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ixed binomial models (or
liernonlli mixture models) are
common ways to model default
risk in credit portfolios. To

account for default dependency, these models
assume that the common default probability is
randomly distributed according to a niixinj^
distribution. Credit portfolio managers usu-
ally find them very appealing because they are
easy to simulate in Monte Carlo analysis and
simple to calibrate on real data (Frey and
McNeil [2003|). Actually, many standard
industry models for managing credit portfo-
lios are nothing else than specific Bernoulli
mixture models.' The beta binomial approach
plays a special role, nevertheless, as it often
serves as a benchmark to assess the perfor-
mance of others.

This article first reconsiders the beta bino-
mial approach and introduces a new reparame-
terization of the beta mixing distribution. Both
the expected default probability and the default
correlation are favored as key input parame-
ters.- Hereafter, this article will use the common
default correlation for several reasons: 1) the
expected default probability is often considered
as fixed in homogenous credit portfolios; 2) the
default correlation may vary for a given level of
default risk (see Renault and Servigny [2(l(t4|
for documented statistics);* 3) the literature does
not make it clear how sensitive classical models
and credit risk measures are to the level of
default correlation.

Armed with this new parameterized
mixing distribution, one can derive easy-to-
implement analytical expressions that are very
usekil ior analyzing the sensitivity of standard
credit indicators to the default correlation.''
Following standard practices, one mainly
focuses on common credit risk measures, such
as the credit at risk, the expected shortfall, and
the tail fiinction. Sensitivities and elasticities
ot these indicators are then studied with respect
to the sole common default correlation (rather
than the two statistical shape parameters of the
distribution).

Numerical analysis shows that the cor-
relation coefficient parameter plays an essen-
tial role. Interestingly, one finds that it impacts
the considered credit risk measures quite dif-
ferently. Sensitivities of the credit at risk and
the tail function appear either positive or neg-
ative while that of the expected shortfall
remains always positive. To highlight further
this key role ot the common default correla-
tion, one examijies the asymptotic tail functions
associated to different tranches ofCDOs.They
show that the wealth of holders of the different
tranches is diiierently influenced by the cor-
relation parameter.

The next section presents the standard
framework for analyzing a homogenous credit
portfoho. The article then introduces the new
reparameterization of the beta mixing distri-
bution and analyzes homogenous credit port-
folios. Further sections consider large portfoHos
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and review standard credit risk indicators and then under-
take the sensitivity analysis of these credit risk measures
with respect to the default correlation.

THE STANDARD FRAMEWORK

We consider in this section a homogenous credit
portfolio of N loans or bonds. In this article, homogeneity
refers essentially to both the credit profile of borrowers
and the design of credits. It is assumed that credit ratings
are known and identical within the credit portfolio. The
same is true for recovery rates or, equivalently, losses given
default. By denoting by Tthe investment period and r
the default time of the ith borrower, the variable A\ = 1 ̂ ^̂
plays the role of a default indicator, if face values are equal
to 1, the value loss (sufiered at the end of the investment
period by the holder of the credit portfolio) is equal to
the number of defaults. So tliis can be described by the
sum of indicators Nj^(N) = Z;^,X,. Note that this latter
assumption prevents tricky notations without modifying
the salient feature of the credit risk modeling.

Mixed Binomiai Modeis for Credit Risk
Portfolios

Every loan or bond has the same rating, meaning that
they share the same probability of default ;>. As a result, the
above dcfatilt indicators are identical Bernoulli distributed
variables and the number of default is a binomial variable
with parameters {N, p). More precisely, the random vari-
able ^¿^f{N) takes values between 0 (no default) and N
(all firms default) with a probability- density' described by

(I)

where ( '" W c ' ' = . ^ ., stands for the number of pairs
of; defaults among the N borrowers. The cumulative den-
sity function is then given by Pr[A.̂ ĵ , (N) < k] =
^U Pi'fiV,̂ ,.(N) - ./[.the mean loss is £[Nĵ ,-(N)l = Nx/ j .
and its variance Ĉ '|N^̂ .,(̂ '̂)1 - NxpX {1 -;>).The average
number of defaults is proportional to the number of bor-
rowers, whereas its standard deviation is proportional to
the square rcïot oí N.

The mix'ed binomial framework introduces depen-
dence among default by letting the common default

probability to be stochastic. If one assumes conditional
independence of individual defaults (given the proba-
bility of default), then the prtjbability of facing k defaults
is given by:

where/is the mixing distribution. Such a distribution is
clearly central to modeling the default probability and the
resulting dependence between defaults. It is also ü good
pro.xy for the (percentage) loss distribution of large
homogenous credit portfolios. As mentioned previously,
the beta mixing distribution is a classical way to randomize
the default probability p. For the readers' convenience, it
is useful to present a few results before introducing our
own parameterization.

The Standard Beta Binomial Approach

The standard beta mixing distribution assumes that
the probability density function of the default probability
is well described bv:

wbere shape parameters Or, ß are positive real numbers
and r is the gamma function. Properties of the beta dis-
tribution are well known. Its probability density function
is humped, skewed, and leptokurtic. The a shape parameter
controls the steepness of the hump, while the /? parameter
controls the fatness of the tail. The expected default pn)b-
ability and associated variance are respectively given by

J: ,: a,ß)dp = ^ and I-'[p| = ,^J,„^,, The
skewness is Ski p I = T-rr-^—• The corresponding cumu-
lative density function is known as the regularized incom-
plete beta function:

\ P \ — P) P fí (cx ß)
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where B{a, ß) and BJ^Cí, ß) stand for the so-called beta
function and incomplete beta function, respectively. Many
useful identities and recurrence results exist on these func-
tions and we refer to Abramowitz and Stegun [1972| for
details. The incomplete beta distribution also admits uscftil
relations with the generalized hypergeometrie function
since B^ {a,ß) = ^.v",F,(«. 1 - /5,a + 1 ; .v).

From ,1 credit management viewpoint, the depen-
dence between default events is the second dimension of
interest in a credit portfolio (the first one being the
expected default probability). It is useful to emphasize the
following result.

Proposit ion 1 In the mixed beta hinomidJ fmniework, the

common dcjaiilt correlation of an homogenous credit portfolio ii

I
cor[X,,X | -

Situe (X and ß are strictly positive, p > 0.

Proof. There are different ways to demonstrate this
result. The following proof is among the simplest ones.
It is well known that

cov[X,, X] = cov[£[X, I p], E[X. I pl] + £[covfX, X. | p]]

Because of the conditional independence, the second
term is ntiU. In addition, cov[E[X.|p], E[X |p]] is equal
to cov[p. p] = I4P1 for I ^J. Correlation definition then
yields to

co r lX ,X | -

n
The existence of analytical results makes the beta

binomial framework suitable for modeling homogenous
credit portfolios. For known shape parameters iccß). E\p].
I'TPI, and p are easy to compute (with previous expres-
sions) and properties of the beta distribution are well
known (see Appendix A).

Deahng with two shape parameters, however, is not
so comfortable Ixom a management viewpoint. Beyond the
possible lack of understanding, key indicators for credit
portfolio behave differently as we change a and ß. Typi-
cally, sensitivities of the expected default probabihty
t öa ~ ,a+B)' '̂ "^ ~^ ~ ~ ta+ßr'^ '^^'^' respectively, positive
and negative.

in an

Because the default probabiHty is essentially fixed
homogenous portfolio, one can rewrite

to limit such a complexity. And, in thatß{a) = a ^

(given E[p]) both the variance ofp and the defiuilt tor-
relation are decreasing fiinctions of a. This article sug-
gests a new approach that makes the beta distribution a
function ot the common default correlation between
issuers. As far as we know, such a parameterization has
not been exploited anywhere else,

A CORRELATION-BASED BETA MIXING
DISTRIBUTION FOR HOMOGENOUS
CREDIT PORTFOLIOS

Mixed beta binomial models may be viewed as fiinc-
tions of the common default probability and the common
default correlation p. To see this, it is sufficient to note that
results of tbe previous section yields to

1 - p

= {\-L:{p\)
1-p

(3)

with p > 0 (otherwise defaults are uncorrelatcd and the
setting is a straight or pure binomial model). The beta
distribution can now be reparameterized as /(/); OC, ß} =
(pip:. E[p].p),and one can even go a step further because
the mean probability of default ¿[p] is essentially con-
stant in homogenous credit portfolios. For an homoge-
nous credit portfolio, let's finally define

Such a parameterization allows one to rephrase in
financial terms most of well known properties. For
instance, by virtue of the proof of Proposition 1, the vari-
ance of the default probability is now a simple increasing
function of the default correlation given by
p£|p|(l -B[p]). So the variance first increases with
from 0 to ^ (obtained for i:[p| = 4-) and then decreases
to zero as Bfp] gets to one.'' The skewness can be
rewritten Sk - 4 ^ j ^ ¿ ^ i ^ ^ , and it highlights that tbe
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distribution is symmetric for E[p] = -;. AJJ expressions of
the previous section can also be rewritten in terms of the
sole correlation parameter. The probability that / credit(s)
defaults in the portfolio becomes

(4)

To illustrate the key role of the common default
correl.ition. Exhibit 1 compares graphically the mixed
beta binomial distribution parameterized by the correla-
tion coefficient with the binomial density given in Equa-
tion (1). Exhibit 1 considers an homogenous credit
portfolio o\ N = 1 ( K) loiins or bonds. The shadow prob-
ability density function corresponds to the straight bino-
mial model (with E\p\ = U)% and p ^ 0%). Other ones
correspond to the repnrameterized beta binomial model.
Here again, ¿:'[p| is set to 10%, but the correlation para-
meter p is now equal to either 2.5% or 10% (left-hand and
right-hand graphs, respectively). Clearly, the default cor-
relation impacts distributions. Probability density func-
tions with non-zero correlation appear skewed; their (right)
tails are heavier than that of the independent case.

For completeness. Exhibit 2 provides the probabilit)'
ofi,'defaults within a portfolio of U) assets (Pr[jV,̂ ,j-(j\) = k]
with N = 10) for ditïerent values of default correlation
given that the expected default probability is equal to 5%

in all cases. The common defliult correlation ranges from
about 0 to 10%. Such values are admissible in view of
Table 5.2 ofRenault and Sorvigny [2004]. These authors
report, on tlie basis of "Standard ik Poor's CrcditPro" tlata,
that the (one-year) default correlation within a given
rating class is higher than 0% (AAA) and lower than 8.97%
(CCC). These figures are estimated on observed defaults
between 1981 and 2002. It must be noted furthermore
that, as the default correlation increases, both the proba-
bility' of no default in portfolio and the probability of the
larger number of defaults increase. This is easily explained
by the fact that, when the default correlation rises, under-
lying bonds or loans behave more and more similarly.
Interestingly, one can observe that for fc = 2, the proba-
bility oí k defaults (as a function ofp) is first increasing
and then decreasing. This point is explored in the final sec-
tion of this article.

We can also add results on the total number of
defaults {!^[^^^^-{N)) in the homogenous credit risk port-
folio or (equivalently) on the loss rate in the portfoUo

), which is the proportion of default ^^,—.

Proposi t ion 2 The total nttmber of default among ¡he
N issuers verifies

(5)

- Hfp]) (6)

E X H I B I T 1
Mixed Beta Binomial Distribution Parameterized by the Correlation Coefficient with the Binomial Density in
Equation (1)
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E X H I B I T 2
Probability of k Defaults within a Portfolio of 10 Assets

k=ö
k= 1
k = 2
k=3
k = 4
k = 5
k = 6
k = l
/t = 8
it = 9

Ä=10

k] Binomial

59.87
31.51

7.46
1.05
0.10
0.006
0.000
0.000
0.000
0.000
0.000

5

5] 0.000

0*

59.87
31.51

7.46
1.05
0.10
0.006
0.000
0.000
0.000
0.000
0.000

5

0.000

Beta Binomial Model (p in %)

1.25

61.56
28.93

7.59
1.50
0.23
0.027
0.003
0.000
0.000
0.000
0.000

5

0.003

2J5

63.08
26.71
7.87
1.88
0.39
0.064
0.009
0.001
0.000
0.000
0.000

5

0.010

5

65.75
23.09

1.11
2.44
0.70
0.181
0.041
0.007
0.001
0.000
0.000

5

0.050

10

70.02
17.95
7.08
2.97
1.23
0.486
0.176
0.056
0.015
0.002
0.000

5
0.250

Nom: The expectcfl deßult prolujbUity is etjual to 5% in all cases. .411 figures are expressed in %. "Bitiomictl" stands for the pure bhiomuil model desmbvil by

Equation (il f* means nc};li^ible wine.

The tnean and the variance of the loss rate are, respectively,

E[L{N)] = E|p]

Tlie variance of the loss rate L{N) is decreasing with the
niunber of credits and tends to pE[p\O - E\p\) = l ip ] .

Proof

The second moment being
(1 —p)E[p]-. Results on L(N) are straightforward conse-
quences, n

The above results imply that the variance of the loss

rate ^'|L(j\')] is a strictly increasing Rinction of p with a min-

imum and a maximum given by ^ / ; | p j ( l - E [ p ] ) and

E[p](l - E]p]), respectively. The variance of the loss rate

is a decreasing function of the number of credits in the

portfolio with a maximum and a minimum given by

^ E[ pI( 1 - E[p 1) and pE\p\( 1 - E|p]), respectively. Hence,

the loss rate variable appears particularly suitable for ana-

lyzing credit risk portfolios (compared to the number of

defaults J^jj.((N)). Exhibit 3 shows the properties of the

loss rate with respect to the common default correlation

and the number of credits. The left-hand graph draws the

normalized standard deviation of the loss rate as a func-

tion of the common default correlation for different num-

bers of credits in the portfolio. This graph displays how the

normalized standard deviation, computed by J , . ' ''"1')'̂  ,. •

tends toward the minimum normalized standard deviation

(given by Tp), as the number of credits increases. The

right-hand graph is inspired by the traditional portfolio

theory. It plots the normalized variance of the loss rate as

a function of the number of credits. This graph displays

the diversification effect within a credit portfolio. Like more

standard (stocks) portfolios, the variance decreases and tends

to a non-zero value.

ANALYZING LARGE HOMOGENOUS
PORTFOLIOS

Schönbucher [20f)3] has well explained that as the
number of assets in the credit portfolio becomes large, the
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E X H I B I T 3
Normalized Standard Deviation or the Normalized Variance of the Loss Rate for Different Values of Correlation
and Different Numbers of Credits

l.Of

0.0 50

loss rate statistic tends to be the relevant figure to consider.
The proportion of defaults (whose conditional expecta-
tion is p for every !\) tends to p as S gets large.'' Models
for large credit risk portfolios routinely exploit the fact
that, for large .V, PT[LÍN) <!\-= Pr[p < /|. In other words,
t,iil.s of the true loss (rate) distribution of large homoge-
neous credit portfolios may be approximated by the tail of
the niixuire distribution. Our setting allows one to recon-
sider the loss rate distribution in the light of the common
default correlation. The loss rate distribution in large
homogenous credit portfolios is therefore described by

Standard credit risk measures for analyzing credit
portfolios are related to this probability. The tail function,
defmed by TF,.|p|(/; p) = Pr[L > / ] - ! - /,.|p,(/; p) is a
tirst approach to highlight the extreme risk of credit
portfolios. Denoting by c a confidence level (typically
99%. 99.9%), the credit at risk CaR^{L) is the value such
that TFj,|p|(C<íR (L); p) = Pr[L > GiR (L)| - 1 - r or
equivalently

Pr[L< C.R (L)] = (L);p) = c (7)

This is the oh quantile of the reparameterized beta dis-
tribution. The cumulative density function / —> /o i (/; p)
being continuous and increasing, this may be rewritten
OíR (/,) = /,¡jpjÍGp). The expected shortfall is another
important indicator to consider. Defined by ES =
Í:\L I L > OiR (L)] it has more desirable properties than the

^ (L), as explained by Artzner et al. [ 1999j. This coherent
measure of risk can be computed in the present framework
by a couple of ways:

(8)
1 — £ •

ES,(P) = CaR (L) + 1 - .« (9)

One can remark that both require numerical inte-
gration techniques.'

Exhibit 4 displays various credit risk indicators: the
loss rate probability distribution function, the tail tiinc-
tion, the credit at risk, and the expected shortfall of a
large homogenous credit portfolio with identical average
default probability. Following usual practices, the tail
function is drawn on a logarithmic y-scale where a hor-
izontal line represents the 99th percentile case and can
serve as a benchmark. One can verify that the expected
shortfall is larger than the credit at risk as predicted by
Equation (9). All these graphs illustrate that the default
correlation impacts significantly on the perceived risk of
the large homogeneous portfolio (as measured by the
different credit indicators).

Beyond this graphical approach, it is worthwhile to
assess quantitatively the sensitivity of credit indicators with
respect to the default correlation. This is the aim of the fol-
lowing section. Before introducing analytical expressions,
Exhibit 5 provides direct percentage differences of credit
at risk and expected shortfall for a reference default corre-
lation of 1.25%. As becomes clear ifi this exhibit, the credit
risk assessinent is dramatically affected by any misestijiiation
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E X H I B I T 4

Various Credit Risk Indicators

A. Loss Rate Probability
Distribution Function C. Credit at Risk

td

0.00 0.05 0.10 0.15
loss rate

B. The Tail Function

0.20 0,25 0.90 0.92 0.94 0.96 0.98 1.00

D. Expected Shortfall

0.90 0.92 0.94 0.96 0.98 1.000.0 0.2 0.4 0.6 0.8 1.0

Notes: The expected default probability of the credit portfolio is equal lo 5%. In the Pane! B. the horizontal line stands for the 99th percentile level.

in default correlation. For example, in a credit portfolio
with a 5% expected default probability, the credit at risk for
a 10% default correlation is 2 times larger than that com-
puted for a 1.25% correlation. The expected shortfall is
even about 2.5 times larger. As suggested by Exhibit 4. per-
centage errors are worse as the confidence level c increases.
We notice however that errors for CaR and ES become ot
same order for huge confidence level. Interestingly, for the
expected shortfall, the largest correlation case displays a
maximum percentage erron at the c = 99.99% level. Addi-
tional simulations reveal that the same is true for tiie credit
at risk but at an even larger confidence level.

SENSITIVITY ANALYSIS OF CREDIT RISK
INDICATORS

This section provides closed-form formulae for credit
indicators to analyze their sensitivity' to default correlation.
Our reparameterization of the beta distribution suggests

to write the cumulative density function and its inverse
function as /n-](/; p) - iJ^OCy ß and ^f;(pi('''P) ~ .̂v i^'ß),
respectively. Due to expressions (7), (8),and (9),derivatives
formulae are available to the extent we can compute

•, , .,d . .. • and 1« . Some expressions are
exposed in Appendix A. One then finds

da

dp da dp

1

p'

+ {1

dßdp

dß [

1-p

p

N ' " ^ (1 r[p
P

' P J

" P J
Other analytical expressions are derived along similar

lines. The sensitivity of the tail kinction with respect to
default correlation is simply given by y
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E X H I B I T 5
Relative Differences of Credil at Risk and Expected
Shortfall for a Large Homogenous Credit Portfolio

or

Default Correlation (in

\.ip)
,(1.25%)

-1 2.5 10

c = 95,00%
¿• = 97.50%
c = 99.00%
c = 99.90%
C--99.99%
c-99.999%

ES M
ES ^{\.25%)

c = 95.00%
c- = 97.50%
f = 99.00%
c = 99.90%
c = 99.99%

c = 99.999%

22.32
26.64
31.08
38.45
42.82
45.52

2.5

28.21
31.37
34.73
40.56
44.10
46.30

55.45
67.84
80.52
100.83
111.54
116.90

5

72.24
81.21
90.64
106.05
114.13
117.92

103.85
131.80
159.76
199.98
215.05
216.99

10

140.90
160.45
180.07
207.59
216.26
214.87

Motes: Allf[^nrei an- e.xpressed in %. The expected default probability is 5%.

The CaRip) sensitivity to the default correlation is
assessed by

(p)

dp ¿L, •dt

This latter (perhaps surprisingly simple) expres-
sion comes from the clitToreiitiation of Equation (9)
with respect to p and simplification

{p)

dp

dGiR ip)

-r IP)
dx

\-c dp

dp

da

a/-
p

1 —

p

1 -

The sensitivity of the expected shortfall admits a
couple of expressions depending on the considered def-
inition. One finds either

Once again, this latter expression is expected to
be less time-consuming because no inversion is
involved. However, the following analysis favors the
former one because it involves the same underlying
quantile function as the credit at risk. Note that every
formula has been checked with approximate numer-
ical derivatives. Armed with these expressions, one
can comfortably undertake a sensitivity analysis of the
credit at risk and expected shortfall, as shown in
Exhibit 6.

Exhibit 6 displays interesting results concerning
~ sensitivities of credit measures to the default correla-
tion. The four graphs show that the two measures are
afiected quite differently. Mainly, the sensitivity and elas-
ticity of the credit at risk may be eitlier positive or neg-
ative while those of the expected shortfall Are strictly
positive for the considered values.

APPLICATIONS TO CDOS

Portfolios with .1 limited number of credits are obvi-
ously common in asset management. Typically, a credit
portfolios underlying CDOs contain 125 different names.
The above analysis can be easily extended to account for
this. Technically, the exercise is straightforward, and for
instance, the probabilit\- that no more than k credits detault
within the portfolio of size Nis given by

dp ¿r dp
du

The expression clearly higlilights that the dependence
on the common default correlation comes from V/iniÍPiP)
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E X H I B I T 6

Sensitivities and Elasticities of Credit at Risk and the Expected Shortfall with Respect to the Common Default
Correlation

Elasticity

1
U

3

2

1

1

\ 99%

Sensitivity

:

~~—-^,_ . .97.5% :

r^'->^.,^ '• 95"/.

c : ^ / . - - - • - - - - ' '

0,0 0.2 0.4 0,6 0,8

P

1.0

only. Additional siimilations could have nev-
ertheless shown that distributions fora 125-
name portfolio are very close to their
asymptotic counterpart. So, we favor asymp-
totic distribution to investigate how holders
of the different tranches of a CDO are
impacted by a change in the default corre-
lation. Holders of the so-called equity-
tranche are exposed to the first defaults in
the portfolios while holders of the last
tranche are impacted only if the number
of defaults is significant. To fix this idea,
let's consider the tranchnig of the Itraxx
contracts for which attachment points are
0%. 3%, 6%, 9%, 12%. 22%. The associated
detachment points correspond to the upper
limit of the losses covered by the tranche.
Exhibit 7 plots, for each considered tranche,
the probability that losses will exceed the
detachment point versus the common
default correlation p.

E X H I B I T 7

Probability That Losses Will Exceed the Detachment Point versus the
Common Default Correlation

0.2 0.4 0.6
Common Default Correlation p

0.8 1.0

Note.^: dj, stands for detachment point and iorrcspontis to thf upper limit of the losses awercd by the
tranche. Tlie plotted tail function is the probability that the loss exceeds the considered detachment
poitit.
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Exhibit 7 exposes how holders of the different
tranches are differently impacted by the common default
Lorrekition. It ciin be observed first that holders of the
equity tranche (whose detachmeiu point d is 3%) benefit
from any increase of the common default correlation—a
complete loss being less probable. A reason for this is that
the iinderlyinj^ references behave more identically as cor-
relation increases; meaning that the common survival cor-
relation increases too. Holders of the other tranches are
clearly differently affected. Among them, investors in the
second tranche remain rather exposed to the correlation
risk.

CONCLUSION

This article reconsiders the beta binomial approach
for modehng homogenous credit portfolios. It favors both
the expected default probabilit\' and the common default
correlation to parameterize the inLxmg distribution. This
article makes standard credit risk indicators flinctions of
the correlation only and it sheds hghts on the model risk
associated with that parameter. Analytical expressions have
been reported to allow seiLsitivity analysis. Simulations
conckide that default correlation is a key parameter to
account for. Finally, it must be stressed that the idea exposed
in the article is applicable to every mixing distribution to
the extent there exists a suitable function transforming
structural parameters into the expected default probability
and the common default correlation.

A P P E N D I X A

PROPERTIES OF THE BETA DISTRIBUTION

This appendix displays some well-known properties of
the beta distribution with respect to its shape parameters. If
a- ß ~ y.then the hetj distribution is s^'nimctric with rcspect
to f:'[pl = -7. Straitj;htforward Lomputatioiis give t '[pl= ;;>-;—
and cor[X,,XJ = 7;^ = 4P'[pl. The standard deviation of the
(nndom) default probability is bounded by 7. This limit cor-
responds to / = (1 for which cor[X, X.] = 1. In such ;i case.
eitlier all issuers survive or all default. The corresponding dis-
tribution weights only 0 and 1. If instead, / = 1, the symmetric
beta distribution is the uniform one with I'|p] = -¡T ^nd

Analytical Expressions for Sensitivities

Due to the non-uniqueness of their representations,
various expressions could be derived and reported for the deriv-
atives of the cumulative density function of the beta distribu-
tion and its associated inverse fiinction. Expressions below art-
very appealing for programming on Mathematics—the package
1 use throughout the article:

rc/0

- .v) - W{b) + \¡f{a + /.)!/,„,, (/>. a)

V{a)

and

X - J

where J3̂ (¡i, b) is the incomplete beta function defined by

ß,(i l , /') ^ in i"''(1 - 0 ' " ' < ' ' • 3F2 ( ' ' r '^2' 'h'- ''(• '':• ' ' r ' ^ ^̂  "̂ '""̂  ̂ '^^~

ularized hypergcometric flmction and IjCis the digauuiia func-
tion. The digamma function is the logarithm derivative of the
Euler gamma function:

where

The Hinction F is a generalization to complex nunibcn
of the factorial fimction since, for any integer n, V{n) = {n - I)!
.,F., (dp 1Ï.,, ay i>,, /i.,, b^\ z) is defined by
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with (ü),, = -pjTp is the Pochhammer's symbol. See Abramowitz
and Stegun [1972] for more details on these functions.
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'A mixed logit-normal distribution is explicitly used in
CreditPortfolioView (see Wilson [1997a,b]);a probit-normal
one is used in Creditmetrics. Frey and McNeil |2002] have
demonstrated that the CreditRisk+ solution implicitly uses a
beta mixing distribution for the default probability. As a result,
the present article admits connections with the CreditRisk+
framework, but this point is left for iliture research.

-The key point here is to develop an easy-to-understand
way to manage credit portfolios within the beta binomial frame-
work with no reference to the traditional (and rather obscure)
shape parameters of the mixing distribution. This feature is
desirable because everybody involved in the credit industry is
not necessary "fluent" in statistics. Moreover, it is not so evi-
dent that people involved in the credit business interpret beta's
shape parameters in the same way. It is welj known (see Frey
and McNeil [2001]) that, when one of the two first moments
of the random default probability is fixed, the second moment
or the default correlation determines the shape parameters of
the beta mixing distribution. However, to our knowledge, no
research has developed this way of reasoning further.

^Analytical expressions exposed in this article provide for-
mulae to assess the impact of a correlation shift. This article
therefore admits some closed connections widi the recent stream
of research dedicated to tlie introduction of non-constant default
correlation in credit portfolios (see Burtschell, Gregory, and
Laurent ]2ü(J7| for references). But this issue is left for future
research.

••Avoiding simulations, the approach is worthwhile for
credit analysts for at least a couple of reasons. First of all, it can
speed up computations and subsequent decisions making.
Second, It prevents drawbacks of rival simulation-based methods.
It is well knowu that the estimates they pmvide can be fairly
unstable, as they depend on the number of simulation runs and
on the way the random figures are generated. These methods
can even fail to provide safe results. Credit risk measures are
indeed intimately related to the tail of the distribution, which
is challenging to capture by simulation.

that, except speculators, very few investors would
invest in credit portfolios with a such a significant expected
default probability.

'To see this, it is sutEcieiit to note that the conditional vari-
ante of the proportion g"!''̂ '̂ ."" | p] = '̂''̂ P' tends to 0.

The latter appears less time-consuming than the former
because no inversion is required. This remark may be hclptul,
tor who wants to make intensive computations.
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