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9.1 

9. Regulation and Control
9.1 Introduction to feedback
In principle,
 systems designed to produce desired output y(t) for a given input x(t)
 such an open-loop system should yield the desired output (a):

In practice, however, system characteristics change with time
 result of changes in components or environment
Such variations cause changes in the output for the same input:
 highly undesirable in precision systems
Possible solution is to add a signal component to input that will
counteract the effects of changing system characteristics / environment
 may be possible to counteract the variations by feeding the output (or

some function of the output) back to the input (see (b).
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9.1 Introduction to feedback (contd)
Feedback systems can be used very widely to minimise unwanted
disturbances for example
 random-noise signals in electronic systems
 a gust of wind affecting a tracking antenna
 a meteorite hitting a spacecraft
 a change in slope of a road affecting a car on cruise control
Example : feedback amplifier

Let forward amplifier gain = 10 000 (F(s) = 104) and feed back one
hundredth of the output to the input (G(s) = 10-2).
 new gain of amplifier H = 104 / (1 + 104.10-2) = 99.01
If due to eg change of transistors, forward amplifier gain = 20 000
 gain of amplifier becomes H = 2 .104 / (1 + 2.104.10-2) = 99.5
 100% variation in forward gain causes only 0.5% variation in feedback

amplifier gain: extremely valuable characteristic
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9.1 Introduction to feedback (contd)
Example : feedback amplifier (contd)
What happens if we add rather than subtract the signal fed back to the
input?

Let forward amplifier gain = 10 000 (F(s) = 104) and feed back 0.9 × 10–4

of the output to the input (G(s) = 0.9 × 10–4).
 new gain of amplifier H = 104 / (1 – 0.9 × 10–4.104) = 105

 If due to eg change of transistors, forward amplifier gain = 11 000
 gain becomes H = 1.1 × 104 / (1 – 0.9 × 10–4. 1.1 × 104) = 1.1 × 106

 a 10% increase in forward gain caused a 1000% increase in overall
gain: highly undesirable positive feedback
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9.2 Analysis of a simple control system
Take as an example an automatic position control system used to
control the angular position of a heavy object (eg a tracking antenna)

 input θi is desired angular position of object
 output θo is actual angular position of object measured by

potentiometer connected to output shaft
 the difference (θi – θo) is amplified and applied to the motor input
 if (θi – θo) = 0 there is no input to the motor and it stops
 if (θi – θo) ≠ 0 input to motor which will turn the shaft until (θi – θo) = 0

 

 

 

9.2 Analysis of a simple control system (contd)
Block diagram of control system:

 amplifier gain is K where K is adjustable
 equivalent to (negative) feedback amplifier
Step input
 if want to change angular position of object need to apply a step input:

θi(t) = u(t) ⇒ Θi(s) = 1 / s and

 let motor (with load) transfer function be G(s) = 1/(s(s+8)), yielding

 investigate system behaviour for three values of K : 7, 80 and 16
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9.2 Analysis of a simple control system (contd)
For K = 7

and : system reaches desired angle slowly.
Increase K to 80 in order to speed up system.

: system reaches position faster
but at the expense of oscillations.
To avoid oscillations, characteristic roots of (s2 + 8s + K) should be real.
For K>16, roots complex, K<16 roots are real: fastest response without
oscillations found for K = 16 :
K < 16 – overdamped

K > 16 – underdamped

K = 16 – critically damped
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9.2 

9.3 Frequency response of an LTI system
Assume LTI system both causal and stable so all the poles of the
transfer function lie in the left half of the s plane.
LTI system response to exponential input is exponential output:
Setting s = jω yields
Re(ejωt) = cos ωt so cos ωt ⇒ Re[H(jω)ejωt]
Can express H(jω) in polar form as
Relationship becomes:
System response y(t) to sinusoidal input cos ωt is given by

. System response to cos (ωt + θ) is

Result is only valid for BIBO stable systems – why?
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9.3 Frequency response of an LTI system (cont)
Summary : for x(t) = cos (ωt + θ),
The amplitude of the output sinusoid is |H(jω) | times the input amplitude
and the phase of the output sinusoid is shifted by ∠H(jω) with respect to
the input phase.
For instance, for a certain system with |H(j10) | = 3 and ∠H(j10) = –30°
amplifies by a factor 3 a sinusoid of frequency ω = 10 and delays its
phase by 30°. E.g. for
x(t) = 5cos (10t + 50°), y(t) = 15cos (10t + 20°)
|H(jω) |
 the amplitude gain of the system, also known as amplitude response

or magnitude response of system
 plot of |H(jω) | versus ω shows amplitude gain as a function of

frequency
∠H(jω)
 the phase response of the system
 plot of ∠H(jω) versus ω shows how system modifies the phase of the

input sinusoid
These plots represent the filtering characteristic of the system.
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9.3 Frequency response of an LTI system (cont)
Example: find the frequency response (amplitude and phase response)
of a system whose transfer function is

Find system response y(t) for (a) x(t) = cos 2t (b) x(t) = cos (10t – 50°)
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In other words, the output amplitude is 0.372 t
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imes the input amplitude, and 
the phase of the output is shifted by 65.3° with respect to that of the input.

0.372cos 2 65.3
We can draw frequency response plots 
y t t

     

9.3 Frequency response of an LTI system (cont)

Magnitude reponse
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9.3 Frequency response of an LTI system (cont)

Phase reponse
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9.3 Frequency response of an LTI system (cont)
H(jω)
 contains information on both |H(jω) | and ∠H(jω)
 is called the frequency response of the system
 frequency response plots of |H(jω) | and ∠H(jω) versus ω show how

system responds to sinusoids of various frequencies

The frequency response plots displayed above show that the system
has high pass filtering characteristics.

 


