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Abstract Little is known about the distribution of the ‘value-at-risk’ (VaR)

estimate and the associated estimation risk. In the case of the normal VaR, the

key problem comes from the fact that it is estimated using a couple of

parameters whose estimates are distributed differently. Previous research has

either neglected uncertainty around the mean parameter, or resorted to

simulations. By contrast, this paper derives analytical results for the normal VaR

with the help of asymptotic theory and the so-called ‘delta method’. Properties

of the estimation errors are then explored in detail and the VaR estimation risk

is broken down into its various components. It is then shown, among other

things, that the fraction of error owing to mean uncertainty is limited in a

prudential context. In other words, the approximate approach defended by

Jorion and Chappell and Dowd is shown to still be relevant.
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INTRODUCTION
The ‘value-at-risk’ (VaR hereafter) is still

nowadays an important risk measure for

risk management purposes even if

significant limitations and warnings have

been exposed in the recent literature (see,

among many others, Artzner et al.1).

Among existing methods, the parametric

approach is rather popular for computing

VaRs. Among parametric specifications, the

normal VaR is often used (at least) as a

benchmark. (The assumption of normal

returns is not discussed in the rest of the

paper. Nevertheless, if portfolio or asset

returns are not normally distributed, the use

of standard normal VaRs for risk

management purposes should be

questioned. Typically, Christoffersen and

Gonçalves2 consider portfolio returns with

non-constant (conditional) variance. And

they show that a re-sampling technique

helps to assess the parameter estimation error

and construct VaR confidence intervals.)

Surprisingly, even in the standard

Gaussian world, little is known about the

distribution of the VaR estimate and the

associated estimation risk. In the normal

case, the key problem comes from the fact

that the normal VaR involves a couple of

parameters (a mean and a standard
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deviation) whose estimates are distributed

differently. It is well known in statistics that

the sample mean is exactly normally

distributed whereas the sample variance is

exactly chi-square distributed. According to

Kendall and Stuart3 (quoted by Chappell

and Dowd4), finding the exact confidence

interval for a function of two estimates

can bear ‘very considerable difficulty’. This

can partly explain why, in past research,

authors have either neglected the

uncertainty related to the mean parameter

or have resorted directly to simulations.

Typically, Jorion5,6 investigates the

estimation error of normal sigma-based

VaR where the mean parameter is set to

zero. Chappell and Dowd4 provide the

exact confidence interval for normal VaR

when the mean is supposed to be known

without uncertainty. These approaches

provide practical and rather simple ways to

compute confidence intervals. Yet, the

assumption they make can be viewed as

rather strong. To relax it, Dowd7 proposes a

pragmatic approach relying on simulation

(see Cotter and Dowd8 for further

developments in that direction). Summing

up, there is no analytical result for the exact

distribution of the normal VaR estimate,

nor analytical expression for associated

confidence intervals.

Interestingly, one can observe that all

these approaches refer to exact statistical

results such as the exact sampling

distributions. By contrast, the present paper

derives various analytical approximations

by exploiting the asymptotic theory of

statistics and the so-called ‘delta method’.

The asymptotic theory tells us that every

sample estimate approaches normality in

the limit as the sample size grows, while

the delta method allows us to describe the

variance of the normal VaR. Because

this paper accounts for the ‘mean’

uncertainty, it can be viewed as an

extension of the analytical approaches

exposed in Jorion5,6 and Chappell and

Dowd.4 Avoiding simulations, it offers a

pragmatic alternative to Dowd.7

The rest of the paper proceeds as

follows. The second section presents the

framework and formalises the motivations.

The third section derives the key results on

the asymptotic behaviour of the VaR

estimates and provides a couple of large

sample confidence intervals for normal

VaR. The next section discusses operational

and managerial implications of these results.

The final section aims at evaluating the

large sample results by comparison to

Chappell and Dowd4 in a framework

where the mean uncertainty is neglected.

NOTATIONS, FRAMEWORK
AND MOTIVATIONS
One can denote by Ps and

P&LtðDtÞ ¼ PtþDt � Pt values of the

portfolio and its associated profit and loss

over the next investment period ½t; t þ Dt�.
At time t, profits and losses as well as ‘ex

ante’ portfolio returns (computed by

P&LtðDtÞ=Pt) are random by nature.

The (return) VaR is then defined by the

strictly positive real number such that:

Pr
P&Lt Dtð Þ

Pt

� �VaRa

� �
¼ 1� a

where a is the VaR confidence level. In

applications, a lies between 95 per cent

and 100 per cent (this latter value being

excluded). It is typically equal to 95, 97.5,

99 or 99.9 per cent in ‘real life’ risk

management contexts. The normal VaR

asserts that returns are normally distributed.

Denoting by m the ‘true’ expected return

and s its ‘true’ standard deviation, the

normal VaR is then given by:

VaRa ¼ �m� sqa ¼ f m;sð Þ ð1Þ
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where qa stands for the ð1� aÞ� quantile

of the standard normal distribution.

Denoting by N the cumulative probability

function of the Gaussian distribution,

qa ¼ N�1½1� a�. The ‘true’ normal VaR

is therefore a bilinear function of the ‘true’

(unknown) mean and the ‘true’

(unknown) standard deviation. It must be

stressed that the use of the normal VaR is

fully justified when returns are normally

distributed. Otherwise, it is just a proxy for

the quantile associated to the ‘true’ data

generating process. In this view, equation

(1) appears especially credible if the ‘true’

distribution is well described by a couple of

parameters (the mean and the standard

deviation) and if it resembles the Gaussian

distribution in terms of symmetry and tails.

Otherwise, if (eg) the ‘true’ distribution is

asymmetric or fat-tailed, the normal

approach may be of limited interest.

Whatever the case, even in a normal

world, there exists a sampling problem

which is caused by the use of observed

data. A normal VaR estimate is actually

computed by:

dVaRa ¼ �bm � bsqa ¼ f bm ; bsð Þ ð2Þ

where bm and bs are (known) sample

estimates of the mean and the standard

deviation. Note that hereafter the subscript

in VaR is omitted.

The aim of this paper is to provide the

asymptotic distribution of the normal VaR

estimate, given that both estimates

(bm and bs) carry some degree of

uncertainty about ‘true’ values. This

approach is in sharp contrast with

previous research. For example,

Jorion5,6 provides the standard error of

the sigma-based VaR estimate, that

assumes m ¼ 0 with certainty.

Furthermore, the existing literature

dealing with normal VaRs has mainly

concentrated its attention on exact results

of statistical theory. Under the normal iid

assumption, unbiased sample estimates of

m and s2 on Tobservations are known

to be independent of each other and admit

the following exact distributions:

bm � N m;
s2

T

� �
; ð3Þ

T � 1ð Þ
bs2

s2
� x2

T�1 ð30Þ

where N denotes the normal distribution

and x2
T�1 is the chi-square distribution with

T � 1 degrees of freedom. Hence, as noted

by Chappell and Dowd,4 the chi-square

distribution alone provides the exact

confidence intervals for VaR, when the

mean m is known (or, more precisely, the

uncertainty of its estimate is neglected). To

relax this latter assumption, Dowd7 rearranges

expressions (3 and 3
0
) and states that the

normal VaR distribution is described by:

�N bm ; T � 1ð Þ
Tx2

T�1

bs2

� �
� qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � 1ð Þ

bs2

x2
T�1

s
:

One must however resort to Monte Carlo

simulation in order to estimate associated

quantiles. Expressions (3) and (3
0
) suggest

that exact formulae for the mean and the

variance of the normal VaR estimate are

simple to derive. Yet this is not as easy as it

may seem. A reason for this is that the

square root of the sample variance is a

downward biased estimate of the standard

deviation. Consult the Appendix for

further details on that point.

LARGE SAMPLE RESULTS
FOR NORMAL VAR
The following results benefit from the

asymptotic theory of statistics. They are

based on a) the asymptotic behaviour of

How valuable is your VaR?
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the estimates (of m and s2) and b) the

delta method. One solves the confidence

interval problem of VaR for the ‘large

sample’ case. The next section will

investigate theoretical results from a

managerial perspective.

Proposition 1. If portfolio returns are iid

and normally distributed, the asymptotic

distribution of the (centred and scaled) VaR

estimate is given by:

ffiffiffiffi
T
p dVaR � VaR

� �
�a N 0;Vg

� �
ð4Þ

where the ‘asymptotic’ variance is

Vg ¼ s2 1þ 1=2q2
a

� �
with a as the

confidence level. (Note that the asymptotic

variance is denoted by Vg (in lieu of a

more natural Va ) in order to avoid visual

confusion between a and a.)

Proof. Under the assumption that

returns are identically and independently

normally distributed, the asymptotic

distribution of the sample mean isffiffiffiffi
T
p bm � mð Þ�a N 0;s2ð Þ and that of

(centred and scaled) sample varianceffiffiffiffi
T
p bs2 � s2

� �
is N 0; 2s4ð Þ. Because the

normal VaR may be rewritten

VaRa ¼ �m�
ffiffiffiffiffi
s2
p

qa ¼ g m;s2ð Þ the

risk measure can be viewed as a

(non-linear) function of the variance.

VaR estimates can then be computed

with dVaRa ¼ g bm ; bs2

� �
where bm and bs2

are estimates of m and s2. Denoting by u

the column vector m;s2ð Þ0 (where 0

means transpose), the joint asymptotic

approximate distribution of the

corresponding estimator bu is given by:

ffiffiffiffi
T
p bu � u

� �
�a N 0;Vuð Þ

with Vu ¼
s2 0

0 2s4

� �
(remember the

independence result between bm and bs2).

Viewed as a function of bu ,

the asymptotic distribution of the

dVaR ¼ g bu� �
benefits from the delta

method. The delta method states that:

ffiffiffiffi
T
p dVaR � VaR

� �
�a N 0;Vg

� �

where:

Vg ¼
@g

@u

� �0
Vu

@g

@u

with:

@g

@u

� �0
¼ �1 � qa

2
ffiffiffiffiffi
s2
p

� �
.

This yields to:

Vg ¼ s2 þ 2s4

4s2
q2
a ¼ s2 1þ 1

2
q2
a

� �
.

It is interesting to note that s2=2 in Vg

admits a direct interpretation. It is the

asymptotic variance of the (scaled)

sample standard deviation (varð
ffiffiffiffi
T
p bsÞ).

So, Vg is the sum of two asymptotic

terms: the variance of the (scaled)

sample mean (var ð
ffiffiffiffi
T
p bmÞ) plus the

asymptotic variance of the (scaled)

sample standard deviation multiplied by

the squared normal quantile q2
a

� �
.

Various implications may be derived

from proposition 1. Standard errors and

confidence intervals for large samples

are exposed in the two following

corollaries. The first corollary focuses

on the normal VaR estimate (assuming

that the ‘true’ parameters are known).

The second one deduces from

proposition 1 lower and upper bounds

for the (unknown) theoretical or ‘true’

normal VaR when only estimates are

known. These results are clearly very

useful for controlling and testing

normal VaR.
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Corollary 2. For a large sample with size

T, the (theoretical) standard error of the dVaR

may be written:

S:E: dVaR
� �

¼ sffiffiffiffi
T
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
q2
a

r

¼ VaR þ mj j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2

a

p
qaj j

ffiffiffiffiffiffi
2T
p

ð5Þ

and the analytical (theoretical) ‘large sample’

confidence interval for the VaR estimate is:

VaR þ S:E: dVaR
� �

q1�b
2

, dVaR , VaR

þ S:E: dVaR
� �

q1þb
2

ð6Þ

with b being the chosen confidence level for

the VaR estimate.

Corollary 3. For a large sample with size

T, the ‘large sample’ confidence interval for

the normal VaR is:

dVaR �
b
S:E: dVaR

� �
q1þb

2

, VaR , dVaR

�
b
S:E: dVaR

� �
q1�b

2
ð7Þ

where the estimated standard error of the dVaR

is given by:

b
S:E: dVaR

� �
�

ffiffiffiffiffibs2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2

a

p
ffiffiffiffiffiffi
2T
p

¼ dVaR þ bm			 			
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2

a

p
qaj j

ffiffiffiffiffiffi
2T
p :

ð8Þ

with b being the chosen confidence level for the

VaR estimate. (The confidence level b

associated to the VaR estimate must not

be confused with a which is the

confidence level in the risk measure itself.

For a one-side test, the single bound is

easy to compute.)

DISCUSSIONS AND
MANAGERIAL IMPLICATIONS
This section discusses the results of the

preceding section with real-life concerns

in view. First of all, standard errors of the

normal VaR estimate, exposed in (5) and

(8), appear inversely proportional to the

square root of the sample size
ffiffiffiffi
T
p� �

. This

means that a financial risk manager who

wants to improve by a factor of two the

estimation accuracy needs to find four

times as much data ceteris paribus. Standard

errors also increase with the confidence

level a and grow proportionally with the

relative VaR (VaR þ m). Equations (5)

and (8) assess quantitatively how the

accuracy decreases, or how the estimated

risk measure is riskier, as one stands

further in the tail. To illustrate this,

Table 1 reports values offfiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2

a

p
= qaj j

ffiffiffiffiffiffi
2T
p

for different values of

a and T. Standard errors of normal VaR

can then be computed by multiplying the

corresponding relative VaR estimates to

values reported in Table 1, by using (8).

For instance, for a N 0; 1ð Þ distributed

return and T ¼ 250, standard errors of

the normal VaR are 1:64485� 0:059 �
0.0970 if a ¼ 95% and 2:32635�
0:052 � 0:1210 if a ¼ 99%. One can

verify in Table 1 that values decrease by a

factor of 2 when the sample size T

increases by a factor of 4. When 24

observations are used, standard errors

represent at least 15.9 per cent of the

relative VaR. It is lower than 5 per cent

for 250 observations.

The ‘2’ term under the square root of

equation (5) is directly related to the

mean uncertainty. This term therefore

disappears if m is known with certainty.

How valuable is your VaR?
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The standard error then becomesffiffiffiffiffibs2

p
=
ffiffiffiffiffiffi
2T
p

qaj j which is the result of

Jorion5,6 (known to be bs= ffiffiffiffiffiffi
2T
p

qaj j).
The uncertainty about the mean affects

the overall asymptotic standard error.

Inspired from Jorion,5,6 Figure 1

compares standard errors of the estimated

VaR for a one-year sample of daily data

(T ¼ 250) if one neglects the mean

uncertainty (‘J’ line for Jorion’s case) or

not. As expected, total standard errors are

systematically greater. Interestingly, the

difference is analytically given by

bs= ffiffiffiffiffiffi
2T
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ q2
a

p
� qaj j

� �
whereas the

ratio (ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2

a

p
=jqajÞ) remains first

constant with respect to the volatility and

secondly greater than 1. Overall, this

suggests that, for some confidence levels

a, the uncertainty on the estimation of

m should not be underestimated.

The total variance exposed in

proposition 1, Vg ¼ s2ð1þ 1=2q2
aÞ, may

furthermore be decomposed in two

terms: s2 and s2q2
a=2 that correspond to

the two sources of uncertainty. As a

result, the fraction of error caused by the

mean may be assessed by

s2=Vg ¼ 2=ð2þ q2
aÞ whereas the one

associated to the standard deviation is

given by q2
a=ð2þ q2

aÞ. Interestingly, both

fractions are independent of the variance

of the underlying return (s2). Moreover,

they are equal when 2 ¼ q2
a, ie for

Figure 1: Standard errors for normal value-at-risk

Note: This graph plots standard errors of the normal VaR if one neglects the mean uncertainty as in Jorion

(the ‘J’ line, or not).

Table 1: Asymptotic standard errors of normal value-at-risk for combinations of confidence level

and sample size (expressed in percentage of the relative value-at-risk)

T

a 12 24 48 52 250 500 1000

90.0% 0.304 0.215 0.152 0.146 0.067 0.047 0.033

92.5% 0.286 0.202 0.143 0.137 0.063 0.044 0.031

95.0% 0.269 0.190 0.135 0.129 0.059 0.042 0.029

97.5% 0.252 0.178 0.126 0.121 0.055 0.039 0.028

99.0% 0.239 0.169 0.119 0.115 0.052 0.037 0.026

99.9% 0.224 0.159 0.112 0.108 0.049 0.035 0.025

Note: The table displays different values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2

a

p
= qaj j

ffiffiffiffiffiffiffi
2T
p

useful to compute asymptotic standard errors of normal value-at-risk.
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ q2

a

p
= qaj j

ffiffiffiffiffiffi
2T
p

For a , a�, the

overall error is mainly caused by the

estimation error of the mean. As a result,

in a prudential context (where a is

typically above 95 per cent), the

estimation error on the mean is not the

main source of uncertainty. Figure 2

plots respective contributions of the m

and s estimation uncertainties on the

global variance Vg for different values of

a. As expected, lines cross at a� � 0:92

where both contributions are equal to 50

per cent. Figure 2 shows that, as a gets

larger, the uncertainty on the estimation

of s becomes more significant (relative

to that of m). This suggests that the

approximate approach of Jorion5,6 and

Chappell and Dowd,4 which neglects the

mean uncertainty, is especially relevant

for the largest values of a.

ASSESSING LARGE SAMPLE
RESULTS
To assess the above asymptotic results and

have a look at the small sample bias, large

sample confidence intervals may be

compared to confidence intervals

resulting from exact sampling

distribution. Clearly, results of

Chappell and Dowd4 appear

especially relevant for this exercise even

if they focus on the volatility

parameter. Actually, the volatility

estimate is not normally distributed so

that it can be the source of

mis-specification. On the contrary,

the mean estimate is normally distributed

and its uncertainty should not

dramatically affect the overall

performance of the asymptotic results.

Assuming that the mean is known

with certainty (Pr bm ¼ m½ � ¼ 1) and

exploiting equation (3
0
), Chappell and

Dowd4 state that the b–confidence

interval for the normal VaRa is:

� bm �
ffiffiffiffiffibs2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � 1ð Þ=q

x2
T�1

1þb
2

r
qa , VaRa

, �bm �
ffiffiffiffiffibs2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � 1ð Þ=qx2

T�1

1�b
2

r
qa

ð9Þ

Figure 2: Variance decomposition of the normal value-at-risk estimate

Notes: This figure plots the decomposition of the asymptotic variance of the (centred and scaled) normal

value-at-risk as defined in equation (4). The ‘s’ line stands for the fraction of variance due to the volatility

uncertainty. The ‘m‘ line corresponds to that of the mean uncertainty. a is the confidence level associated to

the ‘true’ value-at-risk.
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where qx
2
T�1

1�b=2
is the quantile of the

chi-square distribution with T � 1

degrees of freedom. (Note that one has

slightly modified the original

expression of Chappell and Dowd4 by

not setting m to 0 as they did.) Their

approach also induces that, when true

parameters are known, the (exact)

standard errors of the VaR estimate

may be described (at a b–confidence

level) by:

� m� s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
x2
T�1

1�b
2

= T � 1ð Þ
r

qa , dVaRa ,

� m� s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
x2
T�1

1þb
2
= T � 1ð Þ

r
qa:

These last two expressions may be compared

to those implied by the asymptotic results

exposed in the third section.

For a large sample with size T, if

m is known, the variance of the (scaled)

normal VaR estimate is asymptotically:

var
ffiffiffiffi
T
p dVaRa

� �
¼ VaRa þ mð Þ2

2
¼ 1

2
s2q2

a:

Hence the associated (theoretical)

standard error of the normal VaR

estimate S:E: dVaR
� �

is

1=
ffiffiffiffiffiffi
2T
p

VaR þ mj j whereas related

‘large sample’ confidence intervals are

Figure 3: Assessing asymptotic confidence intervals

Notes: These graphs compare asymptotic confidence intervals for normal value-at-risk (VaR) with those

deduced from the exact sampling distribution, given that the uncertainty about the mean has been neglected.

The upper graphs plot confidence intervals for the true normal VaR given that bm and bs are known. The lower

graphs plot confidence intervals for the normal estimate dVaR given that m and s are known. The straight line

stands for the centred value. The dashed line corresponds to the confidence interval deduced from the exact

sampling setting while the dotted line stands for the asymptotic confidence interval. They are respectively

labelled C&D and As.
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given by:

� bm �
ffiffiffiffiffibs2

q
1� 1ffiffiffiffiffiffi

2T
p q1þb

2

� �
qa ,VaRa

,�bm �
ffiffiffiffiffibs2

q

� 1� 1ffiffiffiffiffiffi
2T
p q1�b

2

� �
qa ð10Þ

�m�s 1þ 1ffiffiffiffiffiffi
2T
p q1�b

2

� �
qa , dVaRa ,

�m�s 1þ 1ffiffiffiffiffiffi
2T
p q1þb

2

� �
qa:

Note that, by construction, the

asymptotic confidence intervals are

symmetrical around the mean value.

Figure 3 now investigates the large

sample confidence intervals defined

above.

The upper graphs of Figure 3 compare

the asymptotic confidence intervals

associated to the ‘true’ normal VaR

(exposed in (10)) with those deduced

from the Chappell and Dowd4 approach

(exposed in expression (9)). Here bm andbs2 are known values. The lower graphs

investigate expressions for normal VaR

estimates and both m and s are supposed

to be known. All these graphs show, for a

given confidence level b, how the

asymptotic confidence interval can

approach the exact one. The lower

graphs indicate that the asymptotic

distribution derived in proposition 1 is

an accurate approximation of the true

one. The upper graphs recall that, using

the exact chi-square distribution does not

provide a symmetrical result confidence

interval around the expected value. For

moderately large samples, the asymptotic

upper bound slightly underestimates the

volatility uncertainty while the lower

bound overestimates it. Depending on

the confidence level, a set of one or two

years of daily observations may be

considered a large sample.

CONCLUSION
This paper suggests a new way to assess

the estimation risk of VaRs. In short, one

exploits the asymptotic theory and the

so-called delta method to derive

analytical results for obtaining confidence

intervals of normal VaR. This paper

extends the analytical approaches of

Jorion5,6 and Chappell and Dowd4 by

taking into account both the mean

uncertainty and the volatility uncertainty.

It avoids any recourse to simulations as in

Dowd7 or Cotter and Dowd.8 Overall, the

author believes this is a useful contribution

to the general literature on VaR.

More qualitatively, the analytical results

confirm the conclusions of Dowd7 that

the key factor behind the width of

confidence intervals is sample size. To

improve the estimation accuracy by a

factor of two, it is found that four times

as much data are needed (ceteris paribus).

The estimation risk has been broken

down into various components. It is

shown, among other things, that the

fraction of error owing to the mean

uncertainty is of limited magnitude in a

prudential context. In other words, the

approximate approach defended by

Jorion5,6 and Chappell and Dowd4 is

shown to be especially relevant.

As a final word, it can be stressed that

the paper also sheds light on a key issue

of risk management. This is the

best-practice or regulator-required

number of data to be used. This paper

shows that the standard error is around 5

per cent of the estimated VaR for 250

observations (and the usual confidence

level) and that four times as much data

How valuable is your VaR?
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are required to improve the estimation

accuracy by a factor of two.
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APPENDIX
This paper essentially accounts for the

distribution of the normal VaR estimate.

One could rather think to focus on the

two first moments of the normal VaR

estimate. Since dVaRa ¼ �bm � bsqa, one

may write:

E dVaRa

h i
¼ �E bm½ � � qaE bs½ � ð11Þ

var dVaRa

h i
¼ var bm½ � þ q2

avar bs½ � ð12Þ

The expression (3) states that bm is an

unbiased estimate of the true mean m

and that its variance is s2

T
. Previous

expressions can then be rewritten:

E dVaRa

h i
¼ �m� qaE bs½ �;

var dVaRa

h i
¼ s2

T
þ q2

avar bs½ �:

The expression (3
0
) implies that the

sample variance is unbiased

(E bs2

h i
¼ s2) and that its variance is

var bs2

h i
¼ 2s2=ðT � 1Þ (a x2

T�1
random

value has indeed a mean and a variance

equal to T � 1ð Þ and 2 T � 1ð Þ,
respectively). And these results concern

the unbiased sample variance only. This

is a problem because computation of

VaR requires results on bs ¼ ffiffiffiffiffibs2

p
. This

associated sample estimate of the standard

deviation is actually biased. Although the

square root of the unbiased sample

variance
ffiffiffiffiffibs2

p
is a natural candidate to

estimate s, problems then arise because

Ej
ffiffiffiffiffibs2

p
j is not necessarily equal toffiffiffiffiffiffiffiffiffiffiffi

Ej bs2j
q

(where

ffiffiffiffiffiffiffiffiffiffiffi
Ej bs2j

q
is of course

equal to s). Actually, the Jensen’s

Moraux

198 Journal of Risk Management in Financial Institutions Vol. 4, 2 189–200 # Henry Stewart Publications 1752-8887 (2011)



inequality even suggests that

Ej
ffiffiffiffiffibs2

p
j �

ffiffiffiffiffiffiffiffiffiffiffi
Ej bs2j

q
; s because the

square root is a concave function.
ffiffiffiffiffibs2

p
is

therefore a downwardly biased estimate

of the (true) standard deviation s. In

other words,
ffiffiffiffiffibs2

p
is (on average) too

small! Statistical theory tells us what the

bias is and it has been demonstrated that:

1

c4ðTÞ
E½

ffiffiffiffiffibs2

p
� ¼ s

with

c4 Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

T � 1

r
G

T

2

� �
=G

T � 1

2

� �

where G is the Gamma function. In

other words, 1=c4 Tð Þ
ffiffiffiffiffibs2

p
is the unbiased

sample estimate of the standard deviation.

And, since varj
ffiffiffiffiffibs2

p
j ¼ Ejð

ffiffiffiffiffibs2

p
Þ
2

j
� ðEj

ffiffiffiffiffibs2

p
jÞ

2

¼ s2ð1� c24ðTÞÞ, the

standard error of the unbiased estimate of

the sample standard deviation is

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c24 Tð Þ=c24 Tð Þ

p
. Note

that properties of the function c4 Tð Þ
imply c4 Tð Þ � 1, when T is very large,

and 1� c24 Tð Þ � 1=2 T � 1ð Þ.
Given equations (11) and (12) and the

above discussion, the analytical

expressions for the mean and the

variance of the normal VaR estimate

become:

E dVaRa

h i
¼ �m� qa

ffiffiffiffiffiffiffiffiffiffiffiffi
2

T � 1

r
G T

2

� �
G T�1

2

� �s
�

if T is large
�m� qas ¼ VaR

var dVaRa

h i
¼ s2

T
þ q2

a 1� c24 Tð Þ
� �

s2

�
if T is large

s2

T
1þ 1

2
q2
a

T

T � 1

� �

The first equation confirms that (for

large T) the dVaRa is an unbiased

estimate of the true VaR. The second

one implies (again for large T) that the

Figure A1: Standard deviation of
ffiffiffiffi
T
p dVaR: ‘analytical approximate’ estimate vs asymptotic estimate

Note: This figure plots both the asymptotic estimate (sg ¼
ffiffiffiffiffiffi
Vg

p
) and the analytical estimate

s Tð Þ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

a 1� c2
4 Tð Þ

� �
T

q
of the standard deviation of

ffiffiffiffi
T
p dVaR. One sets a ¼ 95% and s ¼ 20%.
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variance is:

var
ffiffiffiffi
T
p dVaRa

h i
�

if T is large
s2

� 1þ 1

2
q2
a

T

T � 1

� �
:

This analytical approximation is

directly comparable to the asymptotic

variance Vg exposed in proposition

1. But this approach provides no

confidence intervals for the VaR

estimate. For completeness, Figure A1

displays the convergence offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

ffiffiffiffi
T
p dVaRa

h ir
to

ffiffiffiffiffi
Vg

p
.
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