Valuing Corporate Liabilities When the
Default Threshold is not an Absorbing

Barrier

Franck MorRAUX*

Université de Rennes 1
CREREG - Axe Finance

Institut de Gestion de Rennes
11, rue Jean Macé BP 1997
35019 Rennes Cedex, France.

franck. moraux@univ-rennesl. fr
Tel: 332 2323 3535
Fax: 332 2323 7800

*This paper has benefited from discussions with seminar participants at ESSEC, at the
Université Paris 1 - Sorbonne, with participants of the EIR 2001 Annual Conference, the
EFMA 2002 Annual Conference, the London Guildhall University Conference on ”credit
derivatives” and the ”Credit 2002 Conference” organized by the GRETA in Venice in
September. Special thanks are addressed for comments to Eric Bryis, Michael Demp-
ster, Raphaél Douady, Bernard Dumas, Jan Ericsson, Hélyette Geman, Kay Gesiecke,
Roland Gillet, Jean-Paul Laurent, Constantin Mellios, Patrick Navatte, Patrice Pon-
cet, Roland Portait, Philippe Raimbourg, Alexander Reisz, Olivier Renault, Mickael
Rockinger, Nicholas Sarantis and the CREFIB team. The CREREG is the UMR CNRS
6585.



Valuing Corporate Liabilities When the
Default Threshold is not an Absorbing Barrier

Abstract

This paper studies the impacts of delays beyond the default event on the ex ante pricing
of corporate liabilities and credit spreads. Such delays are often granted by courts within
domestic bankruptcy codes. A Black-Scholes-Merton-Cox type framework is developed to
account for both the subordination and the possible convertibility of debt to equity. In this
structural approach, the firm assets value is allowed to cross the default barrier without
causing an immediate liquidation. One shows that all the liquidation procedures based on
the time spent by the firm in financial distress are bounded by a couple of ideal procedures.
Interestingly, these latter lead to quasi analytical pricing formulae for the corporate liabil-
ities. We adapt and extend the analytical formulae introduced by Chesney-Jeanblanc-Yor
(1996) in the context of Parisian options, to derive these two bounds. We then conduct
extensive numerical simulation. Among other results, experiments mainly conclude that
the credit spreads increase or decrease monotonically w.r.t. the extra time granted be-
yond default, depending on the way the considered bond is secured or subordinated to
others. Overall, this article complements Frangois-Morellec (2002) who examine whether
the Chapter 11 of the US Bankruptcy procedure impacts on capital structure choices and
the strategic decision to default in lines of Leland (1994).
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1 Introduction

Structural models for valuing corporate liabilities currently use the default
barrier introduced by Black-Cox (1976) (Leland (1994), Longstafl-Schwartz
(1995) and Leland-Toft (1996)). Exogenous, this threshold reflects the safety
covenant allowing secured bondholders to bankrupt the firm. This boundary
signals the early default and gives the ’liquidation’ value of the firm assets too.
Assuming an immediate modus operandi nonetheless overestimates effective
creditors rights because the default and the liquidation cannot be considered
as equivalent events. Empirical studies in USA have found that additional
”survival” periods beyond the main default event last up to 3 years (Altman-
Eberhart (1994), Betker (1995), Hotchkiss (1995)). Helwege (1999) reports
that the longest default of the modern US junk bond market is seven years
long. The legal environment is an important explanatory factor for this
duration. In most countries, bankruptcy processes check first the reality of
the financial distress before claiming definitive and complete liquidation of
the firm assets'. Liquidation can be further postponed because codes often
favor firm continuation against claims reimbursement (for political and social

considerations) 2,

This paper aims at studying the impacts of delays on the ex ante pricing

I Paraphrasing the French code, the financial distress must be real and recognized
whereas a default may result from a simple and brief mismatch between available lig-
uid assets and the current obligations.

2Qut-of-court negotiations between claimants and stockholders induce delays too but
they are reputed to be briefer processes (Hotchkiss (1995)).



of corporate liabilities within a Black-Scholes-Merton-Cox style framework.
The firm assets value can cross the default threshold without causing an im-
mediate liquidation. This approach succeeds in pricing complex securities, it
sheds light on the intricate relations between credit spreads, subordination
and convertibility. This paper focuses on liquidation procedures that are ex-
plicitly based on the time spent by the firm in financial distress. It shows
that these (close to reality) decision-making processes are bounded by a cou-
ple of idealized procedures. One then demonstrates that results of Black-Cox
(1976) and Ingersoll (1977) on subordinated and convertible bonds (respec-
tively) are robust to such procedures. Using results of Chesney-jeanblanc-
Picqué-Yor (1995) and new materials on cumulative contingent claims, closed

form formulae for pricing corporate liabilities can then be derived.

Numerical experiments conclude that both equity price and corporate
credit spreads are sensitive to delays. Equityholders wealth strictly rises as
the granted time below the thresholds increases. More interestingly, credit
spreads are increasing or decreasing monotone functions (of the extra time)
depending on the way the bond is secured or subordinated to others. Our
results are contrasting with previous procedures designed by Black-Scholes-
Merton and Black-Cox. Appealing features of the approach are to make a
clear distinction between a default event and the financial distress and to
allow successive default events. In the structural approach, strategic models
in lines of Anderson-Sundaresan (1996) and Mella Barral-Perraudin (1997)

are the only ones that manage to do so. These sequential models require
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however detailed assumptions on the behavior of investors. A notable excep-
tion is Frangois-Morellec (2002) who examine whether the so-called exclu-
sivity period defined by the Chapter 11 of the US Bankruptcy code impacts
on capital structure choices and the strategic decision to default in lines of
Leland (1994). These authors found that the leverage choices are ambigu-
ously impacted whereas "unambiguously |[...| credit spreads increase with the
length of the exclusivity period”. One will show that this second claim is not

verified when the debt subordination is considered.

The rest of this paper is organized as follows. Section 2 develops a frame-
work & la Black-Cox-Scholes-Merton. Section 3 considers the pricing of cor-
porate liabilities. Section 4 presents an in-depth discussion of the liquidation
procedures modelling. Section 5 turns to a numerical analysis of the liquida-
tion procedures. Section 6 illustrates previous results on a complex capital

structure.

2 The structural framework

This section develops a Black-Scholes-Merton-Cox like framework capable
of handling a given liquidation procedure. Most of the assumptions of the
seminal setting are supposed to hold. Assets are traded continuously in
a perfect and complete financial market. The interest rate level is assumed
constant. One denotes r the continuously compounded risk free interest rate.

The risk neutral price process of the underlying firm asset V' is supposed to



be well described by the following stochastic differential equation:
dV; = rVdt 4 oy V. dWy. (1)

where W is a standard Brownian motion and oy the constant volatility.
Assumptions on the capital structure of the firm follow common practice too.
Debts are zero coupon bonds that mature at time T". In case of liquidation,
the absolute priority rule holds. Following Black-Cox (1976) and Longstafl-
Schwartz (1995), the senior (the most secured) bond has a safety covenant
with a net worth type criterion. The debtholder is theoretically allowed to
force bankruptcy, when the firm assets value attains an exogenous threshold
denoted Vg. In applications, the constant level Vg is equal either to the face
value or to the discounted face value (with the risk free rate). The time-
varying default barrier of Black-Cox (1976) is emploied too. Denoting F' the
face value, this default threshold at time ¢ is given by Vp(t) = pFe "9
where p € [0,1] may be interpreted as a percentage of security. Assuming
that the secured debt remains risky implies that p < 1.

Up to now, default and liquidation are undistinguishable events because

the firm assets are immediately liquidated. In order to avoid confusion, some

extra definitions are required. Let’s define what a liquidation procedure is.

Definition 1 A liguidation procedure is a (legal) decision-making process
which aims at verifying whether the financial distress is real i.e. a recognized

fact.

It is implicitly assumes the ubiquity of the decision maker. In our setting,
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the net worth criterion of the safety covenant characterizes the default event.

It also implies a natural definition of the financial distress.

Definition 2 A firm is in financial distress when the value of its asset is

lower than the default threshold.

The rationale of the liquidation procedures must now be precised. One
relates the procedure to the sojourn time in financial delays although any

other criterion would induce delays.

Assumption The rationale underlying the liquidation procedure is based on

the time spent by the firm in financial distress.

It must be stressed that this seemingly arbitrary assumption is in lines
with observed practices within domestic codes and that no other requirement
has been explicitly and reccurently found®. Bankruptcy codes may even insist
on the duration of the financial distress. Hereafter, one refers to it as the
“granted time”. Due to the previous definition, the key point is the time
spent by the underlying firm asset value beyond the standard default barrier.
When the firm assets value attains the exogenous threshold (Vg), a default
event is just signaled. Clearly, the liquidation event is strictly posterior to
the default time. In addition, the default is no longer an absorbing state.

The default threshold is no longer an absorbing barrier.

3Other arbitrary criteria for liquidation procedures could be investigated (e.g. a max-
imum number of default events). Ad hoc can one can construct rationale allowing quasi-
analytical solution for the pricing of corporate liabilities. But this would lead to a choice
unrelated to real practices and a model risk difficult to appreciate.



The way successive delays may be granted to the firm is a central question
when modelling the considered liquidation procedure. First, delays can be
given in response to successive and distinct distress periods. For example,
the chapter 11 of the US Bankruptcy law may be used several times (cf. the
TWA and its ”Chapter 11, 22, 33”). Second, extra times can also be granted
during the same financial distress. In France, e.g., a legal 3 months-length
observation period is, to date, systematically granted by courts. This can
be renewed once and exceptionally prolonged in the limit of six months on a
discretionary basis. Anyway, a key difference between domestic environments
stand in the way additional time is granted at the second (and subsequent)
default events. Interestingly, it is demonstrated below that possible pro-
cesses are bounded by a couple of idealized procedures. To this, one simply

introduces them as follows.

Definition 3 Under the procedure A, the liquidation is declared when the

financial distress has last successively more than a d-length period.

To compare with Black-Cox (1976), firm assets are liquidated as the time
successively spent by the firm assets value V' below the default is greater
than d. This is the ideal procedure considered by Frangois-Morellec (2002)
to model the Chapter 11 of the US bankruptcy procedure. This is discussed

in more depth in what follows.

Definition 4 Under the procedure B, the liquidation is declared when the

financial distress has last more than a d-length period during the debt’s life .
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Firm assets are liquidated when the total time spent by the firm assets
value V' below the default is greater than d. Here d serves the role of maxi-
mum authorized duration in default. In the French code described above, it
could be equal to one year. This couple of procedures leads to closed form so-
lution for pricing corporate securities. After dealing with the corresponding
pricing issues, one will emphasize the key difference between the procedures
A and B and deduce some important implication. Note that d is supposed

to be exogenously given.

3 The pricing of corporate liabilities

To refine the analysis, various random variables must be introduced. If nec-
essary, the notations closely follow Chesney-Jeanblanc-Picqué-Yor (1995).
Analytical formulae are then derived to price complex corporate liabilities.

Their properties are finally considered.

3.1 Notations

The first random variable of importance is the first default event time. This
is the first time the firm asset value reaches the default barrier. It is described

by :

Ty, =Inf{0<t<T:V, =V}



The second fundamental random variable is the last time before ¢ the process

V = (Vi)¢ has crossed the level V. This is denoted :
ggB’t = sup{s < t|V, = Vz}.

One can now focus on the duration or total duration of the financial distress.
Under the procedure A, the liquidation time is the first time when the firm
value process has spent consecutively more than the pre-specified value d

below Vg. Here, the liquidation time is given by :
To(d) =inf{t >0:t — gy, >d,V, < V).

Chesney-jeanblanc-Picqué-Yor (1997) precised this is a stopping time.

Under the procedure B, the liquidation is declared when the total time the
firm assets value stands under the default barrier exceeds d. The cumulative
time spent under the default threshold Vg also termed the occupation time

is mathematically defined by:

t
A;(VB) :/ 1{Vv§VB}dU‘
0

This random variable cumulates any excursion times between 0 and ¢. Here,

the liquidation time is given by :
T0(d) = inf{t > 0: A, (Vp) > d}.
3.2 The equity

Following Black-Scholes (1973), let’s assume that the firm has issued an

unique non convertible zero-coupon bond maturing at T' whose face value
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is K*. At maturity T, equityholders receive the firm assets value in excess
of the promised face value if no early liquidation due to financial distress
has been declared before. This is the case when the time spent (successively
or overall) beyond the default threshold does not exceed d. FEquityholders
rights are well duplicated by an european contingent claim written on the

firm assets. The price of the equity verifies :
qu = EQ eirT max (VT - K7 0) 1{7'%/(d)>T} ) 1= A7 B (2>
where 7%,(d), i = A, B is defined above.

3.2.1 Under the procedure A

Under such a liquidation, the equity is a Down and Out Parisian option
written on the firm assets. The equity price may therefore be computed
thanks to the results of Chesney-Jeanblanc-Picqué-Yor (1995). Denoting

Eqps the standard Black-Scholes-Merton price of equity, one finds :

Eqy = Eqpg — e P57 / ™ (Voe™ — K)hy, (T, u) du (3)
k
where k = %ln(%), m = %(T — by — %0%/). The second term in teh right

hand side is the price of a Down and In parisian option. hy,, is characterized

by its Laplace transform given by :

B ebV2X
dV2 p(V2Md

4More complex capital structure will be studied below.

A o0 2
hva (A, ) ) /0 ze Iyl g
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with b = %ln(%) and @(u) = 1 + uv/27ez" N(u). To invert this Laplace
transform, a numerical procedure is required. Among many other choices,
the gaussian quadrature algorithm of Piessens (1973) is emploied. This is

the one used by Cathcart-El Jahel (1998) in a different context.

3.2.2 Under the procedure B

The second procedure exploits new materials on cumulative parisian options.
These contingent claims depend on the total time spent by the underlying
asset above or below a threshold level. The equity is priced as a Down and

Out cumulative call option by the following equation :

Bqp = V30,

o (Tok,b.d) — K'U (T, k,b,d) (4)
with V] = Voe CH37, K = Ke 357 b= Lin(Vy/Vo), k = LIn(K/Vo).

Assuming that V4 > Vg, one has :

2
Uh(t, k,bd) = "? <c1> (d=quy (t, Vo, VB vV K)) — (E)%/‘f@(dg(m(u Kfj VeV K))>

Vo 1%

T b
—I—/ ds/ Y (I —x,—b,s,t —s) dz
d kAb
T 00
—I—/ ds/ Y (0,2 — 2b,s,t — ) dx
d kVb

where

(1]

1 it p=m+o
<M)_{2 if pu=m

and

o0 b €T a2 €T 2
T(a,b,u,v) = / @ta)(@+b) e’ et
0

7(uv)?
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The derivation of this pricing formula follows the general work of Hugonnier
(1999) on occupation time derivatives. It must be stressed however that it
differs from the ones he proposed. Some details are given in appendix. Of

course, numerical approaches could have been used. One refers to Avellaneda-

Wu (1999), Haber-Schénbucher-Wilmott (1999) among many others.

3.3 Other liabilities

Here is the key interest of the chosen framework. One considers a gen-
eral capital structure by assuming that the firm has issued n different debts
(either bonds or loans), strictly ordered by their rank of priority in case
of liquidation,which matures at the same date T. Denoted (L;);—1. n the
price of these ranked debts, L; stands for the most secured liabilities, L,
for the most subordinated debt (L,41 could be assimilated to the equity
price). Let P; be the price of the pool of loans containing the j first liabili-
ties P; = f;:l Ly. Maturing at the same date T, the total amount of this
pool is the sum of the j face values : F(P;) = f;:l FIy. It is worthwhile to
note that F(Pj1) = F(P;) + Fji1.

3.3.1 Subordinated debts

In our setting, assuming that the Absolute Priority Rule holds is equivalent
to suppose that the owners of the 7 +1 —th debt are equity holders until the

j — th debt is fully repaid. Hence,

Proposition 1 Under the assumptions of section 2, any corporate liability
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(nor convertible, nor callable) can be valued as the difference of two equity
prices. These equities correspond to identical firms but in the leverage. De-
noting Eq(K) the equity price of a K-leveraged firm, the j — th liability is

valued :
Ly = Eq(F(Pj)) — Eq (F (Py))
where F (P;) has been previously defined.

Some remarks merit to be done. First, this result is quite general. It is
distribution free, independent of the interest rates behavior and even inde-
pendent of the liquidation procedure (e.g. this is true within the Black-Cox
(1976) setting (p 359)). Second, the valuation of a subordinated debt needs
not the total value of the firm but only the knowledge of the current firm
asset value. Third, an equivalent expression for subordinated debt that in-
sists on the discount w.r.t. the risk free equivalent is easily found thanks to
the parity relation. One has L; = Fjpo(0,T) — (put(F(P;)) — put(F(P;-1))
where pp(0,T) is the value of an equivalent risk free bond and put stands for

the put opion value.

3.3.2 Convertible debts

Dealing with the convertible debt is an important point since they are very
common in observed capital structures. Both the equity and the convertible
debt are concerned with. For short, one will firts assume that a conversion
is not optimal before maturity, within our context (there is no dividend

payment ).

14



Proposition 2 Assuming that one of the debts is convertible and optimally

convert only at maturity, the equity price is given by :

Bq = Eq(F + D) — £Eq(F + ?)

where & is a dilution factor, D the face value of the convertible debt and F

the sum of any other face values to be repaid.

To demonstrate this, note that the dilution factor £ here is lower than one.
One has D/¢ > D. Any ex ante earning G for stockholders is diluated and
becomes (1 — &) in case of conversion. If there is no conversion, the equity
is worth at maturity the remaining value after repaiment of all debts. In the
case of conversion, this value is simply diluated. Hence, one has formally :
Bq= Bl (Ve — (F' + D))l{VTE[F+D;F+%]}] + B9 (1= &) (Ve - F)l{VT>F+§}]-
Decomposing the first member of the right hand side gives :
Eq=E®fe ™" (Vp — (F + D)y~ i pyl
- EQ[{TT(VT - (F + D)>1{VT>F+§}]
+ E9le™ (1= &) (Vr — F)l{VT>F+§}]
= Eq(F 4+ D) — £Eq(F + ?)
The last equation is found by noting that Vi — (F + D) — (1= &)(Vp — F) =
EVr—(F'+2)).
Proposition 3 In our Black-Scholes-Merton context with no dividend pay-
ment to stockholders, the optimal conversion policy is insensible to the liqui-

dation procedure.
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As a result and paraphrasing Ingersoll (1977), "a convertible security
will never be converted prior to maturity”. This has been demonstrated by
Ingersoll (1977) in the context of Black-Scholes-Merton (one refers to Merton
(1973) for a similar problem). This is also true whatever the liquidation
is. First, in the case of liquidation, the position of debtholders is always
safer than the one of equityholders (remind that the ”absolute priority rule”
is supposed to hold). Second, designing a liquidation procedure does not
modify the potential upside behavior of the stock price (while the default

event 1s a downside risk).

Armed with thess results, one can now turn to the case of subordinated

convertible.

Proposition 4 Under previous assumptions, a subordinated convertible debt

18 priced by:
Ly = Eq(F(Pu-1)) = Eq(F(Py)) + EEq(F(Py))

where P = F(Pn_1) + F, /& with & the dilution factor.

One of the simplest demonstration of this result is based on a differential
rationale. It is sufficient to remark that this security is valued so that the
market value of the corporate liabilities equal that of the firm. As a by-
product, one can easily obtain an expression for the convertible rights at

maturity for a subordinated convertible debt.
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4 A closer look at the liquidation procedures

Under assumption 3, liquidation procedures (among which the A and B)
appear quite similar at the first sights. They nonethless imply quite different
modus operandi in the legal decision-making process, it is worthwhile to

highlight and compare one another.

4.1 A comparative analysis of procedures A and B

The key difference between A and B stands in whether an equally d-length
duration may be granted several times. To help the intuition, let’s consider a
"financial distress time counter” that adds the duration. In addition, recall
that the liquidation procedure begins as the firm assets value gets lower than
the default barrier.

Under the procedure A, each time the firm value process passes through and
above Vp, the liquidation procedure is closed and the hypothetical distress
counter is reset to zero. The next time a default event occurs, an identical
procedure is run and an equal period of time d is granted. This mimics a
decision-making process that does not keep in mind neither previous default
events (V; = V), nor past financial distress (any period when (V, < Vg).
Under the procedure B, the distress counter is never reset to zero. Subsequent
granted periods (and therefore tolerance) will be lower and lower as more
default events and long financial distress will be observed. In fact, the granted
time is lowered (each time) by the duration just used. Successive granted

times are exactly equal to d minus the sum of any previous periods spent
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under the default barrier. This mimics a decision-making process that never
forgets anything and depends on the whole history of the financial distress.
By its very precise ”count” process, this procedure is very idealized and thus

appears unrealistic. Its main interest appears in the following paragraph®.
4.2 Bounds for liquidation procedures

Here is the main result of the section.

Proposition 5 Under the assumption 3, any possible liquidation processes

are "bounded” by the procedures A and B in the sense that
B<r<

s verified for all liquidation dates T

5Tt must also be stressed that considering only one procedure (e.g. procedure A) may
lead to a spurious design. To illustrate this, let a leveraged firm have a debt in the form
of a 10-years loan delivering a constant coupon rate whose most secured debtholders of
the firm own a safety covenant. According to Black-Cox (1976), this latter implies the
existence of a default threshold denoted Vg written on the firm assets value. One further
assumes that the procedure A grants a period of d = 2 years before liquidation. Hence, the
firm may regularly reach the default barrier without causing any assets liquidation. Let’s
now consider the exact time the firm assets value hits the default barrier for the first time.
This is the exact time the firm enters in financial distress. The default threshold being
reached, the debt service is suspended : there is no more coupon payment. If the state
variable passes through the default threshold from below, the procedure is instantaneously
stopped. When it comes back in the distress area, a period is once again granted with
an identical delay d. Then, a couple of special cases are worth to be detailed. First,
the state variable remains under the default threshold. Second, it spends consecutively
1 year and eleven months under Vg and then a month above it and so on until the end.
In the former case, assets are liquidated and one may claim that the debt service has
been "fairly” suspended. In the latter case, the procedure is triggered five times without
causing the firm liquidation and the debt may be fully served only during 10 one-month
periods. At the extreme, if renegociation costs capture the whole pay-out rate of the firm
(not precised in equation (1)), bondholders may fear not to be (in any way) compensated
for the incurred loss (whereas the defaulted firm is not liquidated). As this example shows,
no need high bankruptcy costs to have the bankruptcy design fail.
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If successive liquidation procedures are envisaged, either the maximum
time d 1s granted each time or it is lowered. In this latter case, it should
account for the previous distress duration. The extreme way to do this is
the procedure B. Prices of corporate liabilities under effective liquidation
procedures are therefore bounded.

Dealing with an interval instead of a single procedure is interesting. First,
both limit procedures refer to a similar parameter d which yields to similar
interpretation. Second, depending on the associated range, a detailed analy-
sis and model of the real domestic liquidation procedure could be alleviated.
Third, real life liquidation procedures are always hard to model in a way to
obtain analytical results. Fourth, using a single proxy model surely leads

¢ To exemplify this, let’s assume, as Francois-

to undesirable implications
Morellec (2002) did, that the idealized procedure A is a good proxy for the
chapter 11 of the US Bankruptcy Code. Let’s consider a general framework
where there is a continuous debt service which depends on the firm finan-
cial wealth. Then, the coupon payment can clearly be suspended most of
the time without the firm being ever liquidated because of the d-long dura-

tion condition. Finally, such an interval allows international comparison and

arbitrage of corportae liabilities.

5E.g. do the corresponding prices represent a maximum or a minilmum ? In any case,
the model risk must be simultaneously appreciated.
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4.3 Other bounds

Whatever the real liquidation procedure is (assumption 3 is nonetheless sup-
posed verified), special cases arise as the granted period gets larger than the
maturity of the debt or drops to zero. To sum up, one states the following

result.

Proposition 6 For any liquidation procedure described in assumption 3, the

price of any corporate liabilitics L verifies
L(d) e LBSM
d—T

(6)
L(d) e LBC
d—0
where Lpsy (resp. Lpc) is the price of the security under a Black-Scholes

(resp. Black-Cozx) liquidation procedure.

Let’s first consider the procedures A and B. When the d—length duration
gets larger than the maturity, no early liquidation before maturity can be
signaled. This is equivalent to the process designed by Black-Scholes-Merton,

one has:
EQi(d) ﬁ Eqpsm,t = A, B.

When the d—length duration gets to zero, no extra time is allowed beyong
the default event. The liquidation time collapses to the first hitting time i.e.
the first default time. This is the procedure considered in Black-Cox (1976).

One has :

Eq;(d) o Fqpe,i= A, B.

20



Thanks to the proposition 8, this is true for any process within the interval
formed by the procedures A and B. As this is true for equity price, by virtue

of the previous section, this is true for any other corporate liablities.

5 Numerical analysis

This section aims at analyzing the delay effects emphasized in the previous
section, Figure 1 plots equity prices for granted periods lying in [0, 7] within
the procedure A. To compare, the default models of Black-Scholes-Merton
and Black-Cox are represented too. Recalling that the unique debt is totally
secured in a Black-Cox setting, the corresponding equity price is intuitively

the cheapest. Values for d are chosen from 0 up to 25 weeks.

Figure 1

It appears that time delays substantically appreciate equity values. It
has a non linear effect on prices. The safety covenant held by creditors in
the Black-Cox model is significantly lowered by the granted period. Above
12 weeks, the effect of the default barrier is divided by two. Ten weeks
suffice to fill the gap between extremely secured creditors and poorly ones.
Additional simulations could also show that the designed liquidation model
continuously changes from one to the other as the length time d increases.
Above two years, the default thresholds is as unactive. To conclude, the time

spent below the default threshold appears an important parameter.
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6 A detailed example

Using a Black-Scholes-Merton style framework allows one to price various
corporate securities, among which subordinated and convertible debts. Un-
der the "absolute priority rule” assumption, corporate liabilities have been

shown equivalent to portfolios of options written on the firm assets value.

6.1 A complex capital structure for the firm

Let it be a firm whose capital structure is composed by N, stocks and three
different debts maturing at the same date T' = 5 years. The debt prices are
denoted L;, i = 1,2,3. One denotes Fi, Fy, I} the different face values. These
liabilities are strictly ordered by priority in default. L is the price of the most
secured debt, L3 is that of the most subordinated one. A safety covenant
allows the senior debtholders to bankrupt the firm. Thanks to Proposition
6, the senior debt is valued as the difference of two equity prices. The first
corresponds to an unlevered firm and the second to a firm facing a repaiment
equal to Fy. One has L; = Eq(0) — Fq(Fy) = v (Vo) — Eq(F}) where v (Vp) is
the market firm value”. Along similar lines, the first and second subordinated
debts (Ls and L3) are respectively price by Ly = Fq(Fy) — Eq(F1 + F3),
Ly = Eq(Fy+ Fy) — Eq <E?:1 E) In some case, the most subordinated

liability is supposed convertible at maturity. Convertible in N,, stocks, the

"Note that no closed form expression for the market value of the firm has yet been
found. Today’s firm value is therefore approximated by today’s value of firm assets :
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Ny
Npt Ny

dilution factor is & = By Proposition 8, its price is given by:

F:
Eq(Fy+ Fy) — BEq(Fi + Iy + F3) +§Eg <F1+F2+?3>.

For numerical analysis, face values Fy, Fy, F3 are 90, 25 and 10 respectively.
If necessary, the dilution factor is equal to 1/3. The firm assets value is 100,
its volatility 40 %. This base case depicts firms with substancial default risk

to highlight the effects of deviations from safety covenants.

6.2 The prices of corporate securities

Table 1 presents the prices of corporate securities for different structural
models of default and liquidation. The Black-Scholes-Merton model (BSM)
assumes that there is neither default nor liquidation (nor early signal of finan-
cial distress) before the common maturity. At the other extreme, the Black-
Cox model (BC) introduces an absorbing default barrier, Vi (t) = Ve 77~
which implies an immediate liquidation of assets. Here, the default barrier
increases at the rate of . Following Black-Cox’ alternatives, this bound-
ary is chosen either constant, BC(y = 0), or exponentially time-dependent,
BC(7y # 0). By choosing v = r, the default barrier mimics a secured claim.
The ratio of this barrier on a discounted secured value remains constant
through time. For computation, one considers respectively 1% and 5 % be-
low the face value of the most secured debt. In-between, (Cum) denotes the
proposed liquidation model based on the occupation time. It distinguishes
the default and liquidation dates. Recall that the liquidation is declared only

if the cumulated period spent beyond the threshold exceeds the total granted
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time d (equal to one month or one year).

TABLE 1

Two main remarks merit to be made. First, the less risky debt (whose
safety covenant justifies, according to Black-Cox (1976), the existence of a
default threshold) is worth more as its reimbursment becomes more and more
secured (from left to right). The senior debt is worth 53.570 if one neglects
any safety covenant, 69.532 if there exists a "99 %”-safety barrier®. Symmet-
rically, this early default mechanism deteriorates both equity and subordi-
nated loans prices. Second, the subordinated debt (2) is the riskiest liability
for every liquidation procedure. Nonetheless, this loan seems to decrease in
value when safety covenants are strengthened than the subordinated debt
(1).

To support this claim, credit spreads are computed and displayed in Table
2. This is a simple way to compare the riskyness of different loans. Figures
in Table 2 confirm that the credit spread of the most subordinated debt is
(of course) the highest whatever the liquidation procedure is. It also appears
that the difference between the two subordinated debts decreases as the liqui-
dation procedure gets stronger. More precisely, when the most secured debt

becomes almost riskless, the subordinated liabilities become more and more

8The price of a comparable riskless debt is 90e~%:9% ~ 70, 10.
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similar with regards to their credit risk (and as expected, the credit spread

of the secured debt tends to zero).

TABLE 2

By signaling successive default events and an (non equivalent) early lig-
uidation and limiting the undesirable risk transfert implied by the classical
default model, the total time spent under the default threshold is a useful
way to model debt covenants and observed deviations. It represents an ad-
justable alternative between the Black-Scholes-Merton default procedure and
the Black-Cox one. As a result, while the former underestimates creditors

rights, the latter may not be appropriate for very long term debt.

7 Conclusion

This paper has developed a structural methodology capable of pricing com-
plex corporate securities when the default threshold is not an absorbing
barrier. Real-life liquidation procedures whose rationale is based on the
time spent in financial distress are shown to be bounded by a couple of
idealized procedures. One of these is similar to the one used by Francois-
Morellec (2002) to model the Chapter 11 of the US Bankruptcy law. It is also
demonstrated that the results of Black-Cox (1976) and Ingersoll (1977) on re-

spectively subordinated and convertible bonds are robust when a liquidation
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procedure is taken in account. Numerical experiments illustrate that delays

impacts on the ex ante price of corporate liabilties. Equity price strictly

rises as the granted time below the thresholds increases. Credit spreads in-

crease or decrease depending on the way the considered bond is secured or

subordinated to others. As a final word, it appears that credit spreads of

the secured bonds are less sensible to the way the Black-Cox (1976) default

barrier is designed than to the time the firm can spend beyond the default

event.
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Figure 1: The granted period and equity prices :

to the Black-Scholes-Merton one.

60

from the Black-Cox model

5 & 8 8

— BS
- — = P
0 15 20 25 B
Period d (weeks )

Figure 2: Firm parameters are Vo = 100,8y = 0,0y = 30%. The single corporate debt
matures in 7' = 10 years, its face value is 80. and the default threshold is 70. r = 5%.
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Table 1: Corporate securities, the default signaling and different liquidation
procedures.

BSM Cum BC BC
Threshold constant constant exponential
9% % 99 %
Granted period 1 year 1 month 0 0 0
Equity 35.409 34.270  29.991 26.879  26.746 25.173

if convertible  25.205 24.330 21.18R% 18939 18811 17.679
Sub. Debt (2) 2767  2.526 1.989 1.682 1.594  1.449
if convertible 12.973 12.465  10.790 9.621 9.529  R.942
Sub. Debt (1) 8253  7.313 5.573 4.637 4.276  3.845
Senior Debt 53.570 55.89*  62.445* 66.801 67.383 69.532
Firm value 100 100* 100* 100 100 100

Every corporate liabilities mature in 7' = 5 years. Other parameters are Vy = 100, 6y =
0,0v = 40%,r = 5%. The different face values are 90, 25, 10 by recovery priority.
Default thresholds are worth Vi = 0.99F,e "7 when constant and respectively egal to
Ve(r) = 0.99F e "T=7) and Vg (r) = 0.95F e "T=7) when exponential as in Black-Cox
(1976). The dilution factor for bonds convertible at maturity is 1/3. * recalls that the
price has been valued by Vp — FEq(F1).

30



Table 2: Corporate credit Spread for different liquidation procedures (in
percentage).

BSM Cum BC BC
Threshold constant constant  exponential
9% % 99 %
Granted period 1 year 1 month 0 0 0

Sub. Debt (2) 20.70 22.52 27.30 30.65 31.73 33.63
Sub. Debt (1) 17.17 19.58 25.02 28.70 30.32 32.44
Senior Debt 5.38 4.53 2.31 0.96 0.79 0.16

Chosen parameters are those of Table 1. No credit spread has been computed for convert-
ible debts.
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8 Appendix

This appendix breifly considers the analytical pricing of cumulative parisian
options’. Analytical valuation of occupation time derivatives have early been
studied by Chesney-Jeanblanc-Yor (1997) and Hugonnier (1999). Here, one
follows Hugonnier (1999)’s approach and derives new pricing formulae (among
which the one used in the text). The short demonstration in this appendix
uses the framework and arguments of Chesney-Jeanblanc-Yor (1997) and
HMugonnier (1999). A Cumulative Parisian Call Option (CPC hereafter) is an
option whose pay-off is that of a standard call provided that the underlying
asset has spent more than a prespecified time [d] beyond the barrier level L]
(Hugonnier (1999)). A superscript (Tor ~) precises whether the occupation
time is considered above or below the threshold level. Now, let it be an op-
tion, maturing at I', that counts the time spent above the threshold L. Let
it be an underlying price process correctly described under the risk neutral

measure by :

dSt = (7" — (S) Stdt —I— O_Stth. (7>

where ¢ is the dividend rate. One denotes v = %(7" —0— %02), K the exercise

price, T’ the maturity, d(t,a,b,c) = ;n% + coy/T — 1, and ¥ the normal

probability distribution function, it’s well known that the vanilla call option

9These options are knocked in/knocked out when the total time spent by the underlying
asset beyond a known barrier exceeds a prescribed value.
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at time 0 is given by
CBSM<T) = SoeiéT\IJ<d1<0, S(), K)) - KeirT\IJ<d2<0, S(), K))

where dy(t,a,b) = d(t,a,b,v + o), do(t,a,b) = d(t,a,b,v). The price of

cumulative Parisian call option at time ¢ = 0 can be written

VQ
CPCH(d) = e "¢t L0 (8)
where
CéPC = SO\IJj+U <T7 k? l7 d) - quj<T7 kju l7 d) (9>

with lo = In(L/Sy), ko = In(K/Sp)and ¥ to be precised. Note that
Chesney-Jeanblanc-Yor (1997) have termed Cepe the (r,v)-discounted value

of the cumulative parisian call option. All other call options are then given

by :
CPCT(d) + CPCH(T —d) = O(T).

If the occupation time under a barrier level is limited to d(until maturity
T, the stock price is equivalentely expected to spend more than 7' — dtime
above it. A similar relation holds for put options. Parity relations between
cumulative calls and puts exist too. Summing up Chesney-Jeanblanc-Yor
(1997), one has :

1 11

PPT(T.Sy. K, L:7r.8) = SgKCOPCH(T, — —. =
C ( JSOJ ) 7T7 ) SO C C ( JSOJKJLv

8,1).

The derivation of ¥'appears thus critical for pricing cumulative parisian

options. Its expression is as follows.
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Proposition 7 If Sy < L,

T I
+ _ T T
\Ilu(t,k:,l,d)—/d ds[/k et T(2l—a:,0,s,t—s)da:—|—/ et T(l,a:—l,s,t—s)da:}.

Al kVi
IfSo > I,
+ u2t)2 L 2u/o L
qju<t7k7l7d> = ¢ (I)<d5(ﬂ)<t7507LVK)) - (S_O) @<d5(ﬂ)<t7S_O7LVK))

T l 00
—I—/ ds[/ e“mT(l—a:,—l,s,t—s)da:—l—/ e“mT(O,x—Ql,s,t—s)datl
d k

where
TKawb,u,v)::jﬁajQiéi%%%égﬁézexp(—gfigfﬁi)exp(—gfégfﬁi)dz
and
S ={y e (10

This proposition is partly similar to ITugonnier’s result (proposition 14 p.
106). It differs however for Sy > L. Here, \Il:; is shown to be a (much more)
complex fonction of p. First, = (u) must be introduced. Second, the power

of SLO depends on it.

In order to demonstrate this proposition, more materials are needed.

First, let’s recall a result :

Lemma 1 (Hugonnier (1999)) Let f be the pay-off function of an occu-
pation time derivative. Let [ : RT x [0,7] — R* be the function defined

~

by f(z,8) = e f(S0e??,8). The (r,v)—discounted price at time t = 0 of the
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underlying contract is given by :

- forl>0: fioo fA(z,O)Al(T, 2)dz  +

T l 00
/ dsl/ f(z,s)T(Zl—z,O,s,T—s)dz—l—/ (2,8)Y(l,z—1,8,T — s)dz
0 — 00 l

-forl<0: [T f(z,T)A,l(T, —z)dz +

T l 00
/ dsl/ f(z,s)T(l—z,—l,s,T—s)dz—l—/ (2,8)Y(0,2 — 21,8, T — s)dz
0 — 00 l

To succeed in computing terms (6) and (7) with lemma 2, two hypo-
thetical pay-off functions (f) must be identified. To the expectation in
(6), that provides U, , in the pricing formula (3), one associates the pay-
off f(u,v) = lu>kly>ag:. To the expectation in (7), providing ¥, in (3),
f(u,v) = ly>k1ly>q4 is chosen. Let’s denote respectively ﬁ,+g, ﬁ,, the associ-

ated fA functions. Lemma 2 then tells us that must be considered :

I Fu(z,0)A(T, 2) dz, 1<0 (11)

[ Fulz, YA (T, —2)dz,  1>0 (12)

where either 4 = v+ 0 or p = v. Recalling that by definition d is strictly
positive and that, whatever p is, fu(-ut) involves 1;>4, one concludes that

fu(2,0) = 0 in Equation (8). As a result, when Sy < L, the only term in

U, is the double integral. This has already been stated by Hugonnier (1999).
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Let’s now turn to Equation (9) i.e. when Sy > L. Since A; verifies

(21—z)2

1)2 . .
V2rtA(t,x) =e 7 —e 2 , the equation may also be written :

o0 2 dz /OO C@-2? dz
e 2 — e T =Ty(p) —To(p) =T
/k\/l \/27Tt kvl \/27Tt ( ) ( ) g

Fach term can be integrated thanks to well known quadrature relations.
Hence, denoting by n and ® respectively the gaussian probability and gaus-

sian cumulative density functions, one obtains :

o0 2t 2 o0 lf v l _ Mt

P — eMQt/Q/ 67% d < _ €M2t/2/ n(z dZ _ eMQt/2¢ [_ 1

1(p) (=) i ™) e
2, lln(S/(K vV L))+ uat}

gyt ’
o0 z—2l—put 2 L 0o

r = e“Qt/QeQZ“/ e’%d i TS 7 i 2#/0/ n(z)dz

2<M) kvl <\/ 27Tt) <S) EVI-21—pt ( )

V't

L kEVvi—2l—put
— elt2( N0 | _ #
e e
- elﬂt/2<£)2u/o@ l1n<L2/S<K V L))+ /“7751 ‘
S oVt

As a result, one has :

T, ., = vto? <<I>[d1(0, S, KV L) - (%)2(”+U)/Uc1>[d1(o, I?/S,K Vv L)]>

r, = <<I>[d2(0,S,KvL)] — (%)””@[@(o,ﬁ/s,f(vL)]>.

Or, for short, T, = e/ <<I>[d5(u)(.)] — (g)%/a@[dg(u)(.)o with
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This ends the proof.
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