L3 PHYSIQUE

3. Discrete time signals

3.5 Periodic discrete time signals

Continuous-time sinusoid: $x(t) = \sin(\omega t), -\infty < t < \infty$

- periodic for any frequency ω
- increasing *w* results in faster oscillations

Continuous-time phasor: $x(t) = e^{j\omega t} = \cos(\omega t) + j \sin(\omega t), -\infty < t < \infty$

- unit-length vector in complex plane that rotates as t increases
- anticlockwise for $\omega > 0$, clockwise for $\omega < 0$
- periodic for all values of ω
- fundamental period $T = 2\pi / |\omega|$ decreases as $|\omega|$ increases
- projections of this vector on real and imaginary axes yield $\cos(\omega t)$ and $\sin(\omega t)$ $\lim_{\{\omega'''\}}$

 $\operatorname{Re}\{e^{j\omega_0 t}\}$

3. Discrete time signals

3.5 Periodic discrete time signals (cont)

Discrete time phasor: $x[n] = e^{j\omega n} = \cos(\omega n) + j\sin(\omega n), -\infty < n < \infty$

- only periodic if ω is a rational multiple of 2π
- that is for integer *m* and positive integer *N*, $\omega = (m / N) 2\pi$
- fundamental period N_0 : least N, such that x[n + N] = x[n] for all n
- fundamental frequency $\omega_0 = 2\pi / N_0$ rad / sample
- may not necessarily rotate "faster" and N decrease as frequency increases
- changing frequency by 2π does not change signal
- follows from $e^{j(\omega \pm 2\pi)n} = e^{j\omega n}e^{\pm j2\pi n} = e^{j\omega n}$
- see <u>http://www.jhu.edu/~signals/dtphasor/index.htm</u> for demo

L3 PHYSIQUE

3. Discrete time signals

3.7 Discrete linear time-invariant systems (cont) Memory

- memoryless discrete LTI system has form y[n] = Kx[n] where K is gain constant
- impulse response takes form $h[n] = K\delta[n]$
- system is memoryless if h[n] = 0 when $n \neq 0$ otherwise system has memory

Causality

- memoryless system is causal
- more generally a discrete LTI system is causal if h[n] = 0 for n < 0

Stability

• discrete LTI system is BIBO stable if $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$

Step response

step response for a discrete LTI system given by s[n] = h[n] * u[n]

