L3 PHYSIQUE

6. Discrete Fourier transforms and sampling

- 6.1 Discrete time Fourier series
- discrete time signal x[n] with fundamental period N₀: x[n] = x[n + N₀].
- fundamental frequency $\Omega_0 = 2\pi / N_0$ • Fourier series representation of x[n] is given by $x[n] = \sum_{i=1}^{N_0-1} c_k e^{jk\Omega_0 n}$
- c_k Fourier or spectral coefficients, given by $c_k = \frac{1}{N_0} \sum_{n=0}^{\frac{k-0}{k-1}} x[n]e^{-jk\Omega_0 n}$
- if sum runs over any N_0 consecutive values of *k*: $x[n] = \sum_{k=M} c_k e^{ik\Omega_0 n}$
- known as the synthesis equation.
- using same notation can express coefficients: $c_k = \frac{1}{N_0} \sum_{n=N_0} x[n] e^{-jk\Omega_0 n}$
- sometimes called the analysis equation.
- spectral coefficients and sequence x[n] constitute Fourier series pair $x[n] = c_k$

• average value of x[n] over a period is given by: $c_0 = \frac{1}{N_0} \sum_{n \in M} x[n]$

6. Discrete Fourier transforms and sampling

6.2 Properties of Discrete time Fourier series (cont)

- This is just the discrete Fourier series representation for the c[n]. A demonstration of the *duality* property, which states
- if x[n] and c[k] form a Fourier series pair $x[n] \Rightarrow c[k]$
- then also have a Fourier series pair $c[n] \rightleftharpoons x[-k] / N_0$

Parseval's theorem for discrete Fourier series

Enables us to find the average power of a discrete time signal by summing the squared amplitudes of its harmonic components:

$$\frac{1}{N_0}\sum_{n=\langle N_0\rangle} \left| \boldsymbol{x}[n] \right|^2 = \sum_{\boldsymbol{k}=\langle N_0\rangle} \left| \boldsymbol{c}[\boldsymbol{k}] \right|^2$$

Example: demonstrate Parseval's theorem for the signal in 6.1

6. Discrete Fourier transforms and sampling

6.3 Fourier transform of a discrete time signal

FT of arbitrary non-periodic discrete time signal $x[n] : X(\Omega) = \sum_{n=1}^{\infty} x[n] e^{-j\Omega n}$

- FT is periodic in 2π , $X[\Omega] = X[\Omega + 2\pi]$
- product X[Ω] θ^{Ωn} also periodic in 2π
- Inverse FT integrate over interval 2π : $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{i\Omega n} d\Omega$
- FT of DT signal is linear: $ax_1[n] + bx_2[n] = aX_1[\Omega] + bX_2[\Omega]$
- time shift by n_0 : $x[n-n_0] \rightleftharpoons e^{-j\Omega n_0} X(\Omega)$
- frequency shift by Ω_0 : $e^{j\Omega n} x[n] \rightleftharpoons X(\Omega \Omega_0)$
- using time shifting obtain: $x[n] x[n-1] \rightleftharpoons (1 e^{-j\Omega}) X(\Omega)$
- accumulation property (where $I\Omega I \leq 2\pi$):

$$\sum_{k=-\infty}^{\infty} x[k] \rightleftharpoons \pi X(0) \delta(\Omega) + \frac{1}{(1 - e^{-j\Omega})} X(\Omega)$$

6. Discrete Fourier transforms and sampling

6.4 Discrete Fourier transform and sampling

- Here we consider sampling of a continuous time signal x(t) that is of finite duration.
- sample the signal at intervals of T_s called the sampling period
- total of *N* samples of the original signal, then we will have the sampled values *x*(*t*), *x*(*T*_s), *x*(2*T*_s), ..., *x*((*N* 1)*T*_s)
 defines values of discrete time signal *x*[*n*].

The DFT of x[n] is denoted by x[k] and is given by

$$X(k) = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

The inverse discrete FT is given by

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$

- 6. Discrete Fourier transforms and sampling
- 6.4 Discrete Fourier transform and sampling (cont)

Example

Given that $X[k] = \{0, -3 - 3j, -2, -3 + 3j\}$, use the inverse DFT to find x[n]

 when sampling rate not high enough / sampling interval too long to capture signal variation, we say that aliasing has occurred

6. Discrete Fourier transforms and sampling

6.5 Sampling (cont)

Nyquist sampling theorem

- To sample a signal correctly, sampling rate (ω_s rad/sec) should be at least twice the highest frequency component (ω_h) present in the signal: $\omega_s \ge 2\omega_h$
- For signals band width limited to $[-\omega/2, \omega/2]$
- the critical sampling interval $T_s = 2\pi / \omega$,
- $\omega_c = \omega$ is the Nyquist critical frequency
- Nyquist critical frequency is highest frequency that can pick up
- for a sine wave, this corresponds to a minimum of two samples per period
- an arbitrary band-width limited signal x(t) is completely determined by its samples x[n] taken at the Nyquist critical frequency:

$$\mathbf{x}(t) = T_{s} \sum_{n=\infty}^{\infty} \mathbf{x}[n] \frac{\sin\left[\omega_{c}(t-nT_{s})\right]}{\pi(t-nT_{s})}$$

On the other hand, if sample a continuous function that is not bandwidth limited to less than the Nyquist critical frequency

6. Discrete Fourier transforms and sampling

6.5 Sampling (cont)

Nyquist sampling theorem (cont)

• all of power spectral density lying outside range $(-\omega_c/2) < \omega < (\omega_c/2)$ is incorrectly moved into that range: aliasing

Reconstruction of sampled signals

- For example, reconstruction of sound from digital recording.
- A band-limited signal sampled at frequency $\omega_s = 2\pi / T_s$ gives discrete time signal $x[n] = x(nT_s)$ from which we would like to recover the original continuous time signal.
- Ideally, we would do this by constructing a train of impulses from the x[n] and then filter this signal with an ideal lowpass filter

In real life, two possibilities:

- Zero-order hold, interpolates signal samples with a constant line segment over a sampling period for each sample
- frequency response is a poor approximation to ideal lowpass filter's
 First-order hold
- triangular impulse response,
- gives a linear interpolation between each sample