## 7. Modulation and signal recovery

7.1 Introduction: modulation

- relevance to communications - transmission of an informationbearing signal
- recovery of very small signals buried in noise, via e.g. phase sensitive detection
Information-bearing signal denoted $m(t)$, message signal: transmission requires some type of manipulation, e.g. AM radio where $m(t)$ has its natural frequencies in the audio range
- not directly compatible with radio transmission frequencies
- must be modified in some way to be transmitted
- frequency range is shifted using modulation.
- modulation is defined as the process by which some characteristic of a carrier signal $x_{c}(t)$ is varied by modulating signal $m(t)$
A continuous wave carrier signal is a sinusoidal wave:
$x_{c}(t)=A(t) \cos \left[\omega_{c} t+\phi(t)\right] \begin{aligned} & -A(t)-\text { instantaneous amplitude } \\ & -\phi(t)-\text { instantaneous phase angle }\end{aligned}$
$-\omega_{c}=2 \pi f_{c}$ - carrier frequency


## 7. Modulation and signal recovery

7.1 Introduction: modulation (cont)

## Amplitude modulation

- instantaneous amplitude $A(t)$ of carrier signal $x_{c}(t)$ linearly related to the message signal $m(t)$
- amplitude of the carrier signal is constant, the carrier amplitude, $A_{c}$.
- set $\phi(t)=0$, so can write carrier signal as $x_{c}(t)=A_{c} \cos \left(\omega_{c} t\right)$

There are several types of amplitude modulation:

- standard or ordinary amplitude modulation
- double sideband modulation (DSB)
- single sideband modulation (SSB)
- vestigial sideband modulation (VSB)


### 7.2 Ordinary amplitude modulation

An ordinary AM signal can be created in three steps

- define carrier signal as above $x_{c}(t)=A_{c} \cos \left(\omega_{c} t\right)$
- multiply message signal $m(t)$ by $\cos \left(\omega_{c} t\right)$ to give $m(t) \cos \left(\omega_{c} t\right)$
- form sum of these two waves to produce the ordinary AM signal
$x_{\text {AM }}(t)=m(t) \cos \left(\omega_{c} t\right)+A_{c} \cos \left(\omega_{c} t\right)=\left[A_{c}+m(t)\right] \cos \left(\omega_{c} t\right)$


## 7. Modulation and signal recovery

7.2 Ordinary amplitude modulation (cont)

The envelope

- amplitude of the ordinary AM wave $x_{\text {AM }}(t)$
- given by $a(t)=A_{c}+m(t)$

Quality of transmission, use modulation index $\mu=|\max \{m(t)\}| / A_{c}$

- indicates amount of variation of modulated signal about normal value Two general cases:
$\mu \leq 1$ : direct correspondence of envelope of $x_{\mathrm{AM}}(t)$ with message signal Wave can be demodulated, allowing recovery of original signal $m(t)$
$\mu>1$ : indicates a problem, wave is overmodulated. The envelope of $x_{\mathrm{AM}}(t)$ will not always directly correspond to $m(t)$. The signal suffers from envelope distortion.
Envelope sometimes written $a(t)=A_{c}\left[1+k_{a} m(t)\right]$
- $k_{a}$ is called the amplitude sensitivity
- percent modulation given by $100 k_{a}|\max \{m(t)\}|$


## 7. Modulation and signal recovery

7.2 Ordinary amplitude modulation (cont)

## Power in AM waves

- carrier power given by $P_{c}=A_{c}^{2} / 2$
- sideband power given by $P_{S}=\mu^{2} A_{c}^{2} / 4$
- the total power in the wave is $P_{t}=P_{c}+P_{S}$
- the efficiency of an ordinary AM wave is given by $\eta=\left(P_{S} / P_{t}\right) \times 100 \%$

Can write the efficiency in terms of the modulation index: $\eta=\frac{\mu^{2}}{2+\mu^{2}} \times 100 \%$
7.3 AM waves in the frequency domain

To describe spectrum of AM signal recall that FT of a cosine function is:
$\cos \left(\omega_{0} t\right) \rightleftharpoons \pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$
Signal in the time domain: $x_{\text {AM }}(t)=m(t) \cos \left(\omega_{c} t\right)+A_{c} \cos \left(\omega_{c} t\right)$
FT of second term: $F T\left[A_{c} \cos \left(\omega_{c} t\right)\right]=\pi A_{c}\left[\delta\left(\omega-\omega_{c}\right)+\delta\left(\omega+\omega_{c}\right)\right]$
The FT of the first term can be found from the modulation theorem:
If $m(t) \rightleftharpoons M(\omega)$ then $m(t) \cos \left(\omega_{c} t\right) \rightleftharpoons \frac{1}{2} M\left(\omega-\omega_{c}\right)+\frac{1}{2} M\left(\omega+\omega_{c}\right)$
Exercise: demonstrate the modulation theorem

## 7. Modulation and signal recovery

7.3 AM waves in the frequency domain (cont)
$F T\left[X_{A M}(t)\right]=F T\left[m(t) \cos \left(\omega_{c} t\right)+A_{c} \cos \left(\omega_{c} t\right)\right]$

$$
=\frac{1}{2} M\left(\omega-\omega_{c}\right)+\frac{1}{2} M\left(\omega+\omega_{c}\right)+\pi A_{c}\left[\delta\left(\omega-\omega_{c}\right)+\underset{|M(\omega)|}{\delta}\left(\omega+\omega_{c}\right)\right]
$$

FT of some message signal:

- spectral range is the baseband
- message signal known as baseband signal

Effect of AM in frequency domain shown below:
 Ordinary AM signal in frequency domain


## 7. Modulation and signal recovery

7.4 Generation and detection of ordinary AM waves

## Generation

- using a square law modulator
- involves non-linear device such as a diode or a transistor

Given input signal $v_{1}(t)$ transfer characteristic is of the form
$v_{2}(t)=a_{1} v_{1}(t)+a_{2} v_{1}^{2}(t)$
Input is sum message signal + carrier wave: $v_{1}(t)=m(t)+A_{c} \cos \omega_{c} t \Rightarrow$
$v_{1}^{2}(t)=\left[m(t)+A_{c} \cos \omega_{c} t\right]^{2}=m^{2}(t)+A_{c}^{2} \cos ^{2} \omega_{c} t+2 A_{c} m(t) \cos \omega_{c} t$
So output signal is given by

$$
\begin{aligned}
v_{2}(t) & =a_{1} v_{1}(t)+a_{2} v_{1}^{2}(t)=a_{1}\left[m(t)+A_{c} \cos \omega_{c} t\right]+a_{2}\left[m(t)+A_{c} \cos \omega_{c} t\right]^{2} \\
& =a_{1} A_{c} \cos \omega_{c} t+2 a_{2} A_{c} m(t) \cos \omega_{c} t+\left\{a_{1} m(t)+a_{2} m^{2}(t)+a_{2} A_{c}^{2} \cos ^{2} \omega_{c} t\right\}
\end{aligned}
$$

Remove unwanted terms $\}$ by filtering to leave
$a_{1} A_{c} \cos \omega_{c} t+2 a_{2} A_{c} m(t) \cos \omega_{c} t=a_{1} A_{c}\left[1+2 \frac{a_{2}}{a_{1}} m(t)\right] \cos \omega_{c} t$
which has desired form of an AM wave.

## 7. Modulation and signal recovery

7.4 Generation and detection of ordinary AM waves (cont)

## Detection

- using a square law detector

Given input signal $v_{1}(t)$ transfer characteristic is of the form $v_{2}(t)=a_{1} v_{1}(t)+a_{2} v_{1}^{2}(t)$
Input is the AM wave: $v_{1}(t)=x_{\text {AM }}(t)=\left[A_{c}+m(t)\right] \cos \omega_{c} t$
So output signal is given by
$v_{2}(t)=a_{1} v_{1}(t)+a_{2} v_{1}^{2}(t)=a_{1}\left[A_{c}+m(t)\right] \cos \omega_{c} t+a_{2}\left[A_{c}+m(t)\right]^{2} \cos ^{2} \omega_{c} t$ $=a_{1}\left[A_{c}+m(t)\right] \cos \omega_{c} t+a_{2}\left[A_{c}^{2}+2 A_{c} m(t)+m^{2}(t)\right] \cos ^{2} \omega_{c} t$
$=a_{1}\left[A_{c}+m(t)\right] \cos \omega_{c} t+a_{2} A_{c}^{2} \cos ^{2} \omega_{c} t$
$+2 \mathrm{a}_{2} A_{c} m(t) \cos ^{2} \omega_{c} t+a_{2} m^{2}(t) \cos ^{2} \omega_{c} t$
Looks complicated.... but focus on the term $2 a_{2} A_{c} m(t) \cos ^{2} \omega_{c} t$

$$
2 a_{2} A_{c} m(t) \cos ^{2} \omega_{c} t=2 a_{2} A_{c} m(t)\left[\frac{1+\cos 2 \omega_{c} t}{2}\right]
$$

$$
=a_{2} A_{c} m(t)+a_{2} A_{c} m(t) \cos 2 \omega_{c} t
$$

## 7. Modulation and signal recovery

7.4 Generation and detection of ordinary AM waves (cont)

## Detection (cont)

- note term $a_{2} A_{c} m(t)$, the message signal scaled by some constants
- appropriate filtering can remove other terms to leave message signal
- if $\omega_{c} \gg \omega_{M}$ can be performed by application of low pass filter

Consider action of low pass filter excluding $\omega_{c}$. We have
$v_{2}(t) \quad=a_{1}\left[A_{c}+m(t)\right] \cos \omega_{c} t+a_{2} A_{c}^{2} \cos ^{2} \omega_{c} t+a_{2} A_{c} m(t)$
$+a_{2} A_{c} m(t) \cos 2 \omega_{c} t+a_{2} m^{2}(t) \cos ^{2} \omega_{c} t$
$=a_{1}\left[A_{c}+m(t)\right] \cos \omega_{c} t+\left[a_{2} A_{c}^{2}+a_{2} m^{2}(t)\right] \cos ^{2} \omega_{c} t$ $+a_{2} A_{c} m(t) \cos 2 \omega_{c} t+a_{2} A_{c} m(t)$
$=\mathrm{a}_{1}\left[A_{c}+m(t)\right] \cos \omega_{c} t+\left[a_{2} A_{c}^{2}+a_{2} m^{2}(t)\right]\left[\frac{1+\cos 2 \omega_{c} t}{2}\right]$ $+a_{2} A_{c} m(t) \cos 2 \omega_{c} t+a_{2} A_{c} m(t)$
Applying low pass filter
$\left[v_{2}(t)\right]_{\omega<\omega_{c}}=\frac{1}{2} a_{2} A_{c}^{2}+\frac{1}{2} a_{2} m^{2}(t)+a_{2} A_{c} m(t)$

## 7. Modulation and signal recovery

7.4 Generation and detection of ordinary AM waves (cont)

## Detection (cont)

$$
\left[v_{2}(t)\right]_{o<\omega_{c}}=\frac{1}{2} a_{2} A_{c}^{2}+\frac{1}{2} a_{2} m^{2}(t)+a_{2} A_{c} m(t)
$$

- first term is just a constant and poses no problem
- third term is scaled message signal
- second term contains square of message signal and is source of unwanted distortion
Alternative is envelope detector, which can be constructed with a diode, resistor and capacitor:

- diode half-wave rectifies signal
- when $x_{A M}(t)>$ capacitor voltage, capacitor voltage follows $x_{\text {AM }}(t)$
- when $x_{\mathrm{AM}}(t)$ < capacitor voltage diode switches off and capacitor discharges through resistor with time constant $\tau=R C$


## 7. Modulation and signal recovery

7.4 Generation and detection of ordinary AM waves (cont)

## Envelope detector (cont)

Resulting signal looks like this:

- envelope detector often followed by lowpass filter to remove components at frequencies around $\omega_{c}$
- signal shown would be smoothed by this
- works best when modulation index is small, but this makes system inefficient ${ }^{02}$ as large part of power wasted on carrier
- for envelope detection to work, need sufficient power to be transmitted, requires the following condition to be fulfilled for all t :

$$
A_{c}+m(t)>0
$$

## Example

Design an envelope detector to demodulate the AM signal $x_{\text {AM }}(t)=[1+0.5 \cos (200 \pi t)] \cos \left(2 \pi 10^{6} t\right)$

## 7. Modulation and signal recovery

### 7.5 Double sideband modulation

- amplitude of AM signal proportional to message signal: $A(t)=a m(t)$
- a constant, for simplicity, take $a=1$, then $x_{\mathrm{DSB}}(t)=m(t) \cos \left(\omega_{c} t\right)$

The generation of a DSB signal is conceptually straightforward:

- multiply the message signal by the carrier wave.

- easy to find using modulation theorem
- same as for ordinary AM wave, except no Dirac delta functions
- called suppressed carrier modulation as absence of cosine term suppresses the appearance of the Dirac delta fns


## 7. Modulation and signal recovery

7.5 Double sideband modulation (cont)

## Demodulation

- multiply by $\cos \left(\omega_{c} t\right)$ (local carrier), resulting in

$$
x_{\text {DSB }}(t) \cos \left(\omega_{c} t\right)=m(t) \cos ^{2}\left(\omega_{c} t\right)=m(t)\left[\frac{1+\cos \left(2 \omega_{c} t\right)}{2}\right]
$$

- bandwidth of message signal $\omega_{m}$ should be much less than that of the carrier signal $\omega_{c}$, that is $\omega_{m} \ll \omega_{c}$,
- so can apply a low pass filter that rejects the carrier frequency

$$
m(t)\left[\frac{1+\cos \left(2 \omega_{c} t\right)}{2}\right] \xrightarrow{\text { filter } \omega_{c}} \frac{1}{2} m(t)
$$

- called coherent detection as receiver must generate local wave that has same frequency $\omega_{c}$ as DSB signal, in phase with it
- this requirement can lead to practical difficulties

Example: demonstrate DSB modulation and demodulation where $m(t)=\cos (3 \pi t / 4)$ and $x_{c}(t)=3 \cos (20 \pi t)$.
Consider also the case of a small frequency error in the local carrier

## 7. Modulation and signal recovery

7.5 Double sideband modulation : example

carrier signal: $x_{c}(t)=3 \cos (20 \pi t)$


DSB signal: $x_{\text {DSB }}(t)=m(t) \cos (20 \pi t)$


## 7. Modulation and signal recovery

### 7.7 Angle modulation

General carrier wave: $x_{c}(t)=A_{c} \cos \left(\omega_{c} t+\phi\right)=A_{c} \cos (\theta)$

- $\theta(t)=\omega_{c} t+\phi(t)$ is instantaneous angle

Two types of angle modulation

- phase modulation
- frequency modulation


## Phase modulation

- $\theta(t)$ varied linearly with modulating signal: $\theta(t)=\omega_{c} t+k_{p} m(t)$
- $k_{p}$ is phase deviation constant

Frequency modulation

- instantaneous frequency $\omega_{i}=\omega_{c}+\frac{d \phi}{d t}=\omega_{c}+k_{f} m(t)$
- $k_{f}$ is frequency deviation constant
- $x_{F M}(t)=A_{c} \cos \left[\omega_{c} t+k_{f} \int_{0}^{t} m(\tau) d \tau\right]$



## 7. Modulation and signal recovery

7.8 Application to signal recovery: the lock-in amplifier

- used to detect and measure very small ac signals.
- can make accurate measurements of small signals even when these are obscured by noise sources a thousand times larger.
Essentially, a lock-in is a filter with an arbitrarily narrow bandwidth which is tuned to the frequency of the signal.
- will reject most unwanted noise to allow the signal to be measured.
- typical lock-in application may require a center frequency of 10 KHz and a bandwidth of 0.01 Hz .
- a lock-in also provides gain. For example, a 10 nanovolt signal can be amplified to produce a 10 V output--a gain of one billion.
- technique requires that the experiment be excited at a fixed frequency in a relatively quiet part of the noise spectrum.
- lock-in then detects the response from the experiment in a very narrow bandwidth at the excitation frequency.
Applications include low level light detection, Hall probe and strain gauge measurement, micro-ohm meters, electron spin and nuclear magnetic resonance studies


## 7. Modulation and signal recovery

7.8 Application to signal recovery: the lock-in amplifier (cont) How does it work: an example


- reference source is $1 \mathrm{~V}_{\text {rms }}$ sine wave at frequency $\omega_{r r}$, current limited by $1 \mathrm{M} \Omega$ resistor to provide $1 \mu \mathrm{~A}$ ac excitation to $0.1 \Omega$ sample.
- two signals provided to lock-in: 1 V AC reference and amplified signal
- output of amplifier multiplied by the phase-locked loop (PLL) output in the Phase-Sensitive Detector (PSD), output given by:
$v_{\text {PSD }}=\cos \left(\omega_{r} t+\phi\right) \cos \left(\omega_{s} t\right)=\frac{1}{2} \cos \left[\left(\omega_{r}+\omega_{s}\right) t+\phi\right]+\frac{1}{2} \cos \left[\left(\omega_{r}-\omega_{s}\right) t+\phi\right]$
- sum frequency component attenuated by low pass filter, only difference frequency components within low pass filter's narrow bandwidth will pass through to the dc amplifier. High noise rejection.


## 8. Laplace and z- transforms

### 8.1 Laplace transform: introduction

The Laplace transform

- converts continuous time-domain signals into a function of a complex variable s
Very useful in the study of LTI systems:
- allows conversion of ODEs into algebraic equations
- converts convolution into simple multiplication


### 8.2 Laplace transform: definition

Laplace transform used to transform continuous function of time $t$ into a function of $s$, which is in general a complex number.

- $s=\sigma+j \omega$ where $\sigma=\operatorname{Re}(s)$ and $\omega=\operatorname{Im}(s)$ are real variables

The LT $X(s)$ of a signal $x(t)$ is given by
$x(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$
or alternatively $X(s)=L\{X(t)\}$

- $L\}$ viewed as an operator


## 8. Laplace and z- transforms

8.3 Laplace transform: general procedure

More important to learn how to manipulate Laplace transforms rather than calculate them. The procedure can be summarised:

- given one or more input signals, look up their Laplace transforms in a table
- use the properties of the Laplace transform to accomplish various tasks algebraically, including solving differential equations or computing convolution of two signals
- function of $s$ will be the result - manipulate this until in a form that can be readily transformed back to a function of time by inspection
8.4 Laplace transform: computation

Best shown by example
Example 8.4.1: Find the Laplace transform of $x(t)=u(t)$

## 8. Laplace and z- transforms

8.4 Laplace transform: computation (contd)

Example 8.4.2: Find the Laplace transform of $x(t)=e^{-a t} u(t)$
yielding the Laplace transform pair

## 8. Laplace and z- transforms

8.5 Laplace transform: important properties

Linearity: $L\left\{\alpha x_{1}(t)+\beta x_{2}(t)\right\}=\alpha X_{1}(s)+\beta X_{2}(s)$
Time scaling: given $x(t)$ and that $X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$
what is the Laplace transform of the time-scaled function $x(a t)$ ?
$L\{x(a t)\}=\frac{1}{|a|} x\left(\frac{s}{a}\right)$
Time shifting: Supposing that $X(s)=L\{x(t)\} \quad$ what is the Laplace transform of $x\left(t-t_{0}\right)$ ?

## 8. Laplace and z- transforms

### 8.6 Laplace transform: differentiation

One of the most useful properties of the Laplace transform for solving ODEs
$L\left\{\frac{d x}{d t}\right\}=\int_{0}^{\infty} \frac{d x}{d t} e^{-s t} d t$
Integration by parts:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{d t} e^{-s t} d t & =\left[x(t) e^{-s t}\right]_{0}^{\infty}+s \int_{0}^{\infty} x(t) e^{-s t} d t \\
& =-x(0)+s X(s)
\end{aligned}
$$

Now consider differentiation with respect to s:
$\frac{d}{d s}[X(s)]=\frac{d}{d s} \int_{-\infty}^{\infty} x(t) e^{-s t} d t=\int_{-\infty}^{\infty} \frac{d}{d s}\left[x(t) e^{-s t}\right] d t$

$$
=\int_{-\infty}^{\infty} x(t) \frac{d}{d s}\left[e^{-s t}\right] d t=-\int_{-\infty}^{\infty} x(t) t e^{-s t} d t \Rightarrow
$$

$-\frac{d X}{d s}=\int_{-\infty}^{\infty} t x(t) e^{-s t} d t \Rightarrow L\{t x(t)\}=-\frac{d X}{d s}$

## 8. Laplace and z- transforms

8.6 Laplace transform: differentiation (contd)

Example 8.6.1: Find the Laplace transform of $x(t)=t u(t)$
Example 8.6.2: Find the solution of $d y / d t=A \cos t$ for $t \geq 0, y(0)=1$ given
that $L\{\cos (\beta t) u(t)\}=\frac{s}{s^{2}+\beta^{2}}$ and $L\{\sin (\beta t) u(t)\}=\frac{\beta}{s^{2}+\beta^{2}}$

### 8.7 Inverse Laplace transform

Inverse Laplace transform written as $x(t)=L^{-1}\{X(s)\}$
Formally, can be calculated using integral: $x(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} X(s) e^{s t} d s$
In practice, do not use, but rather manipulate expression into recognisable terms, often using partial fraction decomposition.
Shift in s can be useful: $\int_{-\infty}^{\infty} e^{s_{0} t} x(t) e^{-s t} d t=\int_{-\infty}^{\infty} x(t) e^{-\left(s-s_{0}\right) t} d t=X\left(s-s_{0}\right)$
Example 8.7.1 Find the inverse Laplace transform of $X(s)=\frac{s+3}{s^{2}+6 s+18}$

## 8. Laplace and $z$ - transforms

8.8 Laplace transform: region of convergence (ROC)

## Definition

The range of values of the complex variables $s$ for which the Laplace transform converges is called the region of convergence (ROC).
Example 8.8.1 Find the ROC for the signal $x(t)=\mathrm{e}^{-a t} u(t)$ a real

The Laplace transform of $x(t)=-\mathrm{e}^{-\mathrm{at}} u(-t)$ a real can be shown to be $X(s)=\frac{1}{(s+a)} \quad \operatorname{Re}(s)<-a$
Therefore in order for the Laplace transform to be unique the ROC must be specified as part of the transform.

## 8. Laplace and $z$ - transforms

8.8 Laplace transform: region of convergence (ROC) contd Plots of ROC for the signal $x(t)=\mathrm{e}^{-a t} u(t)$ a real


Plots of ROC for the signal $x(t)=-\mathrm{e}^{-a t} u(-t)$ a real



## 8. Laplace and $z$ - transforms

8.8 Laplace transform: region of convergence (ROC) contd

Poles and zeros of $X(s)$
Usually $X(s)$ is rational function of $s$ :
$X(s)=\frac{a_{0} s^{m}+a_{1} s^{m-1}+\cdots+a_{m}}{b_{0} s^{n}+b_{1} s^{n-1}+\cdots+b_{n}}=\frac{a_{0}\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{b_{0}\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}$

- roots of numerator polynomial $z_{k}$ : zeros of $X(s)$, plotted as o
- roots of denominator polynomial $p_{k}$ : poles of $X(s)$ ), plotted as $\mathbf{x}$


## Example 8.8.2

Plot the ROC, zeros and poles of $X(s)=\frac{2 s+4}{s^{2}+4 s+3} \quad \operatorname{Re}(s)>-1$

## 8. Laplace and z- transforms

8.8 Laplace transform: region of convergence (ROC) contd Causality

- a causal continuous time LTI system has $\mathrm{h}(\mathrm{t})=0 \mathrm{t}<0$
- $h(t)$ is right sided signal $\Rightarrow \mathrm{ROC}$ of $H(s)$ of form $\mathrm{Re}(s)>\sigma_{\max }$
- ROC is region on s-plane to right of all system poles


## Stability

- a continuous time LTI system is BIBO stable if $\int_{-\infty}^{\infty} h(t) \mid d t<\infty$
- corresponding requirement on $H(s)$ is that ROC of $H(s)$ contains the $j \omega$ axis


## Causal and stable systems

- if system is both causal and stable then all poles must lie in left half of $s$-plane
- as $\operatorname{Re}(s)>\sigma_{\max }$ and $j \omega$ axis included in ROC such that $\sigma_{\max }<0$


## 8. Laplace and z - transforms

### 8.9 Laplace transform: Characterisation of LTI systems

For continuous time LTI system

- $y(t)=x(t)^{*} h(t)$
- $Y(s)=X(s) H(s)$.
- $H(s)$ known as the transfer function or the system function.
- $H(s)=Y(s) / X(s)$
- transfer function reveals basic characteristics of system
- ignore $x(t)$ for $t<0$ : relaxed systems, all initial conditions set to zero.

Example 8.9.1 Consider a relaxed LTI system for which $\frac{d y}{d t}=\frac{d x}{d t}-3 x(t)$ Assume the system is causal and find the impulse response $h(t)$.
8. Laplace and $z$ - transforms
8.10 LTI systems interconnection

Two LTI systems in series:

time domain: $h(t)=h_{1}(t) * h_{2}(t) \mathbf{s}$-domain: $\boldsymbol{H}(\mathbf{s})=\boldsymbol{H}_{1}(\mathbf{s}) \boldsymbol{H}_{2}(\mathbf{s})$
Two LTI systems in parallel

time domain: $h(t)=h_{1}(t)+h_{2}(t) \boldsymbol{s}$-domain: $\boldsymbol{H}(\boldsymbol{s})=\boldsymbol{H}_{\mathbf{1}}(\mathbf{s})+\boldsymbol{H}_{\mathbf{2}}(\boldsymbol{s})$

## 8. Laplace and $z$ - transforms

8.10 LTI systems interconnection

Example 8.10.1 Two systems are arranged in series
$h_{1}(t)=e^{-2 t} u(t)$ and $h_{2}(t)=e^{-4 t} u(t)$
Find the impulse response of the entire system.
First, find Laplace transform of each function:

## 8. Laplace and z- transforms

8.11 The z-transform: introduction and definition

- discrete time equivalent to Laplace transform
- can be used to analyse discrete signals going to infinity
- simplifies analysis of DT signals by allowing us to convert finite difference equations into algebraic equations.
The z-transform of a discrete time signal $x[n]$ is given by $X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$
As $z$ is a complex number, can be written in polar representation: $z=r e^{j \Omega}$
If a signal $x[n]$ is zero when $n<0$ then $X_{1}(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$
In analogy to the FT, we define the z-transform pair $x[n] \leftrightarrow X[z]$
The discrete time Fourier transform (DTFT) is special case of the $z$ transform:
$X\left(e^{j \omega}\right)=[X(z)]_{z=e^{j \omega}}=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$
In the z-plane, the DTFT is simply $X(z)$ evaluated on the unit circle.


## 8. Laplace and $z$ - transforms

8.12 The $z$-transform: basic properties

Linearity: $y[n]=a x_{1}[n]+b x_{2}[n] \Rightarrow Y(z)=a X_{1}(z)+b X_{2}(z)$
Time shifting: $x\left[n-n_{0}\right] \leftrightarrow z^{-n_{0}} X(z)$
Time reversal: $x[-n] \leftrightarrow X\left(\frac{1}{z}\right)$
Differentiation: $n x[n] \leftrightarrow-z \frac{d X}{d z}$
Convolution: $x_{1}[n] * x_{2}[n] \leftrightarrow X_{1}(z) X_{2}(z)$
Accumulation property: $\sum_{k=-\infty}^{\infty} x[k] \leftrightarrow \frac{1}{1-z^{-1}} X(z)$
Multiplication by $z_{0}{ }^{n}: z_{0}^{n} x[n] \leftrightarrow X\left(\frac{z}{z_{0}}\right)$
Example 8.12.1: find the $z$-transform of the unit impulse sequence $\delta[n]$

## 8. Laplace and z- transforms

8.13 The z-transform: region of convergence (ROC)

Infinite series: important to know when converges.
ROC, region of convergence for $z$-transform tells us this
Consider $z$-transform of $a^{n} u[n]$ (a real)

### 8.14 Inverse z-transform

Method of partial fraction expansion, using $a^{n} u[n] \leftrightarrow \frac{z}{z-a}$
Example 8.12.1: find the inverse $z$-transform of $X(z)=\frac{z}{(z-3)(z+4)}$

## 8. Laplace and $z$ - transforms

### 8.15 The z-transform: power series expansion

Can write $z$-transform as a power series (a Laurent series):
$x(z)=\cdots+x[-2] z^{2}+x[-1] z+x[0]+x[-1] z^{-1}+x[2] z^{-2}+\cdots$
For sequences that are 0 for $n<0$ then
$x(z)=x[0]+x[1] z^{-1}+x[2] z^{-2}+\cdots$
Example 8.15.1: find $z$-transform of $\{1,2,2,4,5,1\}(x[n]=0$ for $n<0)$
Example 8.15.2: find inverse $z$-transform of $X(z)=1+z^{-1}+3 z^{-2}-2 z^{-3}$

### 8.16 The z-transform: applied to LTI systems

Output of LTI system given by $y[n]=x[n] * h[n]$
Use convolution property of $z$-transform $Y(z)=X(z) H(z)$
$H(z)=Y(z) / X(z)$
Use to compute convolutions.
Example 8.16.1: given that $x[n]=\{1,2,1,2\}$ and $h[n]=\{1,1,1\}$, find response $y[n]$

