L3 PHYSIQUE

2. Linear time-invariant systems

Represent system by a *transformation* or an *operator* \hat{T} and then the action of a system on a signal: $y(t) = \hat{T} \{x(t)\}$

Examples: A resistor transforms current signal into voltage: $\hat{T} = R$ x(t) = i(t), y(t) = v(t), and the system relationship is y(t) = R x(t)

Slightly more complex for a capacitor $i(t) = C \frac{dv}{dt}$: $\hat{T} = C \frac{d}{dt}$ A **continuous time system**: both x(t) and y(t) are continuous time signals.

Also possible to have discrete time systems.

2. Linear time-invariant systems

2. Linear time-invariant systems

2.2 Memory

memoryless system: output depends only on input *at same time*, e.g. $y(t) = \alpha x(t)$ where $\alpha \in \mathbb{R}$

system with **memory**: output depends on the values of input at previous times

Example: determine if the following systems are memoryless a) $y(t) = \sin t \cos t$

b) $y(t) = \int_{-\infty}^{t/3} x(\tau) d\tau$ for some general input function x(t)

c) $y(t) = \int_{t}^{t} x(\tau) d\tau$, consider $x(t) = te^{-t}$

2.3 Causal and non-causal systems Causal system: output y(t) depends only on the input at present or earlier times • output does not anticipate future values of the input • any real time-dependant system is causal (laws of Physics!) Example of **non-causal system**: y(t) = Cx(t + a) where $a \in \mathbb{R}$ **2.4 Linear systems** Suppose operator acts on two input signals to produce output signals: $\hat{T}\{x_i(t)\} = y_1(t)$ and $\hat{T}\{x_2(t)\} = y_2(t)$ Transformation is linear if for two constants a, b $\hat{T}\{ax_i(t)+bx_2(t)\} = ay_1(t)+by_2(t)$ **Linear system**: system represented by a linear transformation. To determine if a system is linear: • consider 2 i/o relationships $y_1(t), y_2(t)$ and form sum $ay_1(t) + by_2(t)$

 construct T{ax₁(t) + bx₂(t)} – if equal to ay₁(t) + by₂(t) for scalars a, b then system is linear

2. Linear time-invariant systems

2.3 Linear systems (contd) Example: determine if the following system is linear: $y(t) = \frac{d^2x}{dt^2}$

2.5 Time invariance

If time-shift of input signal: $x(t) \rightarrow x(t \pm \tau)$ causes same time-shift in output signal, system is *time-invariant*. • if linear system, then called *linear time-invariant system* or LTI Can write $y_{\epsilon}(t) = \hat{T} \{x(t-\tau)\}$ If $y_{\epsilon}(t) = y(t-\tau)$ then system is time-invariant

2. Linear time-invariant systems

2.6 System stability

- Signal *x*(*t*) is *bounded* if can find constant α such that for all *t*, $|x(t)| \le \alpha$ • If output signal *y*(*t*) is also bounded
- i.e. given $y(t) = T\{x(t)\}$ and some constant β , $|y(t)| \le \beta$ then
- system is bounded-input, bounded-output stable or BIBO
- Example (refer to TD for more)

Determine if the following system is memoryless, causal, stable, and time-invariant: $y(t) = \sin [x(t)]$

L3 PHYSIQUE

Signaux et systèmes en physique 2

2. Linear time-invariant systems

2.12 Convolution (contd)

Convolution of two functions f(t) and g(t): $f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$ The convolution operation is

- commutative: f(t) * g(t) = g(t) * f(t)
- associative: [f(t) * g(t)] * w(t) = f(t) * [g(t) * w(t)]
- distributive: f(t) * [g(t) + w(t)] = f(t) * g(t) + f(t) * w(t)
- commutative with respect to multiplication by a scalar: $[\alpha f(t)] * g(t) = f(t) * [\alpha g(t)] = \alpha [f(t) * g(t)]$

Finally, convolution of any signal with a unit impulse leaves the signal unchanged: $f(t) * \delta(t) = f(t)$

2. Linear time-invariant systems

2.12 Convolution (contd)

Calculation of the convolution integral

First, obtain signal $h(t - \tau)$ as function of τ , then multiply by $x(\tau)$ to obtain another function $g(\tau)$ then integrate $g(\tau)$ to get y(t)

Step 1: sketch the time-reversed impulse response $h(-\tau)$

Step 2: shift this new function to the right by *t* (time delay) for t > 0 to obtain $h(-(\tau - t)) = h(t - \tau)$, or to the left by |t| (time advance) for t < 0 to obtain $h(-(\tau + |t|)) = h(t - \tau)$

Note: convolution is commutative so sometimes easier to work with $h(\tau)$ and $x(t - \tau)$ instead of $x(\tau)$ and $h(t - \tau)$