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7.1 

7. Modulation and signal recovery
7.1 Introduction: modulation
 relevance to communications – transmission of an information-

bearing signal
 recovery of very small signals buried in noise, via e.g. phase 

sensitive detection
Information-bearing signal denoted m(t), message signal: transmission 

requires some type of manipulation, e.g. AM radio where m(t) has its 
natural frequencies in the audio range
 not directly compatible with radio transmission frequencies
 must be modified in some way to be transmitted
 frequency range is shifted using modulation.
 modulation is defined as the process by which some characteristic of 

a carrier signal xc(t) is varied by modulating signal m(t)
A continuous wave carrier signal is a sinusoidal wave:

– A(t) – instantaneous amplitude
– φ(t) – instantaneous phase angle
– ωc = 2πfc – carrier frequency

( ) ( ) ( )cosc cx t A t t tω φ = + 

     

7. Modulation and signal recovery
7.1 Introduction: modulation (cont)
Amplitude modulation
 instantaneous amplitude A(t) of carrier signal xc(t) linearly related to 

the message signal m(t) 
 amplitude of the carrier signal is constant, the carrier amplitude, Ac. 
 set φ(t) = 0, so can write carrier signal as xc(t) = Ac cos(ωct) 

There are several types of amplitude modulation:
 standard or ordinary amplitude modulation
 double sideband modulation (DSB)
 single sideband modulation (SSB)
 vestigial sideband modulation (VSB)

7.2 Ordinary amplitude modulation
An ordinary AM signal can be created in three steps
 define carrier signal as above xc(t) = Ac cos(ωct) 
 multiply message signal m(t) by cos(ωct) to give m(t)cos(ωct)
 form sum of these two waves to produce the ordinary AM signal

( ) ( ) ( ) ( ) ( ) ( )AM cos cos cosc c c c cx t m t t A t A m t tω ω ω = + = +   

 

 

7. Modulation and signal recovery
7.2 Ordinary amplitude modulation (cont)
The envelope
 amplitude of the ordinary AM wave xAM(t)
 given by a(t) = Ac + m(t) 

Quality of transmission, use modulation index µ = |max{m(t)}| / Ac

 indicates amount of variation of modulated signal about normal value.
Two general cases:
µ ≤ 1: direct correspondence of envelope of xAM(t) with message signal. 

Wave can be demodulated, allowing recovery of original signal m(t)
µ > 1: indicates a problem, wave is overmodulated. The envelope of 

xAM(t) will not always directly correspond to m(t). The signal suffers 
from envelope distortion.

Envelope sometimes written a(t) = Ac [1 + kam(t)] 
 ka is called the amplitude sensitivity
 percent modulation given by 100 ka |max{m(t)}|

     

7. Modulation and signal recovery
7.2 Ordinary amplitude modulation (cont)
Example:
Let m(t) = sin(πt/2) and xc(t) = 3cos(20πt). Describe the AM wave 

generated, along with its envelope.
Avoiding envelope distortion
Require 
 µ ≤ 1
 message bandwidth << carrier frequency 

Modulation index can be expressed: 

Example:
Let m(t) = Amcos(3πt/4) and xc(t) = 3cos(20πt). Write the modulating 

signal in terms of the modulation index and then consider three cases 
of percent modulation: (a) 15%, (b) 40%, and (c) 125%

max min

max min

a a
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7. Modulation and signal recovery
7.2 Ordinary amplitude modulation (cont)
Power in AM waves
 carrier power given by Pc = Ac

2 / 2
 sideband power given by PS = µ2Ac

2 / 4
 the total power in the wave is Pt = Pc + PS

 the efficiency of an ordinary AM wave is given by η = (PS / Pt) × 100%

Can write the efficiency in terms of the modulation index:

7.3 AM waves in the frequency domain
To describe spectrum of AM signal recall that FT of a cosine function is:

Signal in the time domain: 
FT of second term:
The FT of the first term can be found from the modulation theorem:

Exercise: demonstrate the modulation theorem

2

2 100%
2

µη
µ

= ×
+

( ) ( ) ( )0 0 0cos tω π δ ω ω δ ω ω − + + 

( ) ( ) ( ) ( )AM cos cosc c cx t m t t A tω ω= +

( ) ( ) ( ) ( ) ( ) ( )1 1If  then cos
2 2c c cm t M m t t M Mω ω ω ω ω ω− + + 

( ) ( ) ( )cosc c c c cFT A t Aω π δ ω ω δ ω ω   = − + +   
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7. Modulation and signal recovery
7.3 AM waves in the frequency domain (cont)

FT of some message signal:
 spectral range is the baseband
 message signal known as baseband signal

Effect of AM in frequency domain shown below:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

AM cos cos

1 1
2 2

c c c

c c c c c

FT x t FT m t t A t

M M A

ω ω

ω ω ω ω π δ ω ω δ ω ω

   = +   

 = − + + + − + + 

Ordinary AM signal in frequency domain

ω

IXAM(ω)I

–ωc ωc

upper
sideband

upper
sideband

lower sideband

πAcδ(ω  – ωc)πAcδ(ω  + ωc)

• 2 copies of message spectrum in signal
• one translated to ω = ωc, the other to ω

= –ωc
• part of spectrum above ωc known as 

upper sideband,
• part of spectrum below ωc known as 

lower sideband
• carrier freq. ωc much larger than

bandwidth of message signal ωM  
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7.2 

7. Modulation and signal recovery
7.4 Generation and detection of ordinary AM waves
Generation
 using a square law modulator 
 involves non-linear device such as a diode or a transistor

Given input signal v1(t) transfer characteristic is of the form

Remove unwanted terms {} by filtering to leave

which has desired form of an AM wave.

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2
2 1 1 2

1

22 2 2 2
1

2
2 1 1 2 1 1 2

Input is sum message signal + carrier wave: cos

cos cos 2 cos

So output signal is given by

cos cos

c c

c c c c c c

c c c c

v t a v t a v t

v t m t A t

v t m t A t m t A t A m t t

v t a v t a v t a m t A t a m t A t

ω

ω ω ω

ω ω

= +

= + ⇒
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( ) ( ) ( ){ }

2

2 2 2
1 2 1 2 2cos 2 cos cosc c c c c ca A t a A m t t a m t a m t a A tω ω ω

  

= + + + +

( ) ( )2
1 2 1

1

cos 2 cos 1 2 cosc c c c c c
a

a A t a A m t t a A m t t
a

ω ω ω
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7. Modulation and signal recovery
7.4 Generation and detection of ordinary AM waves (cont)
Detection
 using a square law detector 

Given input signal v1(t) transfer characteristic is of the form

Looks complicated.... but focus on the term 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( )

2
2 1 1 2 1

1 AM
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2 1 1 2 1 1 2

2 2 2
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1

Input is the AM wave: cos

So output signal is given by

cos cos

cos 2 cos

c c

c c c c

c c c c c

c
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7. Modulation and signal recovery
7.4 Generation and detection of ordinary AM waves (cont)
Detection (cont)
 note term a2Acm(t), the message signal scaled by some constants
 appropriate filtering can remove other terms to leave message signal
 if ωc >> ωM can be performed by application of low pass filter

Consider action of low pass filter excluding ωc . We have
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( )

2 2
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2 2 2
1 2 2

2 2

2 2
1 2 2

2 2

cos cos

cos2 cos

cos cos

cos2

1 cos2
cos

2
cos2

c c c c c
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c c c c
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c c c
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Applying low pass filter
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v t a A a m t a A m t
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7. Modulation and signal recovery
7.4 Generation and detection of ordinary AM waves (cont)
Detection (cont)

 first term is just a constant and poses no problem
 third term is scaled message signal
 second term contains square of message signal and is source of 

unwanted distortion
Alternative is envelope detector, which can be constructed with a 

diode, resistor and capacitor:

 diode half-wave rectifies signal
 when xAM(t) > capacitor voltage, capacitor voltage follows xAM(t) 
 when xAM(t) < capacitor voltage diode switches off and capacitor 

discharges through resistor with time constant τ = RC

( ) ( ) ( )2 2
2 2 2 2

1 1
2 2c

c cv t a A a m t a A m t
ω ω<

  = + + 

RxAM(t) C w(t)

 

 

 

7. Modulation and signal recovery
7.4 Generation and detection of ordinary AM waves (cont)
Envelope detector (cont)
Resulting signal looks like this:

 for envelope detection to work, need sufficient power to be 
transmitted, requires the following condition to be fulfilled for all t:

Example
Design an envelope detector to demodulate the AM signal

 envelope detector often followed by 
lowpass filter to remove components at 
frequencies around ωc

 signal shown would be smoothed by this
 works best when modulation index is 

small, but this makes system inefficient 
as large part of power wasted on carrier

( ) ( ) ( )6
AM 1 0.5cos 200 cos 2 10x t t tπ π = + 

( ) 0cA m t+ >

     

DSB signal in frequency domain

ω

IXDSB(ω)I

–ωc ωc

upper
sideband

upper
sideband

lower sideband

7. Modulation and signal recovery
7.5 Double sideband modulation
 amplitude of AM signal proportional to message signal: A(t) = am(t) 
 a constant, for simplicity, take a = 1, then xDSB(t) = m(t)cos(ωct)

The generation of a DSB signal is conceptually straightforward: 
 multiply the message signal by the carrier wave. 
 shown schematically as

cos(ωct)

m(t)cos(ωct)

Frequency domain representation 
 easy to find using modulation theorem
 same as for ordinary AM wave, except no Dirac delta functions
 called suppressed carrier modulation as absence of cosine term 

suppresses the appearance of the Dirac delta fns

m(t)
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7.3 

7. Modulation and signal recovery
7.5 Double sideband modulation (cont)
Demodulation
 multiply by cos(ωct) (local carrier), resulting in

 bandwidth of message signal ωm should be much less than that of the 
carrier signal ωc,, that is ωm << ωc, 

 so can apply a low pass filter that rejects the carrier frequency

 called coherent detection as receiver must generate local wave that 
has same frequency ωc as DSB signal, in phase with it
 this requirement can lead to practical difficulties

Example: demonstrate DSB modulation and demodulation where 
m(t) = cos(3πt/4) and xc(t) = 3cos(20πt).
Consider also the case of a small frequency error in the local carrier

( ) ( ) ( ) ( ) ( ) ( )2 1 cos 2
cos cos

2
c

DSB c c

t
x t t m t t m t

ω
ω ω

 +
= =  

 

( ) ( ) ( )filter 1 cos 2 1
2 2

cctm t m tωω +
→ 

 

     

7. Modulation and signal recovery
7.5 Double sideband modulation : example

message signal: m = cos(3tπ/4)

t / s0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5m
(t )

-1 0

-0.5

0.0

0.5

1.0

DSB signal: xDSB(t) = m(t)cos(20πt)

t / s0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5x D
SB

(t)

-3
-2
-1
0
1
2
3

demodulated DSB signal before and after low pass filter

t / s0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5m
(t)

-3
-2
-1
0
1
2
3

carrier signal: xc(t) = 3cos(20πt)

t / s0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5x c(t
)

-3
-2
-1
0
1
2
3

 

 

 

7. Modulation and signal recovery
7.5 Double sideband modulation : example (cont)

demodulated DSB signal before and after low pass filter with error in local frequency

t / s0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5m
(t)

-2
-1
0
1
2
3

7.6 Single sideband modulation
 Both ordinary AM and DSB 

modulation produce two copies of 
the message signal in the 
frequency domain: wasted 
bandwidth
 only necessary to transmit one of 

them: single sideband modulation, 
SSB, transmit either upper or lower 
sideband

 generate SSB signal by frequency discrimination: create DSB 
signal, then eliminate unwanted frequencies using bandpass filter

DSB signal in frequency domain

ω

IXDSB(ω)I

–ωc ωc

upper
sideband

upper
sideband

lower sideband

SSB signal in frequency domain

ω

IXSSB(ω)I

–ωc ωc

     

7. Modulation and signal recovery
7.7 Angle modulation
General carrier wave: xc(t) = Ac cos(ωct + φ) = Ac cos(θ) 
 θ(t) = ωct + φ(t) is instantaneous angle

Two types of angle modulation
 phase modulation
 frequency modulation

Phase modulation
 θ(t) varied linearly with modulating signal: θ(t) = ωct + kpm(t) 
 kp is phase deviation constant

Frequency modulation
 instantaneous frequency
 kf is frequency deviation constant


( )i c c f
d k m t
dt
φω ω ω= + = +

( ) ( )
0

cos
t

FM c c fx t A t k m dω τ τ = +  ∫

 

 

 

7. Modulation and signal recovery
7.8 Application to signal recovery: the lock-in amplifier
 used to detect and measure very small ac signals. 
 can make accurate measurements of small signals even when these 

are obscured by noise sources a thousand times larger.
Essentially, a lock-in is a filter with an arbitrarily narrow bandwidth which 
is tuned to the frequency of the signal. 
 will reject most unwanted noise to allow the signal to be measured. 
 typical lock-in application may require a center frequency of 10 KHz 

and a bandwidth of 0.01 Hz. 
 a lock-in also provides gain. For example, a 10 nanovolt signal can 

be amplified to produce a 10 V output--a gain of one billion. 
 technique requires that the experiment be excited at a fixed 

frequency in a relatively quiet part of the noise spectrum. 
 lock-in then detects the response from the experiment in a very 

narrow bandwidth at the excitation frequency.
Applications include low level light detection, Hall probe and strain 
gauge measurement, micro-ohm meters, electron spin and nuclear 
magnetic resonance studies

     

7. Modulation and signal recovery
7.8 Application to signal recovery: the lock-in amplifier (cont)
How does it work: an example

 reference source is 1 Vrms sine wave at frequency ωr, current limited 
by 1 MΩ resistor to provide 1 μA ac excitation to 0.1Ω sample.
 two signals provided to lock-in: 1 V AC reference and amplified signal
 output of amplifier multiplied by the phase-locked loop (PLL) output in 

the Phase-Sensitive Detector (PSD), output given by:

 sum frequency component attenuated by low pass filter, only 
difference frequency components within low pass filter's narrow 
bandwidth will pass through to the dc amplifier. High noise rejection.

( ) ( ) ( ) ( )1 1
2 2cos cos cos cosPSD r s r s r sv t t t tω φ ω ω ω φ ω ω φ   = + = + + + − +   
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8.1 

8. Laplace and z- transforms
8.1 Laplace transform: introduction
The Laplace transform
 converts continuous time-domain signals into a function of a complex 

variable s
Very useful in the study of LTI systems:
 allows conversion of ODEs into algebraic equations 
 converts convolution into simple multiplication

8.2 Laplace transform: definition
Laplace transform used to transform continuous function of time t into a 

function of s, which is in general a complex number. 
 s = σ + jω where σ = Re(s) and ω = Im(s) are real variables

The LT X(s) of a signal x(t) is given by

or alternatively X(s) = L{x(t)}
 L{ } viewed as an operator

( ) ( )
∞ −

−∞
= ∫ stX s x t e dt

     

8. Laplace and z- transforms
8.3 Laplace transform: general procedure
More important to learn how to manipulate Laplace transforms rather 

than calculate them. The procedure can be summarised:
 given one or more input signals, look up their Laplace transforms in a 

table
 use the properties of the Laplace transform to accomplish various 

tasks algebraically, including solving differential equations or
computing convolution of two signals
 function of s will be the result – manipulate this until in a form that 

can be readily transformed back to a function of time by inspection
8.4 Laplace transform: computation
Best shown by example
Example 8.4.1: Find the Laplace transform of x(t) = u(t)

( ) ( )
∞

∞ ∞− − −

−∞

 = = = − =  ∫ ∫0
0

1 1st st stX s u t e dt e dt e
s s

 
 

 

8. Laplace and z- transforms
8.4 Laplace transform: computation (contd)
Example 8.4.2: Find the Laplace transform of x(t) = e–atu(t)

yielding the Laplace transform pair

( ) ( ) ( )

( )
( )

( )

∞ ∞ ∞ − +− − − −

−∞

∞

− +

= = =

 
= − = 

+ +  

∫ ∫ ∫0 0

0

1 1

a s tat st at st

s a t

X s e u t e dt e e dt e dt

e
s a s a

( ){ } ( )
− =

+
1atL e u t

s a

     

8. Laplace and z- transforms
8.5 Laplace transform: important properties
Linearity:
Time scaling: given x(t) and that
what is the Laplace transform of the time-scaled function x(at) ?

Time shifting: Supposing that                         what is the Laplace 
transform of x(t – t0) ?

( ){ }  =  
 

1 sL x at X
a a

( ) ( )
∞ −

−∞
= ∫ stX s x t e dt

( ) ( ){ }=X s L x t

( ){ } ( )−− = 0
0

stL x t t e X s

( ){ } ( )

( ){ } ( ) ( )

( )

( )

( ) ( )

∞ −

−∞

∞ − +

−∞

∞ −−

−∞

∞− −

−∞

∞− −−

−∞

− = −

= − ⇒ =

− =

=

=

= =

∫

∫
∫

∫
∫

0

0

0

0 0

0 0

0

0

st

s u t

stsu

st su

st stst

L x t t x t t e dt

u t t du dt

L x t t x u e du

x u e e du

e x u e du

e x t e dt e X s

( ) ( ){ } ( ) ( )α β α β+ = +1 2 1 2L x t x t X s X s

 

 

 

8. Laplace and z- transforms
8.6 Laplace transform: differentiation
One of the most useful properties of the Laplace transform for solving ODEs.

Now consider differentiation with respect to s:

( ) ( )

( ) ( )

∞ −

∞ ∞∞− − −

  = 
 

 = + 

= − +

∫

∫ ∫

0

00 0

Integration by parts:

0

st

st st st

dx dxL e dt
dt dt

dx e dt x t e s x t e dt
dt

x sX s

( ) ( ) ( )

( ) ( )

( ) ( ){ }

∞ ∞− −

−∞ −∞

∞ ∞− −

−∞ −∞

∞ −

−∞

   = =   

 = = − ⇒ 

− = ⇒ = −

∫ ∫

∫ ∫

∫

st st

st st

st

d d dX s x t e dt x t e dt
ds ds ds

dx t e dt x t te dt
ds

dX dXtx t e dt L tx t
ds ds

     

8. Laplace and z- transforms
8.6 Laplace transform: differentiation (contd)
Example 8.6.1: Find the Laplace transform of x(t) = tu(t)
Example 8.6.2: Find the solution of dy/dt = Acost for t ≥ 0, y(0) = 1 given 

that 

8.7 Inverse Laplace transform
Inverse Laplace transform written as 

Formally, can be calculated using integral: 

In practice, do not use, but rather manipulate expression into 
recognisable terms, often using partial fraction decomposition.

Shift in s can be useful:

Example 8.7.1 Find the inverse Laplace transform of 

( ) ( ){ } ( ) ( ){ } ββ β
β β

= =
+ +2 2 2 2cos   and sinsL t u t L t u t

s s

( ) ( ){ }−= 1x t L X s

( ) ( )
π

+ ∞

− ∞
= ∫

1
2

c j st

c j
x t X s e ds

j

( ) ( ) ( ) ( )
∞ ∞ − −−

−∞ −∞
= = −∫ ∫ 00

0
s s ts t ste x t e dt x t e dt X s s

( ) +
=

+ +2

3
6 18

sX s
s s
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8.2 

8. Laplace and z- transforms
8.8 Laplace transform: region of convergence (ROC)
Definition
The range of values of the complex variables s for which the Laplace 

transform converges is called the region of convergence (ROC).
Example 8.8.1 Find the ROC for the signal x(t) = e–atu(t) a real

The Laplace transform of x(t) = –e–atu(–t) a real can be shown to be 

Therefore in order for the Laplace transform to be unique the ROC must 
be specified as part of the transform.

( ) ( ) ( )

( )
( )

( ) ( )

( ) ( ) ( )

∞ ∞ ∞ − +− − − −

−∞

∞

− +

− +
→∞

= = =

 
= − = > − 

+ +  

= + > > −

∫ ∫ ∫0 0

0

1 1    Re

because lim 0 only if Re 0 or Re

a s tat st at st

s a t

s a t
t

X s e u t e dt e e dt e dt

e s a
s a s a

e s a s a

( ) ( ) ( )= < −
+
1    ReX s s a

s a

     

8. Laplace and z- transforms
8.8 Laplace transform: region of convergence (ROC) contd
Plots of ROC for the signal x(t) = e–atu(t) a real

Plots of ROC for the signal x(t) = –e–atu(–t) a real

σ

jω

-a

a > 0

σ

jω

-a

a < 0

σ

jω

-a

a > 0

σ

jω

-a

a < 0

 

 

 

8. Laplace and z- transforms
8.8 Laplace transform: region of convergence (ROC) contd
Poles and zeros of X(s)
Usually X(s) is rational function of s:

 roots of numerator polynomial zk : zeros of X(s), plotted as o
 roots of denominator polynomial pk : poles of X(s) ), plotted as x

Example 8.8.2 
Plot the ROC, zeros and poles of 

( ) ( )( ) ( )
( )( ) ( )

−

−

− − −+ + +
= =

− − −+ + +







1
0 1 20 1

1
0 1 20 1

m m
mm

n n
nn

a s z s z s za s a s a
X s

b s p s p s pb s b s b

( ) ( )+
= > −

+ +2

2 4    Re 1
4 3

sX s s
s s

( ) ( )
( )( )

( )

++
= =

+ ++ +

• = −
• = − = −
•

2

22 4 2
1 34 3

 has :
 one zero at 2 and 
 two poles at 1 and 3 with 
 scale factor 2.

ssX s
s ss s

X s
s
s s

     

8. Laplace and z- transforms
8.8 Laplace transform: region of convergence (ROC) contd
Properties of ROC

1. ROC does not contain any poles
2. if x(t) is finite duration signal then ROC is entire s-plane (except 

perhaps s = 0 or s = ∞)
3. if x(t) is right-sided signal (x(t) = 0 for t < t1 < ∞) then ROC is of form 

Re(s) > σmax where σmax equals the maximum real part of any of the 
poles of X(s)

4. if x(t) is left-sided signal (x(t) = 0 for t > t2 > –∞) then ROC is of form 
Re(s) < σmin where σmin equals the minimum real part of any of the 
poles of X(s)

5. if x(t) is two-sided signal (x(t) is an infinite duration signal that is 
neither left-sided nor right-sided) then ROC is of form σ1 < Re(s) < 
σ2 where σ1 and σ2 are the real parts of the two poles of X(s).

 

 

 

8. Laplace and z- transforms
8.8 Laplace transform: region of convergence (ROC) contd
Causality
 a causal continuous time LTI system has h(t) = 0  t < 0
 h(t) is right sided signal ⇒ ROC of H(s) of form Re(s) > σmax

 ROC is region on s-plane to right of all system poles

Stability
 a continuous time LTI system is BIBO stable if 
 corresponding requirement on H(s) is that ROC of H(s) contains the 

jω axis

Causal and stable systems
 if system is both causal and stable then all poles must lie in left half of 

s-plane
 as Re(s) > σmax and jω axis included in ROC such that σmax < 0 

( )
∞

−∞
< ∞∫ h t dt

     

8. Laplace and z- transforms
8.9 Laplace transform: Characterisation of LTI systems
For continuous time LTI system
 y(t) = x(t)*h(t)
 Y(s) = X(s)H(s).
 H(s) known as the transfer function or the system function.
 H(s) = Y(s) / X(s)
 transfer function reveals basic characteristics of system
 ignore x(t) for t < 0 : relaxed systems, all initial conditions set to zero.

Example 8.9.1 Consider a relaxed LTI system for which

Assume the system is causal and find the impulse response h(t).
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8.3 

h (t) ↔ H (s)

8. Laplace and z- transforms
8.10 LTI systems interconnection
Two LTI systems in series:

time domain: h(t) = h1(t)∗h2(t) s-domain: H(s) = H1(s) H2(s)
Two LTI systems in parallel

time domain: h(t) = h1(t) + h2(t) s-domain: H(s) = H1(s) + H2(s)

h1(t) ↔ H1(s) h2(t) ↔ H2(s) x(t) y(t)

h (t) ↔ H (s)

h1(t) ↔ H1(s) 

h2(t) ↔ H2(s) 

x(t) y(t)

     

8. Laplace and z- transforms
8.10 LTI systems interconnection
Example 8.10.1 Two systems are arranged in series 

Find the impulse response of the entire system.
First, find Laplace transform of each function:
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Taking inverse Laplace transform gives impulse response
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8. Laplace and z- transforms
8.11 The z-transform: introduction and definition
 discrete time equivalent to Laplace transform
 can be used to analyse discrete signals going to infinity 
 simplifies analysis of DT signals by allowing us to convert finite 

difference equations into algebraic equations. 
The z-transform of a discrete time signal x[n] is given by 

As z is a complex number, can be written in polar representation:

If a signal x[n] is zero when n < 0 then 

In analogy to the FT, we define the z-transform pair x[n] ↔ X[z] 
The discrete time Fourier transform (DTFT) is special case of the z-

transform:

In the z-plane, the DTFT is simply X(z) evaluated on the unit circle.
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8. Laplace and z- transforms
8.12 The z-transform: basic properties
Linearity:  

Time shifting: 

Time reversal:

Differentiation: 

Convolution: 

Accumulation property:

Multiplication by z0
n:

Example 8.12.1: find the z-transform of the unit impulse sequence δ[n]
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8. Laplace and z- transforms
8.13 The z-transform: region of convergence (ROC)
Infinite series: important to know when converges.
ROC, region of convergence for z-transform tells us this
Consider z-transform of anu[n]  (a real)

8.14 Inverse z-transform
Method of partial fraction expansion, using

Example 8.12.1: find the inverse z-transform of 
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8. Laplace and z- transforms
8.15 The z-transform: power series expansion
Can write z-transform as a power series (a Laurent series):

For sequences that are 0 for n < 0 then

Example 8.15.1: find z-transform of {1, 2, 2, 4, 5, 1} (x[n] = 0 for n < 0) 

Example 8.15.2: find inverse z-transform of 

8.16 The z-transform: applied to LTI systems
Output of LTI system given by y[n] = x[n] ∗ h[n]
Use convolution property of  z-transform Y(z) = X(z) H(z)
H(z) = Y(z) / X(z)
Use to compute convolutions.
Example 8.16.1: given that x[n] = {1, 2, 1, 2} and h[n] = {1, 1, 1} , find 

response y[n] 
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