3. Discrete time signals

3.1 Introduction

In almost all physics experiments, analogue signal will be sampled and digitized, transforming continuous signal into discrete time signal. periodic discrete time signal: $x[n]=\cos \left(n T_{s}\right) T_{s}=\pi / 6$

- sampling interval: T_{s}
- discrete time signal $x[n]=x\left(n T_{s}\right)$ (n is integer) - a sequence $\left\{x_{n}\right\}$

For two discrete time signals $\left\{x_{n}\right\},\left\{y_{n}\right\}$

- $\left\{z_{n}\right\}=\left\{x_{n}\right\}+\left\{y_{n}\right\} \Rightarrow z[n]=x[n]+y[n]$
- $\left\{z_{n}\right\}=\left\{x_{n}\right\}\left\{y_{n}\right\} \Rightarrow z[n]=x[n] y[n]$
- $\left\{z_{n}\right\}=\alpha\left\{x_{n}\right\} \Rightarrow z[n]=\alpha x[n]$

To plot, draw point and draw vertical line from time axis as above

3. Discrete time signals

3.3 Unit impulse sequence
$\delta[n]= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}$
can shift the unit impulse sequence by integer k
$\delta[n-k]= \begin{cases}1 & n=k \\ 0 & n \neq k\end{cases}$

In the figure we show $\delta[n-3]$

Satisfies the sampling property so $x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$

3. Discrete time signals

3.5 Periodic discrete time signals

Continuous-time sinusoid: $x(t)=\sin (\omega t),-\infty<t<\infty$

- periodic for any frequency ω
- increasing ω results in faster oscillations

Continuous-time phasor: $x(t)=e^{j \omega t}=\cos (\omega t)+j \sin (\omega t),-\infty<t<\infty$

- unit-length vector in complex plane that rotates as t increases
- anticlockwise for $\omega>0$, clockwise for $\omega<0$
- periodic for all values of ω
- fundamental period $T=2 \pi /|\omega|$ decreases as $|\omega|$ increases
- projections of this vector on real and imaginary axes yield $\cos (\omega t)$ and $\sin (\omega t)$
- representation:

3. Discrete time signals

3.2 Energy and power in discrete signals

Normalised energy content: Normalised average power:
$E=\sum_{n=-\infty}^{\infty}|x[n]|^{2}$

$$
P=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}
$$

- $0<E<\infty, P=0 \Rightarrow x[n]$ is an energy signal
- $0<P<\infty, E=\infty \Rightarrow x[n]$ is a power signal

Example: Find the energy content and average power of the following signal and determine whether it is an energy signal or a power

$$
\begin{aligned}
& \text { signal: } \\
& \left\{x_{n}\right\}=\left(\frac{1}{2}\right)^{n} n \geq 0
\end{aligned}
$$

3. Discrete time signals

3.4 Unit step sequence
$u[n]= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}$
a sequence of unit pulses starting at zero
$u[n-k]= \begin{cases}1 & n \geq k \\ 0 & n<k\end{cases}$

Can construct square pulse when $j<k$ using $u[n-j]-u[n-k]$ e.g.

$$
u[n-2]-u[n-5]
$$

Can define $\delta[n]=u[n]-u[n-1]$ and, conversely, $u[n]=\sum_{k=0}^{\infty} \delta[n-k]$

3. Discrete time signals

3.5 Periodic discrete time signals (cont)

Discrete time phasor: $x[n]=e^{i \omega n}=\cos (\omega n)+j \sin (\omega n),-\infty<n<\infty$

- only periodic if ω is a rational multiple of 2π
- that is for integer m and positive integer $N, \omega=(m / N) 2 \pi$
- fundamental period N_{0} : least N, such that $x[n+N]=x[n]$ for all n
- fundamental frequency $\omega_{0}=2 \pi / N_{0} \mathrm{rad} /$ sample
- may not necessarily rotate "faster" and N decrease as frequency increases
- changing frequency by 2π does not change signal
- follows from $e^{j(\omega \pm 2 \pi) n}=e^{j \omega n} e^{ \pm j 2 \pi n}=e^{j \omega n}$
- see http://www.jhu.edu/~signals/dtphasor/index.htm for demo

3. Discrete time signals

3.6 Properties of discrete time signals

As before: linearity, memory, causality, stability and time invariance.
Linearity: check that $\hat{T}\left\{a x_{1}[n]+b x_{2}[n]\right\}=a \hat{T}\left\{x_{1}[n]\right\}+b \hat{T}\left\{x_{2}[n]\right\}$ is satisfied.
Example: Determine whether $y[n]=x[n] u[n-1]$ is linear

Example: Determine whether $y[n]=x[n-2]$ is memoryless and causal

Stability: if $|x[n]| \leq k_{1} \forall n \Rightarrow|y[n]| \leq k_{2}$ then system is BIBO stable. Example: is $y[n]=2 n x[n]$ stable and time invariant?

3. Discrete time signals

3.7 Discrete linear time-invariant systems (cont)

Additional example
Compute $y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$
for the following impulse response and input signal:

2. Linear time-invariant systems

2.12 Convolution (contd)

Example: given $x(t)=u(t)$ and $h(t)=\cos (\pi t) u(t)$, find the response $y(t)$ Note first that $h(t)=0$ for $t<0$ so system is causal, so can apply
$y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau=\int_{0}^{\infty} \cos (\pi \tau) u(t-\tau) d \tau$
Rely on graphical approach to find limits of integration:
Step 1: reflect $x(\tau)=u(\tau)$ about vertical axis to give $u(-\tau)$

Step 2: shift to left by $|t|$ for $t<0$, to right by $|t|$ for $t>0$ (e.g. here $t=3$)

3. Discrete time signals

3.7 Discrete linear time-invariant systems

- impulse response $h[n]=\boldsymbol{T}\{\delta[n]\}$
- system is time invariant so can write $h[n-k]=\boldsymbol{T}\{\delta[n-k]\}$
- remember $x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
- so response to arbitrary input $x[n]$ is given by: $y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$
- this is discrete version of convolution $y[n]=x[n] * h[n]$
- commutative, associative and distributive properties apply
- since convolution is commutative we can also write
$y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$
Procedure for discrete time convolution:
- compute signals $x[k]$ and $h[n-k]$ as functions of k
- multiply them at each k
- sum all these values to yield output signal
- alternatively, use $h[k]$ and $x[n-k]$

Best seen by example (TD).

3. Discrete time signals
 3.7 Discrete linear time-invariant systems (cont)
 Memory

- memoryless discrete LTI system has form $y[n]=K x[n]$ where K is gain constant
- impulse response takes form $h[n]=K \delta[n]$
- system is memoryless if $h[n]=0$ when $n \neq 0$ otherwise system has memory
Causality
- memoryless system is causal
- more generally a discrete LTI system is causal if $h[n]=0$ for $n<0$

Stability

- discrete LTI system is BIBO stable if $\sum_{k=-\infty}^{\infty}|h[k]|<\infty$

Step response

- step response for a discrete LTI system given by $s[n]=h[n] * u[n]$

2. Linear time-invariant systems 2.12 Convolution (contd)

For negative times, no overlap as $h(t)=\cos (\pi t) u(t)$ is zero for $t<0$

For positive times the region of nonzero overlap is $0 \leq \tau \leq t$

Therefore system response is:
$y(t)=\int_{0}^{t} \cos (\pi \tau) d \tau=\left[\frac{1}{\pi} \sin (\pi \tau)\right]_{0}^{t}=\frac{1}{\pi} \sin (\pi t)$

