
R

H

C
a

b

a

A
R
A
A

K
H
B
N
E
G
L
O
I

C

1

f
e
e

M
T

0
d

Behavioural Brain Research 209 (2010) 1–12

Contents lists available at ScienceDirect

Behavioural Brain Research

journa l homepage: www.e lsev ier .com/ locate /bbr

eview

ypothalamic nutrient sensing in the control of energy homeostasis

lémence Bloueta,∗, Gary J. Schwartza,b

Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States

r t i c l e i n f o

rticle history:
eceived 27 November 2009
ccepted 16 December 2009
vailable online 23 December 2009

eywords:
ypothalamus
rainstem
utrient sensing

a b s t r a c t

The hypothalamus is a center of convergence and integration of multiple nutrient-related signals. It
can sense changes in circulating adiposity hormones, gastric hormones and nutrients, and receives
neuroanatomical projections from other nutrient sensors, mainly within the brainstem. The hypotha-
lamus also integrates these signals with various cognitive forebrain-descending information and
reward/motivation-related signals coming from the midbrain-dopamine system, to coordinate neu-
roendocrine, behavioral and metabolic effectors of energy balance. Some of the key nutrient-sensing
hypothalamic neurons have been identified in the arcuate, the ventro-medial and the lateral nuclei of the
hypothalamus, and the molecular mechanisms underlying intracellular integration of nutrient-related
nergy balance
lucose homeostasis
ipid metabolism
besity

nsulin resistance

signals in these neurons are currently under intensive investigation. However, little is known about
the neural pathways downstream from hypothalamic nutrient sensors, and how they drive effectors of
energy homeostasis under physiological conditions. This manuscript will review recent progress from
molecular, genetic and neurophysiological studies that identify and characterize the critical intracellular
signalling pathways and neurocircuits involved in determining hypothalamic nutrient detection, and link
these circuits to behavioral and metabolic effectors of energy balance. We will provide a critical analysis

of current data to identify ongoing challenges for future research in this field.

© 2010 Published by Elsevier B.V.
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. Introduction for multiple deleterious cellular consequences across diverse cell
types, responsible for a variety of metabolic dysfunctions associ-
Obesity has reached epidemic levels worldwide, accounting
or multiple comorbidities, including diabetes, cardiovascular dis-
ase, hypertension, stroke, and neuropathy. Cellular exposure to
xcess nutrients in obesity is emerging as a common putative cause
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ated with obesity [76,190]. To prevent nutrient excess, the body
relies on nutrient sensors that detect nutrient availability and
coordinate effectors of energy intake and utilization. Thus, con-
siderable attention is currently turned to the identification and
characterization of nutrient sensors and their downstream targets,
an integrative approach that may lead to effective treatment strate-

gies for obesity and related metabolic disorders.

The hypothalamus has emerged as one of the body’s main con-
centration of nutrient-sensing elements, and a major center of
convergence and integration of multiple nutrient-related signals

http://www.sciencedirect.com/science/journal/01664328
http://www.elsevier.com/locate/bbr
mailto:clemence.blouet@aecom.yu.edu
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Fig. 1. Intracellular mechanisms involved in hypothalamic neuronal nutrient
sensing. In response to changes in extracellular nutrient levels, hypothalamic
nutrient-sensing neurons exhibit specific excitatory or inhibitory electrical activ-
ity depending on their neurochemical phenotype. This figure depicts the main
described mechanisms or working models accounting for hypothalamic nutrient
sensing, irrespective of the cell’s neurochemical identity. Glucose-induced depo-
larization is believed to mainly occur through glucose intracellular metabolism,
production of ATP and closure of KATP channels. Glucose-induced hyperpolarization
could involve several mechanisms, metabolism-dependent through ATP-induced
Na+/K+ ATPase and Cl− channel activation or mitochondrial ROS production, or
metabolism-independent through sodium-glucose cotransport. Oleic acid detection
has been shown to involve similar metabolism-dependent mechanisms, as well as
oleic acid transport through CD36. Leucine hypothalamic detection involves activa-
C. Blouet, G.J. Schwartz / Behavio

130]. Within specific hypothalamic nuclei, subsets of neurons with
pecific neurobiological phenotypes are responsive to glucose, fatty
cids, amino acids and other fuel-related stimuli. In these nutrient-
ensing neurons, nutrients act as signalling molecules to engage a
omplex set of neurochemical and neurophysiological responses,
hereby regulating energy intake, the release of stored nutrients,
nd nutrient utilization in most tissues, thus compensating for
ncreased energy availability.

Some of the key nutrient-sensing hypothalamic neurons have
een identified in the arcuate (ARC), ventro-medial (VMN) and

ateral (LH) nuclei of the hypothalamus, and electrophysiolog-
cal evidence indicates that they exhibit specific excitatory or
nhibitory neurophysiological responses to changes in extracel-
ular nutrient levels [81,143,171,188]. They possess a unique set
f transporters, enzymes and ion channels that enable them
o detect and process nutrients. Although their neurochemi-
al identity remains to be further elucidated, some data clearly
ndicate that neurons of the melanocortin system – orexigenic neu-
ons that express both neuropeptide Y (NPY) and agouti-related
eptide (AgRP), and anorexigenic neurons that express proopiome-

anocortin (POMC), and their projections to neurons expressing
elanocortin receptors 3 and 4 (MC3 and 4R) – can directly sense

hanges in nutrient availability. POMC and NPY/AgRP neurons
re located within the ARC, considered as the primary integra-
ive center of the hypothalamus, ideally situated in the vicinity of
he 3rd ventricle and the median eminence, an area with a rela-
ively porous blood–brain barrier available to buffer extracellular
utrients and hormones. Anorexigenic POMC neurons depolar-

ze, whereas orexigenic NPY/AgRP hyperpolarize in response to
ncreased nutrient levels [20,56,80,81,135,146]. In the LH, hypotha-
amic glucose-inhibited neurons have been reported to correspond
o a neurochemically diverse group of cells, including wakefulness-
romoting hypocretin/orexin neurons [159], while glucose-excited
eurons correspond to cells containing melanin-concentrating hor-
one [28]. The neuropeptide phenotypes of VMN nutrient-sensing

eurons remain largely unknown.
Recent findings indicating that (1) hypothalamic nutrient sens-

ng is impaired in animal models of obesity [146], (2) disruption of
ypothalamic nutrient sensing induces obesity and dysregulation
f glucose homeostasis [74], and (3) restoration of hypothalamic
utrient sensing normalizes food intake, energy balance and glu-
ose homeostasis in overfed rats [151] underscore the relevance of
ypothalamic nutrient sensing in the regulation of energy balance
nd the pathophysiology of obesity and metabolic diseases. This
anuscript will review recent progress from molecular, genetic

nd neurophysiological studies that identify and characterize the
ritical intracellular signalling pathways, emerging neurocircuits
nd physiological effectors involved in hypothalamic nutrient sens-
ng, and provide a critical analysis of the available data to identify
urrent challenges for the research in this field.

. Cellular mechanisms involved in nutrient detection by
ypothalamic neurons

Various nutrient-sensing mechanisms and intracellular signal
ransduction pathways have been implicated in the ability of
utrient-sensing neurons to monitor the amount of available fuel

n the body (Fig. 1). The currently broadly diffused model supports
role for nutrient intracellular metabolism in hypothalamic nutri-
nt detection. In this model, ATP production and the associated
hanges in the ADP/ATP ratio are considered as the main metabolic

ignals of nutrient availability. This attractive unifying mechanism,
hich would account for neuronal detection of all 3 macronu-

rients, is being challenged by several observations underscoring
he considerable heterogeneity of nutrient-sensing neurons. Sev-
ral molecules are currently considered as gatekeepers of neuronal
tion of the mTORC1/p70 S6 kinase pathway, the Erk1/2 pathway, as well as leucine
intracellular metabolism, all of which potentially contribute to leucine-induced
depolarization.

nutrient-sensing pathways, varying in their association with intra-
cellular ATP levels, but much less is known about the transducers
that link these sensors to neuronal electrical or synaptic activity.

Nutrient sensing through nutrient metabolism and detection of
changes in available ATP was first proposed to account for hypotha-
lamic glucose sensing (reviewed in [106,148]). Similarly to glucose
sensing in pancreatic � cells [6], hypothalamic glucose sensing
would require glucose entry into the cell via the low affinity Glut2
transporter, phosphorylation by glucokinase, processing by the
TCA cycle to give rise to intracellular ATP levels, and inhibition
of ATP-inhibited K+ channels (KATP channels), resulting in calcium
influx and cell depolarization [116]. Some pharmacological and
genetic evidence, demonstrating the requirement of glucokinase
or KATP channels for glucose-induced hypothalamic neuronal depo-
larization or hyperpolarization, convincingly support this analogy
[84,85,124,146]. However, this model is challenged by several
observations showing that (1) intracellular ATP levels do not
increase in response to glucose in hypothalamic cells [2], (2) KATP
channels are not required for glucose sensing in the ARC [57] and
(3) some but not all glucose-sensing hypothalamic neurons express
Glut2, KATP channels or glucose kinase [85]. In addition, this model
is being questioned for glucose-inhibited neurons, although glu-
cose sensing through glucokinase [49] and intracellular metabolism
is supported by ATP-mediated activation of the hyperpolarizing
Na+/K+ ATPase [143] or ATP-dependent opening of Cl− channels
[56,171]. Recent observations rule out the role of glucokinase, glu-
cose metabolism and ATP production in glucose-inhibited neurons
glucosensing properties [66,172], and propose alternative mecha-
nisms. These include electrogenic entry of glucose through sodium-
glucose cotransporters (SGLT) [138,199] or non-transporting
glucose sensing through sweet taste receptors [156], but further

tests are needed to demonstrate their roles in glucose sensing.

Intracellular nutrient metabolism is also believed to be involved
in hypothalamic fatty acid sensing (reviewed in [100]). Accord-
ing to this model, increases in the intracellular pool of fatty
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cyl-CoA following fatty acid esterification would represent a
ey signalling component for hypothalamic fatty acid sensing by
ltering KATP channel activity [140]. To support this hypothesis,
uild-up of intracellular fatty-acyl-CoA following genetic or phar-
acological inhibition of carnitine palmitoyltransferase 1 (CPT1,

atty-acyl-CoA mitochondrial transporter required for fatty-acyl-
oA �-oxidation) drives behavioral and metabolic effectors of
nergy balance [139,151]. Further processing of fatty-acyl-CoA in
he mitochondria through �-oxidation, leading to ATP production
nd KATP channel closure has also been implicated, but neurophys-
ological data supporting this suggestion is scarce. Patch-clamp
ecordings have shown that oleic acid can both inhibit and activate
rcuate neurons [103,188]. This latter study, together with recent
ork of Jo et al. [81], confirmed a role for fatty acid intracellular
etabolism and KATP channels in oleic acid-induced depolariza-

ion or hyperpolarization of VMN neurons, as well as depolarization
f arcuate POMC neurons. Work from Le Foll et al. also indicates
hat oleic acid metabolism only accounts for part of hypothalamic
leic acid sensing, and implicates the fatty acid transporter CD36
s an alternative sensing mechanism [103]. In spite of these recent
dvances, well-defined mechanisms linking increased fatty acid
vailability to neuronal membrane polarization remain elusive.

More recent studies suggest that hypothalamic fatty acid sens-
ng relies on fatty acid-induced activation of novel PKC isoforms (�,
and �), similarly to what has been described in peripheral tissues

47,108]. Conflicting results, showing on one hand that fatty acid-
nduced activation of PKC� decreases glucose production [157], and
n the other hand that saturated fatty acid-induced PKC� activa-
ion inhibits PI3-kinase signalling and promotes insulin resistance
nd diet-induced obesity [12], underscore the need for further
valuation of this novel pathway in hypothalamic nutrient sens-
ng to identify potential neurochemical mediators and intracellular

echanisms linking PKCs to neuronal activity.
In line with the view that changes in intracellular ATP levels

epresent a critical signal for nutrient sensing in hypothalamic
eurons, recent data implicate the AMP-activated protein kinase
AMPK), activated in response to an increase in the AMP/ATP
atio, in neuronal nutrient sensing and the regulation of energy
alance in the ARC [126]. Electrophysiological evidence, show-

ng that pharmacological AMPK activation or inhibition affects the
lectrical response of glucose-inhibited neurons to glucose, sup-
ort this role [133]. Consistently, knockout of the �2 isoform of
MPK abolished glucose-induced excitation of arcuate POMC and
PY/AgRP neurons [36]. However, although recent work proposes

hat AMPK might drive changes in cytosolic Ca2+ [89], the transduc-
rs linking AMPK activity to membrane excitability are unknown.
everal findings indicate that AMPK might alter neuronal activity
y regulating intracellular malonyl-CoA levels: AMPK modulates
he activity of acetyl-CoA carboxylase (ACC), the enzyme responsi-
le for malonyl-CoA synthesis from acetyl-CoA, and malonyl-CoA
vailability regulates fat oxidation through the inhibition of CPT1
ctivity. Malonyl-CoA is considered as an important component of
ypothalamic nutrient sensing through this mechanism (reviewed

n [102]) and the intracellular malonyl-CoA pool responds to
ypothalamic glucose and fatty acid [191]. Jo et al. recently reported
hat malonyl-CoA alone does not affect POMC neurons excitability
ut blunts oleic acid-induced POMC neuron depolarization [81].
owever, the mechanisms linking malonyl-CoA availability to neu-

onal activity remain unknown.
Another metabolism-dependent but ATP-independent mech-

nism suggested to contribute to hypothalamic nutrient sensing

elies on mitochondrial production of reactive oxygen species (ROS)
y electron leakage during intracellular glucose and fatty acid
etabolism. This hypothesis is mainly supported by the obser-

ation that quenching ROS production prevents glucose-induced
lectrical activation of arcuate neurons [105], glucose-induced
rain Research 209 (2010) 1–12 3

hyperpolarization of 50% of glucose-inhibited neurons in the VMN
[103] and oleic acid-induced inhibition or activation of 10–20%
of VMN neurons [103]. This sensing mechanism has been related
to hypertriglyceridemia-induced anorexia [11] and might be par-
ticularly relevant in conditions of nutrient excess, since electrical
effects have been demonstrated at supraphysiological glucose
levels, and disappear at physiological glucose levels [103]. ROS-
induced activation of UCP2 has been linked to ROS-induced changes
in neuronal activity [5], and UCP2 inhibition depolarizes glucose-
excited neurons through a mechanism requiring ATP-induced
closure of KATP channels [146]. In addition, increased UCP2 activ-
ity in diet-induced obesity induces loss of glucose sensing in POMC
glucose-excited neurons [146].

Finally, recent data demonstrate that ARC neurons can also
sense changes in amino acid availability, and implicate this sensing
in the regulation of energy balance. Leucine administration into
the mediobasal hypothalamus (MBH) reduces food intake, both
through a rapid reduction in meal size and a longer term reduc-
tion in meal number, leading to a reduction in body weight gain
[20]. These behavioral effects are supported by electrophysiological
data demonstrating that increased leucine availability depolarizes
POMC neurons, and by studies showing that ARC administration
of leucine induces c-Fos expression in POMC neurons in vivo
[20]. The first molecular candidate suggested in neuronal amino
acid sensing was the mammalian target of rapamycin complex
1 (mTORC1), as pharmacological evidence revealed that mTORC1
inhibition blunted intra-cerebroventricular (icv) leucine-induced
anorexia and body weight loss [42]. Our work demonstrating that
bidirectional genetic manipulations of MBH p70 S6K1 activity, a
major effector of mTORC1, affect behavioral and metabolic deter-
minants of energy balance, provides further support for the role
of the mTORC1/p70 S6 kinase 1 pathway in MBH nutrient sens-
ing [21]. MBH Erk1/2, whose activation is critical to MBH leucine’s
effects on food intake and body weight [20], has also been identified
as another important transducer of MBH amino acid sensing.

Interestingly, amino acid intracellular metabolism has been
implicated in MBH amino acid sensing. MBH administration of both
�-ketoisocaproic acid, the product of leucine transamination, and
�-chloroisocaproic acid, a selective activator of leucine irreversible
decarboxylation, each decrease food intake and body weight gain,
indicating that endogenous MBH leucine metabolism generates a
signal that contributes to the regulation of energy balance. The final
product of leucine catabolism is acetyl-CoA, precursor of malonyl-
CoA. Thus, amino acid availability could represent yet another input
into the intracellular malonyl-CoA pool, suggesting a synthetic
framework for understanding the roles of MBH glucose, fatty acid
and amino acid sensing in the control of energy homeostasis.

Taken together, these data support an important role for
intracellular intermediates of macronutrient metabolism, used by
nutrient-sensing neurons to mediate the negative feedback control
of energy balance. Several interesting emerging concepts remain to
be investigated:

(1) The nutrient-sensing properties of glucose-, fatty acid-, and
maybe amino acid-sensitive neurons are plastic. As an exam-
ple, glucose responsiveness of glucose-sensing neurons varies
according to previous hypoglycemic events [86], and both
glucose- and oleic acid-induced neuronal activity are affected
by metabolic state in obese rodents [40,81], as well as by vari-
ous genetic and environmental factors, such as diet composition
and maternal obesity [104].
(2) Other nutrient-related signals, such as insulin and lep-
tin, have been reported to alter glucose and oleic acid-
sensing properties of hypothalamic nutrient-sensitive neurons
[43,81,136,173,174]. Hypothalamic detection of these adipos-
ity hormones plays a critical role in the regulation of energy
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Fig. 2. Neurocircuits activated by hypothalamic nutrient sensing. The melanocortin
system is the best-characterized circuit activated by hypothalamic nutrient sens-
ing. Anorexigenic POMC neurons and orexigenic NPY/AgRP neurons of the ARC
project to various nuclei involved in nutrient-driven circuits, including hypotha-
lamic nuclei PVN, VMN and LH. In turn, the ARC receives input from the VMN
and the LH; these two nuclei are inter-connected and both project to the PVN, an
important hypothalamic integration center. Orexins and MCH neurons of the LH
interact with the hypothalamic melanocortin system and integrate melanocortin-
ergic information with sensory inputs and reward/motivation-related information,
further processed by the ventral tegmental area (VTA) and the nucleus accumbens
shell (Nac) to determine food acquisition, hedonic assessment and reward value.
C. Blouet, G.J. Schwartz / Behavio

balance, and their intracellular signalling pathways share mul-
tiple components with nutrient-sensing pathways, such as KATP
channels [149], AMPK [126], or p70 S6 kinase 1 [21]. In addi-
tion, some hypothalamic neurons are excited by both glucose
and fatty acids [103,188]. How metabolic, hormonal, genetic
and environmental signals interact and are integrated at the
cellular levels remains to be determined, and this represents a
major challenge in the field.

3) Hypothalamic astrocytes can also detect changes in nutrient
availability and interact with hypothalamic neurons to generate
a response to these signals. This hypothesis has been substan-
tiated by the demonstration that hypothalamic glia responds
to increases in extracellular glucose levels through an increase
in glycolytic ATP production, which induces lactate release
from astrocytes [2,147]; lactate enters hypothalamic neurons
and depolarizes them through KATP channel closure [172], and
hypothalamic lactate sensing has been shown to regulate food
intake and hepatic glucose production [92,97]. Astrocytes are
also likely to be involved in oleic acid and amino acid sensing,
since astrocytes readily take up and utilize fatty acid as a major
source of energy [53], and selectively express the mitochondrial
isoform of the branched-chain amino acid transferase, allow-
ing them to participate to an astrocyte/neuron nitrogen shuttle
operating in parallel with the glutamate/glutamine cycle [79].
This role of hypothalamic glial cells in hypothalamic nutri-
ent sensing has been under evaluated thus far and requires
increased attention.

Ultimately, formal proof of the physiological relevance of
ypothalamic nutrient sensing may require the demonstration that
hese nutrient-sensing neurons directly respond to acute postpran-
ial changes in nutrient availability.

. Neurocircuits activated by hypothalamic nutrient
ensing in the regulation of energy balance

Recent advances, mainly achieved during the neurochemical
nd neurophysiological characterizations of the circuit activated
y the adipostatic hormone leptin, have begun to provide a good
escription of the anatomy of the neural pathways mediating the
ontrol of energy balance [51,193]. Several brain areas identified as
art of the circuit activated by leptin are also consistently activated
ollowing food consumption. These include the ARC, LH, VMN, par-
ventricular (PVH) and dorso-medial (DMH) hypothalamus, and
he dorsal vagal complex of the caudal brainstem (DVC), includ-
ng the nucleus of the solitary tract of the caudal brainstem (NTS),
he dorsal motor vagal nucleus (DMX), and the area postrema [82],
uggesting a role for various hypothalamic/brainstem circuits as
nterneuronal transduction pathways downstream hypothalamic
utrient detection (Fig. 2). However, in spite of the progress in

dentifying the intracellular mechanisms involved in hypothala-
ic nutrient sensing, and the growing number of characterized

ircuits that appear to be reasonable candidates linking hypotha-
amic nutrient-sensing neurons to effector pathways of energy
omeostasis, the neuronal events following nutrient detection by
rst-order hypothalamic neurons remain poorly characterized.

The ARC is considered as a primary nutrient-sensing cen-
er of the hypothalamus. Within the ARC, POMC and NPY/AgRP
utrient-sensing neurons represent the starting point of the best-
haracterized circuit involved in hypothalamic nutrient sensing,

he melanocortin system (reviewed in [41]). POMC neurons of
he ARC produce �-melanocyte stimulating hormone (�-MSH),
n anorectic peptide that acts on melanocortin receptors 3 and 4
MC3R and MC4R), whereas NPY/AgRP neurons inhibit POMC neu-
ons through GABA release, and antagonize their action through
The NTS receives projections from the ARC, PVN, VMN and LH, and integrates this
forebrain-descending nutrient and adiposity-related information with gut-derived
satiety signals to regulate multiple behavioral and metabolic effectors of energy
homeostasis.

AgRP, a high-affinity endogenous antagonist of MC3/4R. Arcuate
NPY and POMC neurons are also targets for locally released AgRP
and �-MSH from arcuate NPY and POMC neurons, as suggested by
data showing that (1) arcuate POMC neurons express MC4R (Blouet,
unpublished data), (2) arcuate NPY neurons express MC3/4R [131]
and (3) MC3/4R agonists depolarize whereas AgRP hyperpolar-
izes arcuate POMC neurons [169], adding further complexity to
the arcuate melanocortin system. Neurons expressing MC3/4R are
abundant in many hypothalamic sites, including the LH, VMN,
PVH and DMH hypothalamus, as well as in anterior hypothalamic
regions, the NTS and the spinal cord [132]. Likewise, NPY receptors
are widely expressed throughout the central nervous system. In the
hypothalamus, NPY receptors Y1, Y2 and Y5 are densely expressed
in the ARC, the PVH and the VMN [145].

The PVH, an important hypothalamic nucleus in the inte-
gration of autonomic and neuroendocrine information [144],
is one of the regions more densely innervated by POMC and
NPY/AgRP neurons [9,41]. While its role in the regulation of
pituitary hormone secretion through the release of several neu-
roendocrine factors (oxytocin, thyrotrophin-releasing hormone or
corticotropin-releasing hormone) is well characterized [87], less is
known about the PVH integration of melanocortin signals in the
regulation of energy balance. Data from neurophysiological stud-
ies demonstrates that: (1) individual neurons within the PVH are
capable of detection and integration of melanocortin signals, (2)
NPY and melanocortins are functional antagonists of each other
within the PVH in the regulation of feeding behavior, and (3)
melanocortin administration within the PVH regulates both feeding
behavior and energy expenditure [44]. PVH oxytocin fibers, acti-
vated by food consumption during a meal [82], innervate the NTS

[18,163] which integrates gut-derived satiety signals with descend-
ing input from the forebrain to limit meal size [15,128]. In vivo PVH
electrical stimulation releases oxytocin within the NTS [101], and
PVH oxytocinergic activation of meal size regulating NTS neurons
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as been implicated in the melanocortinergic control of feeding
19,94,111,117]. The importance of this circuitry in hypothalamic
utrient sensing was not supported until now. In our recent work,
e described the contribution of this functional neuroanatomi-

al forebrain–hindbrain circuit in MBH nutrient sensing and the
ontrol food intake [20]. Using a combination of electrophysiolog-
cal, immunohistochemical and pharmacological approaches, we
howed that MBH leucine-induced activation of arcuate POMC neu-
ons engages a forebrain–hindbrain circuit involving activation of
rcuate melanocortin signalling, PVN oxytocin neurons, and NTS
eurons to reduce food intake by a specific reduction in meal size.

The ARC also directly innervates several brainstem nuclei,
ncluding the NTS. Activation of brainstem MC4R has been shown
o affect NTS neuronal electrical activity and reduce meal size
67,189], which may occur through presynaptic modulation of
agal glutamatergic synaptic transmission, and enhancement of
agal afferent satiation signals from the gastrointestinal tract [186].
owever, the demonstration of a role for direct ARC to NTS
elanocortinergic projections in hypothalamic nutrient-sensing

ircuits requires further experimentation.
Interestingly, the activities of AMPK and Erk1/2, intracellu-

ar effectors of ARC nutrient sensing, have been shown to be
ltered in response to glucose, leptin or leucine outside the ARC,
n the PVN and the NTS [20,71,126], suggesting that second-
rder neurons may use similar intracellular effector pathways as
rst-order neurons to transduce the information. This sugges-
ion has been confirmed in the case of Erk1/2, activated in PVN
xytocin neurons and in the NTS in response to ARC leucine
dministration [20]. Reports proposing that PVN Erk1/2 signalling
s coupled to PVN or NTS MCR [46,178] suggest that PVN and NTS
rk1/2 activation is secondary to ARC activation of melanocortin
ignalling. Together with data supporting a role for NTS Erk1/2
s a molecular integrator of converging gut satiety signals and
orebrain adiposity signals [178,179], these data extend the inte-
rative role of Erk1/2 in the control of food intake to include the
eeding inhibitory consequences of MBH nutrient sensing, and
trongly support the role of hypothalamic Erk1/2 as an important
egulator and effector of feeding processes that has the poten-
ial to mediate both acute and long-term changes in neuronal
unctioning.

The VMN is another critical hypothalamic nutrient-sensing
egion, but the neurochemical identities of VMN nutrient-sensing
eurons are not well established. In parallel with directly sensing
utrients, the VMN also: (1) receives input from the ARC, includ-

ng melanocortinergic projections, and (2) sends projections to
he ARC, including direct glutamatergic projection to ARC POMC
eurons [177]. Furthermore, MC3/4R agonists inhibit glutamater-
ic excitatory VMN neurons [61]. The VMN also projects to many
ther hypothalamic and extra-hypothalamic areas, including the
VH, LH, DMH and the NTS [32,121,164]. Recent progress implicates
teroidogenic factor 1 (SF-1) neurons of the VMN in the regulation
f energy balance [17,88,204]. VMN SF-1 neurons express MC4R
nd release brain-derived neurotrophic factor (BDNF), a modula-
or of ingestive behavior [119,184,187]. In turn, melanocortinergic
one regulates BDNF expression [196]. Loss of function mutations
n BDNF receptor result in hyperphagia and morbid obesity in
uman and rodents [114,201]. Conversely, peripheral or central
DNF administration reduce body weight and food intake in mice,
upporting a role for BDNF as an important anorexigenic signal
ownstream of the melanocortin system [196]. Although some
vidence indicates that this circuit responds to changes in the nutri-

ional state or icv glucose [177,184], its relevance in hypothalamic
utrient sensing remains to be confirmed.

Last, the LH is the third hypothalamic region where nutrient-
ensing neurons have been clearly identified. In addition to
etecting available nutrients, LH neurons receive and integrate
rain Research 209 (2010) 1–12 5

sensory inputs and reward/motivation-related information, and
widely project to several areas in the hindbrain, cortex, limbic
system, thalamus and spinal cord, which enables them to engage
both behavioral and autonomic output systems [13]. Two specific
distinct groups of LH peptidergic neurons, containing melanin-
concentrating hormone (MCH) and orexins, have been suggested
to play significant roles in energy balance [160], at least in part
through interactions with the melanocortin system. Indeed, ARC
NPY/AgRP cells are surrounded by nerve terminals containing orex-
ins [134], orexins exert direct excitatory actions on ARC NPY/AgRP
neurons [185] and indirect inhibitory actions on ARC POMC neu-
rons [115]. These data support the suggestion that LH orexinergic
modulation of the ARC melanocortin system accounts for the
anorexigenic properties of orexins observed following ARC orexin
injections [134]. In turn, LH orexin neurons are in close apposi-
tion to ARC NPY-containing nerve terminals [25] and NPY robustly
inhibits orexin neurons [60], indicating a decrease in orexin cell
activity when ARC NPY neurons are active. However, the functional
significance of this neurophysiological negative feedback loop is
unclear. Orexin A fibers also innervate sympathetic premotor neu-
rons of the caudal raphe nuclei, and this circuit has been implicated
in the regulation of thermogenesis, cardiovascular and gastroin-
testinal functions [14].

LH MCH neurons are also believed to modulate ARC
melanocortinergic activity: ARC MCH injections increase ARC AgRP
release, decrease ARC �-MSH release, and increase food intake [1].
PVN and DMN MCH injections also depress feeding behavior [1],
and several pharmacological and genetic studies support a role
for MCH in the control of energy balance and glucose homeosta-
sis [112,165]. Recent evidence indicates that MCH is specifically
involved in the control of energy expenditure though projections
to the NTS [207]. Again, the relevance of MCH- and orexin-driven
circuits in hypothalamic nutrient sensing has not been directly
addressed so far. In addition, through their projections to the
nucleus accumbens shell and ventral tegmental area, both MCH
and orexins are involved in the hedonic control of feeding behavior
[63,206], but the potential role of LH nutrient sensing as a modula-
tor of these neural pathways remains unexplored.

Thus, how the information arising from hypothalamic nutrient
sensing is processed through candidate hypothalamic/brainstem
circuits to regulate behavioral and metabolic effectors of energy
balance remains poorly understood. In spite of the relative lack
of characterization of the neuronal circuits driven by hypothala-
mic nutrient detection, the downstream behavioral and metabolic
effectors important for energy balance are well identified.

4. Behavioral and metabolic effectors of energy balance
regulated by hypothalamic nutrient sensing

Several complimentary approaches have been used to demon-
strate links between hypothalamic nutrient detection and the
regulation of behavioral and metabolic effectors of energy home-
ostasis, including (1) 3rd icv or hypothalamic parenchymal nutrient
administration, (2) pharmacological or genetic manipulation of the
activity of hypothalamic intracellular effectors involved in nutrient
detection, and (3) interventions interfering with circuits involved
in relaying nutrient-related information from hypothalamic nutri-
ent sensors to effectors of energy balance. These approaches have
been valuable in identifying the effectors of energy homeostasis
regulated by hypothalamic nutrient sensing, including food intake,

pancreatic hormone secretion, hepatic glucose production, adi-
pose tissue metabolism and energy expenditure (thermogenesis,
adipose tissue metabolism, substrate utilization and locomotor
activity) (Fig. 3), and support a role for severe impairments
of hypothalamic nutrient-sensing pathways in the onset and
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Fig. 3. Behavioral and metabolic effectors of energy balance regulated by hypotha-
lamic nutrient sensing. Hypothalamic nutrient detection activates neurocircuits
involved in the regulation of feeding behavior, glucose homeostasis, adipose tissue
metabolism and energy expenditure. Neurons in the DVC integrate forebrain-
descending nutrient- and adiposity-related information with gut satiety signals to
regulate feeding behavior. Descending hypothalamic projections terminate on DVC
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nd adjacent caudal brainstem nuclei to determine autonomic outflow to several
ffectors of energy balance, including liver, pancreas and brown and white adipose
issues. Hypothalamic nutrient detection also regulates locomotor activity through

echanisms that remain to be identified.

aintenance of metabolic dysfunction. However, recent results
nderscore the need to develop more physiologically relevant
trategies to directly assess (1) the consequences of changes in lev-
ls of circulating nutrients during feeding/fasting transitions on
ypothalamic nutrient-sensing pathways and their downstream

unctional effectors, and (2) whether interfering with hypothala-
ic nutrient-sensing pathways could delay or prevent the onset of

besity or type 2 diabetes. This latter aspect of the field is currently
nder intensive investigation, in efforts to identify new thera-
eutic targets aimed at preventing the development of metabolic
iseases.

.1. Hypothalamic nutrient sensing and the regulation of feeding
ehavior

Food intake is a primary behavioral effector that has been iden-
ified as a target of hypothalamic sensing of all three macronutrient
pecies, as demonstrated both by studies considering the effect of
utrient infusions, and by approaches using pharmacological or
enetic tools to affect the hypothalamic activity of nutrient-driven
ntracellular effectors.

Systemic and central hypoglycemia induces meal initia-
ion [30,50,123,127]. Conversely, acute 3rd icv glucose infusion
ecreases food intake [33,96]. Central genetic deletion of the glu-
ose transporter Glut2 induces hyperphagia, and blunts 3rd icv
lucose-induced anorexia and 2-desoxyglucose-induced (2-DG)
eeding [8]. Likewise, adenoviral mediated bidirectional mod-
lations of MBH AMPK activity, an important glucose sensor,
eciprocally affect feeding behavior [126]. Results from these stud-
es, together with other similar work manipulating intercellular
ntermediates of hypothalamic glucose sensing [105,191], support

role for hypothalamic glucose detection in determining energy
ntake. However, recent findings question the physiological rele-

ance of hypothalamic glucose sensing in the regulation of feeding.
ndeed, spontaneous meals are preceded by a drop in circulating
lucose levels which is not accompanied by a fall in ARC and VMN
lucose levels [50], making it unclear whether acute changes of glu-
ose within the physiological range play a primary role in normal
rain Research 209 (2010) 1–12

meal initiation or termination. In addition, in spite of the role of
glucokinase in glucose-induced depolarization or hyperpolariza-
tion of VMH neurons [84], both acute and chronic alterations in
VMH glucokinase activity in adult mice failed to affect food intake
and body weight [50]. These data argue against a role for VMH glu-
cose sensing, at least through glucose intracellular metabolism, in
the regulation of feeding behavior. The divergent metabolic phe-
notypes of AgRP- and POMC-specific AMPK-null mice, the former
developing an age-dependent anorexic and lean phenotype while
the latter become hyperphagic and obese [36], further obscure the
physiological role of hypothalamic glucose sensing in the regula-
tion of food intake. These paradoxical data suggest that targeted
genetic deletions can lead to multiple, alternative compensatory
functions of central pathways regulating energy balance, thereby
limiting the interpretation of the data resulting from this experi-
mental approach.

Central fatty acid detection has also been implicated in the regu-
lation of feeding behavior. 3rd icv oleic acid administration inhibits
food intake [140], and genetic or pharmacological manipulations
of effectors involved in hypothalamic fatty acid sensing also affect
feeding behavior. This was first suggested by experiments showing
that central administration of the fatty acid synthase inhibitor C75
rapidly reduces food intake and body weight in lean and obese ani-
mals [95,110]. More recently, centrally administered C75 has been
shown to reduce meal frequency and hypothalamic AgRP expres-
sion [3], decrease gastrointestinal motility [107], and inhibit gastric
ghrelin secretion [77]. Although the pharmacological and neuronal
specificity of the metabolic consequences of central C75 adminis-
tration remains of concern, both because C75 induces widespread
neuronal activation when applied into the ventricle [62,125] and
because it may induce visceral malaise [37], results from other stud-
ies have confirmed the role of hypothalamic fatty acid metabolism
in the regulation of feeding behavior. Acute inhibition or chronic
deletion of hypothalamic CPT1 activity is sufficient to reduce food
intake [139,192] and overexpression of mediobasal-hypothalamic
malonyl-CoA decarboxylase (MCD), leading to a drop in the intra-
cellular pool of long-chain fatty acyl-CoA, increases food intake
and body weight gain [74]. However, circulating fatty acid levels
do not increase following food ingestion, and are elevated in the
fasted state as a consequence of lipolysis. Local processing of meal-
related triglycerides at the level of the hypothalamus could provide
fatty acids and related metabolites to nutrient-sensing neurons
during the postprandial state, which could account for this para-
dox. Clearly, further data are needed to confirm the physiological
relevance of hypothalamic fatty acid sensing in the regulation of
feeding behavior.

Last, 3rd icv leucine administration decreases food intake, and
this effect is blunted by rapamycin, a pharmacological mTORC1
inhibitor [42]. Our recent findings identified the MBH as a spe-
cific neuroanatomical site involved in central leucine sensing and
the regulation of feeding behavior. MBH leucine microinjection
rapidly reduces meal size, and decreases meal number over the
longer term [20]. Bidirectional genetic manipulations of MBH
p70 S6K1 activity, an important amino acid sensor activated in
the hypothalamus in response to a meal or to a hypothalamic
leucine injection, affect food intake specifically through changes
in meal size, a critical index of satiety processes [21]. Because
our results also indicate that blocking NTS oxytocinergic input
blunts the hypothalamic leucine-induced reduction in meal size
[20], these data link MBH leucine detection to the activation of
NTS satiety effector neurons implicated in the integrative control of

ingestion.

The hypothalamic melanocortin system is a critical feeding
regulatory circuit driven by hypothalamic nutrient sensing, as sug-
gested by data from studies showing that (1) glucose, oleic acid
and leucine directly affect the electrical activity of neurons of
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he melanocortin system [20,56,81,135], (2) 3rd icv glucose-, oleic
cid- or leucine-anorexia is associated with a reduction in NPY
nd/or AgRP hypothalamic expression [33,42,129,140], (3) cen-
ral 2-DG induces c-Fos immunoreactivity in NPY neurons and
PY is required for central 2-DG orexigenic effect [73,166] and

4) MBH leucine administration activates c-Fos immunoreactivity
n ARC POMC neurons [20]. Thus, findings evidencing a role for

elanocortin signalling in the regulation of food intake indirectly
upport a role for hypothalamic nutrient sensing in determin-
ng this behavior. POMC-null mice are hyperphagic and obese
200], PVH melanocortin administration decreases food intake
44] and centrally administered melanocortin receptor agonists
educe spontaneous and scheduled meal size [7]. MC4R-null mice
re obese, due to the combined effects of increased food intake
nd decreased energy expenditure [34,78,176], and PVH-specific
estoration of MC4R expression in MC4R-null mice restores normal
eeding [10]. Conversely, central administration of NPY increases
ood intake [155]. The role of NPY/AgRP neurons in the regulation
f feeding behavior has been questioned following the metabolic
haracterization of NPY-null mice, AgRP/NPY double knock-out
ice, or mice overexpressing NPY, each of which have normal food

ntake and body weight [52,153,175]. In contrast, induced selec-
ive ablation of NPY or AgRP neurons in adult mice results in acute
eduction of feeding [68,113]. These results suggest that chronic
ack of NPY during development may lead to compensatory changes
hat normalize regulation of food intake and energy expenditure in
he absence of NPY.

Together, these data support a role for hypothalamic nutrient
ensing in the regulation of feeding behavior, but several important
aveats remain:

1) Data directly supporting a role for hypothalamic nutrient
detection in the regulation of feeding behavior are mainly
those obtained following brain nutrient administration. In the
majority of cases, these data were collected following ventric-
ular nutrient administration, which allows widespread brain
nutrient exposure and does not restrict the observed effects
to the specific consequences of hypothalamic nutrient sens-
ing. In addition, it is impossible to know what extracellular
nutrient levels are produced in these studies, and very few
data are available to compare the injected doses to actual
postprandial extracellular nutrient concentrations at the level
of hypothalamic nutrient-sensing neurons. Whether changes
in levels of circulating nutrients during feeding/fasting tran-
sitions affect hypothalamic nutrient-sensing pathways and
their downstream functional effectors remains a matter of
debate.

2) Targeted genetic manipulation, albeit an elegant and power-
ful strategy that provides a window on the neurochemical
specificity of nutrient-sensing pathways, is often associated
with compensatory adaptations of central circuits regulat-
ing energy balance, which represent a major limitation to
the interpretation of the resulting data. This underscores
the need to develop new experimental strategies to mod-
ulate hypothalamic nutrient-sensing pathways acutely and
reversibly in neurochemically defined neuronal populations in
adult rodents.

3) Although we recently showed that hypothalamic administra-
tion of a melanocortin antagonist blunts MBH leucine-induced
anorexia [20], linkages between hypothalamic nutrient detec-

tion, activation of melanocortin signalling, and reductions in
food intake require more direct evidence.

4) The role of other nutrient-driven circuits, such orexin A, MCH
or SF1 circuits, in the regulation of feeding behavior remains
poorly characterized.
rain Research 209 (2010) 1–12 7

4.2. Hypothalamic nutrient sensing and the regulation of glucose
homeostasis

In addition to feeding, central glucose and fatty acid detection
has been related to the regulation of glucose homeostasis by affect-
ing endocrine function and endogenous glucose production. Both
vagal and sympathetic outflow to the pancreas and the liver have
been implicated in this regulation, as discussed below.

Central glucose detection has been primarily implicated in the
pancreatic counter-regulatory response to hypoglycemia. Intrac-
arotid glucose infusion activates sympathetic effector areas in
the hypothalamus [48], blocks hypoglycemia-induced secretion
of counter-regulatory hormones [16,59], and MBH 2-DG admin-
istration activates neurohumoral counter-regulatory responses
[22]. Furthermore, central pharmacological inhibition of glu-
cokinase, KATP channels, or AMPK, three intracellular effectors
of hypothalamic glucose sensing, blunt hypoglycemia-induced
counter-regulatory responses [54,70,122,124,161]. In addition,
some data indicate that central fatty acid detection alters pancre-
atic insulin secretion through alteration of sympathetic nervous
activity [38,45,118]. Thus, pancreatic endocrine function seems to
emerge as a potential physiological effector of hypothalamic nutri-
ent sensing in the regulation of glucose homeostasis, but supporting
data are sparse and lack anatomical and neurochemical specificity.
Central glucose detection by LH orexin A neurons has also been
implicated in systemic hypoglycemia-induced activation of vagal
efferent signalling to the pancreas [194], and 2-DG has been shown
to activate AMPK activity specifically in the ARC, VMN and DMN [4],
beginning to provide a characterization of the circuits involved in
the regulation of pancreatic responses to hypoglycemia secondary
to hypothalamic glucose sensing, but further studies are required
to identify and characterize the relationships between hypothala-
mic nutrient sensing, autonomic outflow, and pancreatic function
in the control of glucose homeostasis.

Central nutrient detection also modulates glucose homeostasis
through its role in the regulation of hepatic glucose produc-
tion. Hypothalamic autonomic output to the liver regulates
circadian plasma glucose rhythm and the hepatic expression of
glucose-metabolizing enzymes [29,83]. A link between hypotha-
lamic nutrient sensing and hepatic glucose production was
first suggested by studies showing that bidirectional changes in
hypothalamic insulin signalling affect hepatic glucose production
[141], through activation of PI3-kinase signalling, KATP channels
and efferent vagal nerve outflow to the liver [150]. Conditional
knock-out studies confirmed these conclusions and demonstrated
that insulin action specifically in AgRP-expressing neurons plays
a critical role in controlling hepatic glucose production [93].
Likewise, central leptin signalling modulates hepatic insulin sen-
sitivity and glucose production [27,64]. Because hypothalamic
insulin and leptin sensing involve detection mechanisms, intra-
cellular effectors and neural circuits similar to those engaged
during hypothalamic nutrient sensing, these data suggest a role
for hypothalamic nutrient sensing in the regulation of hepatic
glucose production. This suggestion is supported by data from
studies showing that 3rd icv administration of glucose or oleic
acid [99,140], as well as genetic or pharmacological manipula-
tion of MBH nutrient sensors such as CPT1, MCD, p70 S6 kinase 1
[74,139,142,151], affect hepatic glucose production, and this effect
requires the intact hepatic branch of the vagus nerve [98,100,152].
All these manipulations significantly affected the hypothalamic
expression of AgRP and NPY, suggesting a role for melanocortin

signalling in hypothalamic nutrient detection and the regulation
of hepatic glucose output. The first direct support for this role
comes from recent work of Parton et al., who showed that KATP
channel-mediated glucose sensing in POMC neurons is required
for glucose homeostasis. However, another study reported that
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isruption of glucose sensing specifically in POMC or AgRP neu-
ons through AMPK inactivation did not affect glucose tolerance or
nsulin sensitivity [36]. Thus, the role of melanocortin signalling
n hypothalamic nutrient detection and the regulation glucose
omeostasis remains unclear. Orexin A signalling has also been

mplicated in the regulation of hepatic glucose production, as 3rd
cv orexin A administration or pharmacological activation of orexin

circuits stimulate hepatic glucose production and induce hyper-
lycemia, and these effects are blunted by hepatic sympathetic
enervation [202]. However, the link to hypothalamic nutrient
etection is not established. Interestingly, central nutrient over-

oad has been suggested to impede hypothalamic nutrient sensing
nd thereby impair the hypothalamic regulation of hepatic glucose
roduction [120,142,205]. These results support a role for deficient
ypothalamic nutrient-sensing pathways in pathological situations
ssociated with nutrient excess, such as obesity and diabetes, as a
utative cause for metabolic dysfunction.

The role of hypothalamic nutrient detection in the regula-
ion of hepatic glucose production requires further study, both to
rovide better anatomical and neurochemical characterization of
ircuits activated downstream from nutrient-sensing neurons, and
o identify which circuits are required for the effect of centrally
dministered nutrients on hepatic glucose production. Significant
ontroversy persists regarding the physiological role of such indi-
ect regulation of hepatic function. Consequently, it is critical to
ssess the effects of hypothalamic nutrient detection on glucose
omeostasis in physiological settings.

.3. Hypothalamic nutrient sensing and the regulation of adipose
issue metabolism and energy expenditure

Hypothalamic nutrient sensing may also modulate adipose tis-
ue function mainly via central melanocortinergic circuits. MC3R
re primarily implicated in the negative feedback control of
etabolism but not feeding [34], whereas MC4R activation deter-
ines both feeding behavior and energy expenditure [10,35]. MC3R

ave also been shown to be required for the expression of anticipa-
ory patterns of activity and wakefulness during periods of limited
ood availability [180]. Both white (WAT) and brown (BAT) adi-
ose tissues are innervated by the sympathetic nervous system
31,203] and MC4R mRNA is expressed in sympathetic outflow
eurons to BAT and WAT [170,172]. Pharmacological or genetic
isruption of MCR promotes lipid uptake, triglyceride synthesis,
nd fat accumulation in WAT [137]. Conversely, 3rd icv admin-
stration of a melanocortin agonist increases sympathetic drive
o the WAT and BAT, plasma levels of lipolytic products, BAT
hermogenesis, and decreases body fat mass in Siberian Ham-
ters [23]. Similarly, both 3rd icv and 4th icv administration of
melanocortin agonist increases oxygen consumption and BAT

hermogenesis in conscious mice, and these effects are blunted
y the inhibition of neurons in the rostral raphe pallidus, sug-
esting that neurons of this brainstem nucleus are a critical relay
ite in the melanocortinergic regulation of energy expenditure
55]. Interestingly, PVH-specific restoration of MC4R in MC4R-
ull mice normalizes food intake but does not restore normal
nergy expenditure [10], suggesting that: (1) the melanocortin-
rgic control of energy expenditure relies on sites outside the
VN and (2) divergent MC4R populations mediate energy expendi-
ure and food intake. Consistently, an intact PVH does not seem
o be necessary for food deprivation-induced lipid mobilization
58], and chronic decerebration does not prevent the ability of 4th

cv or parenchymal raphe administration of melanocortin recep-
or agonists to induce thermogenesis in rats [167]. Thus, forebrain

elanocortin signalling and/or forebrain-brainstem communica-
ion are not required to produce thermogenic responses to central

elanocortin agonists. However, the apparent neuroanatomical
rain Research 209 (2010) 1–12

segregation of melanocortin receptor-expressing neurons impor-
tant in the regulation of food intake and energy expenditure is
challenged by recent observations that local microinjections of an
MCR agonist into the PVH, NTS, as well as other sites that drive
sympathetic outflow (rostral ventrolateral medulla, parabrachial
nucleus and retrochiasmatic area) all induced hyperthermia, tachy-
cardia, hyperactivity, anorexia and body weight loss [168]. Recent
data, demonstrating some fat-pad specific patterns of WAT sym-
pathetic drive across different lipid-mobilizing conditions, suggest
some heterogeneity in the sympathetic outflow to WAT and BAT
[24], but further studies are needed to fully characterize the role of
sympathetic tone in the regulation of adipose tissue metabolism.

Other indirect data support a role for hypothalamic nutrient
sensing in the regulation of adipose tissue metabolism and energy
expenditure. Centrally administered leptin, a known activator of
central melanocortin signalling that increases sympathetic neu-
ral outflow to several tissues [72,154,162], decreases WAT lipid
storage, both through increasing lipolysis [181] and decreasing
triglyceride synthesis [109]. More specifically, MBH leptin infusion
has been shown to inhibit WAT lipogenesis through a mechanism
requiring intact WAT sympathetic innervation [26]. Furthermore,
both orexin and MCH receptive neurons have been implicated in
the neural control of metabolism. LH orexin signalling is required
for fasting-induced increased wakefulness and activity [198] and is
involved in the sympathetic regulation of BAT thermogenesis [14].
Chronic 3rd icv MCH administration decreases body temperature
and energy expenditure [65], and central MCH agonist administra-
tion affects fuel utilization [69].

Lastly, genetic manipulations of hypothalamic intracellular
effectors support important linkages between hypothalamic nutri-
ent sensing and the neural control of metabolism. Mice lacking
AMPK in POMC neurons develop obesity through a decrease in
energy expenditure [36], CPT1c knock-out mice exhibit decreased
rates of fatty acid oxidation [192], and bidirectional genetic mod-
ulation of MBH p70 S6 kinase 1 activity is sufficient to produce
complementary bidirectional changes in adaptive thermogenesis in
rats, suggesting that this amino acid sensor regulates sympathetic
tone [21]. However, no data directly support a role for hypothala-
mic nutrient detection in the regulation of adipose tissue function
or energy expenditure. In fact, we recently found that MBH leucine
administration failed to affect any contributor to energy expendi-
ture in mice [20], in spite of the suggested role of hypothalamic
amino acid sensor p70 S6 kinase 1 I the regulation of adaptative
thermogenesis [21]. Thus, the links between hypothalamic nutrient
sensing and adipose tissue metabolism/energy expenditure need to
be more explicitly addressed.

5. Conclusions and future directions

This review of the current literature addressing the role of
hypothalamic nutrient sensing in the regulation of energy balance
underscores the need for more comprehensive and integrated stud-
ies linking hypothalamic nutrient sensors to forebrain/brainstem
neuronal circuits that, in turn, drive physiological and behav-
ioral effectors to determine energy homeostasis. Ideally, research
designs should pair physiological, pharmacological and genetic
manipulations with electrophysiological, behavioral and metabolic
observations to develop physiologically relevant models that char-
acterize neuronal circuits and identify specific effectors of energy
homeostasis. It will also be important to assess the tempo-

ral relationships between hypothalamic nutrient sensing, intra-
and extracellular events, and energetically relevant whole body
consequences of such sensing, which remain mostly unknown.
Adult onset loss- and gain-of-function assessments are preferred,
in that they circumvent compensatory developmental changes
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hat preclude the understanding of the role of the targeted sig-
alling pathway in developmentally normal animals. We have
eviewed data suggesting that: (1) the nutrient-sensing proper-
ies of nutrient-sensing neurons are plastic, affected by the body’s

etabolic state and environmental factors such as the diet compo-
ition, (2) nutrient excess impairs hypothalamic nutrient sensing
nd (3) impaired hypothalamic nutrient-sensing pathways con-
ribute to the onset of obesity and insulin resistance. Thus better
haracterization of the role of hypothalamic nutrient sensing in
he onset of metabolic disorders is critical to identify new poten-
ial therapeutic targets, and to determine whether interfering with
ypothalamic nutrient-sensing pathways could delay or prevent
he onset of obesity or type 2 diabetes. In this regard, it will be
mportant to evaluate hypothalamic nutrient sensing in polygenic

odels of diet-induced obesity and diabetes instead of lean rodents
odels or monogenic models of obesity.
Emerging properties of hypothalamic nutrient sensors should

timulate new interest, such as the role of fast-acting, small
olecule neurotransmitters in the regulation of energy balance.
ultiple hypothalamic neuronal subpopulations are GABAergic

nd glutamatergic [39,75] and a recent study reports that mice
acking the vesicular GABA transporter VGLUT2, required for gluta-

ate synaptic release, specifically in SF1 neurons are hypoglycemic
uring fasting [182]. Likewise, mice bearing an AgRP-specific dele-
ion of vesicular GABA transporter are lean, resistant to obesity and
ave an attenuated hyperphagic response to ghrelin [183]. Thus,
ABA release from AgRP and SF1 neurons is important in regu-

ating energy balance. Another underexplored area is the function
f serotonin signalling in hypothalamic nutrient detection, while
ts participation in the in hypothalamic regulation of energy bal-
nce is supported by several observations [197]. Finally, the role of
ypothalamic nutrient detection in the regulation of hypothalamic
eurogenesis or neurodegeneration is unknown, although these
rocesses have been implicated in the regulation of energy balance
90,91,158,195]. Progress in this field will be significantly advanced
y extending future investigations to include the study of: (1) neu-
opeptide signals and circuits outside canonical melanocortinergic
athways, (2) putative nutrient-sensing sites outside the MBH, and
3) neuronal and non-neuronal metabolic processes potentially
nvolved in nutrient sensing and the regulation of behavioral and
hysiological effectors of energy balance.
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