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6.1 

6. Discrete Fourier transforms and sampling
6.1 Discrete time Fourier series
 discrete time signal x[n] with fundamental period N0 : x[n] = x[n + N0]. 
 fundamental frequency Ω0 = 2π / N0

 Fourier series representation of x[n]  is given by 

 ck – Fourier  or spectral coefficients, given by

 if sum runs over any N0 consecutive values of k:

 known as the synthesis equation. 

 using same notation can express coefficients: 

 sometimes called the analysis equation. 
 spectral coefficients and sequence x[n] constitute Fourier series pair 

x[n]  ck

 average value of x[n] over a period is given by: 
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6. Discrete Fourier transforms and sampling
6.1 Discrete time Fourier series (cont)
Example: find the spectral coefficients for the discrete time square wave 

shown below:

6.2 Properties of Discrete time Fourier series 
For periodic discrete time signal x[n] = x[n + N0] spectral coeffients are 

also periodic:  
View members of discrete time sequence as Fourier coefficients of the ck
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6. Discrete Fourier transforms and sampling
6.2 Properties of Discrete time Fourier series (cont)
This is just the discrete Fourier series representation for the c[n]. A 

demonstration of the duality property, which states
 if x[n] and c[k] form a Fourier series pair x[n]  c[k] 
 then also have a Fourier series pair c[n]  x[–k] / N0

Parseval’s theorem for discrete Fourier series
Enables us to find the average power of a discrete time signal by 

summing the squared amplitudes of its harmonic components:

Example: demonstrate Parseval’s theorem for the signal in 6.1
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6. Discrete Fourier transforms and sampling
6.3 Fourier transform of a discrete time signal
FT of arbitrary non-periodic discrete time signal x[n] :

 FT is periodic in 2π, X[Ω] = X[Ω + 2π] 
 product X[Ω]ejΩn also periodic in 2π
 Inverse FT – integrate over interval 2π: 

 FT of DT signal is linear: ax1[n] + bx2[n] = aX1[Ω] + bX2[Ω] 

 time shift by n0: 

 frequency shift by Ω0: 

 using time shifting obtain: 

 accumulation property (where IΩI ≤2π): 
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6. Discrete Fourier transforms and sampling
6.4 Discrete Fourier transform and sampling
Here we consider sampling of a continuous time signal x(t) that is of 

finite duration. 
 sample the signal at intervals of Ts called the sampling period
 total of N samples of the original signal, then we will have the 

sampled values x(t), x(Ts), x(2Ts), ..., x((N – 1)Ts)
 defines values of discrete time signal x[n]. 

The DFT of x[n] is denoted by X[k] and is given by 

The inverse discrete FT is given by 
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6. Discrete Fourier transforms and sampling
6.4 Discrete Fourier transform and sampling (cont)
Example
Given that X[k] = {0, –3 – 3j , –2, –3 + 3j }, use the inverse DFT to find 

x[n]
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6.2 

250 Hz sine wave
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6. Discrete Fourier transforms and sampling
6.5 Sampling
Consider a sine wave with a frequency of f = 250 Hz. 
 period T = 1 / f = 1 / 250 ≡ 4 ms
 continuous time signal x(t) = sin(2πft) = sin{2π(250)t}
 shown for 0 ≤ t ≤ 24 ms

 and for a single period of 4 ms

 sampling rate 5000 Hz, sampling interval Ts = 1 / (5000 Hz) ≡ 0.2 ms
 out to 1 ms have the discrete time signal

x[n] = {0.0000, 0.3090, 0.5878, 0.8090, 0.9511, 1.0000}

one period of a 250 Hz sine wave
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one period of 250 Hz sine wave sampled at 5000 Hz
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6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)

 at 5000 Hz, good approximation to signal shape
 now, reduce sampling rate to 2500 Hz, Ts = 1 / (2500 Hz) ≡ 0.4 ms

 start to see some distortion of signal
 now reduce sampling rate to 1700 Hz, Ts = 1 / (1700 Hz) ≡ 0.59 ms

 further distortion evident 
 sample signal now at 900 Hz, Ts = 1 / (900 Hz) ≡1.11 ms

one period of 250 Hz sine wave sampled at 2500 Hz
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one period of 250 Hz sine wave sampled at 1700 Hz
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one period of 250 Hz sine wave sampled at 900 Hz
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6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)

 at 900 Hz, a lot of information lost
 now, reduce sampling rate to 400 Hz, Ts = 1 / (400 Hz) ≡ 2.5 ms

much information now lost
Summarising:
 if signal changes rapidly in time, sampling interval Ts must be small 

enough to capture variations
 high frequency variation implies high frequency components in signal, 

requires high sampling rate
 when sampling rate not high enough / sampling interval too long to 

capture signal variation, we say that aliasing has occurred

one period of 250 Hz sine wave sampled at 400 Hz
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6. Discrete Fourier transforms and sampling
Extreme example of aliasing

52Hz signal sampled at 50 Hz
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6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)
Nyquist sampling theorem
To sample a signal correctly, sampling rate (ωs rad/sec) should be at 

least twice the highest frequency component (ωh) present in the 
signal: ωs ≥ 2ωh

For signals band width limited to [–ω / 2, ω / 2] 
 the critical sampling interval Ts = 2π / ω,
 ωc = ω is the Nyquist critical frequency
 Nyquist critical frequency is highest frequency that can pick up
 for a sine wave, this corresponds to a minimum of two samples per 

period
 an arbitrary band-width limited signal x(t) is completely determined by 

its samples x[n] taken at the Nyquist critical frequency:

On the other hand, if sample a continuous function that is not bandwidth 
limited to less than the Nyquist critical frequency 
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6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)
Nyquist sampling theorem (cont)
 all of power spectral density lying outside range (–ωc / 2) < ω <(ωc / 2) 

is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.
A band-limited signal sampled at frequency ωs = 2π / Ts gives discrete 

time signal x[n] = x(nTs) from which we would like to recover the 
original continuous time signal. 
 Ideally, we would do this by constructing a train of impulses from the 

x[n] and then filter this signal with an ideal lowpass filter
In real life, two possibilities:
Zero-order hold, interpolates signal samples with a constant line 

segment over a sampling period for each sample
 frequency response is a poor approximation to ideal lowpass filter’s

First-order hold
 triangular impulse response, 
 gives a linear interpolation between each sample  

 


