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6. Discrete Fourier transforms and sampling
6.1 Discrete time Fourier series
= discrete time signal x[n] with fundamental period N, : x[n] = x[n + Ng].
= fundamental frequency (2, = 2n / N, Ng-1
= Fourier series representation of x[n] is given by X[n] = gcke““ﬂ"
No-1

* ¢, — Fourier or spectral coefficients, given by ¢, =1~ x[n]e k"

0 n=0
= if sum runs over any N, consecutive values of k: x[n]= >" ¢, e*®"

k={No)
= known as the synthesis equation.

. ) - 1
» using same notation can express coefficients: ¢, = - > x[n]e ke
. . . 0 n=(No)
= sometimes called the analysis equation.
= spectral coefficients and sequence x[n] constitute Fourier series pair
x[n] = ¢, 1
= average value of x[n] over a period is given by: ¢, = Z x[n]
0 n=(No)

6. Discrete Fourier transforms and sampling

6.1 Discrete time Fourier series (cont)

Example: find the spectral coefficients for the discrete time square wave
shown below:
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6.2 Properties of Discrete time Fourier series
For periodic discrete time signal x[n] = x[n + N,] spectral coeffients are
also periodig:= .y,
View members of discrete time sequen[ce] as Fourier coefficients of the c,
n
0

C, :c[k]:Ni > x[n]e " = %:>XN—e"“*°” Now let m = -n
n={No,

0 n=(No)
clk]= >, 7X[_m]e"‘“°’" Nowk >nand m—k:c[n]= L_k]e‘*%"
n-fio) No k) No
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6.2 Properties of Discrete time Fourier series (cont)

This is just the discrete Fourier series representation for the c[n]. A
demonstration of the duality property, which states
= if Xx[n] and c[k] form a Fourier series pair x[n] = c[k]
= then also have a Fourier series pair c[n] = x[-K] / N,

Parseval’s theorem for discrete Fourier series

Enables us to find the average power of a discrete time signal by
summing the squared amplitudes of its harmonic components:
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Example: demonstrate Parseval's theorem for the signal in 6.1

6. Discrete Fourier transforms and sampling
6.3 Fourier transform of a discrete time signal B
FT of arbitrary non-periodic discrete time signal x[n] : X (Q)= > x[n]e™"
N=—0
= FT is periodic in 2rt, X[Q] = X[Q + 2n]
= product X[Q]ei*" also periodic in 21 1
= Inverse FT — integrate over interval 2x: x[n]= Z—L X (Q)e'"dQ
g P
= FT of DT signal is linear: ax,[n] + bx,[n] = aX,[«] + bX,[«]
= time shift by ny: x[n—-ny] = e X(Q)
= frequency shift by Qp: e'"x[n] = X (Q-Q,)
= using time shifting obtain: x[n]-x[n-1]= (l—e"“)x (@)

= accumulation property (where 1QI <2r):

3 x[k] = 7% (0)5(Q) +

1
o)

X(@)

6. Discrete Fourier transforms and sampling
6.4 Discrete Fourier transform and sampling

Here we consider sampling of a continuous time signal x(t) that is of
finite duration.

= sample the signal at intervals of T called the sampling period
=total of N samples of the original signal, then we will have the
sampled values x(t), X(Ty), X(2T), ..., X(N = 1)Ty)
= defines values of discrete time signal x[n].
The DFT of x[n] is denoted by X[K] and is given by
N1 i2x
X (k)= x[n]e ¥
n=0
The inverse discrete FT is given by

N-1

qﬂzﬁzxwp%“

k=0

6. Discrete Fourier transforms and sampling
6.4 Discrete Fourier transform and sampling (cont)
Example

Given that X[k] = {0, -3 — 3j, =2, =3 + 3] }, use the inverse DFT to find
x[n]
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6. Discrete Fourier transforms and sampling

6.5 Sampling

Consider a sine wave with a frequency of f = 250 Hz.
mperiod T=1/f=1/250=4 ms
= continuous time signal x(t) = sin(2#ft) = sin{2x(250)t}
= shown for 0 <t< 24 ms

250 Hz sine wave
210 . .

= and for a single period of 4 ms

one period of a 250 Hz sine wave
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= sampling rate 5000 Hz, sampling interval T, =1/ (5000 Hz)=0.2 ms
= out to 1 ms have the discrete time signal
x[n] = {0.0000, 0.3090, 0.5878, 0.8090, 0.9511, 1.0000}

6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)

one period of 250 Hz sine wave sampled at 5000 Hz

= at 5000 illnz, good approximation to signal shape
= now, reduce sampling rate to 2500 Hz, T. = 1/ (2500 Hz) = 0.4 ms

one period of 250 Hz sine wave sampled at 2500 Hz
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= start to see some distortion of signal
= now reduce sampling rate to 1700 Hz, T, =1/ (1700 Hz) = 0.59 ms

one period of 250 Hz sine wave sampled at 1700 Hz

= further distortion evident
= sample signal now at 900 Hz, T, =1/ (900 Hz) =1.11 ms

6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)

one period of 250 Hz sine wave sampled at 900 Hz
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= at 900 H‘z0 a lot of information lost
= now, reduce sampling rate to 400 Hz, T. =1/ (400 Hz) = 2.5 ms

one period of 250 Hz sine wave sampled at 400 Hz
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» much information now lost
Summarising:
= if signal changes rapidly in time, sampling interval T, must be small
enough to capture variations

= high frequency variation implies high frequency components in signal,
requires high sampling rate

= when sampling rate not high enough / sampling interval too long to
capture signal variation, we say that aliasing has occurred

x[n]

6. Discrete Fourier transforms and sampling
Extreme example of aliasing
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52Hz signal sampled at 50 Hz

6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)
Nyquist sampling theorem

To sample a signal correctly, sampling rate (@, rad/sec) should be at
least twice the highest frequency component («,) present in the
signal: o, > 2w,

For signals band width limited to [-w/ 2, @/ 2]

= the critical sampling interval T, = 27/ o,

* o, =  is the Nyquist critical frequency

= Nyquist critical frequency is highest frequency that can pick up

= for a sine wave, this corresponds to a minimum of two samples per
period

= an arbitrary band-width limited signal x(t) is completely determined by
its samples x[n] taken at the Nyquist critical frequency:

- sinf @, (t-nT,)]
x(t) =T, x[n|———%
(=T, XXl
On the other hand, if sample a continuous function that is not bandwidth
limited to less than the Nyquist critical frequency
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6.5 Sampling (cont)
Nyquist sampling theorem (cont)
= all of power spectral density lying outside range (—a, / 2) < o <(e, ! 2)
is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.

A band-limited signal sampled at frequency w, = 27/ T, gives discrete
time signal x[n] = x(nT,) from which we would like to recover the
original continuous time signal.

= |deally, we would do this by constructing a train of impulses from the
x[n] and then filter this signal with an ideal lowpass filter

In real life, two possibilities:

Zero-order hold, interpolates signal samples with a constant line
segment over a sampling period for each sample

= frequency response is a poor approximation to ideal lowpass filter's
First-order hold

= triangular impulse response,
= gives a linear interpolation between each sample
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