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3.1 

continuous signal: x = cos(t)
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3. Discrete time signals

periodic discrete time signal: x[n] = cos(nTs)  Ts = π / 6
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3.1 Introduction
In almost all physics experiments, analogue signal will be sampled and 

digitized, transforming continuous signal into discrete time signal.

 sampling interval:Ts

 discrete time signal x[n] = x(nTs)  (n is integer) – a sequence {xn}
For two discrete time signals {xn}, {yn}

 {zn} = {xn} + {yn} ⇒ z[n] = x[n] + y[n] 
 {zn} = {xn} {yn} ⇒ z[n] = x[n] y[n] 
 {zn} = α{xn} ⇒ z[n] = αx[n] 

To plot, draw point and draw vertical line from time axis as above

     

3. Discrete time signals
3.2 Energy and power in discrete signals
Normalised energy content: Normalised average power:

 0 < E < ∞, P = 0 ⇒ x[n] is an energy signal
 0 < P < ∞, E = ∞ ⇒ x[n] is a power signal

Example: Find the energy content and average power of the following
signal and determine whether it is an energy signal or a power
signal:

So, signal is an energy signal
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3. Discrete time signals
3.3 Unit impulse sequence

can shift the unit impulse sequence by integer k

In the figure we show δ[n – 3]

Satisfies the sampling property so
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3. Discrete time signals
3.4 Unit step sequence

a sequence of unit pulses starting at zero

shifted as illustrated for k = 3:

Can construct square pulse when j < k using                              e.g.
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3. Discrete time signals
3.5 Periodic discrete time signals
Continuous-time sinusoid: x(t) = sin(ωt),  –∞ < t < ∞

 periodic for any frequency ω
 increasing ω results in faster oscillations

Continuous-time phasor: x(t) = ejωt = cos(ωt) + j sin(ωt),  –∞ < t < ∞
 unit-length vector in complex plane that rotates as t increases
 anticlockwise for ω > 0, clockwise for ω < 0
 periodic for all values of ω
 fundamental period T = 2π / ω  decreases as ω  increases
 projections of this vector on real and imaginary axes yield 

cos(ωt) and sin(ωt)

 representation:

     

3. Discrete time signals
3.5 Periodic discrete time signals (cont)
Discrete time phasor: x[n] = ejωn = cos(ωn) + j sin(ωn),  –∞ < n < ∞

 only periodic if ω is a rational multiple of 2π
 that is for integer m and positive integer N, ω = (m / N) 2π
 fundamental period N0 : least N, such that x[n + N] = x[n] for all n
 fundamental frequency ω 0 = 2π / N0 rad / sample
 may not necessarily rotate “faster” and N decrease as frequency 

increases
 changing frequency by 2π does not change signal
 follows from
 see http://www.jhu.edu/~signals/dtphasor/index.htm for demo
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3.2 
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3. Discrete time signals
3.6 Properties of discrete time signals
As before: linearity, memory, causality, stability and time invariance.
Linearity: check that                                           is satisfied.
Example: Determine whether y[n] = x[n] u[n – 1] is linear

Example: Determine whether y[n] = x[n – 2] is memoryless and causal
 not memoryless as depends on input values at n – 2
 causal: only depends on previous values, unlike e.g. y[n] = x[n + 2] 

which is not causal
Stability: if                                                   then system is BIBO stable.
Example: is y[n] = 2nx[n] stable and time invariant?
 output depends on n it grows without bound as n increases and 

therefore is not stable
 y[n – k] = 2(n – k)x[n – k]
 T{x[n – k]} = 2nx[n – k] ≠ y[n – k]  so system is not time-invariant
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3. Discrete time signals
3.7 Discrete linear time-invariant systems
 impulse response  h[n] = T{δ[n]}
 system is time invariant so can write h[n – k] = T{δ[n – k]}

 remember 

 so response to arbitrary input x[n] is given by:

 this is discrete version of convolution y[n] = x[n] ∗ h[n]
 commutative, associative and distributive properties apply
 since convolution is commutative we can also write

Procedure for discrete time convolution:
 compute signals x[k] and h[n – k] as functions of k
 multiply them at each k
 sum all these values to yield output signal
 alternatively, use h[k] and x[n – k] 

Best seen by example (TD).
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3. Discrete time signals
3.7 Discrete linear time-invariant systems (cont)
Additional example

Compute 

for the following impulse response and input signal:
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3. Discrete time signals
3.7 Discrete linear time-invariant systems (cont)
Memory
 memoryless discrete LTI system has form y[n] = Kx[n] where K is 

gain constant
 impulse response takes form h[n] = Kδ[n] 
 system is memoryless if h[n] = 0 when n ≠ 0 otherwise system 

has memory
Causality
 memoryless system is causal
 more generally a discrete LTI system is causal if h[n] = 0 for n < 0 

Stability

 discrete LTI system is BIBO stable if 

Step response
 step response for a discrete LTI system given by s[n] = h[n] ∗ u[n]
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2. Linear time-invariant systems
2.12 Convolution (contd)
Example: given x(t) = u(t) and h(t) = cos(πt) u(t), find the response y(t)
Note first that h(t) = 0 for t < 0 so system is causal, so can apply

Rely on graphical approach to find limits of integration:
Step 1: reflect x(τ) = u(τ) about vertical axis to give u(–τ)

Step 2: shift to left by ׀t׀ for t < 0, to right by ׀t׀ for t > 0 (e.g. here t = 3)
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2. Linear time-invariant systems
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2.12 Convolution (contd)
For negative times, no overlap as h(t) = cos(πt) u(t) is zero for t < 0

For positive times the region of nonzero overlap is 0 ≤ τ ≤ t

Therefore system response is:
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