L3 PHYSIQUE

1. Let $x(t) = A \cos \omega t$ where A is a positive real constant. Find

- a. the signal energy over one period
- b. the average power of the signal

2. Determine if each of the following systems are memoryless, causal, stable, and time-invariant :

a.
$$y(t) = x(t-6)$$

b.
$$y(t) = dx/dt$$

c.
$$y(t) = \int_{-\infty}^{t/3} x(s) ds$$

3. Find y[n] = x[n] * h[n] for the signals shown below

4. Compute the autocorrelation function for $x(t) = e^{-at}u(t)$. Assume that $\tau > 0$. Find the energy content of the above signal by considering the energy spectral density.

(Note that $FT\left[e^{-a\tau}u(\tau)\right] = \frac{1}{a+i\omega}$ and $\int \frac{1}{1+x^2} dx = \arctan x$)

5. Find the discrete Fourier transform of the signal $x[n] = \{2, 0, -1, 3\}$

6. Consider the demodulation of a DSB signal $x(t) = m(t)\cos(\omega_c t)\cos(\omega_c t + \pi/2)$. What is the effect of the phase error on the output?

7. Describe the working of the *lock-in amplifier*, and explain how it can amplify very weak low frequency signals in the presence of typical background noise sources.

8.

A feedback motor control system may be represented by the block diagram shown on the right.

a) Explain how this system acts to make the output position x_o follow the requested input position x_i .

b) Show that the system transfer function H(s) = KG(s)/[1 + KG(s)].

c) If G(s) = 1/s(s+4) and K = 3, determine the time dependent output to a step function input $x_i = u(t)$.

d) Is the system under-damped or over-damped? For what value of K would it be critically damped?

NB
$$\frac{3}{s(s+3)(s+1)} = \frac{1}{s} - \frac{\frac{3}{2}}{(s+1)} + \frac{\frac{1}{2}}{(s+3)}$$

