

Équations Différentielles 2

Contrôle continu

Exercice 1

Déterminer explicitement les solutions maximales des problèmes de Cauchy suivants :

1

$$y'(t) + t y(t) = t$$
, avec $y(0) = y_0 \in \mathbf{R}$.

 $\mathbf{2}$

$$y' = y + \sqrt{y}$$
, avec $y(0) = 1$.

3

$$Y' = \begin{pmatrix} 8 & 6 \\ -15 & -11 \end{pmatrix} Y + \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ avec } Y(0) = Y_0 \in \mathbf{R}^2.$$

Exercice 2

On considère l'équation du pendule simple (sans l'approximation classique du premier ordre!)

$$\ddot{\theta} + \frac{g}{l}\sin(\theta) = 0,$$

où g, l sont des constantes physiques strictement positives.

- 1 Montrez que les solutions maximales sont définies sur R.
- 2 Montrez que l'énergie totale (cinétique+ potentielle)

$$E = m \left(\frac{1}{2} l^2 \dot{\theta}^2 - g l \cos(\theta) \right),$$

où m>0 est une constante physique, est une intégrale première du mouvement (càd constante).

- 3 On suppose dans la suite que l'on lâche le pendule au temps $t_0 = 0$ à un angle $\theta(0) = \theta_0 \in]-\pi,\pi[$, avec une vitesse nulle $\dot{\theta}(0) = 0$. Montrez que pour tout $t \in \mathbf{R}$, $\cos(\theta) \geq \cos(\theta_0)$.
- 4 Sur tout intervalle I où $\dot{\theta} > 0$, écrire une équation du premier ordre à variable séparées dont θ est solution.
- 5 On suppose $\theta_0 \neq 0$. Étudiez la fonction sur l'intervalle $] |\theta_0|, |\theta_0|[$,

$$F(x) = \sqrt{\frac{l}{2g}} \int_0^x \frac{du}{\sqrt{\cos(u) - \cos(\theta_0)}},$$

et en particulier ses limites aux bornes de cet intervalle.

6 On suppose que $\theta_0 \in]-\pi, 0[$. Montrez que $\dot{\theta} > 0$ sur un intervalle maximal de la forme $]0, t_1[$, puis montrez que

$$t_1 = \sqrt{\frac{2l}{g}} \int_0^{\theta_0} \frac{du}{\sqrt{\cos(u) - \cos(\theta_0)}}.$$

- 7 Montrez que la solution θ est périodique, de période $2t_1$.
- 8 Montrez qu'il existe au moins une (autre) condition initiale $(\dot{\theta}(0), \theta(0))$ pour laquelle la solution n'est pas périodique.

Exercice 3

On considère une solution maximale (x(t), y(t)) de l'équation

$$\begin{cases} \dot{x} = -y + x(x^2 + y^2), \\ \dot{y} = x + y(x^2 + y^2), \end{cases}$$

définie sur un intervalle $]t^-, t^+[$, avec $(x(0), y(0)) = (x_0, y_0) \neq (0, 0)$.

- 1 Posons $f(t) = x^2 + y^2$. Calculez la dérivée de f.
- **2** Déduisez-en que $t^- = -\infty$ et $t^+ < +\infty$.
- 3 Transformez ce système en coordonnées polaires (ρ, θ) , càd en posant

$$\begin{cases} x = \rho \cos(\theta), \\ y = \rho \sin(\theta), \end{cases}$$

puis résolvez.

Exercice 4

On cherche à contrôler l'évolution temporelle d'un système linéaire

$$Y'(t) = A(t)Y(t) + B(t),$$

où $A(t) \in C^{\infty}(\mathbf{R}, M_n(\mathbf{R}))$ est une donnée du système. On a la condition initiale $Y(0) = y_0 \in \mathbf{R}^n$, et étant donné le choix d'un $y_1 \in \mathbf{R}^n$, on cherche une fonction $B : [0, 1] \to \mathbf{R}^n$ (appelée contrôle), de sorte à forcer la solution à satisfaire $Y(1) = y_1$.

1 On note S(t,s) la matrice résolvante du système. Montrez que la matrice

$$M = \int_0^1 S(1, s)^t S(1, s) ds,$$

est inversible.

2 L'espace des fonctions $L^2([0,1], \mathbf{R}^n)$ est un espace de Hilbert muni du produit scalaire

$$\langle B_1, B_2 \rangle = \int_0^1 {}^t B_1(s) B_2(s) ds.$$

Soit ϕ l'application linéaire $\phi: L^2([0,1],\mathbf{R}^n) \to \mathbf{R}^n$, définie par

$$\phi(B) = \int_0^1 S(1,s)B(s)ds.$$

Montrez que pour tout $w \in \mathbf{R}^n$, il existe un unique élément $B \in L^2([0,1],\mathbf{R}^n)$ tel que

$$\phi(B) = w,$$

qui soit de norme L^2 minimale parmi les autres solutions de cette équation, et que cet unique B est de la forme

$$B(s) = {}^tS(1, s)v,$$

où $v \in \mathbf{R}^n$ est un vecteur à déterminer en fonction de w.

3 En conclure, pour tout $y_1 \in \mathbf{R}^n$, l'existence d'un contrôle qui soit de classe C^{∞} , de norme L^2 minimale, et donner sa formule.