L3 PHYSIQUE

3. Discrete time signals
3.1 Introduction

In almost all physics experiments, analogue signal will be sampled and
digitized, transforming continuous signal into discrete time signal.

periodic discrete time signal: x[n] = cos(nT) T,=n/6

%lHl%l TIGHT élH{ol 2 s

= sampling interval:T

= discrete time signal x[n] = x(nT,) (nis integer) — a sequence {X,}
For two discrete time signals {X,}, {y.}

= {za} = {x} + {ya} = z[n] = x[n] + y[n]

= {za} = {x}Hya} = z[n] = x[n] y[n]

® {z} = afx;} = z[n] = axn]
To plot, draw point and draw vertical line from time axis as above
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3. Discrete time signals

3.2 Energy and power in discrete signals
Normalised energy content: Normalised average power:

d 2 1 Q& 2
E= x{n P =lim x[n
3 [l im0l
» 0<E<w, P=0= x[n]is an energy signal
* 0<P <o, E=0w= x[n]is apower signal
Example: Find the energy content and average power of the following

signal and determine whether it is an energy signal or a power
signal:

3. Discrete time signals
3.3 Unit impulse sequence

1 n=0
s[n] ={
0 n#0
can shift the unit impulse sequence by integer k
1 n=k
S[n-k]= {
0 n=k
dn-3]
1
In the figure we show d[n — 3]
n=3 n

Satisfies the sampling property so  x[n]= i x[k]S[n-K]

k=0

3. Discrete time signals

3.4 Unit step sequence
1 nx0

uln]=
[ ] {O n<0 a sequence of unit pulses starting at zero

u[n-k]= {1 n>k
0 n<k  shifted as illustrated for k = 3:
uln-3]

],

x[n]

0 1 2 3 4 5 n 7
Can construct square pulse when j <k using u[n—j]-u[n-k]e.g.
u[n-2]-u[n-5]
06 1 2 3 4 5 6 nac7
Can define 5[n]=u[n]-u[n-1] and, conversely, u[n]=3 &§[n-k]
k=0

3. Discrete time signals
3.5 Periodic discrete time signals
Continuous-time sinusoid: x(t) = sin(at), —o <t<ow
= periodic for any frequency @
= increasing o results in faster oscillations
Continuous-time phasor: x(t) = el*t = cos(at) + j sin(at), —o <t <o
= unit-length vector in complex plane that rotates as t increases
= anticlockwise for @ > 0, clockwise for @< 0
= periodic for all values of »
= fundamental period T = 2n/ | w | decreases as | » | increases

= projections of this vector on real and imaginary axes yield
cos(at) and sin(at)

Im{e’™}

representation:

3. Discrete time signals
3.5 Periodic discrete time signals (cont)
Discrete time phasor: x[n] = el" = cos(wn) + j sin(an), —o <N <o
= only periodic if @ is a rational multiple of 2
= that is for integer m and positive integer N, ® = (m/N) 2n
= fundamental period N, : least N, such that x[n + N] = x[n] for all n
= fundamental frequency w, = 21/ N, rad / sample

= may not necessarily rotate “faster” and N decrease as frequency
increases

changing frequency by 2n does not change signal
follows from e/(*#271" = gieng
see http://www.jhu.edu/~signals/dtphasor/index.htm for demo
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3. Discrete time signals

3.6 Properties of discrete time signals

As before: linearity, memory, causality, stability and time invariance.
Linearity: check that T {ax, [n]+bx, [n]} =aT {x,[n]} +bT {x,[n]} is satisfied.
Example: Determine whether y[n] = x[n] u[n — 1] is linear

Example: Determine whether y[n] = x[n — 2] is memoryless and causal

Stability: if ‘x[n]‘ <k, Vn = ‘y[n]‘ <k, then system is BIBO stable.
Example: is y[n] = 2nx[n] stable and time invariant?

3. Discrete time signals

3.7 Discrete linear time-invariant systems
= impulse response h[n] = T{J[n]}
= system is time invariant so can write h[n — k] = T{d[n — k]}
= remember x[n]= Y x[k]o[n—-K]
k

=0

= 50 response to arbitrary input x[n] is given by:y[n]= > x[k]h[n-k]
k=—n
= this is discrete version of convolution y[n] = x[n] * h[n]

= commutative, associative and distributive properties apply
= since convolution is commutative we can also write
y[n]=h[n]*x[n]= 3 h[k]x[n-k]
k=—»
Procedure for discrete time convolution:
= compute signals x[k] and h[n — k] as functions of k
= multiply them at each k
= sum all these values to yield output signal
= alternatively, use h[k] and x[n — k]
Best seen by example (TD).

3. Discrete time signals

3.7 Discrete linear time-invariant systems (cont)
Additional example

Compute y [n]=h[n]*x[n]= k;h[k]x[n—k] = Zx[k]h[n—k]

for the following impulse response and input signal:

] |

hin]

o

x[n]
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3. Discrete time signals
3.7 Discrete linear time-invariant systems (cont)
Memory

= memoryless discrete LTI system has form y[n] = Kx[n] where K is
gain constant

= impulse response takes form h[n] = Kd[n]

= system is memoryless if h[n] = 0 when n = O otherwise system
has memory

Causality

= memoryless system is causal

= more generally a discrete LTI system is causal if h[n] =0 forn <0
Stability

= discrete LTI system is BIBO stable if ‘h[k]‘ <o

k=-x

Step response

= step response for a discrete LTI system given by s[n] = h[n] * u[n]

2. Linear time-invariant systems

2.12 Convolution (contd)

Example: given x(t) = u(t) and h(t) = cos(xnt) u(t), find the response y(t)
Note first that h(t) = 0 for t < 0 so system is causal, so can apply
y(t)= '[:h(‘r)x(t -7)dr= J.:COS(HT)J (t-7)dr

Rely on graphical approach to find limits of integration:

Step 1: reflect x(7) = u(z) about vertical axis to give u(-17)

u(z) ] u-z)

5

xcgt)
X(t)

—_—

6 -4 2 0 2 4 67 6 -4 2 0 2 4 67T

Step 2: shift to left by Itl fort <0, to right by Itl fort >0 (e.g. heret=23)

u((c+ 3)) u(z-3)

xét)
x{gt)

2. Linear time-invariant systems
2.12 Convolution (contd)
For negative times, no overlap as h(t) = cos(nt) u(t) is zero fort< 0
1.0
A A

=
\>-</0.5 1

u(-(r+3))

8 -6 -4 20

104 ¢ v v
For positive times the region of nonzero overlap is 0 < 7<t

u(e-3) g '

‘6 4 2,5

104 ¢ v v
Therefore system response is: )
y(t)= _[;cos(m)dr = [%sin(m)l =

3.2
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