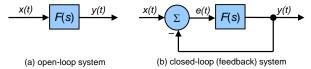
L3 PHYSIQUE

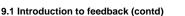
9. Regulation and Control

9.1 Introduction to feedback In principle,

- systems designed to produce desired output y(t) for a given input x(t)
- such an open-loop system should yield the desired output (a):



- In practice, however, system characteristics change with time
- result of changes in components or environment
- Such variations cause changes in the output for the same input:
- highly undesirable in precision systems
- Possible solution is to add a signal component to input that will counteract the effects of changing system characteristics / environment
- may be possible to counteract the variations by feeding the output (or some function of the output) back to the input (see (b).



- Feedback systems can be used very widely to minimise unwanted disturbances for example
- random-noise signals in electronic systems
- a gust of wind affecting a tracking antenna

G(s)

9.2 Analysis of a simple control system

- a meteorite hitting a spacecraft
- a change in slope of a road affecting a car on cruise control Example : feedback amplifier

Example : reedback amplifier

$$x(t)$$
 Σ $e(t)$ $F(s)$ $y(t)$

Effective transfer function :

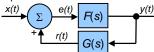
Let forward amplifier gain = 10 000 ($F(s) = 10^4$) and feed back one hundredth of the output to the input ($G(s) = 10^{-2}$).

- new gain of amplifier H = 10⁴ / (1 + 10⁴.10⁻²) = 99.01
- If due to eg change of transistors, forward amplifier gain = $20\ 000$
- gain of amplifier becomes H = 2 .10⁴ / (1 + 2.10⁴.10⁻²) = 99.5
- 100% variation in forward gain causes only 0.5% variation in feedback amplifier gain: extremely valuable characteristic

9.1 Introduction to feedback (contd)

Example : feedback amplifier (contd)

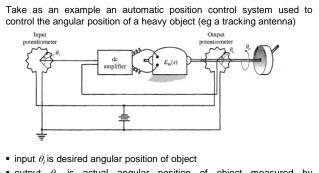
What happens if we add rather than subtract the signal fed back to the input?



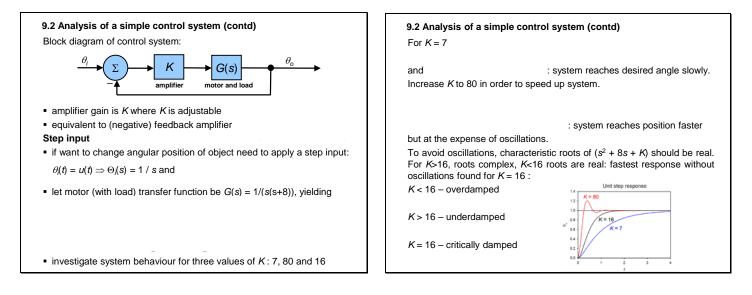
Effective transfer function :

Let forward amplifier gain = 10 000 ($F(s) = 10^4$) and feed back 0.9 × 10⁻⁴ of the output to the input ($G(s) = 0.9 \times 10^{-4}$).

- new gain of amplifier H = 10⁴ / (1 0.9 × 10⁻⁴.10⁴) = 10⁵
- If due to eg change of transistors, forward amplifier gain = 11 000
- gain becomes $H = 1.1 \times 10^4 / (1 0.9 \times 10^{-4} \cdot 1.1 \times 10^4) = 1.1 \times 10^6$
- a 10% increase in forward gain caused a 1000% increase in overall gain: highly undesirable *positive feedback*



- output θ_o is actual angular position of object measured by potentiometer connected to output shaft
- the difference $(\theta_i \theta_o)$ is amplified and applied to the motor input
- if $(\theta_i \theta_o) = 0$ there is no input to the motor and it stops
- if $(\theta_i \theta_o) \neq 0$ input to motor which will turn the shaft until $(\theta_i \theta_o) = 0$



L3 PHYSIQUE

9.3 Frequency response of an LTI system

Assume LTI system both causal and stable so all the poles of the transfer function lie in the left half of the s plane. LTI system response to exponential input is exponential outputest $\Rightarrow H(s)e^{st}$ Setting $s = j\omega$ yields $e^{j\omega t} \Rightarrow H(j\omega)e^{j\omega t}$ $Re(e^{j\omega t}) = \cos \omega t$ so $\cos \omega t \Rightarrow Re[H(j\omega)e^{j\omega t}]$ Can express $H(j\omega)$ in polar form as $H(j\omega) = |H(j\omega)|e^{j(2H(j\omega))}$ Relationship becomes: $\cos \omega t \Rightarrow |H(j\omega)|\cos[\omega t + 2H(j\omega)]$ System response y(t) to sinusoidal input $\cos \omega t$ is given by $y(t) = |H(j\omega)|\cos[\omega t + 2H(j\omega)]$. System response to $\cos(\omega t + \theta)$ is $y(t) = |H(j\omega)|\cos[\omega t + 2H(j\omega)]$

Result is only valid for BIBO stable systems – why?

9.3 Frequency response of an LTI system (cont)

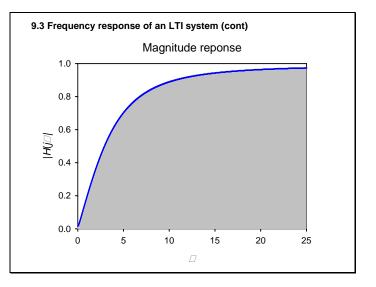
Summary : for x(t) = $\cos(\omega t + \theta, y(t) = |H(j\omega)| \cos[\omega t + \theta + \angle H(j\omega)]$ The amplitude of the output sinusoid is $|H(j\omega)|$ times the input amplitude and the phase of the output sinusoid is shifted by $\angle H(j\omega)$ with respect to the input phase. For instance, for a certain system with |H(j10)| = 3 and $\angle H(j10) = -30^{\circ}$ amplifies by a factor 3 a sinusoid of frequency $\omega = 10$ and delays its phase by 30°. E.g. for x(t) = 5cos (10t + 50°), y(t) =

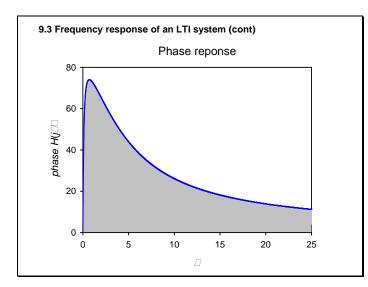
|**H(jω)** |

- the amplitude gain of the system, also known as amplitude response or magnitude response of system
- plot of $|\textit{H}(\textit{j}\omega)|$ versus ω shows amplitude gain as a function of frequency
- ∠H(jω)
- the phase response of the system
- plot of $\angle \textit{H}(\textit{j}\omega)$ versus ω shows how system modifies the phase of the input sinusoid

These plots represent the filtering characteristic of the system.

9.3 Frequency response of an LTI system (cont) Example: find the frequency response (amplitude and phase response) of a system whose transfer function is $H(s) = \frac{s+0.1}{s+5}$ Find system response y(t) for (a) $x(t) = \cos 2t$ (b) $x(t) = \cos (10t - 50^{\circ})$





9.3 Frequency response of an LTI system (cont)

- H(jω)
- contains information on both $|H(j\omega)|$ and $\angle H(j\omega)$
- is called the frequency response of the system
- frequency response plots of $|H(j\omega)|$ and $\angle H(j\omega)$ versus ω show how system responds to sinusoids of various frequencies

The frequency response plots displayed above show that the system has high pass filtering characteristics.