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As one of the evolutionary oldest parts of the brain, the diencephalon evolved to harmonize changing
environmental conditions with the internal state for survival of the individual and the species. The pioneering
work of physiologists and psychologists around the middle of the last century clearly demonstrated that the
hypothalamus is crucial for the display of motivated behaviors, culminating in the discovery of electrical self-
stimulation behavior and providing the first neurological hint accounting for the concepts of reinforcement
and reward. Here we review recent progress in understanding the role of the lateral hypothalamic area in the
control of ingestive behavior and the regulation of energy balance. With its vast array of interoceptive and
exteroceptive afferent inputs and its equally rich efferent connectivity, the lateral hypothalamic area is in an
ideal position to integrate large amounts of information and orchestrate adaptive responses. Most important
for energy homeostasis, it receives metabolic state information through both neural and humoral routes and
can affect energy assimilation and energy expenditure through direct access to behavioral, autonomic, and
endocrine effector pathways. The complex interplays of classical and peptide neurotransmitters such as
orexin carrying out these integrative functions are just beginning to be understood. Exciting new techniques
allowing selective stimulation or inhibition of specific neuronal phenotypes will greatly facilitate the
functional mapping of both input and output pathways.
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1. Introduction and historical perspective

The diencephalon first gained attention in the mid 19th century,
after the group around the Swiss neurologist, Walter Hess showed
that electrical stimulation of different hypothalamic areas in cats
elicited a variety of behaviors, including fight, flight, copulation, and
voracious eating [1,2]. The influential discoveries of two hypothalamic
areas with opposing effects on food intake and body weight in rats
soon followed: a lateral area resulting in eating when electrically
stimulated and in aphagia and weight loss when lesioned [3] was
dubbed “feeding center” and a ventromedial area resulting in
hyperphagia and obesity when destroyed [4] was called “satiety
center”. In parallel to these studies focusing on food intake, Olds and
Milner interested in reinforcement learning discovered the phenom-
enon of self-stimulation in the brain [5,6]. Soon thereafter, the first
paper published by the young Bartley G. Hoebel under thementorship
of Phillip Teitelbaum put the two phenomena together in the journal
Science entitled: “Hypothalamic control of feeding and self-stimula-
tion”[7] (Fig. 1).
This started a decade of intense investigation of the physiological
determinants of these phenomena, culminating in an impressive
number of highly visible publications. However, hypothalamic
stimulation and lesion studies eventually tapered off, because little
was known, at the time, about neural connectivity and neurochem-
istry both within and outside the hypothalamus. A first bout of
anatomical studies was then fueled by the newly discovered neural
tract tracing methods with tritiated amino acids in the seventies (see
discussion by Swanson [8]). A second bout followed the discovery of
leptin in the mid nineties and capitalized on the identification of the
“feeding” neuropeptides. Most recently, revolutionary newways have
been developed to selectively stimulate specific types of neurons in
restricted brain areas, which definitely relegated the non-selective
electrical stimulation to the past. The new opto-genetic approach
takes advantage of genetic methodology for insertion of light-
sensitive excitatory or inhibitory ion channels into specific neurons
and subsequent stimulation by light [9]. Thus, it is now possible to
selectively activate or suppress orexin or any other neuron type in the
lateral hypothalamus with maximal temporal control [10]. Similarly,
“designer receptors” exclusively activated by “designer drugs”
(DREADD) can be genetically inserted into specific populations of
neurons and then selectively activated or suppressed by administra-
tion of the corresponding designer drug [11,12].

This review is a tribute to the seminal work of Bartley G. Hoebel,
whose work was dedicated to a neurological understanding of
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Fig. 1. Sustained inhibition of self-stimulation by intragastric food but not water load in
rats as demonstrated by Hoebel and Teitelbaum [7] in 1962. The authors concluded
that: “Self-stimulation rate was slowed to about half the normal rate by a stomach load
of 18 ml of liquid milk diet. The same amount of water had only a transient effect,
suggesting that some consequence of food intake other than taste or stomach
distension was responsible for prolonged inhibition” [7].
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Fig. 2. Schematic diagrams showing major inputs (top) and outputs (bottom) of the
lateral hypothalamic area on an outline of the rat brain.
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ingestive behavior, specifically of food and drug reward mechanisms.
We will argue that the lateral hypothalamic area by virtue of its
connectivity and neurochemistry plays a key role in these behaviors.
We believe that the newly developed tracing and stimulating
techniques will be essential for a detailed understanding of how
these complex pathways and circuits lead to the expression of
adaptive behaviors and ultimately to the regulation of energy balance
which is so important in health and disease. Given the large body of
literature, we will not be able to cite all relevant studies, but several
excellent reviews, mainly focusing on the role of orexin/hypocretin
neurons, have recently been published [10,13–18].
2. Background of anatomy and chemistry of the
lateral hypothalamus

The lateral hypothalamic area or zone is a large and heterogeneous
area with several distinct nuclear groups and is one of the most
extensively interconnected areas of the hypothalamus, allowing it to
receive a vast array of interoceptive and exteroceptive information
and to modulate cognitive, skeletal motor, autonomic, and endocrine
functions (Fig. 2). The lateral hypothalamic area merges rostrally into
the preoptic area and caudally into the ventral tegmental area. It
borders medially to the dorsomedial, ventromedial, and arcuate
nuclei and the anterior hypothalamic and medial preoptic areas, and
laterally to the internal capsule, the optic tract, andmore caudal to the
subthalamic nucleus. There is no doubt that the LHA consists of
numerous distinct nuclei [19,20], but the function and connectivity of
most of these subnuclei has not been systematically studied.
Generally, the lateral hypothalamic area can be divided into anterior,
tuberal (roughly at the level of the ventromedial hypothalamus) and
posterior portions based on its efferent connectivity as first described
by Saper [20] (for a more detailed review see [21]). Another useful
anatomic guide is the distribution pattern of two well studied
neuronal populations that express either orexin/hypocretin or
melanin-concentrating hormone (MCH) [19].

Two prominent fiber bundles traverse the lateral hypothalamic
area, the medial forebrain bundle extending from the brainstem to
the olfactory bulb and integrating neuronal processes from several
brain areas including lateral hypothalamic neurons [22], and the
fornix, connecting the hippocampal complex with the mammillary
nuclei in the posterior ventral hypothalamus. This makes interpre-
tation of electrical stimulation and lesion studies difficult, as
involvement of nonspecific fibers of passage must be taken into
consideration [22–24].
2.1. Connectivity of the lateral hypothalamic area

Afferents to the lateral hypothalamic area have been classically
studied with retrograde tracing techniques, but because such tracers
can be taken up not only by axon terminals but also by fibers of
passage, some caution is necessary, and prospective afferent sites
need to be verified with anterograde tracers. Based on such
verification, afferents to the lateral hypothalamic area have been
demonstrated to originate from various cortico-limbic structures such
as the prefrontal/orbitofrontal, insular, and olfactory cortex, amygda-
la, hippocampal formation, the shell of the nucleus accumbens, and
from brainstem structures including most aminergic cell groups such
as the nucleus of the solitary tract [21,25]. Afferents from medial
portions of the hypothalamus, although generally sparse, are
functionally highly significant, as for example, projections from the
arcuate nucleus POMC/CART and NPY/AgRP neurons [26–28] (Fig. 3).
The perifornical area within the lateral hypothalamus receives
substantial NPY-ergic input from the arcuate nucleus, and the
strongest feeding response to NPY can be elicited by local injection
into the perifornical area [29]. Furthermore, given its size and
structural complexity, there is considerable connectivity within the
lateral hypothalamic area itself, particularly projections from anterior
to more posterior portions [26,30].

More recently, Sakurai and colleagues used a transgenic method to
map upstream neuronal populations that have synaptic connections
to orexin neurons and confirmed most of the older findings with
classical tracing techniques [31] (Fig. 2). In another recent study
retrogradely transported neurotrophic viruses where used to map
circuits including the lateral hypothalamic area [32]. They revealed
projections from the arcuate nucleus, particularly the lateral POMC
neuron containing portion, to insular and anterior cingulate cortex via
synaptic relays in the lateral hypothalamic area (including orexin and
MCH neurons) and midline thalamic nuclei. Similar multisynaptic
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projections relaying in the lateral hypothalamus to the nucleus
accumbens shell originated in both arcuate POMC and NPY/AgRP
neurons [32].

The LHA has vast efferent projections to the entire cortical mantle
including the hippocampal formation, extendedamygdala, basal ganglia
and thalamus, themidbrain and pons, the brainstem and spinal cord, as
well as most other nuclei of the hypothalamus [26,33,34] (and see [21]
for a review) (Figs. 2 and 3). These projections have been established
using mainly retrograde tracer injections into the various projection
targets resulting in labeled perikarya in the lateral hypothalamic area,
and erroneous co-labeling of fibers of passage is not a problem. More
recently, many of these projections have been confirmed on the basis of
immunohistochemical studies using antibodies to peptide neurotrans-
mitters, which are almost exclusively produced in lateral hypothalamic
neurons such as orexin and MCH (for a review see [35]). Within the
hypothalamus the lateral zone has efferent projections to most medial
zone nuclei such as the arcuate, paraventricular, dorsomedial, ventro-
medial, and anterior hypothalamic nuclei [21]. In particular, orexin
neurons have been shown to project to the arcuate and paraventricular
nuclei [36,37].

With respect to the theme of this review, Mogenson was the first
to recognize that the nucleus accumbens, with its efferent projections
to the lateral hypothalamus, may provide an interface between
motivation and behavioral action [38], and his basic idea has been
further developed in more recent review articles [39,40]. Specifically,
Zahm has presented an integrative neuroanatomical perspective and
proposed a convincing conceptual framework implicating this
circuitry in general adaptive responding [39]. Particularly relevant,
significant projections from the nucleus accumbens to the hypothal-
amus have been demonstrated. As shown with various tracing
methods, these projections originate mainly from the shell and
terminate predominantly in the lateral and perifornical hypothalamus
[30,41–44]. In addition to these direct inputs, the nucleus accumbens
may influence hypothalamic function via its very strong projections to
the ventral pallidum, located ventrally to the nucleus accumbens
[40,42], and via the pedunculopontine tegmental area [45]. The
ventral pallidum projects directly to the far lateral hypothalamic area
[46,47], and this pathway could also be involved in accumbens-
induced food intake, as suggested by Stratford and colleagues [48,49].

2.2. Feeding peptides and neurotransmitters in lateral hypothalamic
neurons

Several neuronal populations expressing neuropeptides catego-
rized either as orexigenic such as MCH [50], orexin/hypocretin [51],
galanin [52,53], or anorexigenic such as neurotensin [54] and CART
[55] have been described.

MCHneurons project very broadly throughout the CNS [56,57], and
similarly MCH receptors (SLC-1) are distributed equally broad in the
brain, with particularly strong in situ hybridization signals throughout
the cortex, including orbitofrontal, prelimbic, sensorimotor,motor and
piriform cortex, as well as in olfactory pathways, nucleus accumbens



Fig. 4. Co-existence of orexigenic (galanin) and anorexigenic (neurotensin) neuropep-
tides in the LHA was demonstrated in colchicine-treated reporter mice with green
fluorescent protein expression in galanin neurons (green) and co-staining for
neurotensin (red).

32 H.-R. Berthoud, H. Münzberg / Physiology & Behavior 104 (2011) 29–39
shell, striatum, hippocampus, locus coeruleus and NTS[58–60]. Similar
to other orexigenic peptides such as NPY and AgRP, MCH expression
levels increase with fasting and are restored to fed levels with leptin
injections [61]. Furthermore, intracerebroventricular MCH injections
increase food intake [62], and MCH overexpression leads to obesity
and insulin resistance [63], thus suggesting that MCH acts as a typical
orexigenic neuropeptide that may regulate and integrate various
aspects of feeding behavior [63].

Orexin neurons are distinct from MCH neurons and co-express
orexin-A and dynorphin [64]. Their projection pattern is equally
widespread throughout the brain, including dense projections to
areas in the brainstem and spinal cord, such as the locus coeruleus and
dorsal vagal complex [36,64–68]. Orexin-A acts via two receptor
isoforms (OxR-1 and OxR-2) that are also broadly expressed
throughout the brain. Orexin-A injections into the lateral ventricle
increase food intake [69] and systemic injection of an orexin receptor
antagonist decreases food intake [70]. Orexin knockout mice exhibit
hypophagia and narcolepsy [71]. However, in contrast to other
orexigenic neuropeptides such as MCH, orexin gene expression does
not increase by fasting but is strongly increased by leptin adminis-
tration [61,72,73]. Thus orexin is not a typical orexigenic neuropep-
tide and based on its striking effect on sleep–wakefulness regulation it
was suggested that the feeding related properties of orexin might be
secondary to its regulation of arousal (a sleeping animal does not eat)
[74,75] and regulation of arousal may well interact with other orexin
modulated behaviors such as reward and anxiety.

Neurotensin expressing neurons are not restricted to, but are
found abundantly in the lateral hypothalamic area [76], and centrally
administered neurotensin may suppress food intake by modulation of
the mesolimbic dopamine system [77,78]. Consistent with this
interpretation are observations that anorexigenic leptin action in-
duces neurotensin expression [79] and are suggested to involve leptin
receptor expressing lateral hypothalamic neurotensin neurons ([80]
and personal communication with Dr. Martin G Myers).

Galanin expressing neurons are found throughout most of the
brain, including the lateral hypothalamic area. When injected into the
paraventricular nucleus, galanin stimulates consumption of food,
particularly high-fat diets, and alcohol: Conversely, high-fat con-
sumption stimulates galanin gene expression in a positive feedback
manner [81,82]. Galanin expression is not changed by fasting or leptin
administration [83], but galanin deficient mice show enhanced leptin
sensitivity [84]. Several studies demonstrated that central galanin also
modulates the mesolimbic DA system [85–88], likely via galanin
actions in the ventral tegmental area [87], possibly involving galanin
projections from the paraventricular nucleus of the hypothalamus or
the locus coeruleus. However, given the intense co-localization of
galanin and neurotensin specifically in the perifornical area of the
lateral hypothalamus (Fig. 4, unpublished observations), galanin
expressing neurons in the lateral hypothalamic area may very well
contribute to the modulation of the mesolimbic DA system. More
recently, the role of galanin in stress related behavior as well as drug
addiction [89,90] has been intensely studied and is thought to involve
dopaminergic transduction (see review by Picciotto [91]).

CART expressing neurons are found scattered throughout the
lateral hypothalamic area and other brain areas [92]. Intracerebro-
ventricular CART inhibits food intake [93] and has effects on reward
and anxiety (for a recent review see [94]). Leptin induces and fasting
inhibits CART mRNA expression in the arcuate nucleus and more
moderately in the dorsomedial nucleus and medial parts of the lateral
hypothalamic area [93]. Research has been hindered by the absence of
an identified CART-receptor and lack of antagonists [94].

Most neurons in the lateral hypothalamic area express more than
one peptide and in addition may express either one of the classical
neurotransmitters glutamate or GABA. The physiological significance
of this co-expression of multiple neuotransmitters is in general not
well understood and has not been investigated specifically for inputs
to and downstream signaling of lateral hypothalamic neurons. Studies
in sympathetic neurons expressing the classical neurotransmitters
noradrenaline and acetylcholine together with the peptide NPY [95]
demonstrate a degree of segregation of transmitters in different
synapses [96] and preferential release of noradrenaline at low and
NPY at high firing frequencies [97,98]. If such principles apply to
lateral hypothalamic neurons it is conceivable that given neurons do
not rigidly excite or inhibit downstream neurons, but can preferen-
tially excite and inhibit downstreamneurons in an activity-dependent
and location-specific manner.

The new opto-genetic and designer drug tools are very promising
to answer some of these questions. In a recent study, AgRP and POMC
neurons were targeted with channelrhodopsin (ChR2) and light
induced stimulation, resulting in increased or decreased food intake
respectively, confirming earlier data (as reviewed by Schwartz [99]).
However, these studies also showed that the firing frequency in AgRP
neurons directly translated into feeding behavior (the higher the
firing frequency, the more intense the hyperphagia observed).
Furthermore, anorexia evoked by light stimulated POMC neurons
required functional MC4R signaling, as expected from earlier findings,
but orexigenic effects of optogenetically stimulated AgRP neurons
were surprisingly independent of melacocortin receptor function
[100]. These data are, however, consistent with other recent findings
showing that GABAergic, but melanocortin independent brainstem
inputs from AgRP neurons into the parabrachial nucleus are sufficient
to explain orexigenic actions from AgRP neurons [101].

In summary, the lateral hypothalamic area with its rich inputs and
outputs is in an ideal anatomical position to integrate both internal
and external information and access all major output axes, behavioral,
autonomic, and endocrine. However, much future research will be
necessary to identify the details of input–output relationships of
functionally specific sub-areas of the larger lateral hypothalamic area.
These studies show clear evidence that arcuate feeding circuits are
segregated into peptiderdic transmission and transmission via classic
neurotransmitters and much has to be learned for their relative
importance for feeding and other behaviors. Optogenetic tools will
allow the study of other hypothalamic neurons in discrete brain sites
and their functional (modulation of neuronal activity) and behavioral
importance.

3. Role of the lateral hypothalamic area in sensing of the
internal milieu

Sensing the internal milieu by the brain, including the availability
of nutrients, is fundamental for the orchestration of optimal adaptive
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responses under given environmental conditions. Although the
basomedial hypothalamus and caudal brainstem have been identified
as key areas involved in nutrient sensing (as reviewed in [102,103]),
there is accumulating evidence for a similar role of the lateral
hypothalamus and other brain areas. There are two ways by which a
brain area can sense availability of nutrients, through neural inputs
from primary nutrient-sensing areas elsewhere in the brain (or
periphery) and by direct action of nutrient availability signals on
neurons and glial cells within a given area. In the case of the lateral
hypothalamic area, neural inputs from both the arcuate nucleus and
the caudal brainstem (as discussed above) are likely to convey
information about the availability of nutrients, although the relevant
experiments necessary to demonstrate such a function, namely
selective elimination of these inputs, have not yet been carried out.

After food is ingested, a cascade of signals is generated along the
alimentary canal and the metabolic pathways in various organs after
absorption. Together, these hormonal, metabolite, and neural signals
provide comprehensive information regarding availability of nutri-
ents acutely and long-term. The gustatory system is at the interface
between environment and internal milieu and will be discussed
together with the other external sensory modalities below.
3.1. Glucose and insulin as signals for acute fuel availability

Glucose sensing was already a hot topic soon after the hypotha-
lamic centers were discovered. Using in vivo extracellular recording in
a number of species, the pioneering work of the Japanese researcher
Yutaka Oomura identified and characterized glucose sensitive
neurons throughout the central and peripheral nervous system,
including the lateral hypothalamus [104–106]. These and other earlier
studies from the pre-leptin era on food intake-related functional
aspects of the lateral hypothalamus are discussed in an extensive
review by Bernardis and Bellinger [107].

While many of the earlier in vitro studies used glucose concentra-
tions well above the physiological range found in normal brain tissue
[108,109], the general observation of glucose-inhibited and glucose-
excited neurons in the lateral hypothalamus was confirmed in studies
using more physiological glucose concentrations. Specifically, it was
demonstrated that while physiologically relevant glucose concentra-
tions decrease excitability and inhibit orexin neurons, they increase
excitability of co-mingled MCH neurons [110,111] and that a distinct
population of orexin neurons exhibits only a transient inhibitory
response to sustained rises in glucose levels, allowing cell firing to
maintain sensitivity to small fluctuations while simultaneously
encoding a large range of basal glucose concentrations [112].

It was originally thought that neuronal metabolism of glucose via
the GLUT2 glucose transporter, glucokinase and the ATP-sensitive
potassium channel (KATP) was necessary for glucose to change
neuronal excitability, but several alternative mechanisms of glucose
sensing have recently been described. First, the sweet taste receptor
T1R2 is expressed in lateral hypothalamus and may activate neurons
in a metabolism-independent fashion [113]. Second, orexin neurons
may function as lactate sensors, as lactate produced in astrocytes and
taken up by neighboring neurons through the monocarboxylate
transporter (MCT1/2) may sustain spontaneous activity of orexin
neurons and keep them sensitized for excitation by other stimuli,
independent of glucose [114].

With the availability of c-Fos immunohistochemistry as a neuronal
activity stain, it was also found that hypoglycemia induced by acute
insulin administration in rats stimulated neurons throughout the
lateral hypothalamic area, many of them co-expressing orexin [115].
A similar activation of lateral hypothalamic orexin and other neurons
was found after acute food deprivation in rats [116] and monkeys
[117], as well as after food restriction and 2-deoxy-D-glucose
administration in rats [118]. However, these studies do not rule out
activation of distant glucose sensing mechanisms and mediation by
neural inputs to the lateral hypothalamus.

Finally, in a recent study in mice, it was shown that the
transcription factor Foxa2, a downstream target of insulin signaling,
regulates the expression of orexin and MCH during fasting. Consti-
tutive activation of Foxa2 in the brain resulted in increased neuronal
orexin and MCH expression and increased food consumption,
metabolism, insulin sensitivity, and increased physical activity in
the fed state (reaching the level in fasted mice) [119].

3.2. Leptin as a signal for availability of stored nutrients

Within the hypothalamus, the arcuate nucleus, with its NPY and
POMC neurons, had been originally thought to play an exclusive role
in integrating metabolic signals such as leptin. But clearly, leptin
receptors are located in other hypothalamic areas such as the
ventromedial, dorsomedial, and premammillary nuclei, as well as
the lateral and perifornical areas, where they likely contribute to
leptin's effects on food intake and energy expenditure. Indeed with
novel transgenic tracing methods specific to leptin receptor expres-
sing neurons, it was it was shown that LHA leptin receptor neurons
modulate the mesolimbic dopamine system in the ventral tegmental
area. While some leptin receptor-bearing lateral hypothalamic
neurons project directly to the ventral tegmental area [72], they
also locally synapse onto orexin (but notMCH neurons), which in turn
also project to dopamine neurons in the ventral tegmental area [73].
Furthermore, leptin action in these lateral hypothalamic neurons,
some of which also co-express neurotensin (personal communication
with Dr. Martin G. Myers), increases orexin gene expression and
decreases food intake [73]. Thus, orexin neurons do not themselves
express leptin receptors but receive input from neighboring leptin
receptor-expressing neurons [73] (Fig. 3). In addition, leptin respon-
sive POMC/CART and NPY/AgRP neurons in the arcuate nucleus
project to the lateral hypothalamus [27] and some of themmake close
anatomical contacts with orexin and MCH neurons [27,120]. It will be
interesting to determine whether these two leptin-sensitive inputs to
orexin neurons play different roles.

3.3. Signals from the gut

Ghrelin, a hormone secreted mainly from the gastric mucosa and
showing the highest circulating levels in the absence of digestible
nutrients, increases c-Fos expression in orexin but not MCH neurons
when administered intracerebroventricularly [121,122] and directly
depolarizes and increases firing frequency of orexin neurons in vitro
[123]. Local administration of ghrelin into the lateral hypothalamic
area increases food intake and wakefulness [124] and central
pretreatment with anti-orexin antibody attenuated peripheral ghre-
lin-induced increase in food intake [121]. These findings strongly
suggest that at least one site of action for endogenous ghrelin to
stimulate arousal, foraging, and appetitive behavior is orexin neurons
in the lateral hypothalamus [123].

A potential role for the lateral hypothalamic area in the effects on
food intake by other gut hormones is much less clear. Although, as
expected from a putative satiety hormone, direct lateral hypothalamic
injections of GLP-1 suppressed and its receptor antagonist Exendin-9
increased short-term food intake in rats [125], GLP-1 unexpectedly
depolarized orexin neurons and increased their spike frequency in
vitro[126]. It is thus not clear whether the two gut hormones ghrelin
and GLP-1, which have clearly opposite effects on food intake, act on
different populations of orexin neurons. Except for a report of no
effect of intraperitoneal injection of PYY(3–36) on orexin gene
expression in mice, there are no data available suggesting a role for
the LHA in the satiating effects of the other lower gut hormone PYY.

In addition to a direct action via the circulation and blood barrier
transport mechanisms, gut hormones and mechanical signals can
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potentially reach the lateral hypothalamic area via neural pathways
including vagal afferents and medullary-hypothalamic projections
including A2 catecholaminergic and GLP-1 expressing NTS neurons
[127,128]. Functional input from vagal afferents to lateral hypotha-
lamic neurons was demonstrated using extracellular recording
techniques in intact rats [129]. This latter study further showed a
remarkable degree of convergence on single lateral hypothalamic
neurons of inputs from various sources. About half of all neurons
tested responded to both vagal and cerebellar (somatic) input, and of
all neurons doubly responsive, 60% were also glucose sensitive. Also,
when the vagal and cerebellar inputs were stimulated simultaneously,
a summation of the responses was observed [129].

In summary, glucose, insulin, ghrelin, and leptin have been quite
convincingly demonstrated to directly act on various types of lateral
hypothalamic neurons and to provide negative (insulin, leptin) and
positive (ghrelin) feedback in the control of food intake. However, the
specific circuitries and physiological roles of glucose-inhibited and
glucose-stimulated neurons within the lateral hypothalamic area
remain unclear.

3.4. Role of the lateral hypothalamic area in monitoring environmental
stimuli and conditions

3.4.1. Olfactory, gustatory, somatosensory, and visual and information.
Using single unit recording in intact animals, it was already shown
during the height of the hypothalamic feeding center days that lateral
hypothalamic neurons in the far-lateral hypothalamus receive
olfactory and gustatory input [130–134]. Gustatory pathways from
the parabrachial taste area to the lateral hypothalamus were
confirmed with tracing techniques [135]. Extensive studies in Rhesus
monkeys further identified both glucose excited and glucose inhibited
LH neurons as recipients of olfactory and gustatory inputs [136–139].
The lateral hypothalamus also receives direct, monosynaptic input
from nociceptive neurons in the spinal cord [140] and periaqueductal
gray [141], and noxious stimuli increased Fos protein expression in
orexin neurons [142].

3.5. Threat and stress

Besides input from nociceptive somatosensory afferents, orexin
neurons are activated by immobilization and cold stress [143].
Because it was demonstrated that corticotrophin-releasing factor
(CRF)-immunoreactive terminals make direct contact with orexin
neurons and that CRF increases the firing rate of a subpopulation of
orexin neurons in a CRF receptor-1 dependent fashion, it is likely that
stress-induced arousal depends on a CRF-orexin pathway [143,144].

4. The LHA and behavioral effector pathways

4.1. Reward seeking

As mentioned in the introduction, one of the hallmarks of the
lateral hypothalamus is its support of electrical self-stimulation, but
that because of the indiscriminate activation of local neurons and
fibers of passage with electrical stimulation, its underlying neurology
is far from clear. Recent studies strongly implicate projections of
lateral hypothalamic orexin neurons to the midbrain ventral tegmen-
tal area in this behavior. Orexin fibers innervate ventral tegmental
dopamine neurons [145–147] which express orexin-1 receptors [148–
150], and both dopaminergic and non-dopaminergic neurons in the
ventral tegmental area are excited by orexins [151,152]. Ventral
tegmental area orexin signaling is involved in cocaine and morphine-
induced hyperlocomotion and place preference through the meso-
limbic dopamine system, partly by potentiating NMDA-mediated
excitatory currents in dopaminergic neurons [150,152]. Orexin-
deficient mice are less susceptible to develop drug dependence
[153], and orexin injection into the ventral tegmental area can
reinstate an extinguished preference for drugs of abuse [154].

Our own observations implicate lateral hypothalamic orexin
neurons in natural food reward. We used nucleus accumbens mu-
opioid-induced intake of palatable food that was pioneered by the
group of the late Anne Kelley as a model of reward-driven food intake
in metabolically satiated rats [155–159], which is accompanied by
activation of orexin neurons in the perifornical lateral hypothalamus
[158,160], and can be blocked by inhibiting lateral hypothalamic
activity with GABA receptor agonists [158] or glutamate receptor
antagonist [48]. This suggests that glutamatergic neurons within the
hypothalamus mediate the response, consistent with the finding that
accumbens shell projections terminate in the anterior LH, rich in
glutamatergic neurons that connect with orexin neurons in the more
posterior lateral hypothalamus [30]. Because medium-spiny accum-
bens output neurons express GABA, the most parsimonious explana-
tion is that stimulation of food intake is mediated by GABA-
projections from the accumbens to the lateral hypothalamic area.
These projection neurons seem to be normally (tonically) active and
inhibit certain lateral hypothalamic neurons (e.g. orexin neurons)
probably by presynaptically inhibiting glutamate release from local
interneurons (Fig. 3). Inhibition of accumbens-lateral hypothalamus
projection neurons leads to an arrest of GABA release from their
terminals, disinhibition of these lateral hypothalamic neurons, and
increased food intake. This model would fit the observation that
activation of NMDA receptors in the lateral hypothalamus by
glutamate is necessary for food-deprivation-induced food intake
[161] and that injection of the GABA-antagonist bicuculline into the
anterior lateral hypothalamic area increases ingestion of sweet milk
[162].

Using this nucleus accumbens-driven intake of high-fat food in
satiated rats, we showed that local bilateral injection of orexin
receptor-1 antagonist into the ventral tegmental area blocked
accumbens-induced palatable food intake [163] (Fig. 5). Findings by
Harris and Aston-Jones suggest that largely separate orexin neuron
populations in the lateral (lateral to fornix) andmedial portions of the
lateral hypothalamic area mediate reward- and stress-guided behav-
iors, respectively [154,164,165]. In contrast, we found significant
increases in Fos-activated orexin neurons after accumbens DAMGO
only in the perifornical area, but not in the more lateral orexin neuron
population [163]. There is considerable literature demonstrating that
metabolic stress such as food deprivation and restriction, insulin-
induced hypoglycemia, and 2DG-induced glucoprivation, activates
orexin neurons [115–118], although such activated orexin neurons
can be found in both the medial and lateral fields [118]. Given the
importance of the hypothalamic orexin neurons in these diverse
functional aspects, it will be important to further examine functional
specificity of subpopulations [166].

In addition, orexin neurons feed back specifically to cholinergic
striatal interneurons via the paraventricular nucleus of the thalamus
[167]. The seminal work by the group of Berridge and colleagues
identified a “liking” hotspot in the shell of the nucleus accumbens
where mu-opioid activity enhances positive hedonic reactions to
palatable foods in rats [168,169]. Together, these findings strongly
suggest a role for an accumbens—LH orexin—VTA circuit in the
expression of natural food reward.

While most of the above described experiments use pharmaco-
logical levels of drug applications, it remains elusive if endogenous
orexin levels stimulate dopaminergic VTA neurons and if this would
translate into DA release and behavioral changes. A recent study by
Tsai et al. [170] used an optogenetic approach to test the behavioral
effects of different firing frequencies in dopaminergic DA neurons in
the VTA. The study convincingly showed that light evoked high
frequency phasic firing, but not low frequency tonic firing, caused a
conditioned place preference and transient DA release in the nucleus
accumbens [170]. Therefore, phasic dopaminergic activity is sufficient
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to evoke behavioral conditioning. Thus, future experiments using
neuron specific stimulation/inhibition of LHA (e.g. orexin) neurons
should reveal exiting new insights linking neuronal activity with
appetitive behavior and reward function.

4.2. Food intake

Although reward seeking is an important component, a number
of other neural systems are required for the orchestration of
ingestive behavior. These include access to appropriate oro-motor
and locomotor functions and its autonomic support, which are
generally organized in the hindbrain and spinal cord. One approach
we and others have used to address hindbrain participation in
orexin-induced food intake is 4th ventricular administration of
orexin in rats [68,171]. We demonstrated that sub-populations of
about 20% and 10% of lateral hypothalamic orexin and MCH neurons,
respectively, project to the nucleus of the solitary tract and dorsal
motor nucleus with axon terminals in close contact to neurons
expressing tyrosine hydroxylase and GLP-1, both allegedly involved
in satiation and suppression of food intake. Similar contacts were
frequently observed with neurons of the nucleus of the solitary tract,
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Fig. 5. Orexin-1R antagonist administration into the VTA blocks high-fat intake induced
by accumbens administration of DAMGO. a: Vehicle or the orexin receptor antagonist
SB334867 (15 nmol/side) was injected into the VTA and saline or DAMGO (250 ng) into
the nucleus accumbens after overnight access to high-fat chow for pre-satiation. The
robust DAMGO-induced feeding response over saline baseline (pb0.001) was almost
completely abolished by VTA pretreatment with the orexin receptor antagonist. In
animals with either one or both of the bilateral cannula tips not within the VTA, the
orexin receptor antagonist was unable to block DAMGO-induced high-fat feeding. Bars
that do not share the same letter are significantly different from each other (based on
ANOVA, followed by Bonferroni-adjusted multiple comparisons test, pb0.05). b:
Verification of orexin receptor antagonist injection sites aimed at the VTA. Striped
circles depict animals with both sites within the VTA (n=11), gray circles depict
animals with one or both sites outside the VTA (n=6), and diamond-filled circles
depict animals with unilateral injections (n=2). Injection sites are superimposed on
images from the Paxinos and Watson stereotaxic atlas.
activation of which by gastrointestinal food stimuli was demon-
strated by the expression of nuclear c-Fos immunoreactivity, and
orexin-A administration to the fourth ventricle induced significant
Fos-expression in many of the catecholaminergic neurons. Finally,
fourth ventricular orexin injections significantly stimulated chow
and water intake in nonfood-deprived rats, and direct bilateral
injections of orexin into the dorsal vagal complex increased intake of
palatable high-fat diet [68].

To further characterize the role of hindbrain orexin signaling in
ingestive behavior, Baird and colleagues used sucrose licking
microstructure analysis [171]. Fourth ventricular administration of
orexin increased bothmeal size andmeal frequency. Prolongingmeals
without affecting early ingestion rate or lick burst size suggested that
orexin affected inhibitory postingestive feedback rather than taste
evaluation [171]. This interpretation was supported by the observa-
tion that third ventricular orexin, while still able to increase meal
frequency, was no longer able to increasemeal size in rats with lesions
of the area postrema and adjacent NTS [171]. Together, the findings
suggest that areas in the hindbrain mediate the increase in
consummatory (meal size) and the hypothalamus and other forebrain
sites mediate the appetitive (meal frequency) components of orexin-
induced hyperphagia.

The hypothalamic effect on meal frequency (meal initiation) could
be mediated by orexin projections to the arcuate nucleus NPY/AgRP
and POMC/CART neuron populations [172]. Specifically, POMC
neurons are presynaptically inhibited by orexin in vivo[173]. This
pathway may also play a permissive role in food intake induced by
mu-opioid stimulation of the nucleus accumbens [160].

In summary, we have come a long way in better understanding
what is happening in the classical “feeding center”. A circuitry that
includes at least parts of the lateral hypothalamic area, the midbrain
dopamine system with its numerous cortico-limbic targets, and the
nucleus accumbens, appears to be important for reward seeking and
the initiation of appetitive behavior. Equally important circuits
including reciprocal connections with the medullary oromotor
pattern generators and projections to the brainstem and spinal cord
autonomic preganglionic neurons prepare the internal milieu for an
ingestive bout and sustain ingestive behavior.
5. The LHA and autonomic effector pathways

5.1. Gut, pancreas, and hepatic functions

Again, electrical stimulation and lesions of the LHAwere the first to
show changes in gastrointestinal [174], pancreatic [175], hepatic
[176,177], and adipose tissue functions [178], as mediated by the
sympathetic and parasympathetic nervous system. However, only the
discovery of neuropeptides and other technological advances made it
possible to identify the specific pathways and confirm some of these
earlier claims.

We demonstrated that local administration of minute amounts of
orexin-A into the dorsal motor nucleus of the vagus nerve increased
gastric motility and intragastric pressure [179]. Together with
demonstrating orexin receptor-1 on gastric retrogradely identified
vagal motor neurons [179,180] and our anatomical findings discussed
above, these observations strongly suggest that lateral hypothalamic
orexin neurons can directly influence gastrointestinal functions via
vagal excitatory motor neurons in preparation for handling ingested
nutrients. Similarly, central orexin administration appears to stimu-
late pancreatic exocrine secretion in a vagus-dependent but gastric
acid secretion-independent fashion [181], and hypoglycemia-induced
increases in vagal efferent signaling to the pancreas depends on
orexin-signaling in the dorsal motor nucleus of the vagus [182].

Orexin projections to the spinal cord appear to specifically
innervate sympathetic preganglionic neurons, which are activated

image of Fig.�5
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and synchronized by orexin in an orexin receptor-1 dependent
fashion [183].

5.2. Energy expenditure

We also examined in detail orexin-A innervation of the caudal
raphé nuclei in the medulla, known to harbor sympathetic pregan-
glionic motor neurons involved in thermal, cardiovascular, and
gastrointestinal regulation. All three components of the caudal
raphé nuclei, raphé pallidus, raphé obscurus, and parapyramidal
nucleus, are innervated by orexin-A-immunoreactive fibers [184].
Using confocal microscopy, we demonstrate close anatomical appo-
sitions between varicose orexin-A immunoreactive axon profiles and
sympathetic premotor neurons identified with either a transneuronal
retrograde pseudorabies virus tracer injected into the interscapular
brown fat pads, or with in situ hybridization of pro-TRH mRNA [184].
Furthermore, orexin-A injected into the fourth ventricle induced c-Fos
expression in the raphé pallidus and parapyramidal nucleus [184].
These findings suggest that orexin neurons in the hypothalamus can
modulate brown fat thermogenesis, cardiovascular, and gastrointes-
tinal functions by acting directly on neurons in the caudal raphé
nuclei, and support the idea that orexin's simultaneous stimulation of
food intake and sympathetic activity might have evolved as a
mechanism to stay alert while foraging [184].

Fourth ventricular administration of melanin-concentrating hor-
mone in freely moving rats decreased core body temperature but did
not change locomotor activity and food and water intake [58]. We
conclude that the rich hypothalamo-medullary melanin-concentrat-
ing hormone projections in the rat are mainly inhibitory to nucleus of
the solitary tract neurons, but are not involved in the control of food
intake. Projections to ventral medullary sites may play a role in the
inhibitory effect of melanin-concentrating hormones on energy
expenditure [58,185].

6. Conclusions and perspective

An exciting new discovery more than 50 years ago showed that
electrical stimulation of the lateral hypothalamic area induces feeding
and self-stimulation behavior. However, only the continuous progress
in neuroanatomical, neurochemical, and genetically-based techniques
has allowed us to have at least a glimpse of understanding the
neurology behind these phenomena. As could have been suspected
50 years ago, the lateral hypothalamus “does it not alone”; it is the
rich connectivity with key downstream effector circuits and mecha-
nisms and feedback from themetabolic periphery that underlies these
phenomena. Despite these new insights, there are still more questions
than answers. One issue is the connectivity and functional specificity
of lateral hypothalamic sub-areas. Are all orexin or MCH neurons
serving the same physiological functions, or are there different orexin
or MCH-fields that serve different aspects of a unifying function or
different functions altogether? Another unsolved issue is the
physiological significance of co-expression of multiple classical and
peptide neurotransmitters in a given neuron. We believe the new
generation of methodological tools such as the ability to selectively
stimulate specific neurons will greatly facilitate exciting future
research.
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