This pressure drop can also be calculated across the
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droplet: in the limit of small droplet velocity, it is only due to the Laplace pressure jumps
at the rear and at the front, so�p = 2�γ/H . Equating both expressions leads to the result
(5.5). The order of magnitude we obtain for U∞ = 30 mm s–1 is �γ ∼ 2 mN m–1, which
is easily reached for interfaces in out of equilibrium conditions. This surface tension
variation is a key difference between this model and previous approaches in which the
tension variations are either absent, or related to the meniscus motion via the scaling
γCa2/3.

The sliding velocity given by (5.6) can be obtained from the stress balance in the wetting
film. Neglecting the viscous stress in the drop, the tangential stress continuity imposes
�γ/R = η2Us/h, with h = ζH(12Ca)2/3. Here, Us is of the order of a few mm s–1.

Finally, the droplet velocity (5.7) is obtained from the surfactant flux balance.
Neglecting Us , the backward flux occurring in the wetting film (in the droplet frame)
is 4RUd . The frontward flux occurs on the drop sides and is determined by the Marangoni
flow due to the tension difference and by the convection due to the external flow. Both
effects lead to a flux scaling as U∞H , leading, as anticipated in § 4.1, to a droplet velocity
scaling as U∞H/R.

5.2. Exact solution
The system (5.1)–(5.3) has been solved numerically to obtained the droplet velocity, the
sliding velocity and the surface tension difference. For the sake of simplicity, we kept the
approximation α = 4, as its exact expression would lead to higher-order terms. In order to
discuss the role of the different parameters in the drop mobility, an explicit expression (C1)
has been established for Ud , given in Appendix C. A comparison with the numerical result
in the parameter range investigated experimentally allowed us to keep only the dominant
terms of the prediction (C1) and to get the following simplified expression:

Ud

U∞
=

H

R

2(1 + √
3)η2

η1 + η2
+ 6ζ(12Ca)2/3

1 + H

R

η2

η1 + η2

(√
3(1 + η1

η2
)+ 4

)
+ H2

R2
η2

η1 + η2

2
√

3ξ
(12Ca)1/3

(
4
π

+ 1
)

+ 3ζ(12Ca)2/3
,

(5.8)

which can be expressed as a function of the first-order solutions as

Ud = U 0
d + U 0

s

1 + H

R

η2

η1 + η2

(√
3(1 + η1

η2
)+ 4

)
+ H2

R2
η2

η1 + η2

2
√

3ξ
(12Ca)1/3

(
4
π

+ 1
)

+ U 0
s

2U∞

.

(5.9)

The drop mobility predicted by (C1) is shown in figure 9(a) as a function of Ca for
three values of R/H . The simplified form (5.8) is plotted for R/H = 16 and differs from
the exact solution by a much smaller amount than our experimental error bars.

The first-order solution U 0
d given by (5.7) is modified by corrections associated with

(i) the classical Hele-Shaw flow, involving only the droplet aspect ratio and the viscosity
ratio, (ii) the presence of the wetting film between the drop and the wall, identified by the
prefactor ζ in (5.8) or equivalently by U 0

s in (5.9), and (iii) the viscous force localised in
the dynamical meniscus, identified by the prefactor ξ .
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Figure 9. Theoretical value of the mobility β (a), the surface tension variation �γ/γ0 (b) and the surface
velocity Us/Ud (c), as a function of the capillary number Ca for different aspect ratios H/R. The black lines
are the numerical results of (5.1)–(5.3) and the red circles are the simplified expression (5.8) for R/H = 16.

The influence of the wetting film is firstly to increase the mobility through U 0
s , which

appears as a sliding velocity simply added to the first-order solution U 0
d as is clear in the

numerator of (5.9). However, this sliding velocity also modifies the spatial distribution
of the surface tension around the drop and the relative velocity between the drop and
the external fluid on the drop side. It thus modifies the surfactant transport in a complex
way, thereby contributes to the denominator as well, which slows down the drop. The
terms containing U 0

s do not depend on the ratio H/R but scale as Ca2/3, taking on more
importance at large Ca than the H/R terms.

The meniscus contribution, proportional to ξ , only appears in the denominator, and
slows down the droplet. At small capillary number, it becomes dominant as it scales as
Ca−1/3. In that limit, the droplet mobility scales as β ∼ Ca1/3 R/H and thus becomes an
increasing function of the droplet radius. Equation (5.8) thus predicts a mobility decreasing
with R at large Ca, dominated by the behaviour of U 0

d (5.7) and increasing with R at small
Ca, dominated by the meniscus friction.

We denote Ca∗(R) the critical capillary number separating both regimes, as shown in
figure 9(a). The curves associated with the values R/H = 6.7 and 10.7 cross each other
at Ca∗ ≈ 10−4 and, as expected, the mobility is larger for the smaller radius at Ca >Ca∗
and the opposite is true for Ca <Ca∗. The meniscus friction, which slows down the drop,
dominates at small Ca and is relatively more important for smaller droplets. At Ca >Ca∗
the surfactant transport from the rear to the front on the drop side is the limiting factor and
the smaller droplets move faster.

The tension value is a key parameter in the problem and is shown in figure 9(b). Its
value may increase by 10% for the largest radius and capillary number investigated. Note
that for a compressible interface having a Gibbs elasticity of the order of γ0, such tension
increase would correspond to an interface extension of 10%, which provides an indication
of the accuracy of the incompressible interface assumption.

In the incompressible limit, this tension is a resistive force, adapting locally to maintain
constant the local surfactant concentration (i.e. the local area). In order to provide an
intuition of the tension sign, it is useful to determine how this concentration would vary
without this constraint: if the concentration tends to decrease, the local tension is higher
than at equilibrium, and the opposite if the concentration tends to increase. As for the
droplet velocity, two different regimes can be identified:

(i) At large Ca, the mobility is limited by the surfactant availability at the front: the
drop motion tends to deplete the interface at the front, and the droplet must wait for the
surfactant to arrive from the rear, on the drop side, to move. In that case the tension at the
front is larger than at the rear and �γ > 0.

1009 A23-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

CO
LE

 N
O

RM
AL

E 
SU

PE
RI

EU
RE

 D
E 

RE
N

N
ES

 - 
EN

S 
de

 R
en

ne
s,

 o
n 

16
 A

pr
 2

02
5 

at
 0

6:
41

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2025.167
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Journal of Fluid Mechanics

(ii) At small Ca, however, the droplet mobility is limited by the friction in the meniscus.
The surfactants on the drop side are pushed forward by the external flow, and they tend to
accumulate at the front, waiting for the drop to move and to evacuate them at the interface
of the wetting film: the surface tension is thus lower at the front than at the rear and
�γ < 0. Note that, in this regime,�γ f ilm remains positive, as well as the sliding velocity
Us , shown in figure 9(c).

In our parameter range, the limiting factor is mainly the surfactant availability (case (i)),
and the tension difference is positive for most values of Ca. However, the friction regime
(case (ii)) is observed at small Ca, where the tension become slightly negative, as shown
in the inset of figure 9(b).

5.3. Alternative limit: solution for �γ = 0
The prediction (5.8) has been established for poorly soluble surfactants, for which the
limit of an incompressible interface is expected to be reached. In the opposite limit, the
surfactants adsorb or desorb fast enough to ensure a constant value of the surface tension.
In that case, denoted as the stress-free case, another prediction for the droplet mobility can
be obtained by adapting (5.1)–(5.3). The area conservation (5.3) is not satisfied any more
and is replaced by the condition �γ =�γ f ilm = 0. The parameter α becomes α = 1 in
(5.1) and (5.2), and ξ become zero in (5.1) and remains unchanged (ξ = 1.19) in (5.2) (see
Cantat 2013). Indeed, ξ = 0 in the tension jump in the dynamical meniscus used in (4.17),
whereas the viscous force exerted by the wall is still given by (4.19), with ξ = 1.19.

Thus, using �γ = 0, ξ = 0, α = 1 and Ca � 1, (5.1) becomes

Us = 3η1

η2
ζ(3Ca)2/3Ud

(
1 − 3η1

η2
ζ(3Ca)2/3

)
. (5.10)

Inserting �γ = 0, α= 1 and ξ = 1.19, and the expression (5.10) of Us into (5.2)
we get

Ud

U∞
= 2

1 + η1
η2

+ 8ξ
π

H
R (3Ca)−1/3 −

(
η1
η2

)2
ζ(3Ca)2/3

≈ 2

1 + η1
η2

+ K 2H
R Ca−1/3

, (5.11)

with K = 4ξ/(31/3π)= 1.05. Therefore, we recover the expression established in Dangla
(2012) and for any Ca, the mobility increases when the droplet radius increases. The
parameter K = 1.05 gives the theoretical value of the droplet mobility for a stress-free
interface, thus providing an upper bound for the droplet mobility.

5.4. Comparison with the experiments
The experimental data of figure 4(h), obtained for Ca = 5 × 10−4, are compared in
figure 10 with model predictions for incompressible and stress-free interfaces, given
respectively by (5.8) and (5.11). Note that these two predictions are built without any fitting
parameter.

The mobilities of the less soluble surfactant are close to the prediction based on
incompressible interfaces and decrease with the radius, as predicted by this model in the
radius range of interest. The agreement is very good for droplets in the C12-sulphate and
C12-bromide solutions. For some unexplained reason, the mobility in the C14-bromide
solution, which has the lowest solubility, is further from the prediction, but the variation
with R is well reproduced.

For surfactants with shorter carbon chains, the mobility is significantly higher, the
droplets being typically 50 % faster than with less soluble surfactants. When the carbon
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Figure 10. Data of figure 4 compared with the prediction of the models for incompressible interfaces, (5.8),
and for stress-free interfaces, (5.11). These predictions are lower and upper bounds for the mobility,

respectively.

number decreases, the mobility curves get progressively closer to the other limiting model,
based on stress-free interfaces. The mobility increases with the radius, as predicted by this
second model, but the mobility value remains below the prediction, which appears as an
upper limit for our data.

Finally, despite some experimental fluctuations, a robust trend can be identified from
figure 10: the models of incompressible or stress-free interfaces provide a lower and
an upper bound for the droplet mobility, the lower bound being reached for the carbon
chains of 12 carbons or more. In the intermediate regime, the tension variations are
non-negligible, but cannot be determined from the condition of incompressibility. The
equations for the surfactant transport, coupled to the diffusion in the bulk, should thus in
principle be solved.

The same conclusions can be drawn for figure 11, where the data from figure 4(a,e,f,g)
are compared with the models.

The experimental mobility for the longest carbon chain are plotted in figures 11(a)–11(c)
as a function of the capillary number for different radii. A quantitative agreement with the
prediction of (5.8) is observed. This validates the key assumption of the model that the
surfactant monolayer behaves as a 2-D incompressible fluid for low enough solubility.
Importantly, in this regime, the drop mobility does not depend on any physico-chemical
property of the interface. Indeed, this regime corresponds to the high Gibbs elasticity
limit, and this key parameter, controlling the tension variation, thus scales out even if it
dominates the dynamics.

The dependency with R is small but significant at large Ca, with a mobility decreasing
with R for a given Ca, as more clearly shown in figure 10. By contrast, the model predicts
that, for small Ca, the mobility should increase with R. The experimental noise is too large
to verify this prediction, but the curves are closer to each other, especially in figure 11(a).

The mobility in the most soluble surfactant solution, the C8-sulphate, is also shown in
figure 11(d) and compared with the prediction obtained using (5.11). As already visible in
figure 10 the stress-free limit is not reached by this surfactant solution, but the dependency
with Ca and R is very well captured.
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Figure 11. Comparison between the experimental mobilities shown in figure 4(a,e,f,g) and prediction of the
models. The symbols are experimental data obtained with (a) C12−sulphate, (b) C12−TAB and (c) C14−TAB,
and the solid lines are the from (C1). The experimental data obtained with C8−sulphate are represented in
(d) and the solid lines are obtained by solving (5.11) with K = 1.05.

6. Conclusion
In this paper, we performed several experiments to measure the mobility of confined
droplets of fluorinatedoil pushed by an aqueous phase, as a function of the droplets size
and of the surfactant solubility. Our experiments show an increase of mobility with the
capillary number Ca and with the radii of the droplets for C8−sulphate, C10−sulphate,
C10−TAB and C11−sulphate. However, for C12−sulphate, C12−TAB and C14−TAB, the
mobility observed decreases when the radius of the droplet increases. We propose an
original model that distinguishes between two limiting situations: a stress-free interface
and an incompressible interface. These two limiting cases make it possible to bound the
mobility of a droplet as a function of the solubility of the surfactant used. Importantly,
the limit based on the assumption of interface incompressibility leads to an analytical
prediction of the droplet velocity as a function of the droplet radius and as a function
of the capillary number. The excellent agreement between the experimental data and
the theory validates the key assumption of interface incompressibility we made: in the
investigated regime, and for low enough solubility, the interface Gibbs elasticity is large
enough to preclude any area variation at the interface. As such, this work identifies a new
regime of droplet transport in a Hele-Shaw cell, in which the motion is limited by the
surfactant flux on the lateral sides of the droplet, and by the surface tension difference
between the front and the rear. Interestingly, the model should be valid for any surfactant
less soluble than the one we used, and give quantitative predictions for the droplet velocity.
Conversely, although a maximum velocity is obtained for a stress-free interface, prediction
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for surfactants of intermediate solubility requires taking into account the full transport of
surfactants.
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Appendix A
The general expression of the velocity field in the external and internal phases is given
by (4.8). The parameters a, b, c, d and e are computed in Gallaire et al. (2014) for three
cases: (i) a Marangoni stress on the lateral side of a static drop, without far field velocity,
(ii) a static drop having a uniform surface tension, with far field velocity, and finally
(iii) a translating drop, with a uniform tension and without far field velocity. Our case
is recovered from a linear superposition of these 3 cases. In the following, each equation
X or parameter a of Gallaire et al. (2014) will be denoted (XG) or aG in the following
(especially the parameters aG , bG , cG , dG and eG which differ from our notation).

For the Marangoni forcing (i), the parameters are defined in (27G) and (28G) and their
values are given by the dimensionless equations (29G), (30G) and (31G). The associated
dimensions are R, (η1 + η2)R/�γ and �γ R for the length, time and force. In the limit
of large drop radius that we consider, Kn(k)∼ √

π/(2k)e−k and In(k)∼ √
1/(2πk)ek for

any order n, and for our sinusoidal forcing, only the sin θ component is non-zero. Equation
(31G) becomes

dG
1 = −

√
3R

2H
. (A1)

The forcing aG
1 in (29G) is defined from γ = −aG

1 (�γ ) cos θ + γ0 (7G) and is thus
aG

1 = −1 in our case. Hence, the parameters aM , bM , cM , d M and eM associated with
the velocity field induced by the surface tension gradient are obtained from (29G), (30G)

aM = R�γ

η1 + η2

H2

3R2 , bM = cM = −d M = −aM , eM = 0 . (A2)

For a far field velocity U∞, case (ii), the units chosen in Gallaire et al. (2014) are R,
R/U∞ and R(η1 + η2)U∞ for the length, time and force. The parameters of the velocity
field are deduced from (49G)–(53G)

a∞ = η2

η1 + η2

2HU∞√
3

, b∞ = −a∞ ,

c∞ = η1

η1 + η2

2HU∞√
3

, d∞ = −c∞ − RU∞ , e∞ = RU∞ . (A3)

Finally the case (iii) of a drop moving at the velocity Ud (chosen to be negative in
Gallaire et al. (2014)) is solved with the dimension set R, −R/Ud and −R(η1 + η2)Ud for
the length, time and force.
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The parameters are deduced from (59G)–(62G)

aD = − η2

η1 + η2

2HUd√
3
, bD = −aD + Ud R,

cD = − η1

η1 + η2

2HUd√
3
, d D = −cD + RUd , eD = 0 . (A4)

The parameters of our streamfunctions are finally obtained by summing the three
contributions

a = R�γ

η1 + η2

H2

3R2 + η2

η1 + η2

2H√
3
(U∞ − Ud),

b = − R�γ

η1 + η2

H2

3R2 − η2

η1 + η2

2H√
3
(U∞ − Ud)+ Ud R,

c = − R�γ

η1 + η2

H2

3R2 + η1

η1 + η2

2H√
3
(U∞ − Ud),

d = R�γ

η1 + η2

H2

3R2 − η1

η1 + η2

2H√
3
(U∞ − Ud)− R(U∞ − Ud),

e = RU∞. (A5)

Appendix B
The tangential velocity is uθ = −∂rψ , so the velocity at the point (R, π/2), projected in
the x direction, is ulat = ∂rψ(R, π/2). Using the relation

dI1(x)

ddx
= I2(x)+ 1

x
I1(x) and

dK1(x)

dx
= −K0(x)− 1

x
K1(x) , (B1)

we get

∂rΨ1 =
(

a

I1(k)

(
k I2(kr/R)+ R

r
I1(kr/R)

)
+ b

)
sin θ

R
, (B2)

∂rΨ2 =
(

c

K1(k)

(
−kK0(kr/R)− R

r
K1(kr/R)

)
− d

R2

r2 + e

)
sin θ

R
. (B3)

In the limit of large k, we get

ulat = (ak + b)
1
R

= (−ck − d + e)
1
R
, (B4)

leading to (4.21).

Appendix C
The inversion of the system of (5.1)–(5.3) leads to the solution

β = Ud

U∞
= num

denom
, (C1)
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with

num = H

R

2η2

η1 + η2

(
1 + √

3
)

+ H2

R2

4η2
2

(η1 + η2)2

+ 6ζ(12Ca)2/3
(

1 +
√

3η1

η1 + η2

H

R
+ 2η1η2

(η1 + η2)2
H2

R2

)

= U 0
d

U∞
+ U 0

s

U∞

(
1 +

√
3η1

η1 + η2

H

R
+ 2η1η2

(η1 + η2)2
H2

R2

)
+ H2

R2

4η2
2

(η1 + η2)2
, (C2)

and

denom = 1 + H

R

η2

η1 + η2

(√
3 + 4 +

√
3η1

η2

)
+ H2

R2
η2

η1 + η2

2
√

3ξ
(12Ca)1/3

(
4
π

+ 1
)

+ 3ζ(12Ca)2/3 + H

R

24ξζ
π

(12Ca)1/3 + 4η2
2

(η1 + η2)2
H2

R2

+ 3
√

3η1

η1 + η2

H

R
ζ(12Ca)2/3 + 12ξζ(12Ca)1/3

H2

R2

√
3η1

η1 + η2

(
2
√

3
π

− η2

η1

)

+ 12η1η2

(η1 + η2)2
H2

R2 ζ(12Ca)2/3 . (C3)

REFERENCES

AFKHAMI, S. & RENARDY, Y. 2013 A volume-of-fluid formulation for the study of co-flowing fluids governed
by the Hele-Shaw equations. Phys. Fluids 25, 082001.

BAUÉ, J.-T. 2022 Rôle de la chimie des surfactants dans la dynamique de gouttes confinées dans une cavité
microfluidique. Theses, Université de Rennes, France.

BOOS, W. & THESS, A. 1997 Thermocapillary flow in a Hele-Shaw cell. J. Fluid Mech. 352, 305–330.
BRETHERTON, F.P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166–188.
BURGESS, D. & FOSTER, M.R. 1990 Analysis of the boundary conditions for a Hele-Shaw bubble. Phys.

Fluids A: Fluid Dyn. 2 (7), 1105–1117.
BUSH, J.W.M. 1997 The anomalous wake accompanying bubbles rising in a thin gap: a mechanically forced

Marangoni flow. J. Fluid Mech. 352, 283–303.
CANTAT, I. 2013 Liquid meniscus friction on a wet wall: bubbles, lamellae and foams. Phys. Fluids 25 (3),

031303.
DANGLA, R. 2012 2D droplet microfluidics driven by confinement gradients. PhD thesis, Ecole Polytechnique,

France.
ERI, A. & OKUMURA, K. 2011 Viscous drag friction acting on a fluid drop confined in between two plates.

Soft Matt. 7 (12), 5648–5653.
GALLAIRE, F., MELIGA, P., LAURE, P. & BAROUD, C.N. 2014 Marangoni induced force on a drop in a

Hele-Shaw cell. Phys. Fluids 26, 062105.
HUERRE, A., THEODOLY, O., LESHANSKY, A.M., VALIGNAT, M.-P., CANTAT, I. & JULLIEN, M.-C. 2015

Droplets in microchannels: dynamical properties of the lubrication film. Phys. Rev. Lett. 115 (6), 064501.
JOANICOT, M. & AJDARI, A. 2005 Droplet control for microfluidics. Science 309 (5736), 887–888.
KOPF-SILL, A.R. & HOMSY, G.M. 1988 Bubble motion in a Hele-Shaw cell. Phys. Fluids 31 (1), 18–26.
LEE, S., GALLAIRE, F. & BAROUD, C.N. 2012 Interface-induced recirculation within a stationary microfluidic

drop. Soft Matt. 8 (41), 10750–10758.
LING, Y., FULLANA, J.-M., POPINET, S. & JOSSERAND, C. 2016 Droplet migration in a Hele-Shaw cell:

effect of the lubrication film on the droplet dynamics. Phys. Fluids 28 (6), 062001.
MARUVADA, S.R.K. & PARK, C.-W. 1996 Retarded motion of bubbles in Hele-Shaw cells. Phys. Fluids

8 (12), 3229–3233.
MIRALLES, V., RIO, E., CANTAT, I. & JULLIEN, M.-C. 2016 Investigating the role of a poorly soluble

surfactant in a thermally driven 2D microfoam. Soft Matt. 12 (33), 7056–7062.

1009 A23-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

CO
LE

 N
O

RM
AL

E 
SU

PE
RI

EU
RE

 D
E 

RE
N

N
ES

 - 
EN

S 
de

 R
en

ne
s,

 o
n 

16
 A

pr
 2

02
5 

at
 0

6:
41

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2025.167
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Journal of Fluid Mechanics

MYSELS, K.J., SHINODA, K. & FRANKEL, S. 1959 Soap Films: Study of Their Thinning and a Bibliography.
Pergamon.

NADIM, A., BORHAN, A. & HAJ-HARIRI, H. 1996 Tangential stress and marangoni effects at a fluid–fluid
interface in a Hele-Shaw cell. J. Colloid Interface Sci. 181 (1), 159–164.

NAGEL, M. & GALLAIRE, F. 2015 Boundary elements method for microfluidic two-phase flows in shallow
channels. Comput. Fluids 107, 272–284.

PARK, C.-W. & HOMSY, G.M. 1984 Two-phase displacement in Hele-Shaw cells: theory. J. Fluid Mech. 139,
291–308.

PARK, C.-W., MARUVADA, S.R.K. & YOON, D.-Y. 1994 The influence of surfactant on the bubble motion in
Hele-Shaw cells. Phys. Fluids 6 (10), 3267–3275.

REICHERT, B. 2017 Dynamique d’une goutte 2D dans une cellule de Hele-Shaw. PhD thesis, Paris Sciences
et Lettres (ComUE), France.

REICHERT, B., CANTAT, I. & JULLIEN, M.-C. 2019 Predicting droplet velocity in a Hele-Shaw cell. Phys.
Rev. Fluids 4 (11), 113602.

REICHERT, B., HUERRE, A., THEODOLY, O., VALIGNAT, M.-P., CANTAT, I. & JULLIEN, M.-C. 2018
Topography of the lubrication film under a pancake droplet travelling in a Hele-Shaw cell. J. Fluid Mech.
850, 708–732.

ROBERTS, C.C., ROBERTS, S.A., NEMER, M.B. & RAO, R.R. 2014 Circulation within confined droplets in
Hele-Shaw channels. Phys. Fluids 26, 032105.

SCRIVEN, L.E. & STERNLING, C.V. 1960 The Marangoni effects. Nature 187 (4733), 186–188.
SEEMANN, R., BRINKMANN, M., PFOHL, T. & HERMINGHAUS, S. 2011 Droplet based microfluidics. Rep.

Prog. Phys. 75 (1), 016601.
SEIWERT, J., DOLLET, B. & CANTAT, I. 2014 Theoretical study of the generation of soap films: role of

interfacial visco-elasticity. J. Fluid Mech. 739, 124–142.
SHEN, B., LEMAN, M., REYSSAT, M. & TABELING, P. 2014 Dynamics of a small number of droplets in

microfluidic Hele-Shaw cells. Exp. Fluids 55 (5), 1–10.
STONE, H.A., STROOCK, A.D. & AJDARI, A. 2004 Engineering flows in small devices: microfluidics toward

a lab-on-a-chip. Annu. Rev. Fluid. Mech. 36 (1), 381–411.
TAYLOR, G. & SAFFMAN, P.G. 1959 A note on the motion of bubbles in a Hele-Shaw cell and porous medium.

Q. J. Mech. Appl. Maths 12 (3), 265–279.
TEH, S.-Y., LIN, R., HUNG, L.-H. & LEE, A.P. 2008 Critical review: droplet microfluidics. Lab Chip 8 (2),

198–220.
XIA, Y. & WHITESIDES, G.M. 1998 Soft lithography. Annu. Rev. Mater. Res. 28 (1998), 153–184.
ZHU, L. & GALLAIRE, F. 2016 A pancake droplet translating in a Hele-Shaw cell: lubrication film and flow

field. J. Fluid Mech. 798, 955–969.

1009 A23-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

16
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

CO
LE

 N
O

RM
AL

E 
SU

PE
RI

EU
RE

 D
E 

RE
N

N
ES

 - 
EN

S 
de

 R
en

ne
s,

 o
n 

16
 A

pr
 2

02
5 

at
 0

6:
41

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2025.167
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	1. Introduction
	2. Experimental methods
	2.1. Experimental set-up
	2.2. Image recording and processing
	2.3. Aqueous solution preparation

	3. Experimental results
	4. Modelling
	4.1. Main assumptions of the model
	4.2. Solutions of Brinkman"2019`s equation for a circular profile
	4.3. Force on the drop side
	4.4. Contribution of the wetting film
	4.5. Contribution of the meniscus motion
	4.6. Force and flux balances

	5. Resolution of the equation set and comparison with the experiments
	5.1. First-order solution
	5.2. Exact solution
	5.3. Alternative limit: solution for "026E30F Delta "026E30F gamma =0
	5.4. Comparison with the experiments

	6. Conclusion
	References

