L3 PHYSIQUE

וו

Signals and systems in physics	0. Introduction
 Introduction Basic Signals Linear Time-Invariant Systems Discrete Time Signals Fourier Analysis and Applications Energy Spectral Density and Correlation Discrete Fourier Transforms and Sampling Modulation and Signal Recovery Laplace and z- transforms Regulation and Control 	 0.1 General Introduction Signals and systems: study of the nature of signals – voltages, currents, light intensity etc, and how they are affected when they pass through a system – that could be a resistor, a capacitor, or some complex amplifier with various band pass filters, or perhaps a light phase modulator. It is also closely related to the study of control theory – how to use feedback to modify or control in real time the output signal of a system, e.g. temperature in a furnace or blood pressure in body How is this of interest in physics? Vital for experimental physics: experimental apparatus gives output signals, but we need to know how these have been transformed – and perhaps how to undo this experimental conditions must not only be measured but also precisely controlled finally, we must not forget the vital elements of data analysis, parameter fitting and error estimation

0. Introduction

0. Introduction

0.1 General Introduction (contd)

Examples from physics: signal processing and recovery

- use of high, low or bandpass filters in both analogue and digital forms to cut noise in experimental signals
- use of phase sensitive detection lock-in amplifiers to improve signal-to-noise in spectroscopy
- radiofrequency modulation of laser beams coupled to heterodyne detection to increase sensitivity and permit measurement of very low densities of unstable species

Examples for physics: control of systems

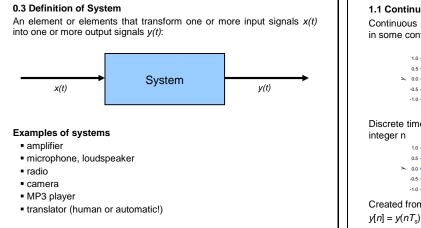
- PID (proportional-integral-derivative) temperature controllers
- quantum coherent control of chemical reactions via phase and amplitude modulation of dispersed ultrafast laser pulses

0. Introduction

0.2 Definition of Signal

Simple definition: a signal is a function of time that carries information. Fuller definition: A function with.

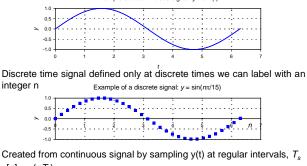
Arguments:

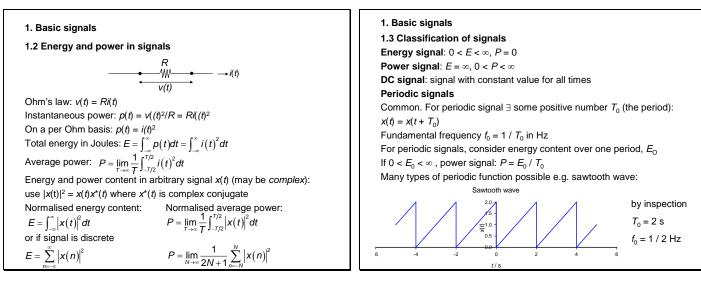

- time
- place
- time and place
- Values: physical quantities such as

variation of air pressure

- intensity and wavelength of light reflected by an object
- current or voltage...

Examples of signals


sound, image, video, electro-cardiogram, flow rate of a river, electromagnetic field





1.1 Continuous and discrete signals

Continuous signal just a regular function which can assume any value in some continuous interval (a, b) e.g. a sine wave Example of a continuous signal: y = sin(t)

1. Basic signals	1. Basic signals
1.4 Computing energy (contd)	1.5 More on even and odd functions
To summarise: For arbitrary signal $x(t)$ • if $E\left(=\int_{-\infty}^{\infty} x(t) ^2 dt\right)$ is finite then $x(t)$ is an energy signal • if $x(t)$ is an energy signal the average power $P = 0$ • a periodic signal is a power signal • if energy is E_0 over one period T_0 of a periodic signal, then power contained in the signal is $P = E_0 / T_0$ • a signal of finite duration is an energy signal	Even part of a function $x_{e}(t)$ can be constructed from any function $x(t)$: $x_{e}(t) = \frac{x(t) + x(-t)}{2}$ The odd part $x_{o}(t)$: $x_{o}(t) = \frac{x(t) - x(-t)}{2}$ Even and odd functions also have the following properties: • the product of two even functions is even $x_{1}(-t)x_{2}(-t) = x_{1}(t)x_{2}(t)$ • the product of two odd functions is even $x_{1}(-t)x_{2}(-t) = [-x_{1}(t)][-x_{2}(t)] = x_{1}(t)x_{2}(t)$
Example: find the energy content of the following exponentially decreasing signal	 the product of an even function times an odd function is odd. For x₁ even and x₂ odd x₁(-t)x₂(-t) = x₁(t)x₂(-t) = -x₁(t)x₂(t)
$\mathbf{x}(t) = \begin{cases} \mathbf{e}^{-2t} & t \ge 0 \\ 0 & t < 0 \end{cases}$	Eg: find even and odd components of $x(t) = 2\cos t - \sin t + 3\sin t \cos t$