Préparation au CAPES de Mathématiques

Problème n° 2

A rendre pour le jeudi 6 octobre 2005

Soit $f_0: \mathbb{R} \longrightarrow \mathbb{R}$ l'application périodique, de période 1, donnée par

$$f_0(x) = \begin{cases} x & \text{si } 0 \le x \le \frac{1}{2} \\ 1 - x & \text{si } \frac{1}{2} \le x \le 1 \end{cases}$$

Pour tout n dans \mathbb{N} , on note $f_n : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto 4^{-n} f_0(4^n x)$.

Partie 1 : Continuité de la fonction f

- 1) Soit $n \in \mathbb{N}$. Montrer que f_n est bornée sur \mathbb{R} et déterminer sup $f_n \in \mathbb{R}$ $|f_n(x)|$.
- 2) En déduire que la série de fonctions (f_n) converge uniformément sur \mathbb{R} vers une fonction f continue sur \mathbb{R} .

Partie 2 : Non dérivabilité de \boldsymbol{f}

- 1) Soient $x_0 > 0$ et $n \in \mathbb{N}^*$.
 - a) Montrer qu'il existe $\varepsilon \in \{\pm 1\}$ tel que $]4^{n-1}x_0 + \frac{\varepsilon}{4}, 4^{n-1}x_0[$ ne contienne aucun élément de $\frac{1}{2}\mathbb{Z}$.
 - b) Pour cette valeur de ε fixée, on note, pour tout p de N, $\tau_{n,p,\varepsilon} = \frac{f_p(x_0 + \varepsilon 4^{-n}) f_p(x_0)}{\varepsilon 4^{-n}}$.

Montrer que
$$|\tau_{n,p,\varepsilon}| = \begin{cases} 0 \text{ si } p \ge n \\ 1 \text{ si } p \in \{0,\cdots,n-1\} \end{cases}$$
.

- c) On note $\tau_n = \frac{f(x_0 + \varepsilon 4^{-n}) f(x_0)}{\varepsilon 4^{-n}}$. Montrer que τ_n est un entier relatif de même parité que n. En déduire que la suite (τ_n) diverge.
- 2) Conclure que la fonction f n'est dérivable en aucun point x de \mathbb{R} .

On vient donc d'exhiber une fonction f, continue en tout point de $\mathbb R$ mais ... dérivable en aucun point de $\mathbb R$...