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Résumé

Dans cet article nous montrons que les équations variationnelles le
long d’une solution d’une équation différentielle intégrable par quadrature
ont un groupe de Galois differentielle virtuellement résoluble. Dans le cas
particulier des systèmes hamiltoniens intégrables au sens de Liouville la
preuve redonne le théorème de Morales-Ramis-Simó. La preuve consiste
à montrer que le groupe de Galois de l’équation variationnelle est un
quotient d’un sous groupe d’un groupe d’isotropie du pseudogroupe de
Malgrange de l’équation non linéaire. On relie ensuite les propriétés de ce
groupe d’isotropie en un point spécial à celles du groupe d’isotropie au
point générique en utilisant le théorème d’approximation d’Artin.

Abstract

In this article we give an obstruction to integrability by quadrature of
an ordinary differential equation on the differential Galois group of varia-
tional equations of any order along a particular solution. In Hamiltonian
situation the condition on the Galois group gives Morales-Ramis-Simó
Theorem. The main tools used are Malgrange pseudogroup of a vector
field and Artin approximation Theorem.

Contents
Introduction 2

1 Definitions 3
1.1 Frame bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Prolongations and invariants . . . . . . . . . . . . . . . . . . . . 5
∗This work was partially supported by ANR (project n◦ JC05_41465). Address:

IRMAR-UMR CNRS 6625 Université de Rennes 1, F-35042 RENNES cedex e-mail:
guy.casale@univ-rennes1.fr

1



2 Galois theories 8
2.1 ‘Nonlinear’ Galois theory . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Linear Galois theory . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Principal version . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Non principal version . . . . . . . . . . . . . . . . . . . . 9

2.3 Variational equations . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Principal variational equations . . . . . . . . . . . . . . . 9
2.3.2 ‘Non principal’ variational equations . . . . . . . . . . . . 10

3 Corollaries 11
3.1 Abelianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Finiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Applications 13
4.1 Painlevé II equation . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Lorenz system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Introduction
Morales-Ramis Theorems give conditions for integrability in sense of Liouville
of a Hamiltonian system in term of the differential Galois group of the linearized
system along a particular solution. First Theorem of this kind was obtained by
Ziglin [28] in term of monodromy of the variational equation. Later this condi-
tion was translated in term of differential Galois group. Following previous work
of Churchill, Rod and Singer [9, 10], Morales and Simó [19] and Morales and
Ramis [20], Morales, Ramis and Simó prove in [22] that the variational equa-
tions of any order of an integrable Hamiltonian system have virtually abelian (=
almost commutative) differential Galois group. Extensions of this Theorem to
other kind of integrability (in Bogoyavlensky’s sense [4], in Jacobi’s sense [25],
in noncommutative sense [14] or for discret dynamical systems [8]) give same
abelianity condition.

In this article we prove the following generalization of these Theorems in
algebraic setting for integrability by quadrature.

Definition 3.4. Let E(t, y, y′, . . . y(n)) ∈ C[t, y′, . . . , y(n)] be an ordre n differ-
ential equation given by an irreducible polynomial.

A Liouvillian solution is a solution f in a differential extension KN of K1 =
C(t) build by successive elementary extensions Ki−1 ⊂ Ki, 1 ≤ i ≤ N , of the
form Ki = Ki−1(ui) with ui algebraic over Ki−1 or u′i ∈ Ki−1 or u′i

ui
∈ Ki−1.

The equation E is said to be integrable by quadrature if there is a Liouvillian
solution f with transc.deg.C(t, f, f ′, . . . , f (n−1))/C(t) = n.

Theorem 3.6. If a rational differential equation is integrable by quadrature
then the Galois group of its variational equation of order q along an algebraic
solution is virtually solvable.
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If N elementary extensions are needed to build the general solution then the
N th derived Lie algebra of the Galois group is null.

The key arguments are the use of Malgrange pseudogroup (GaloisD-groupoid
of [15]) of a vector field and the use of Artin approximation Theorem [2] (see 1.7
p 7) to replace Ziglin Lemma as it is done in [22]. They are organized as follow.
First we prove that the Galois group of the variational equation is a quotient of
a subgroup of the isotropy group of Malgrange pseudogroup at a generic point
of the particular solution. Virtual solvability of the isotropy group at generic
point of Malgrange pseudogroup of an equation integrable by quadrature is not
very difficult to prove but a generic point on a curve is not generic. To prove
virtual solvability of the isotropy group at a non generic point we use Artin
approximation Theorem.

In a first part, definitions and basic theorems about algebraic “Lie pseu-
dogroup” following [15, 24] are given. In a second part we give definition of
Malgrange pseudogroup of a rational vector field and Galois group of a linear
differential equation and relation between them by means of variational equa-
tions. The main Theorem is Theorem 2.3. From this Theorem we get usual
Galoisian obstructions to integrability and exhibit new ones in the third part.
Two examples of applications are given in the fourth part.

It would be interesting to insert in the setting decribed here results of Zung
[29] and Ito [13].

Results of this article originate from discutions with B. Malgrange. I would
like to thank him for his enthusiasm for sharing mathematical ideas and good
mood.

1 Definitions
Definitions and missing proofs of this section can be found in [12, 15, 18, 24, 26].

1.1 Frame bundles
Let V be the affine space over C with coordinates r1, . . . , rd and (Cd, 0) be the
germ of analytic space at 0 with coordinates x1, . . . , xd. An order q frame on V
is a q-jet

jqr =
∑
α∈Nd
|α|≤q

rαi
xα

α!

of germ of biholomorphism r : (Cd, 0) → V . The space of q-frames is denoted
by RqV and its coordinate ring is

C[RqV ] = C
[
rαi ,

1

det(rε(j)i )

∣∣∣1 ≤ i ≤ d, α ∈ Nd, |α| ≤ q
]
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where ε(j) is the multiindex (0, · · · , 1
jth
, · · · , 0). One gets projections πq+1

q :

Rq+1V → RqV from inclusions C[RqV ] ⊂ C[Rq+1V ] and projections πq :
RqV → V from identifications ri = r

(0,...,0)
i . Elementary properties of this

space can be found in [12] and [24, p285 with different notations]
The q-frames space is a principal bundle over V with structural group

Γq =
{
jqg | g : (Cd, 0)→ (Cd, 0) biholomorphism

}
acting by ‘source composition’ : jqg · jqr = jq(r ◦ g).

Thanks to Faa di Bruno formulae, these groups and actions are algebraic.
Because of projections πq+1

q one can defined the formal frame bundle RV =
lim
←
RqV with structural group Γ = lim

←
Γq.

1.2 Groupoids
The algebraic variety

AutqV =
{
jqϕ | ϕ : (V, a)→ (V, b) biholomorphism

}
with coordinate ring

C[AutqV ] = C
[
ri, ϕ

α
j ,

1

det(ϕε(k)j )

∣∣∣1 ≤ i, j ≤ d, α ∈ Nd, |α| ≤ q
]

is a groupoid. The groupoid structure is given by the following morphisms

• sources and targets (s, t) : AutqV → V × V ,

• composition c : AutqV ×
sV t

AutqV → AutqV ; c(jqϕ1, jqϕ2) = jq(ϕ1 ◦ ϕ2) ,

• inverse i : AutqV → Autq; i(jqϕ) = jqϕ
−1,

• identity id : V → Autq; id(r) = jqidr,

satisfying obvious commutative diagrams [18], [24, p 270]. This groupoid acts
on RqV by ‘target composition’ :

◦ : AutqV ×
sV
RqV → RqV

jqϕ ◦ jqr = jq(ϕ ◦ r).

A subgroupoid Gq of AutqV is a closed algebraic subvariety such that the
induced morphisms give a groupoid structure on Gq [24, definition 2.2.].

A singular subgroupoid Gq with singularities on S a closed subvariety of V
is a closed subvariety of AutqV whose localisation with source and target out
of S gives a subgroupoid of Autq(V − S) [15, definition 4.1.1.].

A variant of Chevalley Theorem [11, theorem 8.1.], [24, proposition 2.3.6.]
for this type of groupoids is the following.
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Theorem 1.1 Let Gq be a singular subgroupoid of AutqV . There are H1, . . . ,Hn

in C(RqV ) such that, out of its singular locus S,

Gq = {jqϕ | Hi( · ◦ jqϕ) = Hi(·)}.

Singular subgroupoids are essentially characterized by their field of rational in-
variants Fq ⊂ C(RqV ).

Groupoids AutqV have ‘Lie algebras’ (usually called Lie algebroids)

autqV =
{
jqY | Y holomorphic vector field on (V, a)

}
.

We will not directly use the Lie algebroid structure of autqV but the fiberwise
bracket

autqV ×
V

autqV → autq−1V

(jqY1, jqY2) 7→ jq−1[Y1, Y2]
.

The Lie algebra of a groupoid Gq will be described in next section.

1.3 Prolongations and invariants
Let ϕ : U1 → U2 be a biholomorphism between two open sets of V . It induces
a biholomorphism

Rqϕ : RqU1 → RqU2

jqr 7→ jq(ϕ ◦ r)

called the order q prolongation of ϕ.
Let X be a holomorphic vector field on an open set U of V . Prolongations of

its flows define a local 1-parameter action on RqU . The infinitesimal generator
of this action is RqX the prolongation of X.

These prolongations are defined by polynomial formulas and can be extend
to formal biholomorphism ϕ̂ : V̂, a → V̂, b (and to formal vector fields on V̂, a).
The prolongation is Rqϕ̂ : ̂(RqV,RqVa)→ ̂(RqV,RqVb) a formal biholomorphism
from a formal neighborhood of frames at a ∈ V to formal neighborhood of frames
at b.

Cartan derivations are given by the action of ∂
∂xi

on C[RqV ], the ring of
PDE in d functions, r1, . . . , rd of d variables x1, . . . , xd in the neighborhood of
0 :

Di : C[RqV ] → C[Rq+1V ]
rαj 7→ r

α+ε(i)
j

.

The proof of the following lemma is left to the reader folowing [24, pp258–270].

Lemma 1.2

• Let ϕ : U1 → U2 be a local biholomorphism on V and (Rqϕ)∗ : C[RqU2]→
C[RqU1] the induced isomorphism of rings then

Di ◦ (Rqϕ)∗ = (Rq+1ϕ)∗ ◦Di.
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• Let X be a local holomorphic vector field U ⊂ V then

Di ◦ RqX = Rq+1X ◦Di.

• The order q prolongation of a vector field X =
∑
j aj

∂
∂rj

is

RqX =
∑
j,α

Dαaj
∂

∂rαj
.

Example 1.3 Let V be the affine line over C with coordinates ring C[r] the
order q frame bundle is RqV = V ×C∗ ×Cq−1 with coordinates C[r, r′, . . . r(q)].

If ϕ : U1 → U2 is a biholomorphism between open sets of V its third prolon-
gation is R3ϕ : U1 × C∗ × C2 → U2 × C∗ × C2 and R3ϕ(r, r′, r′′, r′′′) is

(ϕ(r), ϕ′(r)r′, ϕ′′(r)r′2 + ϕ′(r)r′′, ϕ′′′(r)r′3 + 3ϕ′′(r)r′r′′ + ϕ′(r)r′′′)

Example 1.4 Let V be the affine sapce of dimension d over C with coordi-
nates ring C[r1, . . . , rd] the order 1 frame bundle is R1V = V × GLd(C) with
coordinates ring C

[
r1, . . . , rd, r

1
1, . . . , r

d
d,

1

det(rji )

]
.

If X =
∑
aj(r) ∂

∂rj
then

R1X =
∑

aj(r)
∂

∂rj
(r) +

∑ ∂aj
∂ri

(r)rki
∂

∂rkj
.

When r(t) is a trajectory of X then the restriction of R1X above this trajectory
is

∂

∂t
+
∑ ∂aj

∂ri
(r(t))rki

∂

∂rkj

i.e. the first variational equation of X along r(t).

Let Gq be a singular subgroupoid with invariants field Fq. Its first prolon-
gation Gq+1 is the singular subgroupoid defined by the subfield of C(Rq+1V )
generated by Fq and DiFq for all i. The field of rational functions of any order
C(RV ) = lim

→
C(RqV ) with Cartan derivations is a differential field. The differ-

ential field F generated by Fq defines a subvariety G of AutV = lim
←
AutqV by

formulae of theorem 1.1 whose projection on AutqV , (G )q can be smaller than
Gq.

By a Theorem of B. Malgrange [15, theorem 4.4.1.] the subvariety of AutV
defined by invariance of a differential subfield F of C(RV ) defines for any q
a singular subgroupoid with singularities on S independant of q. Let F be a
differential subfield of C(RV ) and Fq = F ∩ C(RqV ). Let us define

Iso(F ) = {formal biholomorphism ϕ : V̂, a→ V̂, b | ∀q,∀H ∈ Fq, H ◦Rqϕ = H}

whose ‘Lie algebra’ is

iso(F ) = {formal vector field Y on V̂, a | ∀q,∀H ∈ Fq, RqY ·H = 0}

and Isoq, isoq the closure of their projections on order q jets spaces.
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Theorem 1.5 The subspace Iso(F ) of AutV is stable by composition and in-
version. The subspace iso(F ) of autV is stable by Lie bracket.

This is a set theoretical stability. The proalgebraic variety Iso(F ) is singular
subgroupoid and the singularities are unavoidable. But the Theorem says that
the set of formal solutions is a set theoretical groupoid. Before giving the proof
let show an example.

Example 1.6 V is the affine line A1, we look at formal diffeomorphisms pre-
serving the 1-form dr

r (this gives an order 1 invariant). The differential equation
satisfied by such transformations ϕ is E(r, ϕ) = r dϕdr − ϕ = 0. E(r, ϕ1 ◦ ϕ2) is
a consequence of E(r, ϕ2) and E(ϕ2, ϕ1) only after localisation of sources and
targets out of 0. This is a singular groupoid with singularity at 0 but invertible
solutions are ϕ(r) = λr for λ ∈ C∗ and form a groupoid (even a group !).

In many proofs of the third part and in the following proof of theorem 1.5
the following theorem is used

Artin approximation Theorem 1.7
Consider an arbitrary system of analytic equations

(E) f(x, y) = 0

where f(x, y) = (f1(x, y), . . . , fm(x, y)) are convergent series in the variables
x = (x1, . . . , xn), y = (y1, . . . , yN ). Suppose that y(x) = (y1(x), ..., yN (x)) are
formal power series without constant term which solve (E) For any integer q
there exists a convergent series solution y(x) = (y1(x), ..., yN (x)) of (E) such
that for all i jq(yi(x)− yi(x)) = 0 .

Proof of theorem 1.5. – By Malgrange Theorem (above mantionned),
the Theorem is clear if sources and targets of two composable elements of Iso(F )
are not in the singular locus S. By analytic continuation, it is also clear for
convergent elements. This implies the theorem because of the following.

Let ϕ1 and ϕ2 be a composable couple of elements of Iso(F ). For any q and
i = 1, 2, jq(ϕi) are formal sections of Isoq(F ) over V . By Artin approximation
theorem [2] there are holomorphic nonholonomic sections ψi on neighborhoods
U1 of a and U2 of ϕ1(a) such that jqψ1 = jq(jq(ϕ1)) at a and jqψ2 = jq(jq(ϕ2))
at ϕ1(a). These new sections are no more jets of sections.

For each ã ∈ U1, ψ1(ã) ∈ AutqV is an order q jet of biholomorphism with
source ã and target a point t(ψ1(ã)) near ϕ1(a). Because de q-jet of t(ψ1) :
U1 → V at a equals the q-jet of ϕ1 at a, U1 can be chosen small enough so that
t(ψ1)(U1) is an open set included in U2.

Then one can compose ψ2 ◦ψ1 pointwise. Because Isoq(F ) is a groupoid out
of some singular locus S, ψ2◦ψ1 is a section of Isoq(F ) out of S. Isoq(F ) is closed
so ψ2 ◦ ψ1 is a section of Isoq(F ) and in particular ψ2(a) ◦ ψ1(a) = jq(ϕ2 ◦ ϕ1)
belongs to Isoq(F ). This is true for all integer q thus ϕ2 ◦ ϕ1 ∈ Iso(F ).

Same arguments are used to prove the second part of the Theorem. �
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Remark 1.8 Following B. Malgrange, one can give another proof by using Ritt
approximation Theorem [26] of formal solutions of PDE by convergent solutions
(not define at the same point) instead of Artin approximation Theorem of these
solutions by nonholonomic sections (define at the same point).

2 Galois theories

2.1 ‘Nonlinear’ Galois theory
The definition of Malgrange pseudogroup of a rational vector field X is

MalX = Iso(Inv(X))

whose Lie algebra is
malX = iso(Inv(X)).

For (a, b) ∈ V × V , MalX(a,b) is the subspace of formal biholomorphisms with
source a and target b. One gets the following corollary of theorem 1.5.

Corollary 2.1 Let a ∈ V the formal solution of Malgrange pseudogroup at a

MalX(a,a) = {ϕ : (̂V, a)→ (̂V, a) | ϕ ∈MalX}

is a group with Lie algebra

malXa = {Y onV̂, a | Y ∈ malX}.

These groups may be different depending on a belongs to the singular locus
S of MalX or not. However, as we will see in the last section, they share lots
of properties.

2.2 Linear Galois theory
2.2.1 Principal version

Let C be an algebraic curve over C, E π→ C a principal G-bundle, i.e. E×
C
E ∼

E × G over E for the first projection and G is an algebraic linear group. For
a π-projectable, G-invariant rational vector field Y on E with π∗Y 6≡ 0, PY
denotes a closed minimal Y -invariant subvariety of E dominating C and GalY
its stabilizer in G.

• Two such PY are isomorphic under action of G and called Picard-Vessiot
varieties of Y . The field extension C(C ) ⊂ C(PY ) is usually called the
Picard-Vessiot extension for Y .

• The group GalY is well defined up to conjugation in G. It is the Galois
group of Y .
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• Common level set of all rational first integrals of Y in C(E) dominating
C are Picard-Vessiot varieties.

Malgrange pseudogroup of such a Y is simple to describe. Let Z1, · · · , ZN
be infinitesimal generators of the action of G then Y, Z1, . . . , ZN is a Y -invariant
rational parallelism of E i.e. a basis of the C(C ) vector space of rational vector
field on C such that [Y, Zi] = 0. Let C(E)Y be the field of rational first integrals
of Y . One has

MalY = {ϕ | ϕ∗Y = Y, ∀i ϕ∗Zi = Zi,∀F ∈ C(E)Y F ◦ ϕ = F}.

The inclusion ‘⊂’ is clear from the definition. To prove the other inclusion one
remarks that Y and Z’s give rise to lots of order 1 invariants. Because they
form a basis, C(R1E) is generated over C(E) by these invariants. This implies
that C(RqE) is generated over C(E) by derivatives of these invariants. Each
new differential invariant for Y reduces modulo this first field of invariants to
order 0 invariant i.e. to a rational first integral of Y .

Let MalYa be the restriction of this pseudogroup to the fiber Ea at generic
a ∈ C . The fiber Ea is isomorphic to G and one can choose this isomorphism
to send PYa on GalY .

This isomorphism conjugates the action of G on Ea to the left translation
on G. Because the action of MalY commutes to left translation on G each
ϕ ∈MalYa is the restriction on some open set of right translation by a gϕ ∈ G.
But MalYa must preserve GalY so gϕ ∈ GalY . We have proved the following
theorem.

Theorem 2.2 Under this isomorphism MalYa equals GalY as pseudogroup
generated by a subgroup of G.

2.2.2 Non principal version

Galois group can be defined for more general bundles with special kind of con-
nections. They are built from principal bundles by ‘fiber reduction’

Let E → C be a G-principal bundle and F be an algebraic variety with a
left action of G with G a algebraic linear group. This group G acts on F × E
by g(p, e) = (pg−1, ge). The bundle P = (F ×E)/G has structural group G and
fibers isomorphic to F . If Y is a π-projectable, G-invariant rational vector field
on E with π∗Y 6≡ 0 one defines Ỹ on F ×E such that pr1∗Ỹ = 0 and pr2∗Ỹ = Y
and YP on P by projection.

Galois group of YP is by definition the Galois group of Y and one can prove
that it is well defined. From [7] Malgrange pseudogroup of YP is isomorphic to
Malgrange pseudogroup of Ỹ which is itself isomorphic to the one of Y .

2.3 Variational equations
2.3.1 Principal variational equations

LetX be a rational vector field on V and C be a algebraicX-invariant curve with
X|C 6≡ 0. Its prolongations are rational vector fields RqX on frames bundles
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RqV . The restriction of the frames bundles over C are Γq-principal bundle over
C with a projectable Γq-invariant vector field given by the restriction of RqX
over C .

Because Rq+1X is πq+1
q -projectable on RqX, this is also true for Malgrange

pseudogroup [7, lemme 4.6.] and Galois group. One has sujective morphisms

Mal(Rq+1X|C ) � Mal(RqX|C ) and Gal(Rq+1X|C ) � Gal(RqX|C ).

One sets

Mal(RX|C ) = lim
←
Mal(RqX|C ) and Gal(RX|C ) = lim

←
Gal(RqX|C ).

Theorem 2.3 Let a be a generic point on C , one gets

Gal(RX|C ) ⊂MalX(a,a).

Proof. – Let Mal(RX|C )a be the restriction of Mal(RX|C ) on the fiber
RVa. The Γ-principal bundle RV |C is isomorphic to the subspace of AutV(a,C )

with source a ∈ C and target in C where Γ = lim
←

Γq is the group of formal
biholomorphisms from (V, a) to (V, a). Under this identification

• RVa is Γ,

• Gal(RX|C ) is a subgroup acting by left translation,

• Mal(RX|C )a is isomorphic to Gal(RX|C ) but acts by right translation.

The closed subvariety MalX(a,C ) with source a and target in C of AutV(a,C ) is

• RX-invariant because MalX is RX-invariant,

• dominates C because it contains flows of X along C .

This implies that Gal(RX|C ) preserves MalX(a,a) by left translation in Γ
thus Gal(RX|C ) ⊂MalX(a,a). �

Normal variation equations are defined on the subspaces Nq ⊂ RqV |C of
frames r such that r∗X = ∂

∂xd
. This subspaces are Γ1-principal bundle where

Γ1 ⊂ Γ is the subgroup of g ∈ Γ such that g∗ ∂
∂xd

= ∂
∂xd

.

2.3.2 ‘Non principal’ variational equations

Let AqV be the space of order q arcs on V : jqγ with γ : (C, 0)→ V holomorphic.
This bundle is associated to the Γq principal bundle RqV by the procedure of
2.2.2 with Γq acting on

Aq = {jqγ | γ : (C, 0)→ (Cd, 0)}

by target composition. Groupoid AutqV acts on V q by composition. A rational
vector field X on V acts on AqV as a rational vector field AqX. This vector
field can be obtained from ‘fiber reduction’ given in 2.2.2. The restriction of
this vector field over a X-invariant curve C is the usual variational equation.
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3 Corollaries

3.1 Abelianity
Abelianity of malX implies Abelianity of the identity components of variational
equations (see next section for a proof). In Hamiltonian context one gets the
following Theorem, consequence of the ‘key’ Lemma [3].

Theorem 3.1 (J.-P.Ramis [16]) If X is a completely integrable Hamiltonian
vector field on a symplectic algebraic variety over C by means of rational first
integrals then malX is Abelian.

Together with Theorem 2.3 it implies Morale-Ramis-Simó theorem in algebraic
context.

Theorem 3.2 ([22]) If X is a completely integrable Hamiltonian vector field
on a symplectic algebraic variety over C by means of rational first integrals and
C be a algebraic X-invariant curve with X|C 6≡ 0 then identity component of
the Galois group of the order q variational equation is Abelian.

3.2 Solvability
Lemma 3.3 If the N th derived algebra of malX is null the same is true for
any variational equations.

Proof. – We have to prove that malXa satisfies this property for any a ∈ V
as soon at it is satified at any a out of an hypersurface S on V . We follow the
proof of Theorem 1.5.

Let Y1, . . . Y2N be 2N formal vector fields at a solutions of malX. By Artin
Approximation theorem there are Ỹ1, . . . Ỹ2N be holomorphic nonholonomic sec-
tions of malN+qX whose N+q jets at a are given by Y ’s. The iterated fiberwise
bracket in the Nth derived algebra of malX obtained from the Ỹ ’s is zero out of
S thus everywhere. It is determined at a by the q-jet of the iterated Lie bracket
of the formal vector fields. Because it is true for any q it proves the Lemma. �

Let say that differential equation over C(t) is integrable by quadrature if the
general solution belongs to a Liouvillian extension (with possibly new constants).

Definition 3.4 Let E(t, y, y′, . . . y(n)) ∈ C[t, y′, . . . , y(n)] be an ordre n differ-
ential equation given by an irreducible polynomial.

A Liouvillian solution is a solution f in a differential extension KN of K1 =
C(t) build by successive elementary extensions Ki−1 ⊂ Ki, 1 ≤ i ≤ N of the
form Ki = Ki−1(ui) with ui algebraic over Ki−1 or u′i ∈ Ki−1 or u′i

ui
∈ Ki−1.

The equation E is said to be integrable by quadrature if there is a Liouvillian
solution f with transc.deg.C(t, f, f ′, . . . , f (n−1))/C(t) = n.

Remark 3.5 It is important to allow new constant in order to get y′′ = 0
integrable by quadrature.

11



Theorem 3.6 If a rational ordinary differential equation is integrable by quadra-
ture then its variational equations along algebraic solutions have solvable identity
component of their Galois groups.

Proof. – We have to prove that if X on V is a vector field given by the
equation on a phase space, malXa is solvable for a generic a ∈ V . Then apply
Lemma 3.3 and Theorem 2.3 and the proof is done. Let C(t) ⊂ K2 · · · ⊂ KN

be a Liouvillian tower such that E has a transcendence degree d − 1 solution
in KN over C(t). Assume that all extensions are transcendental. Each Ki is
the field of rational functions on some affine space A1 × Ai with a vector field
Xi = ∂

∂t +
∑i
j=1 u

′
j
∂
∂ui

projectable on Xi−1. Hypothesis of the Theorem are :

• there is a dominant map V → A1 and X is projectable on ∂
∂t ,

• there is a dominant map from A1×AN to V over A1 and XN is projectable
on X.

From [7, lemme 4.6.] if malXN is solvable so is malX.
Because of the structure of the tower of extension one can find N 1-forms,

θi = dui−XNuidt, 1 ≤ i ≤ N , constant onXN satisfying dθi = 0 mod (θ1, . . . , θi−1).
Because LXN θi = 0 mod (θ1, . . . , θi−1) same equations are satisfied by vector
field of malX. Let x1, . . . , xN be local (analytic) coordinates such that dxi = θi
mod (θ1, . . . , θi−1) then Y ∈ malX can be written

Y = c1
∂

∂x1
+ c2(x1)

∂

∂x2
+ · · ·+ cN (x1, · · · , xN−1)

∂

∂xN
.

The Nth derived algebra of this type of Lie algebra of formal vector field is zero.
�

For instance, X on V is Jacobi integrable if it has d−2 rational first integrals
and an invariant rational d-form. Morales-Ramis type theorem for this kind
of integrability was obtained by M. Przybylska in [25] in a particular case.
Theorem 2.3 gives the general situation. Computation of vector fields in the
Lie algebra of the Malgrange pseudogroup of such a vector field is left to the
reader. In suitable local (analytic) coordinates one gets vector field of the form
c1(x2, . . . , xn) ∂

∂x1
+ c2(x3, . . . xn) ∂

∂x2
. The first derived algebra is Abelian.

Corollary 3.7 If X is a Jacobi integrable rational vector field on an algebraic
variety then identity components of Galois groups of variational equations are
solvable and their first derived Lie algebras are Abelian.

3.3 Finiteness
Lemma 3.8 Finiteness of the dimension of malX implies that the dimensions
of Galois groups of variational equations are uniformely bounded.
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Proof. – We have to prove that if malXa is finite dimensional at generic
a in V , it is finite dimensional at any a in V with smaller dimension. Then
Theorem 2.3 can be used to conclude.

Let N be the generic dimension of malX. If X1, . . . , XN+1 are N+1 element
of malXa, by Artin approximation Theorem, there are X̃1, . . . , X̃N+1 holomor-
phic nonholonomic section of malqX whose q-jet at a is given by X’s. For each
a ∈ V − S the vectors X̃1(a), . . . , X̃N+1(a) are colinear. By analytic continu-
ation it si also true for any a ∈ V and any order q. This proves the lemma.
�

From

Theorem 3.9 (B. Malgrange [17]) If X is a completely integrable Hamilto-
nian vector field on a symplectic algebraic variety over C by means of rational
first integrals then malX is finite dimensional.

one gets

Theorem 3.10 In the situation of theorem 3.2 the sequence of dimensions

(dimGal(RqX|C ))q∈N

is bounded uniformely in C .

There is no uniform bound for all algebraic Hamiltonians but it depends
on the geometry of the moment map. For instance if the moment map is the
restriction on some open set of an algebraically isotrivial fibration in Abelian
varieties then the bound should be the degree of freedom. If the fibration is not
isotrivial, e.g. for algebraic complete integrability [1], the bound depend on the
Gauss-Manin connexion of such a family.

4 Applications

4.1 Painlevé II equation
Irreducibility of these equations is proved in [23, 27] and implies that these
equations are not integrable by quadrature. Here is another proof of this weaker
assertion in a particular case. These computations have bee done in [21] to apply
usual Morales-Ramis Theorem.

Second Painlevé equation depends on a parameter

y′′ = 2y3 + xy + α for α ∈ C.

For α = 0, it is the vector field

∂

∂x
+ y′

∂

∂y
+ (2y3 + xy)

∂

∂y′

13



with first order (non principal) variational equation along C = {y = y′ = 0}

∂

∂x
+ r3

∂

∂r2
+ xr2

∂

∂r3

on TC3|C with induced coordinates (x, r1, r2, r3). The rank 2 subsystem on
r2, r3 is Airy equation with Galois group SL2(C). This group is not solvable
so Painlevé II equation is not integrable by quadrature when α = 0. From
Okamoto (see [23, 27]), we know that two Painlevé II equations with parameter
α and α + n, n ∈ Z are isomorphic by a birational change of coordinates on
the phase space. Non integrability for α = 0 implies non integrability for any
interger values of α.

4.2 Lorenz system
Computations presented here originates from [6] where the non integrability in
sense of Liouville of a Hamiltonian form of this system is proved by Morales-
Ramis theorem. Lorenz system depends on 3 constants σ, ρ and β : ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

.

First assume β 6= 0. An invariant curve is the z-axis C and X|C = −βz ∂
∂z . Let

us consider the following time dependent form of this equation on C3 ×C with
coordinates (x, y, z, t)

σ(x− y)
∂

∂x
+ (ρx− xz − y)

∂

∂y
+ (xy − βz) ∂

∂z
− βt ∂

∂t
.

an invariant curve is C = {x = y = z− t = 0} and the first variational equation
is the linear system

−βt d
dt
A =


−σ σ 0 0
ρ− z −1 0 0

0 0 −β 0
0 0 −β

A.
The 2 × 2 subsystem given by the first block is equivalent to the second order
equation

β2t2
d2a

dt2
+ (β2 − βσ − β)t

da

dt
+ σ(t− ρ+ 1)a = 0.

Applying [5] (or Maple 11), we get solution

t
σ+1
2β J

(
σ2 − 2σ + 1 + aσρ

β2
,

2σ1/2

β
t1/2

)
where J(α, x) is any solution to Bessel equation x2 d2J

dx2 + xdJdx + (x2 − α)J = 0.
The Galois group of this equation is SL2(C). Lorenz system is not integrable
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by quadratures.

If σ 6= 0 then using the vector field

σ(x− y)
∂

∂x
+ (ρx− xz − y)

∂

∂y
+ (xy − βz) ∂

∂z
− σt ∂

∂t
.

an the invariant curve is C = {y = z − ρ = x − t = 0} we get the variational
equation

−σt d
dt
A =


−σ σ 0 0
0 −1 t 0
0 t −β 0
0 0 −σ

A.
From the middle 2× 2 subsystem we get the second order equation

σ2t2
d2a

dt2
− σ(t+ 1)t

da

dt
+ ((1− β)t+ σ)a = 0.

Solutions are
t

1
2σ exp

(
t

2σ

)
W

(
1− 2β

2σ
,
σ − 1

2σ
,
t

σ

)
where W (k,m, x) is any solutionof Whittaker equation x2 d2W

dx2 + x2 dW
dx + (kx−

m2 + 1/4)W = 0. Galois group of this equation is SL2(C).

If σ = β = 0 the Lorenz system is 2 × 2 linear system with constant coeffi-
cients and a parameter x. Such systems can be explicitely solved by exponen-
tials.
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