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Abstract. The main purpose of this paper is to examine empirically the time series properties of the
French Market Volatility Index (VX1). We also examine the VX1’s ability to forecast future realized
market volatility and finds a strong relationship. More importantly, we show how the index can be
used to generate volatility forecasts over different horizons and that these forecasts are reasonably
accurate predictors of future realized volatility.
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Following the CBOE (Chicago Board of Exchange) Market Volatility Index (VIX),
the MONEP (Marché des Options Négociables de Paris) created, on the 8th Octo-
ber 1997, two volatility indexes (VX1 and VX6), based on implied volatilities of
around at-the-money CAC40 Index option (PX1). VX1 is an average of four CAC
40 call option implied volatilities. While Flemming, Ostdiek and Whaley (1995)
have studied the predictive power of the CBOE Market Volatility Index (VIX), the
main purpose of this paper is to examine empirically the time series properties of
the French Market Volatility Index.

On the basis of the evidence reported in the study of Fleming, Ostdiek and
Whaley (1995), market volatility indexes which are an average of index option im-
plied volatilities indeed appear to be useful proxies for expected market volatility.
This interpretation of the volatility index may appear inconsistent with the option
valuation model which determines the market volatility index. For example, in a
stochastic volatility modelà la Hull and White (1987), Feinstein (1992) demon-
strates that the implied volatility approximates the market expectation of the aver-
age volatility over the life of the option. In this paper, we suggest, in a Hull–White
setting, a new methodology based on Feinstein’s definition of theoretical implied
volatilities in order to estimate the unobservable volatility process parameters.
We apply the maximum likelihood estimation procedure on a VX1 time series
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to recover Hull and White’s (1987) implicit instantaneous volatility.1 We then
compare this methodology with that of Heynen, Kemna and Vorst (1994), who
used Black–Scholes implicit volatilities as proxies and with Renault and Touzi’s
(1996) statistical iterative procedure of filtering (of the latent volatility process)
and estimation (of its parameters). In that case, with implied volatility used in the
same spirit as yield to maturity on the bond market, we apply the direct maximum
likelihood statistical inference as Pearson and Sun (1994) and Duan (1994) have
done in the case of interest rates. Many stochastic volatility models have been
proposed in the literature. In this article we assume that the variance follows a
“square-root” diffusion process. This mean-reverting feature is attractive for sev-
eral reasons. First, Day and Lewis (1993) empirically show that volatility shocks
are persistent and mean-reverting. Second, the relationship between the spot volat-
ility and the long-run volatility can be examined directly. Finally, this process is
analytically tractable. For the price of a discount bond, Cox, Ingersoll and Ross
(1985) implicitly solve for the moment-generating function of the average of this
process in the derivation of their formula. Ball and Roma (1994) use this result to
derive a simple closed-form expression for the expected value of average future
volatility. We then show how the index can be used to generate volatility forecasts
over different horizons and that these forecasts are reasonably accurate predictors
of future realized volatility.

The rest of the paper is organized as follows: Section 1 explores the informa-
tional content of the French Market Volatility Index (VX1). Section 2 is devoted
to the implicit maximum likelihood estimation of an Hull and White’s (1987)
stochastic volatility model from VX1 in order to generate volatility forecasts over
different horizons.

1 Practical use of stochastic volatility models requires a preliminary estimation of the parameters
of the unobservable latent volatility process. Following Ghysels, Harvey and Renault (1996), two
kinds of studies have covered this issue. First, numerous authors suggested to make inference from
the observed asset price through an approximation of the structural stochastic volatility model due
to an Euler or ARCH type discretization (Nelson (1990)). These models have been estimated in a
variety of ways including simple Method of Moment (MM) by Taylor (1994), Generalized Methods
of Moments (GMM) by Anderson and Sørensen (1994]), various Simulated Method of Moment pro-
cedures (SMM) by Duffie and Singleton (1994); Quasi Maximum Likelihood Estimation (QMLE) by
Harvey, Ruiz and Shephard (1994), Simulated Maximum Likelihood Estimation (SMLE) by Daniel-
son (1994); Indirect Inference by Gouriéroux, Montfort and Renault (1993), Moment Matching
Approach by Gallant and Tauchen (1996); Bayesian Markov Chain Monte-Carlo Analysis (MCMC)
by Jacquier, Polson and Rossi (1994). Apart from MM, GMM and QML these approaches are com-
putationally intensive. Second, some recent works suggest to use option implied volatilities to get
approximate data about the unobserved volatility, the observed asset being considered as exogenous.
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1. VX1 as a One-Month Forecast of Stock Market Volatility

1.1. STATISTICAL PROPERTIES OF VX1

The method used by the MONEP2 to compute the VX1 and the VX6 indexes
is based on observing a quasi-line ar relationship between the premium and the
volatility of the series around the at-the-money point, i.e., the most liquid series.
The method used by the MONEP includes five stages. LetSt be the price of the
CAC 40 at datet andn be the number of days used in the calculation (n = 31 for
the short-term index, VX1, andn = 185 for the long-term index, VX6). The aim
of the calculations is to establish, att , the implied volatility of a “virtual” at-the-
money contract (i.e., the strike price is equal to the indexSt ) with a constant time
to maturity ofn days. Since strick prices are set at the standard 25-point intervals,
options are almost never at the money. Consequently, linear interpolation is used
to estimate the data. The first stage consists in identifying the two nearest expiry
months, being one on each side of the calculation period,n. Let τ1 andτ2 be the
residual time to maturity (in days) corresponding to these two expiries. The next
stage consists in enclosing the last price of the CAC 40 index by two strike prices,
which are writtenKa andKb. Based on these two expiriesτ1 andτ2, and the two
strike pricesKa andKb, the following four options series:(Ka, τ1), (Kb, τ1), (Ka,
τ2) and(Kb, τ2) are obtained. Stage three consists in computing the value of two
synthetic options with a residual lifet and strike pricesKa andKb: C∗(Ka, n)
andC∗(Kb, n). By interpolating these synthetic values the MONEP then calculates
the final valueC∗∗(St , n). The final calculation gives the price of an at-the-money
option with a maturityn. It is used to obtain implied volatility. The volatility index
is simply the implied volatility of the synthetic valueC∗∗. To solved for implied
volatility the MONEP suggests the use of the bionomial model adjusted for the
daily dividends for each option contract withn periods to the expiration date from
time t . Since the implied volatilities of the PX1 option series used in computing
VX1 are stated in calender days (rather than in trading days), the return variance
over a weekend should be three times greater than it is over any other pair of
trading days. However, on empirical evidence, weekend volatility is approximately
the same as the volatility during trading days. For this reason, each VX1 day is
adjusted to a trading day basis by multiplying the ratio of the square root of the
number of calender days, 31, to the square root of the number of trading days, 22.

Historical data is available from the MONEP WEB-site on VX1 since the begin-
ning of 1994 through April 1998. Figure 1 plots the daily closing Volatility Index
levels versus the CAC 40 Index levels. Over the sample period studied, the Market
Volatility did not drift in one direction or another. Moreover, during this period
spikes in the MONEP Market Volatility Index, VX1, are usually accompanied by
large movements, up or down, in the stock Index level. The December 1997 Asian
crisis is accompanied by more than a 50% level of Market Volatility Index.

2 A complete and simple description is available from the MONEP WEB-site:
http://issy.integra.fr:8080/monep/topframes.htx?d=http://wwwmonep.fr/monep1navig111.htm.
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Figure 1. The daily closing volatility index and CAC 40 index.

Following Fleming, Ostdiek and Whaley (1995) the empirical analysis of the
Volatility Index in this paper is done on volatility changes. Table I summarizes the
properties of daily VX1 changes. The mean volatility change over the entire sample
period is 0.00175. The standard deviation of the volatility changes seems high, i.e.,
2.039. Table I also provides the auto-correlation structure of the Volatility Index,
based on volatility changes from one through three lags. The first and second order
coefficients, respectively−0.270 and−0.112 reveal a significant negative auto-
correlation. This degree of correlation is similar to the auto-correlation reported
by Harvey and Whaley (1991) for individual S&P100 options. They reported for
daily volatility changes implied by the nearby at-the-money call (respectively put)
an auto-correlation structure of−0.33 and−0.13 (respectively−0.33 and−0.09).
However, this degree of correlation is much higher than the auto-correlation re-
ported by Fleming, Ostdiek and Whaley (1995) for CBOE Market Volatility Index
changes,−0.073 and−0.104. This higher auto-correlation for VX1 relative to VIX
may be attributable to the difference in how the indexes are constructed.Indeed,
VX1 is a weighted average of the volatilities implied by only call PX1 option prices,
whereas VIX is a weighted average of four call and four put option prices. In fact, a
call (put) implied volatility computed from the reported index level during a rising
market can be upward or downward biased. Since the upward (downward) bias of
the call implied volatility is approximately equal to the downward (upward) bias
of the put implied volatility, the effect of infrequent trading of index stocks on
the level of VIX is mitigated. Consequently, VIX Index construction reduces the
oriented overreaction. Most notably the auto-correlation for one through three lags
is negligible for daily CAC 40 Index returns.

1.2. INFORMATIONAL CONTENT OF VX1

Early studies of the information content in option prices focused on volatility.
While Jorion (1995) and Fleming, Ostdiek and Whaley (1995) found that im-



THE PREDICTIVE POWER OF THE FRENCH MARKET VOLATILITY INDEX 307

Table I. Statistical properties of daily closing MONEP market volatility
index level changes and CAC 40 index returns

Series Statistics Results

Volatility index changes Mean 0.0017476

Standard deviation 2.0391567

Autocorrelation (ρ = 1) −0.27018145∗
Autocorrelation (ρ = 2) −0.1123194∗
Autocorrelation (ρ = 3) −0.02991091

CAC 40 index returns Mean 0.00048822

Standard deviation 0.01127158

Autocorrelation (ρ = 1) −0.00362296

Autocorrelation (ρ = 2) 0.02580488

Autocorrelation (ρ = 3) −0.03153352

∗Identifies correlation significant at the 5% level where the standard error
is calculated asT−0.5.

plied volatilities contained substantial information for future volatility, Canina and
Figlewski (1993), however, reported that implied volatilites had little predictive
power for future volatility and therefore they were significantly biased forecasts.
Nevertheless, this last study differs from the others in the way implied volatility
is applied. Following Jorion (1995) and Fleming, Ostdiek and Whaley (1995), let
σt(τ ) be the realized volatility over the remaining contract life, measured from day
t to dayt + τ (τ = 1 month), defined as:

σ 2
t (τ ) =

1

2

(
0
(
τ−1

2

)
0
(
τ
2

) )2 τ∑
i=1

(Rt+i − R̄)2,

whereRt is the return att andR̄ is the sample mean ofRt . The predictive power
of a volatility forecast can be estimated by regressing the realized volatility on
forecast volatility:

σt(τ ) = a + bσ̂t + εt+1, (1)

whereσ̂t is the volatility forecast measured on dayt , taken as the implied volat-
ility, VX1 t . In this case, we would expect the intercept to be zero and the slope
coefficient to be unity. Canina and Figlewski (1993) suggest that an AR(1) specific-
ation using the historical rate dominates the OEX implied volatility as a forecast
of realized volatility. The historical rate is defined asσt−τ (τ ). As pointed out by
Jorion (1995), with horizons of up to one month, however, using daily data might
introduce overlaps in the error terms, which causes a downward bias in the usual
Ordinary Least Squares (OLS) standard errors. While White’s (1980) covariance
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matrix presumes that the residuals to the estimated equation are serially uncorrel-
ated, Newey and West (1987) have proposed an alternative that gives consistent
estimates of the covariance matrix in the presence of both heteroscedasticity and
autocorrelation. A related issue is the information content of the daily implied
volatility for volatility over the next day, which can be tested using the following
regression (see Jorion 1995):√

R2
t+1 = α + βσ̂t + εt+1. (2)

Since the forecast horizon does not match with the horizon of the realized returns
we only require the slope coefficient to be positive and not necessarily unity.

We first tested the information content of VX1 for next day volatility with
regression Equation (2). Results are presented in Table II. The table shows that
daily VX1 contains a substantial amount of information for volatility over the
next day. Both slope and intercept are significant as thet-statistics, not reported
in the table, are 4.55 and 2.34 respectively. Although forecasting using historical
volatility also provides significant results, not only does the VX1 approximation
appear less biased than historical volatility, but also its explanatory power, in terms
of adjustedR2, is higher. Finally the last line gives the implied volatility against
the historical one. The low result for “historical” slope is consistent with the results
of Jorion (1995) and it indicates in the same way that combining both forecasts in
the same regression we can find that the historical coefficient drops to−0.001 and
becomes insignificant. The predictive power hypothesis has been tested with the
results presented in Table II. It shows that VX1 contains a substantial amount of
information for future volatility. The slope coefficient is significantly higher than
zero. These results are in sharp contrast with those of Canina and Figlewski (1993)
who reported a slope coefficient of implied volatility of 0.229. The relative inform-
ation content on future volatility from historical ones shows that the coefficient
falls to 0.157 and thus becomes insignificant.

2. Market Volatility Index and Stochastic Volatility Models: A Multi
Horizons Forecast of Stock Market Volatility

2.1. PRELIMINARY ESTIMATION OF VX1 DYNAMICS

The data generating process used is defined on a probability space (�, F , P ) of the
underlying asset price processS that is described by:

dS

S
= µ(t, S, σ )dt + σ dW1(t),

dσ 2 = κ(ϑ − σ 2)dt + γ σ dW2(t),

whereW = (W1,W2) is a standard bi-dimensional Brownian motion. We denote by
r the instantaneous interest rate supposed to be constant, so that the price of a zero
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Table II. Tests of predictive power of VX1

Slopes on

Intercept Implied Historical R2

Information content regressions (
√
R2
t+1 = α + βσ̂t + εt+1)

0.002840∗ 0.566668∗ 0.035984

(0.001213) (0.124430)

0.005028∗ 0.340435∗ 0.018957

(0.000831) (0.079598)

0.002843∗ 0.567985∗ −0.001466 0.035089

(0.001194) (0.168666) (0.101194)

Predictability regressions (σt (τ) = α + βσ̂t + εt+1, τ = 1 month)

0.004815∗ 0.598552∗ 0.227294

(0.000874) (0.087815)

0.006331∗ 0.432168∗ 0.176987

(0.000710) (0.062468)

0.004569∗ 0.457014∗ 0.157469 0.237447

(0.000898) (0.136825) (0.095458)

∗Significantly different from zero at the 5 percent level.

coupon bond maturing at timeT is given bye−r(T−t ). LetC be the price process of
a European call option on the underlying assetS with strike priceK and maturity
T . We introduce the variablex = ln(S/Ke−r(T−t )), and then the call option is said
to be in-the-money ifx > 0, out-of-the-money ifx < 0, at-the-money forward if
x = 0 and at-the-money ifx = r(T − t).

Following Hull and White (1987) we impose the assumption of nonsystematic
volatility risk and the risk neutral data generating bivariate process is then given
by:

dS

S
= r dt + σ dW̃1(t),

dσ 2 = κ(ϑ − σ 2)dt + γ σ dW̃2(t),

whereW̃ = (W̃ 1, W̃ 2) is a standard bi-dimensional Brownian motion under the
risk neutral probability withW̃2 = W2.

The Hull–White formula is given by:

C(S, σ 2) = E
[
CBS

(
S,

1

T − t
∫ T

t

σ 2
u du

)]
=
∫
CBS(S, u/T − t)f (u)du,

wheref is the density of the cumulated variance. In this article we have assumed
that the variance follows a “square-root” diffusion process which is analytically
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tractable. Cox, Ingersoll and Ross (1985) implicitly solve for the moment-
generating function of the average of this process in the derivation of their formula
for the price of a discount bond. Ball and Roma (1994) show that when there is no
correlation between innovations in security price and volatility, the characteristic
function of the average variance of the price process plays a pivotal role. In fact
they note that this function can be used in two ways: first, to obtain the joint
terminal density of the average variance and the future security price; second to
obtain moments of the average variance. The first use allows for option pricing
through the Fourier inversion method (see Stein and Stein (1991)) and the second
use permits power series expansion methods (see Hull and White (1987)).

Along the line of Heynen, Kemna and Vorst (1994), this approach is only con-
cerned with a certain volatility whose maturity is chosen sufficiently small enough
to be considered as a proxy of the instantaneous volatility. It is then sufficient to
identify both dynamics. Consider that we model the instantaneous variance as a
“square-root” process:

dσ 2 = κ(ϑ − σ 2)dt + γ σ dW̃2(t),

with2 = (κ,ϑ , γ ). This diffusion can then be estimated by the distribution free es-
timation method called, by Hansen (1982), the “Generalized Method of Moments”
(GMM). However as pointed out by Honoré (1997) “The disadvantage of the GMM
restrictions is that the transition density is ignored”. And indeed a maximum like-
lihood based procedure if possible, is preferable. A heuristic argument may be
that a density function is an infinite sum of moments. If the conditional density
f (σ 2

i |σ 2
i−1) is known, then it is possible to maximize the likelihood functionl(σ 2

0 ,
. . . ,σ 2

T ; 2) in order to estimate:2 = (κ, ϑ , γ ). The log-likelihood is then given
by:

l(σ 2
0 , . . . , σ

2
T ;2) = ln5T

i=1f (σ
2
i |σ 2

i−1) =
T∑
i=1

ln f (σ 2
i |σ 2

i−1).

It’s worthwhile to note that where no analytical expression of the transition dens-
ity exists, the quasi-maximum likelihood estimation is useful. That is to say we
apply the maximum likelihood estimation as if the process is normal. A compar-
ison between these two estimation alternatives (GMM and QML) accomplished
by Honoré (1997) on a “square-root” type diffusion concludes that: “GMM gives
more biased estimates than QML in most situations”. Jacquier, Polson and Rossi
(1994) argue that “although feasible, GMM methods are rarely used to estimate
ARCH models because the likelihood function is simple to evaluate”. However,
even if the QML method gives “better” results than GMM does, it possesses a
discretization bias that has to be corrected. Indirect inference (see Gouriéroux,
Monfort and Renault (1993)) is then recommended if the time interval between two
observations is equal to one month or one week. This error is however very small if
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Table III. Estimation of the VX1 dy-
namic

dσ2 = κ(ϑ − σ2) dt + γ σ dW2(t)

Value t-stat

κ 21.5234 8.90338

ϑ 0.059076 15.5108

γ 0.676479 112.510

L 3529.81

the time length between two observations is short, for example a day. Nevertheless,
in our case,f is a non-centralχ2 distribution:

logf (σ 2
i |σ 2

i−1,1) = logc − c(σ 2
i + e−k1σ 2

i−1)+
1
2q log

(
σ2
i

σ2
i−1e

−k1

)
+ log Iq(2c

√
σ 2
i σ

2
i−1e

−k1),

wherec = 2κ/γ 2(1−e−κ 1t ), q = 2κϑ/γ 2−1, Iq(·) is a modified Bessel function
of the first kind of orderq:

Iq(z) =
( z

2

)q ∞∑
n=0

(
z

2

)2n

n! · 0(q + n+ 1)
.

Table III reports the maximum likelihood parameter estimates of the previous
volatility process and the corresponding asymptotics standard errors. The period
sampled is from January 1994 through April 1998. This procedure can be com-
pared to the method used by Heynen, Kemna and Vorst (1994) who considered
near-the-money, short maturity Black–Scholes implicit volatilities as proxies.

The estimate forκ, the adjustment speed forσ 2, is 21.52, which implies a
very fast mean-reversion. To get a feeling of the adjustment speed we can use the
following conditional expectation:

E[σ 2
s |σ 2

t ] = σ 2
t e
−κ(s−t ) + ϑ(1− e−κ(s−t )).

For example, the half-life of the process (the time when the variance is expected to
have a value halfway between the current level and the long-run mean) is ln(2)/κ =
0.0322 or about one week. It is worthwhile to note that if we had used Heynen–
Kemna–Vorst’s methodology, this result for adjustment speed would have been too
quick relative to previous studies (see, for example, Bates (1996)). Finally it should
be noted that all parameter estimates are significant. Figure 2 reports the implicit
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Figure 2. Implicit instantaneous volatility from market volatility index VX1.

instantaneous volatility obtained by solving an Hull and White’s implicit volatility
with the previous parameters.

From Figure 2 you can see that we cannot obtain all implicit instantaneous
volatilities based on the annualized French Market Volatility Index and the previ-
ous estimates of the parameters. Consequently, a separate study of the dynamics
in the sense that we have not taken into account the maturity effect could be a
criticism. First, by considering two different proxies it implies a different result
on estimation. Second implied volatility is just an approximation of the instantan-
eous volatility. We naturally observe an estimation bias since spot instantaneous
volatility is known to be an instantaneous implied volatility.

2.2. NEW SIMPLE PROCEDURE TO CORRECT MATURITY INDUCED BIAS

Suppose that the observed prices are given by the previous formula, Renault and
Touzi (1996) pointed out that, in this context, due to the increasing feature of the
Black–Scholes formula with respect to the volatility parameter, a precise definition
of the Black–Scholes’ implied volatility can be given as the unique solution of:

σ 2
I (x, σ

2;2) = h(x, σ 2;2),
whereh = (CBS)−1 ◦C and2 = (κ, ϑ , γ ). In the special case of an at-the-money
implied volatility, xt = r(T − t), this equation reduces to:

σ 2
I (σ

2;2) = h(σ 2;2).
The vector of parameters2 finally need to be estimated.

Since the derivatives with respect to the volatility is positive Black–Scholes’s
implied volatility is a one to one function of the unobservable volatility. Thus, the
observation of a Black–Scholes implied volatility is equivalent to the observation
of a realization of the volatility process. In this case, since implied volatility is
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used in the same spirit as yield to maturity on the bond market, direct maximum
likelihood statistical inference as Pearson and Sun (1994) and Duan (1994) did in
the case of interest rate, may be applied. More precisely, if we denote fori = 0,
1, . . . ,n, σ 2

I,i , theith discrete and sample observation in an available time series of
Market Volatility Index i.e., at-the-money implied volatility and if the conditional
density forσ 2

I,i is known conditionally on previous instant and notedf (σ 2
I,i |Fi−1;

2) = f (σ 2
I,i|σ 2

I,i−1; 2) then standard maximum likelihood estimate of2 can be
obtained by using the following direct log-likelihood function:

L(σ 2
I,n, . . . , σ

2
I,0;2) =

n∑
i=1

ln f (σ 2
I,i |σ 2

I,i−1;2).

Sinceσ 2
I = h(σ 2;2) then the log-likelihood can be expressed as (Pearsun and Sun

(1994) and Duan (1994)):

L(σ 2
I,n, . . . , σ

2
I,0;2) =

n∑
i=1

{− ln |Ji| + lnf (σ̂ 2
i |σ̂ 2

i−1;2)}.

whereJi = ∂σ 2
I,i/∂σ

2
i is the Jacobian of the transformation,σ̂ 2 is the implicit spot

volatility found asσ 2
I = h(σ̂ 2; θ). Implicit volatility can be obtained as a limit of

the following Newton–Raphson procedure:

σ̂ 2
i (p + 1) = σ̂ 2

i (p)−
[
∂h(σ̂ 2

i (p),2)

∂σ̂ 2
t

]−1

[h(σ̂ 2
i (p),2)− σ 2

I,i].

Even if in an absolute way, this procedure can be applied directly, it requires
cumbersome charged CPU time since the transformation between Black–Scholes
implied volatility and instantaneous volatility is non-linear and non-analytical. It
is important to note that Pearsun and Sun (1994) and Duan (1994) succeeded in
applying this econometric procedure since they used interest rate exponentialaffine
model. In this special case, the transformation between an instantaneous interest
rate and yield to maturity is very simple.

To obtain 2̂ Renault and Touzi (1996) proposed an iterative procedure for
implementation of the transformation betweenσ 2

I and σ 2, σ 2
I = h(σ̂ 2; θ), in

the optimization of the log-likelihood function. The key point is that this estim-
ation procedure provides simultaneously Hull and White’s implicit volatilities and
consistent estimators of the volatility process parameters. This is repeated until2̂

converges. More precisely, they introduced the following iterative procedure:

Step 2p 2(p)→ σ
(p+1)
i , i = 0,1, . . . , n,

Step 2p + 1 σ
(p+1)
i , i = 0,1, . . . , n→ 2(p+1).

where step 2p is performed by solving a Hull and White’s implicit volatility and
step 2p + 1 is the maximum likelihood estimate from data obtained by step 2p.
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In the special case where the at-the-money Black–Scholes implied volatilities are
available, this iterative procedure is shown to be anEM (expectation-maximization)
algorithm where the step 2p (step 2p + 1) corresponds to stepE (stepM) of
theEM algorithm. However, they noticed that the general properties ofEM al-
gorithms did not apply since the support of the latent variables given the ob-
servable ones depends on the unknown parameters. They argue that for a large
enough sample size the algorithm convergesalmost surelytowards the true value
of the parameters. Furthermore as Renault–Touzi wrote, this procedure can be
seen as correcting the approximating bias of the method used by Heynen, Kemna
and Vorst (1994) who considered near-the-money, short maturity Black–Scholes
implicit volatilities as proxies.

This iterative procedure reduces the charged CPU time dramatically because
the numerical integration procedure has only to be called a fraction of the times as
compared with directly maximizing the log-likelihood function whereσ̂ 2 changes
for every change in2. Nevertheless, the drawback of this procedure is that we
do not get an explicit estimate of the volatility risk premium. Thanks to the Hull–
White model which assumed a nonsystematic volatility risk this drawback is not
important here. More importantly, Renault and Touzi (1996) pointed out that there
were two asymptotic points of view relevant for this iterative procedure. The first
one concerns the continuous time limit obtained by letting the time between obser-
vations go to zero (this is related to the near integrated time series). The second one
consists of considering an infinite number of observations with fixed time between
observations. Renault and Touzi (1996) recalled that except for the instantaneous
variance parameter the maximum likelihood estimator does not converge with the
true value of the parameters when the time between observations goes to zero, they
considered the second asymptotic point of view.

Finally, the key point is that this estimation procedure provides simultaneously
Hull and White’s implicit volatilities “and” consistent estimators of the volatility
process parameters. If at-the-money options are available at any time, this iterative
procedure is shown to be anEM (expectation-maximization) algorithm, associated
with the observations of Black–Scholes implied volatility, that convergesalmost
surely towards the true value of the parameters. As Renault–Touzi pointed out
a natural starting point of the iterative procedure is2(0) = 0. In fact, Table III
and Figure 2 from the previous section reports the two first steps of Renault–
Touzi (1996) iterative procedure (p = 0). Since2(0) = 0, it is clear that the
first step filtered Hull–White’s implicit volatilities equals to the market volatility
index, VX1. Furthermore Renault–Touzi confirmed that this first iteration (p = 0)
corresponding to the step 0 and 1 can be identified to the method used by Heynen,
Kemna and Vorst (1994) who considered near-the-money, short maturity Black–
Scholes implicit volatilities as proxies. Step two is obtained by solving a Hull
and White’s implicit volatility with the previous parameters. Step three should be
able to estimate the parameters from data obtained by step 2p using a Maximum
Likelihood procedure. However, from Figure 2 it should be noted that we cannot
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Figure 3. Expected average variance and instantaneous variance versus theoretical ATM
implied variance (ϑ = 0.25, r = 5%,T − t = 1 month).

obtain all implicit instantaneous volatilities based on the annualized French Market
Volatility Index and the previous estimates of the parameters. Thus, in our case,
Renault–Touzi’s procedure does not permit us to obtain a whole implied volatility
series and hence fails to provide parameters estimate.

Nevertheless, we suggest using Feinstein’s (1992) methodology: he demon-
strates that the implied volatility approximates the market expectation of the av-
erage volatility over the life of the option. Following Ball and Roma (1994), it can
be shown that:

σ 2
I ≈ E

[
1

τ

∫ τ

0
σ 2
u du

]
= ϑ + (σ 2− ϑ)1− e

−κτ

κτ
.

From Figure 3, it can be infered, first, that Theoretical Implied Variance and
Expected Average Variance seems to be very close and this justified Feinstein’s
(1992) approximation. Second, since Feinstein’s definition assumed implicitly in
this model that Theoretical Implied Variance is a affine function of the instantan-
eous one, it can be verified from Figure 3 that this seems to be true. Finally, it
can also be shown that the relationship between Theoretical Implied Variance and
Instantaneous Variance seems to be justifiedonly when its level is near its long
term value (the intersection point of Theoretical Implied Varianceand the first
bisectrice).

In this case,

σ 2
I,i = ϑ + (σ 2

i − ϑ)
1− e−κ̃τ
κ̃τ

⇔ σ 2
i = ϑ + (σ 2

I,i − ϑ)
κ̃τ

1− e−κ̃τ ,
σ 2
t is therefore anaffine function of the implied volatility. And the log-likelihood

function is:

L(σ 2
I,n, . . . , σ

2
I,0;2) =

n∑
i=1

{− ln |Ji| + lnf (σ̂ 2
i |σ̂ 2

i−1;2)},
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Table IV. Estimators based on mar-
ket volatility index MONEP-VX1
(dσ2 = κ(ϑ − σ2) dt + γ σ dW2(t) and
σ2
I ≈ E[1/(T − t)

∫ T
t σ2

s ds]

Value t-stat

κ 5.41814 3.68011

ϑ 0.063271 4.33034

γ 0.848799 30.0029

L 3537.44

Figure 4. Implicit instantaneous volatility from market volatility index VX1.

whereJi = 1− e−κτ /κτ .
Note that ifκ(T − t) is low then 1− e−κ(T−t ) ≈ κ(T − t) and thereforeσ 2

I ≈
σ 2
t i.e., this methodology can be identified to the one used by Heynen, Kemna

and Vorst (1994) who considered near-the-money, short maturity Black–Scholes
implicit volatilities as proxies. In fact, like Renault–Touzi’s iterative procedure, this
can be seen as correcting the approximating bias of the method used by Heynen,
Kemna and Vorst (1994).

The estimate forκ, the adjustment speed forσ 2, is 5.42, which implies a slower
mean-reversion than that found in Table III. The half-life of the process is about
one month and a half.

2.3. A MULTI HORIZON FORECAST OF STOCK MARKET VOLATILITY

Renault and Touzi (1996) pointed out that, in the Hull and White (1987) model,
due to the increasing feature of the Black–Scholes formula with respect to the
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Figure 5. Volatility indexes issued from market volatility index VX1.

volatility parameter, a precise definition of the Black–Scholes’ implied volatility
can be given as the unique solution of:

σ 2
I (x, σ

2;2) = h(x, σ 2;2),

whereh = (CBS)−1 ◦C,2 = (κ, ϑ , γ ), andσ is the instantaneous volatility. The
implicit Hull and White’s (1987) instantaneous volatility and the implied paramet-
ers from VX1 may allow us to calculate the implied volatility of an option no
matter what maturity it is having. Here we create two new volatility indexes based
on VX1: one with a maturity of two weeks whereas the other having a maturity of
two months. These indexes are plotted in Figure 5.

Following the previous section, letσt(τ ) be the realized volatility over the re-
maining contract life, measured from dayt to dayt+τ (τ = 2 weeks or 2 months),
defined as:

σ 2
t (τ ) =

1

2

(
0
(
τ−1

2

)
0
(
τ
2

) )2 τ∑
i=1

(Rt+i − R̄)2,

whereRt is the return att andR̄ is the sample mean ofRt . Again, the predictive
power of a volatility forecast can be estimated by regressing the realized volatility
on forecast volatility:

σt(τ ) = a + bσ̂t + εt+1, (3)

whereσ̂t is the volatility forecast measured on dayt , taken as the implied volat-
ility and the historical rate is defined asσt−τ (τ ). Results are presented in Table
V. The table shows that the two daily volatility indexes implied by VX1 contain
information for future volatility over the remaining contract life.
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Table V. Predictability regressionsσt (τ) = α + βσ̂t + εt+1

Slopes on

Intercept Implied Historical R2

τ = 2 weeks

0.004775∗ 0.612886∗ 0.225795

(0.000878) (0.092543)

0.006672∗ 0.401140∗ 0.151908

(0.000610) (0.053854)

0.004370∗ 0.466862∗ 0.173605∗ 0.221965

(0.000882) (0.108665) (0.059802)

τ = 2 months

0.004058∗ 0.660926∗ 0.252267

(0.000934) (0.090056)

0.004862∗ 0.568199∗ 0.310523

(0.000815) (0.077965)

0.004025∗ 0.214538 0.437090∗ 0.319794

(0.000915) (0.112903) (0.103908)

∗ Significantly different from zero at the 5 percent level.

3. Conclusion

The MONEP Market Volatility Index (VX1) is an average of CAC 40 option (PX1)
implied volatilities. The findings reported in this study indicate that a strong rela-
tionship exists between VX1 and the future realized stock market volatility over a
forecast horizon of one month. On the basis of these findings, and those reported in
the study of Fleming, Ostdiek and Whaley (1995) for the CBOE Market Volatility
Index (VIX), we apply the maximum likelihood estimation procedure on a VX1
time series to recover Hull and White’s (1987) implicit instantaneous volatility.
While the Renault and Touzi’s (1996) statistical iterative procedure of filtering (of
the latent volatility process) and estimation (of its parameters) failed to provide
estimates of the parameters of the unobservable latent volatility process, we ex-
ploited Feinstein’s (1992) research which demonstrates that the implied volatility
approximates the market expectation of the average volatility over the life of the
option. In that case, since implied volatility is used in the same spirit as yield to
maturity on the bond market, we applied direct maximum likelihood statistical
inference on our analysis as Pearson and Sun (1994) and Duan (1994) had done in
the case of interest rates. More importantly, we show how the index can be used
to generate volatility forecasts over different horizons and that these forecasts are
reasonably accurate predictors of future realized volatility.
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