Préparation au CAPES de Mathématiques

Problème n° 1

A rendre pour le jeudi 22 septembre 2005

Partie 1 : Formule de Wallis

On pose, pour tout entier naturel n, $I_n = \int_0^{\frac{\pi}{2}} \sin^n t \, dt$.

- 1) Montrer que la suite (I_n) est décroissante et minorée.
- 2) Soit $n \ge 2$. Montrer que $nI_n = (n-1)I_{n-2}$. En déduire les expressions de I_{2n} et I_{2n+1} à l'aide de factorielles.
- 3) Prouver que $I_{n+1} \sim I_n$ quand $n \to \infty$.
- 4) En déduire la formule de Wallis : $\pi = \lim_{n \to \infty} \frac{2^{4n}(n!)^4}{n.(2n!)^2}$.

Partie 2 : Formule de Stirling

On pose, pour tout n de \mathbb{N}^* , $S_n = (n + \frac{1}{2}) \ell n \, n - n - \ell n \, (n!)$

- 1) Montrer que $S_{n+1} S_n$ $\stackrel{\sim}{\underset{n\to\infty}{\longrightarrow}}$ $\frac{1}{12n^2}$. En déduire que la suite (S_n) converge vers un réel λ .
- 2) Montrer que, lorsque n tend vers $+\infty$, $n^n e^{-n} \sqrt{n} \sim e^{\lambda} n!$
- 3) A l'aide de la première partie, montrer que $\lambda = -\frac{1}{2} \ln (2\pi)$. En déduire la formule de Stirling :

$$n! \quad \underset{n\to\infty}{\sim} \quad n^n e^{-n} \sqrt{2\pi n}$$

Partie 3: Amélioration de la formule de Stirling

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes réels positifs, convergentes. Pour tout entier n, on note :

$$R_n = \sum_{k=n+1}^{+\infty} u_k$$
 et $T_n = \sum_{k=n+1}^{+\infty} v_k$

- 1) On suppose que $u_n \sim v_n$. Montrer que $R_n \sim T_n$ (théorème de sommation des équivalents).
- **2)** En déduire que si $u_n \xrightarrow[n \to \infty]{} \frac{1}{n^2}$ alors $R_n \xrightarrow[n \to \infty]{} \frac{1}{n}$.
- 3) Appliquer ce qui précède à $u_n = 12(S_n S_{n-1})$ et montrer que λS_n $\underset{n \to \infty}{\sim}$ $\frac{1}{12n}$.
- 4) En déduire finalement que $n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + \frac{1}{n} \varepsilon(n) \right)$ avec $\lim_{n \to \infty} \varepsilon(n) = 0$.