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6.1 

6. Discrete Fourier transforms and sampling
6.1 Discrete time Fourier series
 discrete time signal x[n] with fundamental period N0 : x[n] = x[n + N0]. 
 fundamental frequency Ω0 = 2π / N0

 Fourier series representation of x[n]  is given by 

 ck – Fourier  or spectral coefficients, given by

 if sum runs over any N0 consecutive values of k:

 known as the synthesis equation. 

 using same notation can express coefficients: 

 sometimes called the analysis equation. 
 spectral coefficients and sequence x[n] constitute Fourier series pair 

x[n]  ck

 average value of x[n] over a period is given by: 
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6. Discrete Fourier transforms and sampling
6.1 Discrete time Fourier series (cont)
Example: find the spectral coefficients for the discrete time square wave 

shown below:

6.2 Properties of Discrete time Fourier series 
For periodic discrete time signal x[n] = x[n + N0] spectral coeffients are 

also periodic:  
View members of discrete time sequence as Fourier coefficients of the ck
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6. Discrete Fourier transforms and sampling
6.2 Properties of Discrete time Fourier series (cont)
This is just the discrete Fourier series representation for the c[n]. A 

demonstration of the duality property, which states
 if x[n] and c[k] form a Fourier series pair x[n]  c[k] 
 then also have a Fourier series pair c[n]  x[–k] / N0

Parseval’s theorem for discrete Fourier series
Enables us to find the average power of a discrete time signal by 

summing the squared amplitudes of its harmonic components:

Example: demonstrate Parseval’s theorem for the signal in 6.1
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6. Discrete Fourier transforms and sampling
6.3 Fourier transform of a discrete time signal
FT of arbitrary non-periodic discrete time signal x[n] :

 FT is periodic in 2π, X[Ω] = X[Ω + 2π] 
 product X[Ω]ejΩn also periodic in 2π
 Inverse FT – integrate over interval 2π: 

 FT of DT signal is linear: ax1[n] + bx2[n] = aX1[Ω] + bX2[Ω] 

 time shift by n0: 

 frequency shift by Ω0: 

 using time shifting obtain: 

 accumulation property (where IΩI ≤2π): 
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6. Discrete Fourier transforms and sampling
6.4 Discrete Fourier transform and sampling
Here we consider sampling of a continuous time signal x(t) that is of 

finite duration. 
 sample the signal at intervals of Ts called the sampling period
 total of N samples of the original signal, then we will have the 

sampled values x(t), x(Ts), x(2Ts), ..., x((N – 1)Ts)
 defines values of discrete time signal x[n]. 

The DFT of x[n] is denoted by X[k] and is given by 

The inverse discrete FT is given by 
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6. Discrete Fourier transforms and sampling
6.4 Discrete Fourier transform and sampling (cont)
Example
Given that X[k] = {0, –3 – 3j , –2, –3 + 3j }, use the inverse DFT to find 

x[n]
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6.2 

250 Hz sine wave
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6. Discrete Fourier transforms and sampling
6.5 Sampling
Consider a sine wave with a frequency of f = 250 Hz. 
 period T = 1 / f = 1 / 250 ≡ 4 ms
 continuous time signal x(t) = sin(2πft) = sin{2π(250)t}
 shown for 0 ≤ t ≤ 24 ms

 and for a single period of 4 ms

 sampling rate 5000 Hz, sampling interval Ts = 1 / (5000 Hz) ≡ 0.2 ms
 out to 1 ms have the discrete time signal

x[n] = {0.0000, 0.3090, 0.5878, 0.8090, 0.9511, 1.0000}

one period of a 250 Hz sine wave
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one period of 250 Hz sine wave sampled at 5000 Hz
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6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)

 at 5000 Hz, good approximation to signal shape
 now, reduce sampling rate to 2500 Hz, Ts = 1 / (2500 Hz) ≡ 0.4 ms

 start to see some distortion of signal
 now reduce sampling rate to 1700 Hz, Ts = 1 / (1700 Hz) ≡ 0.59 ms

 further distortion evident 
 sample signal now at 900 Hz, Ts = 1 / (900 Hz) ≡1.11 ms

one period of 250 Hz sine wave sampled at 2500 Hz
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one period of 250 Hz sine wave sampled at 1700 Hz
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one period of 250 Hz sine wave sampled at 900 Hz
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6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)

 at 900 Hz, a lot of information lost
 now, reduce sampling rate to 400 Hz, Ts = 1 / (400 Hz) ≡ 2.5 ms

much information now lost
Summarising:
 if signal changes rapidly in time, sampling interval Ts must be small 

enough to capture variations
 high frequency variation implies high frequency components in signal, 

requires high sampling rate
 when sampling rate not high enough / sampling interval too long to 

capture signal variation, we say that aliasing has occurred

one period of 250 Hz sine wave sampled at 400 Hz
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6. Discrete Fourier transforms and sampling
Extreme example of aliasing

52Hz signal sampled at 50 Hz
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6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)
Nyquist sampling theorem
To sample a signal correctly, sampling rate (ωs rad/sec) should be at 

least twice the highest frequency component (ωh) present in the 
signal: ωs ≥ 2ωh

For signals band width limited to [–ω / 2, ω / 2] 
 the critical sampling interval Ts = 2π / ω,
 ωc = ω is the Nyquist critical frequency
 Nyquist critical frequency is highest frequency that can pick up
 for a sine wave, this corresponds to a minimum of two samples per 

period
 an arbitrary band-width limited signal x(t) is completely determined by 

its samples x[n] taken at the Nyquist critical frequency:

On the other hand, if sample a continuous function that is not bandwidth 
limited to less than the Nyquist critical frequency 
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6. Discrete Fourier transforms and sampling
6.5 Sampling (cont)
Nyquist sampling theorem (cont)
 all of power spectral density lying outside range (–ωc / 2) < ω <(ωc / 2) 

is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.
A band-limited signal sampled at frequency ωs = 2π / Ts gives discrete 

time signal x[n] = x(nTs) from which we would like to recover the 
original continuous time signal. 
 Ideally, we would do this by constructing a train of impulses from the 

x[n] and then filter this signal with an ideal lowpass filter
In real life, two possibilities:
Zero-order hold, interpolates signal samples with a constant line 

segment over a sampling period for each sample
 frequency response is a poor approximation to ideal lowpass filter’s

First-order hold
 triangular impulse response, 
 gives a linear interpolation between each sample  

 


