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Chapter 1
Physics, mathematics, and
mathematical physics

La mathématique est une science expérimentale. Contrairement
en effet à un contresens qui se répand de nos jours (. . . ), les objets
mathématiques préexistent à leurs définitions ; celles-ci ont été élaborées
et précisées par des siècles d’activité scientifique et, si elles se sont
imposées, c’est en raison de leur adéquation aux objets mathématiques
qu’elles modélisent.

Michel DEMAZURE : Calcul différentiel, Presses de l’École Polytech-
nique, Palaiseau (1979).

Physics relies ultimately on experiment. Observation of many different experi-
ments of similar type establishes a phenomenology revealing relations between the
experimentally measured physical observables. The next step is inductive: phys-
ical models are proposed satisfying the phenomenological relations. Then, new
phenomenology is predicted, experiments designed to verify it, and modelling is
proposed. When sufficient data are available, a physical theory is proposed veri-
fying all the models that have been developed so far and all the phenomenological
relations that have been established. The theory can deductively predict the out-
come for yet unrealised experiments. If it is technically possible, the experiment is
performed. Either the subsequent phenomenology contradicts the theoretical pre-
dictions — and the theory must be rejected — or it is in accordance with them —
and this precise experiment serves as an additional validity check of the theory.1

Therefore, physical theories have not a definite status: they are accepted as long as
no experiment contradicts them!

1See an example of this procedure in le Monde of 20 September 2002.
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It is a philosophical debate how mathematical theories emerge. Some scientists
— among them the author of these lines — share the opinion expressed by Michel
DEMAZURE (see quotation), claiming that Mathematics is as a matter of fact an
experimental science. Accepting, for the time being, this view, hypotheses for
particular mathematical branches are the pendants of models. What differentiates
strongly mathematics from physics is that once the axioms are stated, the resulting
theorems (phenomenology) need not be experimentally corroborated, they exist
per se. The experimental nature of mathematics is hidden in the mathematician’s
intuition that served to propose a given set of axioms instead of another.

Mathematical physics is physics, i.e. its truth relies ultimately on experiment
but it is also mathematics, in the sense that physical theories are stated as a set of
axioms and the resulting physical phenomenology must derive both as theorems
and as experimental truth.

A general physical theory must describe all physical phenomena in the uni-
verse, extending from elementary particles to cosmological phenomena. Numeri-
cal values of the fundamental physical quantities, i.e. mass, length, and time span
vast ranges: 10−31kg≤ M ≤ 1051kg, 10−15m≤ L ≤ 1027m, 10−23s≤ T ≤ 1017s.
Units used in measuring fundamental quantities, i.e. kilogramme (kg), metre (m),
and second (s) respectively, were introduced after the French Revolution so that
everyday life quantities are expressed with reasonable numerical values (roughly
in the range 10−3− 103.) The general theory believed to describe the universe2

is called Quantum Field Theory; it contains two fundamental quantities, the speed
of light in the vacuum, c = 2.99792458× 108m/s, and the Plank’s constant h̄ =
1.05457× 10−34J·s. These constants have extraordinarily atypical numerical val-
ues. Everyday velocities are negligible compared to c, everyday actions are over-
whelmingly greater than h̄. Therefore, everyday phenomena can be thought as the
c→∞ and h̄→ 0 limits of quantum field theory; the corresponding theory is called
classical mechanics.

It turns out that considering solely the c→∞ limit of quantum field theory gives
rise to another physical theory called quantum mechanics; it describes phenomena
for which the action is comparable with h̄. These phenomena are important when
dealing with atoms and molecules.

The other partial limit, h̄→ 0, is physically important as well; it describes phe-
nomena involving velocities comparable with c. These phenomena lead to another
physical theory called special relativity.

Although quantum field theory is still mathematically incomplete, the theories
obtained by the limiting processes described above, namely quantum mechanics,

2Strictly speaking, there remain unsolved theoretical difficulties in order to succesfully include
gravitational phenomena.



special relativity, and classical mechanics are mathematically closed, i.e. they can
be formulated in a purely axiomatic fashion. All experimental observations made
so far (within the range of validity of these theories) are compatible with the derived
theorems.

The purpose of this course is twofold. Firstly, the mathematical foundations
of quantum mechanics are presented. Algebra, analysis, probability, and statistics
are necessary to describe and interpret this theory. Its predictions are often totally
counter-intuitive. Hence it is interesting to study this theory that provides a useful
application of the mathematical tools, a source of inspiration for new developments
for the underlying branches of mathematics, and a description of unusual physical
phenomena. All these phenomena are verified experimentally nowadays and are
even used in breaking through technologies: e.g. tunnel effect has been used for
the construction of tunnel effect microscope, a device crucial for the development
of nanotechnology.

There is however another major technological breakthrough that is foreseen
with a tremendous socio-economical impact: if the integration of electronic com-
ponents continues at the present pace (see figure 1.1), within 10–15 years, only
some tenths of silicium atoms will be required to to store a single bit of infor-
mation. Classical (Boolean) logics does not apply any longer to describe atomic
logical gates, quantum (orthocomplemented lattice) logics is needed instead.

Theoretical exploration of this new type of informatics has started and it is
proven [11] that some algorithmically complex problems, like the integer prime
factoring problem — for which the best known algorithm requires a time is super-
polynomial in the number of digits3 — can be achieved in polynomial time using
quantum logic. The present time technology does not yet allow the prime factoring
of large integers but it demonstrates that there is no fundamental physical obstruc-
tion to its achievement for the rapidly improving computer technology. Should
such a breakthrough occur, all our electronic transmissions, protected by classi-
cal cryptologic methods could become vulnerable. On the other hand, present day
technology allows to securely and unbreakably cipher messages using quantum
cryptologic protocols. Thus the second purpose of this course is to present the
applications of quantum mechanics into the rapidly developing field of quantum
information, computing, communication, and cryptology.

3 As a matter of fact, the best known algoritme (Lenstra and Lenstra [4]), requires time
O(exp(n2/3 log2 n)) to factor a n-digit number.



Figure 1.1: The evolution of the number of transistors on integrated circuits in the
period 1971–2008, courtesy From Wikipedia: transistor count.

http://en.wikipedia.org/wiki/Transistor_count


Chapter 2
Phase space, observables,
measurements, and yes-no
experiments

2.1 Introduction

In experimental sciences, all information on a physical system is obtained through
observation (also called measurement) of the values — within a prescribed set —
that can take the physical observables. The biggest the set of observables whose
values are known, the finest is the knowledge about the physical system. Since
crude physical observables (e.g. number of particles, energy, velocity, etc.) can
take values in various sets (N,R+,R3, etc.), to have a unified treatment for general
systems, we reduce any physical experiment into a series of measurements of a
special class of observables, called yes-no experiments. This is very reminiscent of
the approximation of any integrable random variable by a sequence of step func-
tions. Therefore, ultimately, we can focus on observables taking values in the set
{0,1}.

To become quantifiable and theoretically exploitable, experimental observa-
tions must be performed under very precise conditions, known as the experimental
protocol. Firstly, the system must be carefully prepared in an initial condition
known as the state of the system. Mathematically, the state incorporates all the
a priori information we have on the system, it belongs to some abstract space of
states. Secondly, the system enters in contact with a measuring apparatus, specif-
ically designed to measure the values of a given observable, returning the experi-
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mental data with values in some space (X,X ); this is precisely the measurement
process.

The whole physics relies on the postulate of statistical reproducibility of ex-
periments: if the same measurement is performed a very large number of times on
a system prepared in the some given state, the experimentally observed data for a
given observable are scattered around some mean value in X with some fluctuations
around the mean value. However, when the number of repetitions tends to infinity,
the empirical distribution of the observed data tends to some probability distribu-
tion on (X,X ). Thus, abstractly, a measurement is a black box transforming states
into probability measures on some space of observations.

Dealing with random variables, the natural question that arises is: what is the
appropriate (abstract) probability space, if any, on which random variables entering
a given problem can be defined? For sequences of classical random variables, the
answer is well known: such an abstract probability space exists, provided that the
sequence verifies the Kolmogorov’s compatibility conditions; in that case, there
exists a canonical (minimal) realisation of the abstract probability space on which
the whole sequence is defined. Elements of this probability space are called tra-
jectories of the sequence. The physical analogue of the minimal realisation of the
abstract probability space is called phase space. Elements of the phase space are
called (pure) phases. The physical analogue of a random variable is called observ-
able.

It turns out that physical observables for classical systems are just random vari-
ables so that the phase space for such systems is a genuine probability space, while
for quantum systems, observables are (generally non-commuting) Hermitean op-
erators acting on an abstract Hilbert space that plays the rôle of quantum phase
space.

2.2 Classical systems

2.2.1 Some reminders from probability theory

Let us start with the mathematical notion of a random variable.

Definition 2.2.1 (Random variable) Let (Ω,F ,P) be an abstract probability
space and (X,X ) a measurable space1. A function X : Ω→ X that is (F ,X )-
measurable is called (a X-valued) random variable. The induced probability mea-

1The space X can be any Polish space (i.e. a metric, complete, and separable space.) We shall
only consider the case X = Rd , for some d, in this course.



sure PX on (X,X ) (i.e. PX(A) = P({ω ∈Ω : X(ω) ∈ A},A ∈X ) is called the law
(or distribution) of X .

Example 2.2.2 Let X = {0,1}, X be the algebra of subsets of X, and PX({0}) =
PX({1}) = 1/2 the law of a random variable X (the honest coin tossing). A possi-
ble realisation of (Ω,F ,P) is ([0,1],B([0,1]),λ ), where λ denotes the Lebesgue
measure, and a possible realisation of the random variable X is

X(ω) =
{

0 if ω ∈ [0,1/2[
1 if ω ∈ [1/2,1].

Notice however that the above realisation of the probability space involves the
Borel σ -algebra over an uncountable set, quite complicated an object indeed. A
much more economical realisation should be given by Ω = {0,1}, F = X , and
P({0}) = P({1}) = 1/2. In the latter case the random variable X should read
X(ω) = ω: on this smaller probability space, the random variable is the identity
function. Such a realisation is minimal.

Exercise 2.2.3 Generalise the above minimal construction to the case we consider
two random variables Xi : Ω→ X, for i = 1,2. Are there some plausible require-
ments on the joint distributions for such a construction to be possible?

The canonical construction of the minimal probability space carrying an infi-
nite family of random variables is also possible.

Definition 2.2.4 (Consistency) Let T be an infinite set (countable or uncount-
able) and for each t ∈ T denote by Rt a copy of the real line, indexed by t. Denote
by RT = ×t∈T Rt and for n ≥ 1 by τ = (t1, . . . , tn) a finite ordered set of distinct
indices ti ∈ T, i = 1, . . . ,n. Denote Pτ a probability measure on (Rτ ,B(Rτ)) where
Rτ = Rt1 ×·· ·×Rtn . We say that the family (Pτ), where τ runs through all finite
ordered subsets of T , is consistent, if

1. P(t1,...tn)(A1×·· ·×An) = P(tσ(1),...tσ(n)(Aσ(1)×·· ·×Aσ(n)), where σ is an ar-
bitrary permutation of (1, . . . ,n) and Ai ∈B(Rti), and

2. P(t1,...tn)(A1×·· ·×An−1×R) = P(t1,...tn−1)(A1×·· ·×An−1).

Definition 2.2.5 Let T be a subset of R. A family of random variables X ≡ (Xt)t∈T

is called a stochastic process with time domain T .



If T = N or Z, the process is called a discrete time process or random sequence,
if T = [0,1] or R or R+, the process is a continuous time process.

The natural question that arises is whether there exists a probability space
(Ω,F ,P) carrying the whole process. In other words, if PX denotes the distri-
bution of the process X , what are the conditions it must fulfil so that there exists
a probability space (Ω,F ,P) such that P(B) = P({ω ∈ Ω : X(ω) ∈ B} for all
B ∈B(RT )? The answer is given by the following

Theorem 2.2.6 (Kolmogorov’s existence) Suppose that for n≥ 1, the family P(Xt1 ,...,Xtn ),
with t1 < .. . tn and ti ∈ T ⊆ R, for i = 1, . . . ,n, is a consistent family of probability
measures. Then, there are

1. a probability space (Ω,F ,P) and

2. a stochastic process X = (Xt)t∈T such that P(Xt1 ,...,Xtn )(]−∞,x1]× ·· ·×]−
∞,x−n] = P({ω ∈Ω : Xt1(ω)≤ x1, . . . ,Xtn(ω)≤ xn}.

Proof: See, for instance, in [10], theorem II.2.1, p. 247. �

Remark 2.2.7 The canonical construction of the minimal probability space is
Ω = RT , F = B(RT ) and for every t ∈ T , Xt(ω) = ωt . This minimal space is
also called space of trajectories of the random process and the realisation of X
coordinate method.

2.2.2 Classical phase space, observables, and states

A rough definition of the notion of classical phase space is: the (minimal) space
on which all legitimate physical observables can be defined, or, equivalently, all
legitimate questions can receive a definite answer. From this conceptual view,
the classical phase space shares the same indeterminacy as the probability space.
The only objects having physical relevance are the physical observables (as is the
case for random variables in probability theory.) Therefore, the same system can
be minimally described by two different phase spaces, depending on the set of
questions to be answered.

Give example of coin tossing by Diaconis, Holmes, Montgomery: Dynam-
ical bias in the coin tossing

Example 2.2.8 (Die rolling) Let the physical system be a die and the complete
set of questions to be answered the set {Q1, . . . ,Q6}, where Qi, i = 1, . . . ,6 stands



for the question: “When the die lies at equilibrium on the table, does the top face
read i?” An obvious choice for the phase space is Ω = {1, . . . ,6}. The random vari-
able X corresponding to the physical observable “value of the top face” is realised
by X(ω) = ω,ω ∈Ω and the questions by Qi = 1 {X=i}, for i = 1, . . . ,6.

Exercise 2.2.9 Determine the phase space for a point mass in dimension 1 subject
to the force exerted by a spring of elastic constant k.

Solution: Recall that a point mass m in dimension 1 obeys Newton’s equation:

m
d2x
dt2 (t) = F(x(t)),

subject to the initial conditions x(0) = x0 and ẋ(0) = v0, where x(t) denotes the
position of the mass at instant t and F(y) denotes the force exerted on the particle
at position y. The kinetic energy, K, of the particle is a quadratic form in the
velocity

K(ẋ) =
m
2

ẋ2

and the potential energy, U , is given by

U(x) =−
∫ x

x0

F(y)dy.

In order to conclude, we need the following

Theorem 2.2.10 The total energy H(x, ẋ) = K(ẋ)+U(x) is a constant of motion,
i.e. does not depend on t.

Proof:

d
dt

(K(ẋ)+U(x)) = mẋẍ+
∂U
∂x

(x)ẋ

= ẋ(mẍ−F(x))
= 0.

�

Hence the Newton’s equation is equivalent to the system of first order differen-
tial equations, known as Hamilton’s equations:

d p
dt

= −∂H
∂q

dq
dt

=
∂H
∂ p

,



Figure 2.1: The phase space for a point mass in dimension one.

subject to the initial condition (
q(0)
p(0)

)
=
(

q0
p0

)
,

where p = mẋ, q = x, and H = p2

2m +U(q). Therefore, the phase space for the
point mass in dimension one is R2 (one dimension for the position, q, and one for
the momentum p.) Moreover, this space is stratified according to constant energy
surfaces that are ellipses for the case of elastic spring, because potential energy is
quadratic in q (see figure 2.1.)

If ω(t) =
(

q(t)
p(t)

)
∈R2 represents the coordinate and momentum of the system

at time t, the time evolution induced by the system of Hamilton’s equations can
be thought as the flow on R2, described by ω(t) = Ttω(0), with initial condition

ω(0) =
(

q0
p0

)
.

Example 2.2.11 Consider the same physical system as in example 2.2.8 and the
same set of questions but think of the die as a solid body that can evolve in the
space. To completely describe its state, we need 3 coordinates for its barycentre, 3
coordinates for the velocity of the barycentre, 3 coordinates for the angular veloc-
ity, and 3 Euler angles for the orientation of the exterior normal at the centre of face
“6”. Thus, Ω = R9× [0,2π]3. Now the realisation X : Ω→{1, . . . ,6} is much more
involved (but still possible in principle) and the questions are again represented by
Qi = 1 {X=i}, for i = 1, . . . ,6. Yet, obviously, the representation given in example
2.2.8 is much simpler than the present one.

Axiom 2.2.12 The phase space of a classical system is an abstract measurable
space (Ω,F ). The states of a classical system are the probability measures on
(Ω,F ). Pure states correspond to Dirac masses.



Axiom 2.2.13 Any time evolution of an isolated classical system is implemented
by an invertible measurable transformation T : Ω→Ω leaving the states invariant.

Axiom 2.2.14 To any physical observable of a classical system corresponds a
random variable X : Ω→ X, where (X,X ) is a measurable space. Yes-no ques-
tions are special observables of the form Q : Ω→ {0,1}. Measurement of a clas-
sical observable X when the system is in state µ , is the law of the random variable
under µ .

Remark 2.2.15 Questions are special kinds of random variables. They always
can be written as Q = 1 A ◦X , where X : Ω→ X ⊆ R is a random variable, and
A ∈ X . Any random variable X is termed physical observable. Questions are
special types of physical observables. Since any question is an indicator, it ver-
ifies Q2 = Q i.e. it is a projector. When dealing with a single random variable
(physical observable), the complete set of possible questions is in bijection with
the σ -algebra X of measurable subsets of X. If QA = 1 A ◦X and QB = 1 B ◦X
are two different questions and moreover A∩B = /0 then QAQB = 0, i.e. questions
testing disjoint sets in the range of a random variable are orthogonal projectors.

Exercise 2.2.16 Let µ be a state on (Ω,F ), X a X-valued random variable (X⊆
R), and QA the question 1 {X∈A} for some fixed A ∈X . Compute µ(QA). What
happens if µ is a pure state? What happens if (Ω,F ) is minimal for the random
variable X?

Solution:

µ(QA) =
∫

Ω

1 {X∈A}(ω)µ(dω)

=
∫

Ω

1 A(X(ω))µ(dω)

If µ = δω0 for some ω0.

δω0(QA) =
∫

Ω

1 {X∈A}(ω)δω0(dω)

= 1 A(X(ω0)).

If the space is minimal for X , then X(ω) = ω and we get respectively: µ(QA) =∫
Ω

1 A(X(ω))µ(dω) = µ(A) and δω0(QA) = δω0(A). �

Exercise 2.2.17 What is the minimal phase space for a mechanical system com-
posed by N point particles in dimension 3?



2.3 Quantum systems

2.3.1 A first axiomatic setting for quantum mechanics

Various formulations of quantum mechanics are possible. We start from the most
straightforward one, historically introduced by John VON NEUMANN [16]. Later
on, a more general formulation [13], based on C∗-algebras, will be given; this latter
formulation has the advantage of allowing a unified treatment for both classical and
quantum systems.

For the time being, we proclaim that a quantum system verifies the following
axioms.

Axiom 2.3.1 The phase space of a quantum mechanical system is a complex Hilbert
space H. Unit vectors of H correspond to pure quantum states.

Axiom 2.3.2 Any time evolution of an isolated quantum system is described by
a unitary operator acting on H. Conversely, any unitary operator acting on H
corresponds to to a possible time evolution of the system.

Axiom 2.3.3 With every physical observable, OX , of a quantum system is associ-
ated a self-adjoint operator X acting on the phase space H of the system. Yes-no
questions are special self-adjoint operators that are projections. Measurement of
an observable represented by the self-adjoint operator X for a quantum system
being in the pure state described by the unit vector ψ corresponds to the spectral
measure on the real line induced by 〈ψ |Xψ 〉.

These axioms will be revisited later. For the time being, it is instructing to
illustrate the implications of these axioms on a very simple non-trivial quantum
system and try to interpret their significance.

2.3.2 Interpretation of the basic axioms

In this subsection we study a quantum system whose phase space H = C2. This is
the simplest non-trivial situation that might occur and could describe, for instance,
the internal degrees of freedom of an atom having two states. Notice however that
in general, even for very simple finite systems, the phase space is not necessarily
finite-dimensional.



Interpretation of axiom 2.3.1

Every f ∈ H can be decomposed into f = f1ε1 + f2ε2 with f1, f2 ∈ C and ε1 =(
1
0

)
and ε2 =

(
0
1

)
. If ‖ f‖ 6= 0, denote by φ = f

‖ f‖ the corresponding normalised

vector2.

Now φ = φ1ε1 +φ2ε2 with |φ1|2 + |φ2|2 = 1 is a pure state. The numbers |φ1|2
and |φ2|2 are non-negative reals summing up to 1; therefore, they are interpreted
as a probability on the finite set of coordinates {1,2}. Consequently, the complex
numbers φ1 = 〈ε1 |φ 〉 and φ2 = 〈ε2 |φ 〉 are complex probability amplitudes, their
squared modulus represents the probability that a system in a pure state φ is in the
pure state ε1 or ε2.

Interpretation of axiom 2.3.2

A unitary operator on H is a 2× 2 matrix U , verifying UU∗ = U∗U = I. If φ

is a pure state, then ψ = Uφ verifies ‖ψ‖2 = 〈Uφ |Uφ 〉 = 〈φ |U∗Uφ 〉 = ‖φ‖2.
Therefore quantum evolution preserves pure states. Moreover, due to the unitarity
of U , we have φ = U∗ψ , and since U∗ is again unitary, it corresponds to a possible
time evolution (as a matter of fact to the time reversed evolution of the one cor-
responding to U .) This shows that time evolution of isolated quantum systems is
reversible.

Interpretation of axiom 2.3.3

This axiom has the most counter-intuitive consequences. Recall that any linear
operator X admits a spectral decomposition X =

∫
spec(X) λP(dλ ): If X is self-

adjoint, then spec(X)⊆ R. Let us illustrate with a very simple example: chose for

X the matrix X =
(

1 2i
−2i 2

)
. We compute easily

Eigenvalues Eigenvectors Projectors
λ u(λ ) P({λ})

−3 1√
5

(
−i
2

)
1
5

(
1 −2i
2i 4

)
2 1√

5

(
2i
1

)
1
5

(
4 2i
−2i 1

)
2General (unnormalised) vectors of H are denoted by small Latin letters f ,g,h, etc.; normalised

vectors by small Greek letters φ ,χ,ψ , etc.



Hence

X = ∑
λ∈{−3,2}

λP({λ})

= (−3)
1
5

(
1 −2i
2i 4

)
+2

1
5

(
4 2i
−2i 1

)
.

The operators P({−3}) and P({2}) are self-adjoint (hence they correspond to
observables) and are projectors to mutually orthogonal subspaces. They play the
role of yes-no questions for a quantum system (recall remark 2.2.15.)

Now, let ψ ∈ H be a pure phase; since u(−3) and u(2) are two orthonor-
mal vectors of H (hence also pure phases), they serve as basis to decompose
ψ = α−3u(−3) + α2u(2), with ‖ψ‖2 = |α−3|2 + |α2|2 = 1. Thus any pure state
ψ , with probability |〈ψ |u(−3)〉|2 is in the pure state u(−3) and with probability
|〈ψ |u(2)〉|2 is in the pure state u(2).

Compute further

〈ψ |Xψ 〉 = ∑
λ ,λ ′,λ ′′

α
∗
λ

αλ ′′λ
′〈u(λ ) |P(λ ′)u(λ ′′)〉

= ∑
λ∈spec(X)

λ |αλ |2.

Yet (|αλ |2)λ∈spec(X) can be interpreted as a probability on the set of the spectral
values. Hence, the scalar product 〈ψ |Xψ 〉 is the expectation of the spectral values
with respect to the decomposition of ψ on the basis of eigenvectors. It is worth
noticing that expectation of a classical random variable X taking values in a finite
set {x1, . . . ,xn} with probabilities p1, . . . , pn respectively, is

EX =
n

∑
i=1

xi pi

=
n

∑
i=1

√
pixi
√

pi

=
n

∑
i=1

√
pi exp(−iθi)xi

√
pi exp(iθi),

with arbitrary θi ∈ R, i = 1, . . . ,n. Hence, classically, EX = 〈ψ |Xψ 〉 with ψ =
√

p1 exp(iθ1)
...√

pn exp(iθn)

, verifying ‖ψ‖ = 1 and with X =

x1 0
. . .

0 xn

. We have

moreover seen that classical probability is equivalent to classical physics; thanks
to the previous lines, it turns out that that it is also equivalent to quantum physics
involving solely diagonal self-adjoint operators as observables. The full flavour of



quantum physics is obtained only when the observables are represented by non-
diagonal self-adjoint operators.

Consider now,

fλ = P({λ})ψ

=
{
〈u(λ ) |ψ 〉u(λ ) if λ ∈ spec(X)
0 otherwise.

The vector fλ is in general unnormalised; the corresponding normalised state φλ =
P({λ})ψ
‖P({λ})ψ‖ , well defined when λ ∈ spec(X), has a very particular interpretation.
Suppose we ask the question: “does the physical observable OX takes the value
−3?” The answer, as in the classical case, is a probabilistic one: P({OX =−3}) =
|α−3|2 = 〈 f−3 | f−3 〉= ‖P({−3})ψ‖2. What is new, is that once we have asked this
question, the state ψ is projected on the eigenspace P({−3})H and is represented
by the state φ−3. This means that asking a question on the system changes its
state! This is a totally new phenomenon without classical counterpart. Asking
questions about a quantum system corresponds to a quantum measurement. Hence,
the measurement irreversibly changes (projects) the state of the system.

Summarising the interpretation of the three axioms, we have learnt that

• quantum mechanics has a probabilistic interpretation, generalising the clas-
sical probability theory to a quantum (non-Abelian) one,

• quantum evolution is reversible,

• quantum measurement is irreversible.

Were only to consider this generalisation of probability theory to a non-commutative
setting and to explore its implications for explaining quantum physical phenomena,
should the enterprise be already a fascinating one. But there is even much more fas-
cination about it: there has been demonstrated lately that quantum phenomena can
serve to cipher messages in an unbreakable way and these theoretical predictions
have already been exemplified by currently working pre-industrial prototypes3.

In a more speculative perspective, it is even thought that in the near future there
will be manufactured computers capable of performing large scale computations
using quantum algorithms4. Should such a construction be realised, a vast family of

3See the article [?], articles in Le Monde (they can be found on the website of this course), the
website www.idquantique.com of the company commercialising quantum cryptologic and tele-
porting devices, etc.

4Contrary to the quantum transmission and cryptologic technologies that are already available,
the prototypes of quantum computers that have been manufactured so far have still extremely limited
scale capabilities.



problems in the (classical) complexity class of “exponential time” could be solved
in polynomial time on a quantum computer.

2.4 Quantum explanation of some experiments without
classical interpretation

2.4.1 Light polarisers are not classical filters

The experimental setting of this experiment is depicted in the following figure 2.2.

Figure 2.2: The experimental setting with two polarisers perpendicularly crossed
and three polarisers with relative orientations differing by 45 degrees.

When natural light passes through a horizontally oriented polariser, half of the
initial intensity is transmitted. When a vertical polariser is then placed in the beam,
the light is totally absorbed (first setting in figure 2.2.) On the contrary when three
polarisers with respective orientations turned by 45 degrees each time, the eighth
of the intensity is transmitted.

Assume for the moment that polarisation is a classical [0,2π]-valued observ-
able X . If the source emits an unpolarised beam, the different photons composing
it have random orientations, i.e. the emitted photon polarisation is a random vari-
able X ∈ [0,2π] with distribution PX = λ/2π , where λ is the Lebesque measure
on [0,2π]. The minimal probability space is ([0,1],B([0,1]),λ/2π).

Assume now that the first polariser acts as a classical slit allowing photons with
exactly the slit orientation to cross. Since experimental imperfections are always
present, we can even assume that the slit is not exactly one-dimensional but some
angular aperture is possible. Hence, we assume that the presence of the horizontal
polariser is equivalent in asking the question:

Q→ = 1 X∈[−δ ,δ ]∪[π−δ ,π+δ ],



for some arbitrarily small δ > 0. One easily computes EQ→= 2δ

π
and limδ→0 EX =

0. The vertical polariser is equivalent to the question:

Q↑ = 1 X∈[π/2−δ ,π/2+δ ]∪[3π/2−δ ,3π/2+δ ].

Obviously E(Q→Q↑) = 0 for small δ . Finally,

Q↗ = 1 X∈[π/4−δ ,π/4+δ ]∪[5π/4−δ ,5π/4+δ ]

and similarly E(Q→Q↑Q↗) = 0 for small δ . If the initial beam contains N pho-
tons (for real beams, N is very large), with arbitrary polarisations (Xi)i=1,...,N , that
are independent and identically distributed random variables of law PX , the inten-
sity before crossing the polariser is I0 = κN, with κ some constant while after
crossing the first polariser is I→ = κ ∑

N
i=1 Q(i)

→ . Now, by the law of large numbers,
limN→∞

I→
I0

= 2δ/π , while limN→∞

I→I↑
I0

= 0 and limN→∞

I→I↑I↗
I0

= 0. All these re-
sults contradict the experimental observations.

Assume now that the system is quantum and any single photon of the origi-
nal beam is in some state of the form ψ = ψ1ε1 + ψ2ε2 ∈ H with |ψ1|2 + |ψ2|2 =
1, and since the photons are unpolarised, it is reasonable to assume that |ψ1| =
|ψ2|= 1/

√
2. Now consider three one-dimensional subspaces of H, denoted H→=

{αε1,α ∈ C}, H↑ = {αε2,α ∈ C}, and H↗ = {α(ε1 + ε2),α ∈ C}. Questions
asked by the three polarisers correspond to projections P→, P↑, and P↗ to the
corresponding subspaces. Now, EψQ→ = 〈ψ |P→ψ 〉 = 〈ψ1ε1 +ψ2ε2 |ψ1ε1 〉 =
|ψ1|2 = 1/2. After the photon has crossed the first polariser, it is in the new
state ψ ′ = ε1. If the next polariser to cross is a polariser at 45 degrees, we have
Eψ ′Q↗ = 〈ε1 |P↗ε1 〉 = 〈ε1 | 〈 ε1+ε2√

2
|ε1 〉 ε1+ε2√

2
〉 = 1/2 and the state after the ques-

tion has been asked is ψ ′′ = ε1+ε2√
2

. When the photon crosses the third polariser,

we get Eψ ′′Q↑ = 〈 ε1+ε2√
2
|P↑ ε1+ε2√

2
〉 = 〈 ε1+ε2√

2
| 〈ε2 | ε1+ε2√

2
〉ε2 〉 = 1/8. But if the in-

termediate polariser is omitted, we must compute Eψ ′Q↑ = 〈ε1 | 〈ε1 |ε2 〉ε1 〉 = 0.
Hence the quantum explanation is in complete agreement with the experimental
observation.

2.4.2 Heisenberg’s uncertainty principle

Spectral decomposition allows computation of the expectation of an operator X , in
a pure state, ψ , by

EψX = 〈ψ |Xψ 〉= ∑
λ∈spec(X)

λ |ψλ |2

and when the operator X is self-adjoint, the spectrum is real and the expectation
is then a real number. What makes quantum probability different from classical
one, is (among other things) the impossibility of simultaneous diagonalisation of



two non-commuting operators. Following the probabilistic interpretation, denote
by Varψ(X) = Eψ(X2)− (Eψ(X))2.

Theorem 2.4.1 (Heisenberg’s uncertainty) Let X ,Y be two bounded self-adjoint
operators on a Hilbert space H and suppose a fixed pure state ψ is given. Then

Varψ(X)Varψ(Y )≥ |〈ψ | [X ,Y ]ψ 〉|
2

.

Proof: First notice that (i[X ,Y ])∗ = i[X ,Y ] thus the commutator is skew-adjoint.
Without loss of generality, we can assume that EψX = EψY = 0 (otherwise con-
sider X −EψX and similarly for Y .) Now, 〈ψ |XY ψ 〉 = α + iβ , with α,β ∈ R.
Hence, 〈ψ | [X ,Y ]ψ 〉= 2iβ and obviously

0 ≤ 4β
2 = |〈ψ | [X ,Y ]ψ 〉|2

≤ 4|〈ψ |XY ψ 〉|2

≤ 4〈ψ |X2
ψ 〉〈ψ |Y 2

ψ 〉,

the last inequality being Cauchy-Schwarz. �

This is a typically quantum phenomenon without classical counterpart. In
fact, given two arbitrary classical random variables X ,Y on a measurable space
(Ω,F ), there exists always states (i.e. probability measures) on (Ω,F ) such that
Var(X)Var(Y ) = 0 (for instance chose P(dω) = δω0(dω).

2.5 Dirac’s notation

Usual notation Dirac’s notation
n symbols, eg. {1, . . . ,n}

Orthonormal basis (e1, . . . ,en) |1〉, . . . |n〉
ψ = ∑i ψiei |ψ 〉= ∑i ψi|i〉
〈φ |ψ 〉= ∑φ iψi 〈φ |ψ 〉= ∑φ iψi

H∗ = { f : H→ C, linear} H∗ = { f : H→ C, linear}
† : H→H∗ † : H→H∗

† : φ 7→ f (φ(·) = 〈φ |· 〉 † : |φ 〉 7→ 〈φ |
〈φ |ψ 〉= fφ (ψ) 〈φ |ψ 〉= 〈φ ||ψ 〉

X = X∗ X = X∗

〈φ |Xψ 〉= 〈X∗φ |ψ 〉= 〈Xφ |ψ 〉 〈φ |X |ψ 〉
Xu(λi) = λiu(λi) X |λi 〉= λi|λi 〉
P({λi}) projector |λi 〉〈λi|
X = ∑i λiP({λi}) X = ∑i λi|λi 〉〈λi|



Chapter 3
Algebras of operators

3.1 Introduction and motivation

Let V = Cn, with n ∈ N. Elementary linear algebra establishes that the set of
linear mappings L(V) = {T : V→ V : T linear } is a C-vector space of (complex)
dimension n2, isomorphic to Mn(C), the space of n× n matrices with complex
coefficients. Moreover, if S,T ∈ L(V), the maps S and T ćan be composed, their
composition T ◦ S being represented by the corresponding matrix product. Thus,
on the vector space L(V), is defined an internal multiplication

L(V)×L(V) 3 (T,S) 7→ T ◦S ∈ L(V)

turning this vector space into an algebra.

When the underlying vector space V is of infinite dimension, caution must be
paid on defining linear maps. In general, linear mappings T : V→ V, called (lin-
ear) operators, are defined only on some proper subset of V denoted Dom(T ) and
called the domain1 of T . When V is a normed space, there is a natural way to define
a norm on L(V). We denote by B(V) the vector space of bounded linear opera-
tors on V, i.e. linear maps T : V→ V such that ‖T‖ < ∞ (equivalently, verifying
Dom(T ) = V.) When H is a Hilbert space, bounded linear operators on H, whose
set is denoted by B(H), with operator norm ‖T‖ = sup{‖T x‖,x ∈ H,‖x‖ ≤ 1},
share the properties of linear operators defined on more algebraic setting. Some-
times it is more efficient to work with explicit representations of operators in B(H)
(that play the rôle of matrices in the infinite dimensional setting) and some others
with abstract algebraic setting.

1The set Dom(T ) is generally a linear manifold, i.e. algebraically a vector subspace of V which
is not necessarily topologically closed.
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Since all operators encountered in quantum mechanics are linear, we drop
henceforth the adjective linear.

3.2 Algebra of operators

Definition 3.2.1 An algebra is a set A endowed with three operations:

1. a scalar multiplication C×A 3 (λ ,a) 7→ λa ∈ A,

2. a vector addition A×A 3 (a,b) 7→ a+b ∈ A, and

3. a vector multiplication A×A 3 (a,b) 7→ ab ∈ A,

such that A is a vector space with respect to scalar multiplication and vector addi-
tion and a ring (not necessarily commutative) with respect to vector addition and
vector multiplication. Moreover, λ (ab) = (λa)b = a(λb) for all λ ∈ C and all
a,b ∈ A. The algebra is called commutative if ab = ba, for all a,b ∈ A; it is called
unital if there exists (a necessarily unique) element e ∈ A (often also written 1 or
1 A) such that ae = ea = a for all a ∈ A;

A linear map from an algebra A1 to an algebra A2 is a homomorphism if it is a ring
homomorphism for the underlying rings, it is an isomorphism if it is a bijective
homomorphism.

Definition 3.2.2 An involution on an algebra A is a map A 3 a 7→ a∗ ∈ A that
verifies

1. (λa+ µb)∗ = λa∗+ µb∗,

2. (ab)∗ = b∗a∗, and

3. (a∗)∗ = a.

Involution is also called adjoint operation and a∗ the adjoint of a. An involutive
algebra is termed a ∗-algebra.

An element x ∈ A is said normal if aa∗ = a∗a, an isometry if a∗a = 1 , unitary
if both a and a∗ are isometries, self-adjoint or Hermitean if a = a∗. On denoting h :
A1→ A2 a homomorphism between two ∗-algebras, we call it a ∗-homomorphism
if it preserves adjoints, i.e. h(a∗) = h(a)∗.



A normed (respectively Banach) algebra A is an algebra equipped with a norm
map ‖·‖ : A→R+ that is a normed (respectively Banach) vector space for the norm
and verifies ‖ab‖ ≤ ‖a‖‖b‖ for all a,b ∈ A. A is normed (respectively Banach) ∗-
algebra if it has an involution verifying ‖a∗‖= ‖a‖ for all a ∈ A.

Theorem 3.2.3 Let T : H1→H2 be a linear map between two Hilbert spaces H1
and H2. Then the following are equivalent:

1. ‖T‖= sup{‖T f‖H2 , f ∈H1,‖ f‖H1 ≤ 1}< ∞,

2. T is continuous,

3. T is continuous at one point of H1.

Proof: Analogous to the proof of the theorem ?? for linear functional. (Please
complete the proof!) �

Notation 3.2.4 We denote by B(H1,H2) the algebra of bounded operators with
respect to the aforementioned norm:

B(H1,H2) = {TL(H1,H2) : ‖T‖< ∞}.

When H1 = H2 = H, we write simply B(H).

Proposition 3.2.5 Let H1 and H2 be two Hilbert spaces and T ∈ B(H1,H2).
Then, there exists a unique bounded operator T ∗ : H2→H1 such that

〈T ∗g | f 〉= 〈g |T f 〉 for all f ∈H1,g ∈H2.

Proof: For each g ∈H2, the map H1 3 f 7→ 〈g |T f 〉H2
∈ C is a continuous (why?)

linear form. By Riesz-Fréchet theorem ??, there exists a unique h ∈ H1 such that
〈h | f 〉H1

= 〈g |T f 〉H2
, for all f ∈H1. Let T ∗ : H2→H1 be defined by the assign-

ment T ∗g = h; it is obviously linear and easily checked to be bounded (exercise!)
�

Proposition 3.2.6 For all T ∈B(H1,H2),

1. ‖T ∗‖= ‖T‖,

2. ‖T ∗T‖= ‖T‖2.



Proof:

1. By Cauchy-Schwarz inequality, for all f ∈H2, g ∈H1,

|〈 f |T g〉H2
| ≤ ‖ f‖H2‖T g‖H2

≤ ‖T‖B(H1,H2)‖g‖H1‖ f‖H2

so that
‖T‖ ≥ sup{|〈 f |T g〉| : ‖g‖ ≤ 1,‖ f‖ ≤ 1}.

Conversely, we may assume that ‖T‖ 6= 0, and therefore choose some ε ∈
]0,‖T‖/2[. Choose now g∈H1 with ‖g‖ ≤ 1, such that ‖T g‖ ≥ ‖T‖−ε and
f = T g

‖T g‖ ∈H2, ‖ f‖= 1. For this particular choice of f and g:

|〈 f |T g〉H2
| ≥ ‖T g‖ ≥ ‖T‖− ε.

Hence,
sup{|〈 f |T g〉| : ‖g‖ ≤ 1,‖ f‖ ≤ 1} ≥ ‖T‖− ε.

Since ε is arbitrary, we get ‖T‖ = sup{|〈 f |T g〉H2
| : g ∈ H1, f ∈ H2,‖g‖ ≤

1,‖ f‖ ≤ 1}. As 〈 f |T g〉= 〈T ∗ f |g〉 for all f and g, we get ‖T ∗‖= ‖T‖

2. B(H1,H2) being a normed algebra, ‖T ∗T‖≤‖T ∗‖‖T‖= ‖T‖2. Conversely,

‖T‖2 ≤ sup{|T f‖ : f ∈H1,‖ f‖ ≤ 1}
= sup{|〈T f |T f 〉| : f ∈H1,‖ f‖ ≤ 1}
= sup{|〈 f |T ∗T f 〉| : f ∈H1,‖ f‖ ≤ 1}
≤ ‖T ∗T‖.

�

Definition 3.2.7 A C∗-algebra A is an involutive Banach algebra verifying addi-
tionally

‖a∗a‖= ‖a‖2, for all a ∈ A.

Example 3.2.8 Let X be a compact Hausdorff2 space and A = { f : X→C | f continuous}≡
C(X) Define

1. C×A 3 (λ , f ) 7→ λ f ∈ A by (λ f )(x) = λ f (x),∀x ∈ X,

2. A×A 3 ( f ,g) 7→ f +g ∈ A by ( f +g)(x) = f (x)+g(x),∀x ∈ X,

2Recall that a topological space is called Hausdorff when every two distinct of its points posses
disjoint neighbourhoods.



3. A×A 3 ( f ,g) 7→ f g ∈ A by ( f g)(x) = f (x)g(x),∀x ∈ X,

4. A 3 f 7→ f ∗ ∈ A by f ∗(x) = f (x),∀x ∈ X,

Then A is a unital (specify the unit!) C∗-algebra for the norm ‖ f‖= supx∈X | f (x)|.
(Prove it!) The algebra A is moreover commutative.

Example 3.2.9 Let H1 and H2 be two Hilbert spaces. Then B(H1,H2) is a unital
C∗-algebra. In general, this algebra is not commutative.

This example has also a converse, given in theorem 3.2.11, below.

Definition 3.2.10 Let A be an involutive Banach algebra. A representation on
a Hilbert space H of A is a ∗-homomorphism of A into B(H), i.e. a linear map
π : A→B(H) such that

1. π(ab) = π(a)π(b),∀a,b ∈ A,

2. π(a∗) = π(a)∗,∀a ∈ A,

The space H is called the representation space. We write (π,H), or Hπ if nec-
essary. Two representations (π1,H1) and (π2,H2) are said to be unitarily equiv-
alent if there exists an isometry U : H1 → H2 such that for all a ∈ A, it holds
Uπ1(a)U∗ = π2(a). If moreover for every non zero element of A, π(a) 6= 0, then
the representation is called faithful.

Theorem 3.2.11 (Gel’fand-Naïmark) If A is an arbitrary C∗-algebra, there ex-
ists a Hilbert space H and a linear mapping π : A→B(H) that is a faithful rep-
resentation of A.

Proof: It can be found in [3], theorem 4.5.6, page 281. �

3.3 Classes of operators

Since any C∗-algebra can be faithfully represented on some Hilbert space H, the
different classes of abstract elements of the algebra, introduced in the previous
section, have a counterpart in the context of this representation.



3.3.1 Self-adjoint and positive operators

Definition 3.3.1 An operator T ∈ B(H) is called self-adjoint or Hermitean3 if
T = T ∗. The set of Hermitean operators on H is denoted by Bh(H).

Exercise 3.3.2 The operator T ∈B(H) is self-adjoint if and only if 〈 f |T f 〉 ∈ R
for all f ∈H. (Hint: use the polarisation equality ??.)

Exercise 3.3.3 If T ∈B(H) is self-adjoint then ‖T‖= sup{〈 f |T f 〉, f ∈H,‖ f‖≤
1}.

Definition 3.3.4 An operator T ∈B(H) is called positive if 〈 f |T f 〉 ≥ 0 for all
f ∈ H. Such an operator is necessarily self-adjoint. We denote by B+(H) the set
of positive operators.

Exercise 3.3.5 Show that T ∈B+(H) if and only if there exists S ∈B(H) such
that T = S∗S.

3.3.2 Projections

Definition 3.3.6 An operator P ∈B(H) is called a projection if

1. P2 = P and

2. P∗ = P.

Projections are necessary positive (why?). The set of projections is denoted by
P(H).

Exercise 3.3.7 (A very important one!)

1. Show that there is a bijection between P(H) and the set of closed subspaces
of H, given by P(H) 3 P 7→ P(H)⊂H, P(H) closed.

2. Consequently, show that P(H) is partially ordered, i.e. P1 ≤ P2 if P1(H)
subspace of P2(H) (equivalently P1P2 = P1.)

Two projections P1,P2 are orthogonal if P1(H) ⊥ P2(H) (equivalently P1P2 =
0.)

3Strictly speaking, the term Hermitean is more general; it applies also to unbounded operators
and it means self-adjoint on a dense domain. The two terms coincide for bounded operators.



3.3.3 Isometries

Definition 3.3.8 An operator T ∈B(H1,H2) is an isometry if T ∗T = 1 (or equiv-
alently ‖T f‖= ‖ f‖, for all f ∈H1.)

Exercise 3.3.9 Let H = `2(N) and for x = (x1,x2,x3, . . .) ∈H, define the left and
right shifts by

Lx = (x2,x3, . . .) ∈H,

and
Rx = (0,x1,x2,x3, . . .) ∈H.

1. Show that R∗ = L.

2. Show that R is an isometry.

3. Determine RanR.

This exercise demonstrates that, in infinite dimensional spaces, isometries are not
necessarily surjective.

Theorem 3.3.10 For T ∈B(H1,H2), the five following conditions are equivalent:

1. (T ∗T )2 = T ∗T ,

2. (T T ∗)2 = T T ∗,

3. T T ∗T = T ,

4. T ∗T T ∗ = T ∗,

5. there exist closed subspaces E1 ⊆ H1 and E2 ⊆ H2 such that T = I ◦ S ◦P
where P : H1→ E1 is a projection, S : E1→ E2 an isometry, and I : E2→H2
the inclusion map.

If one (hence all) condition holds then T ∗T is the projection H1→ E1 and T T ∗ is
the projection H2→ E2. In this situation T is called a partial isometry with initial
space E1, initial projection T ∗T , final space E2, and final projection T T ∗.

Proof: Exercise! (See [1] or [8].) �



3.3.4 Unitary operators

Definition 3.3.11 An operator U ∈B(H) is unitary if U∗U = UU∗ = 1 . The set
of unitary operators is denoted by U(H) = {U ∈B(H) : U∗U = UU∗ = 1 } (it is
in fact a group; for H = Cn it is the Lie group denoted by U(n).)

Exercise 3.3.12 Let (Ω,F ,P) be a probability space and T : Ω→ Ω a measure
preserving transformation i.e. P(T−1B) = P(B) for all B∈F . On the Hilbert space
H = L2(Ω,F ,P) define U : H→H by U f (ω) = f (T−1ω).

1. Show that U is a partial isometry.

2. Under which condition is U surjective (hence unitary)?

3.3.5 Normal operators

Definition 3.3.13 An operator T ∈B(H) is normal if T ∗T = T T ∗ (or equivalently
if ‖T ∗ f‖= ‖T f‖ for all f ∈H.)

Exercise 3.3.14 A vector f ∈ H \ {0} is called an eigenvector corresponding to
an eigenvalue λ of an operator T ∈B(H) if T f = λ f for some λ ∈C. Show that if
T is normal and f1, f2 are eigenvectors corresponding to different eigenvalues then
f1 ⊥ f2. (The proof goes as for the finite dimensional case.)

Exercise 3.3.15 Let M be the multiplication operator on L2[0,1] defined by M f (t)=
t f (t), t ∈ [0,1]. Show that

1. M is self-adjoint (hence normal),

2. M has no eigenvectors.

Exercise 3.3.16 Choose some z ∈C with |z|< 1 and consider z ∈ `2(N) given by
z = (1,z,z2,z3, . . .). Let L and R be the left and right shifts defined in exercise 3.3.9.

1. Show that R is not normal,

2. compute R∗z,

3. conclude that R∗ has uncountably many eigenvalues.



Chapter 4
Spectral theory in Banach algebras

4.1 Motivation

In linear algebra one often encounters systems of linear equations of the type

T f = g (4.1)

with f ,g ∈ Cn and T = (ti, j)i, j=1,...,n a n× n matrix with complex coefficients.
Elementary linear algebra establishes that this system of equations has solutions
provided that the map T f 7→ f is surjective and the solution is unique provided
that this map is injective. Thus the system has a unique solution for each g ∈ Cn

provided that the map is bijective, or equivalently the matrix T is invertible. This
happens precisely when detT 6= 0. However, this criterion of invertibility is of lim-
ited practical use even for the elementary (finite-dimensional) case because det is
too complicated an object to be efficiently computed for large n. For infinite di-
mensional cases, this criterion becomes totally useless since there is no infinite di-
mensional analogue of det that discriminates between invertible and non-invertible
operators T (see exercise 4.1.1 below!)

Another general issue connected with the system (4.1) is that of eigenvalues.
For every λ ∈ C, denote by Vλ = { f ∈ Cn : T f = λ f}. For most choices of λ ,
the subspace Vλ is the trivial subspace {0}; this subspace is not trivial only when
T −λ1 is not injective (i.e. ker(T −λ1 ) 6= {0}.) On defining the spectrum of T
by

spec(T ) = {λ ∈ C : T −λ1 is not invertible },

one easily shows that spec(T ) 6= /0 and cardspec(T ) ≤ n (why?) Not always the
family (Vλ )λ∈spec(T ) spans the whole space Cn. When it does, on decomposing
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g = g(1) + . . .+ g(k) where g( j) ∈ Vλ j and spec(T ) = {λ1, . . . ,λk}, the solution of
(4.1) is given by

f =
g(1)

λ1
+ . . .+

g(k)

λk
.

(Notice that λi 6= 0, for all i = 1, . . . ,k; why?) When the family (Vλ )λ∈spec(T ) does
not span Cn, the problem is more involved but the rôle of the spectrum remains
fundamental.

A final issue involving the spectrum of T is the functional calculus associ-
ated with T . If p ∈ R[t], this polynomial can be naturally extended on B(H). In
fact, if p(t) = antn + . . .a0 is the expression of the polynomial p; the expression
p(T ) = anT n + . . .a01 is well defined for all T ∈B(H). Moreover, if T ∈Bh(H)
then p(T ) ∈Bh(H). Suppose now that T ∈Bh(H), m = inf‖ f‖=1 〈 f |T f 〉, M =
sup‖ f‖=1 〈 f |T f 〉, and p(t)≥ 0 for all t ∈ [m,M]; then p(T ) ∈B+(H). Now every
f ∈C[m,M] can be uniformly approximated by polynomials, i.e. there is a sequence
(pl)l∈N, with pl ∈ R[t] such that for all ε > 0, there exists n0 ∈ N such that for
l ≥ n0, maxt∈[m,M] | f (t)− pl(t)|< ε . It is natural then to define f (T ) = liml pl(T ).
However, the computations involved in the right hand side of this equation can be
very complicated. Suppose henceforth that H = Cn and T is a Hermitean n×n ma-

trix that is diagonalisable, i.e. T =UDU∗ with D =

λ1
. . .

λn

 and U unitary.

Then pl(T ) = U pl(D)U∗ and letting l→ ∞ we get f (T ) = U f (D)U∗. Thus, if T
is diagonalisable, the computation of f (T ) is equivalent to the knowledge of f (t)
for t ∈ spec(T ). For the infinite dimensional case, the problem is more involved
but again the spectrum remains fundamental.

The rest of this chapter, based on [1], is devoted to the appropriate generalisa-
tion of the spectrum for infinite dimensional operators.

Exercise 4.1.1 (Infinite-dimensional determinant) Let H = `2(N) and (tn)n∈N
be a fixed numerical sequence. Suppose that there exist constants K1,K2 > 0 such
that 0 < K1 ≤ tn ≤ K2 < ∞ for all n ∈ N. For every x ∈ `2(N) define (T x)n =
tnxn,n ∈ N.

1. Show that T ∈B(H).

2. Exhibit a bounded operator S on H such that ST = T S = 1 .

3. Assume henceforth that (tn)n∈N is a monotone sequence. Let ∆n(T )= t1 · · · tn.
Show that ∆n(T ) converges to a non-zero limit ∆(T ) if and only if ∑n(1−
tn) < ∞.



4. Any plausible generalisation, δ , of det in the infinite dimensional setting
should verify δ (1 ) = 1, δ (AB) = δ (A)δ (B), and if T is diagonal δ (T ) =
∆(T ). Choosing tn = n

n+1 , for n ∈ N, conclude that although T is diagonal
and invertible, it has δ (T ) = 0.

4.2 The spectrum of an operator acting on a Banach space

Let V be a C-Banach space. Denote by B(V) the set of bounded operators T : V→
V. This space is itself a unital Banach algebra for the induced operator norm.

Exercise 4.2.1 If X and Y are metric spaces and dX and dY denote their respective
metrics

1. verify that

dp((x1,y1),(x2,y2)) = (dX(x1,x2)p +dY(y1,y2)p)1/p,

with p ∈ [1,∞[ and

d∞((x1,y1),(x2,y2)) = max(dX(x1,x2),dY(y1,y2))

are metrics on X×Y; (the corresponding metric space (X×Y,dp), p∈ [1,∞]
is denoted1 X⊕Y)

2. show that the sequence (xn,yn)n in X×Y converges to a point (ξ ,ψ) ∈ X×
Y with respect to any of the metrics dp if and only if dX(xn,ξ )→ 0 and
dY(yn,ψ)→ 0.

Exercise 4.2.2 Let X and Y be metric spaces and f : X→Y be a continuous map.
We denote by

Γ( f ) = {(x, f (x)) : x ∈ X}

the graph of f . Show that Γ( f ) is closed (i.e. if (xn)n is a sequence in X and if there
exists (x,y) ∈ X×Y such that xn→ x and f (xn)→ y, then necessarily y = f (x).)

Exercise 4.2.3 (The closed graph theorem) Suppose X and Y are Banach spaces
and T : X→ Y a linear map having closed graph. Show that T is continuous.

Theorem 4.2.4 For every T ∈B(V), the following are equivalent:

1more precisely X⊕`p Y.



1. for every y ∈ V there is a unique x ∈ V such that T x = y,

2. there is an operator S ∈B(V) such that ST = T S = 1 .

Proof: Only the part 1⇒ 2 is not trivial to show. Condition 1 implies that T is
invertible; call S its inverse. The only thing to show is the boundedness of S. As a
subset of V⊕V, the graph of S is related to the graph of T . In fact

Γ(S) = {(y,Sy) : y ∈ V}= {(T x,x),x ∈ V}.

Now T is bounded, hence continuous, so that that the set {(T x,x),x ∈V} is closed
(see exercise 4.2.2.) Thus the graph of S is closed, and by the closed graph theorem
(see exercise 4.2.3), S is continuous hence bounded. �

Definition 4.2.5 Let T ∈B(V) where V is a Banach space.

1. T is called invertible if there exists an operator S ∈ B(V) such that ST =
T S = 1 .

2. The spectrum of T , denoted by spec(T ), is defined by

spec(T ) = {λ ∈ C : T −λ1 is not invertible}.

3. The resolvent set of T , denoted by Res(T ), is defined by

Res(T ) = C\ spec(T ).

Notice that in finite dimension, invertibility of an operator R reduces essentially
to injectivity of R since surjectivity of R can be trivially verified if we reduce the
space V into Ran(R). In infinite dimension, several things can go wrong: of course
injectivity may fail as in finite dimension; but a new phenomenon can appear when
Ran(R) is not closed: in this latter case, Ran(R) can further be dense in V or fail to
be dense in V . All these situations may occur and correspond to different types of
sub-spectra.

Definition 4.2.6 Let T ∈B(V) where V is a Banach space.

1. The point spectrum of T is defined by specp(T )= {λ ∈C : T−λ1 is not injective}.
Every λ ∈ specp(T ) is called an eigenvalue of T .

2. The continuous spectrum, specc(T ), of T is defined as the complex values λ

such that T −λ1 is injective but not surjective and Ran(T −λ1 ) is dense in
V.



3. The residual spectrum, spec( T ), of T is defined as the complex values λ

such that T−λ1 is injective but not surjective and Ran(T−λ1 ) is not dense
in V.

Example 4.2.7 Let V be a finite dimensional Banach space and T : V→ V a lin-
ear transformation (hence bounded.) Since dimker(T−λ1 )+dimRan(T−λ1 ) =
dimV, it follows that T −λ1 is injective if and only if Ran(T −λ1 ) = V. There-
fore specr(T ) = /0. Further, if T−λ1 is injective, then it has an inverse on V. Since
any linear transformation of a finite dimensional space is continuous, it follows that
(T −λ1 )−1 is continuous, hence specc(T ) = /0. Therefore, in finite dimension we
always have spec(T ) = specp(T ).

Exercise 4.2.8 Let V = `2(N) and consider the right shift, R, on V.

1. Show that R−λ1 is injective for all λ ∈ C. Conclude that specp(R) = /0.

2. Show that for |λ | > 1, Ran(R− λ1 ) = V. Conclude that all λ ∈ C with
|λ |> 1 belong to Res(R).

3. For |λ |< 1, show that Ran(R−λ1 ) is orthogonal to the vector Λ =(1,λ ,λ 2, . . .).
Show that for |λ | < 1, Ran(R−λ1 ) = {y ∈ V : y ⊥ Λ}. Conclude that all
λ ∈ C with |λ |< 1 belong to specr(R).

4. The case |λ |= 1 is the most difficult. Try to show that Ran(R−λ1 ) is dense
in V so that the unit circle coincides with specc(R).

4.3 The spectrum of an element of a Banach algebra

In the previous section we studied spectra of bounded operators acting on Banach
spaces. They form a Banach algebra with unit. Spectral theory can be established
also abstractly on Banach algebras. Before stating spectral properties, it is instruc-
tive to give some more examples.

Example 4.3.1 Let CK(R) be the set of continuous functions on R which vanish
outside a bounded interval; it is a normed vector space (with respect to the L1 norm
for instance; its completion is the Banach space L1(R,λ ), where λ stands for the
Lebesgue measure.) A product can be defined by the convolution

f ?g(x) =
∫

R
f (y)g(x− y)dy



turning this space into a commutative Banach algebra. This algebra is not unital
(this can be seen by solving the equation f ? f = f in L1), but it has an approximate
unit (i.e. a sequence ( fn)n of integrable functions with ‖ fn‖= 1 for all n and such
that for all g ∈ L1(R), ‖g ? fn− g‖ → 0. (Give an explicit example of such an
approximate unit!)

Example 4.3.2 The algebra Mn(C) is a unital non-commutative algebra. There
are many norms that turn it into a finite-dimensional Banach algebra, for instance:

1. ‖A‖= ∑
n
i, j=1 |ai, j|

2. ‖A‖= sup‖x‖≤1
‖Ax‖
‖x‖ .

Definition 4.3.3 Let A be a unital Banach algebra. (We can always assume that
‖1 ‖= 1, may be after re-norming the elements of A.) An element a ∈ A is called
invertible if there is an element b ∈ A such that ab = ba = 1 . The set of all in-
vertible elements of A is denoted by GL(A) and called the general linear group of
invertible elements of A.

Theorem 4.3.4 Let A be a unital Banach algebra. If a ∈ A and ‖a‖ < 1 then
1 −a is invertible and

(1 −a)−1 =
∞

∑
n=0

an.

Moreover,

‖(1 −a)−1‖ ≤ 1
1−‖a‖

and

‖1 − (1 −a)−1‖ ≤ ‖a‖
1−‖a‖

.

Proof: Since ‖an‖≤ ‖a‖n for all n, we can define b∈A as the sum of the absolutely
convergent series b = ∑

∞
n=0 an. Moreover, b(1 −a) = (1 −a)b = limN→∞ ∑

N
n=0 bn =

limN→∞(1 − bN+1) = 1 . Hence 1 − a is invertible and (1 − a)−1 = b. The first
majorisation holds because ‖b‖ ≤ ∑

∞
n=0 ‖a‖n = 1

1−‖a‖ . The second one follows
from remarking that 1 −b =−∑

∞
n=1 an =−ab, hence ‖1 −b‖ ≤ ‖a‖‖b‖. �

Exercise 4.3.5 1. Prove that GL(A) is an open set in A and that the mapping
a 7→ a−1 is continuous on GL(A).

2. Justify the term “general linear group” of invertible elements, i.e. show that
GL(A) is a topological group in the relative norm topology.



Definition 4.3.6 Let A be a unital Banach algebra. For every a ∈A, the spectrum
of a is the set

spec(a) = {λ ∈ C : a−λ1 6∈ GL(A)}.

In the rest of this section, A will be a unital algebra and we shall write a−λ

instead of a−λ1 .

Proposition 4.3.7 For every a ∈ A, the set spec(a) is a closed subset of the disk
{λ ∈ C : |λ | ≤ ‖a‖}.

Proof: Consider the resolvent set

Res(a) = {λ ∈ C : a−λ ∈ GL(A)}= C\ spec(a).

Since the set GL(A) is open (see exercise 4.3.5) and the map C 3 λ 7→ a−λ ∈ A

continuous, the set Res(a) is open hence the set spec(a) is closed. Moreover, if
|λ | > ‖a‖, on writing a−λ = (−λ )[1− a/λ ] and remarking that ‖a/λ‖ < 1, we
conclude that a−λ ∈ GL(A). �

Theorem 4.3.8 For every a ∈ A, the set spec(a) is non-empty.

Proof: For λ0 6∈ spec(a), the A-valued function λ 7→ (a− λ )−1 is well defined
for all λ sufficiently close to λ0 because the set Res(a) is open. Moreover, for
λ ,λ0 ∈ Res(a),

(a−λ )−1− (a−λ0)−1 = (a−λ )−1[(a−λ0)− (a−λ )](a−λ0)−1

= (λ −λ0)(a−λ )−1(a−λ0)−1.

Thus
lim

λ→λ0

1
λ −λ0

[(a−λ )− (a−λ0)] = (a−λ0)−2.

Assume now that spec(a) = /0 and choose an arbitrary bounded linear functional φ :
A→C. Then, the scalar function f : C→C defined by λ 7→ f (λ ) = φ((a−λ )−1)
is defined on the whole C. By linearity, the function f has everywhere a complex
derivative, satisfying f ′(λ ) = φ((a−λ )−2). Thus f is an entire function. Notice
moreover that f is bounded and for |λ |> ‖a‖, by theorem 4.3.4,

‖(a−λ )−1‖ =
‖(1−a/λ )−1‖

|λ |

≤ 1
|λ |(1−‖a‖/|λ |)

=
1

|λ |−‖a‖
.



Thus limλ→∞ f (λ ) = 0 and since this function is bounded and entire, by Liouville’s
theorem (see [?] for instance), it is constant, hence f (λ ) = 0 for all λ ∈C and every
linear functional φ . The Hahn-Banach theorem implies then that (a−λ )−1 = 0 for
all λ ∈ C. But this is absurd because (a−λ ) is invertible and 1 6= 0 in A. �

Definition 4.3.9 For every a ∈ A, the spectral radius of a is defined by r(a) =
sup{|λ | : λ ∈ spec(a)}.

Exercise 4.3.10 1. Let p∈R[t] and a∈A. Show that p(spec(a))⊆ spec(p(a)).
(Hint: if λ ∈ spec(a), the map λ ′ 7→ p(λ ′)− p(λ ) is a polynomial vanishing
at λ ′ = λ . Conclude that p(a)− p(λ ) cannot be invertible.)

2. For every a ∈ A show that r(a) = limn→∞ ‖an‖1/n.

4.4 Relation between diagonalisability and the spectrum

Motivated again by elementary linear algebra, we recall that a self-adjoint n× n
matrix T can be diagonalised, i.e. it is possible to find a diagonal matrix D =d1

. . .
dn

 and a unitary matrix U such that T =UDU∗; we have then spec(T )=

{d1, . . . ,dn}. We shall generalise this result to infinite dimensional spaces.

An orthonormal basis for H is a sequence E = (e1,e2, . . .) of mutually orthog-
onal unit vectors of H such that2 spanE = H. On fixing such a basis, we define a
unitary operator U : `2(N)→H by

U f = ∑
i∈N

fiei

for f = ( f1, f2, . . .). Specifying a particular orthonormal basis in H is equivalent
to specifying a particular unitary operator U . Suppose now that T ∈ B(H) is a
normal operator and admits the basis vectors of E as eigenvectors, i.e. Tek = tkrk,
tk ∈C, k∈N. Then t = (tk)k ∈ `∞(N) and U∗TU = M where M is the multiplication
operator defined by (M f )k = (U∗TU f )k = (U−1TU f )k = (U−1T ∑i fiei)k = fktk.
Thus an operator T on H is diagonalisable in a given basis E if the unitary opera-
tor associated with E implements an equivalence between T and a multiplication
operator M acting on `2(N). This notion is still inadequate since it involves only
normal operators with pure point spectrum; it can nevertheless be appropriately
generalised.

2Recall that H is always considered separable.



Definition 4.4.1 An operator T acting on a Hilbert space H is said diagonalisable
if there exist a (necessarily separable) σ -finite measure space (Ω,F ,µ), a function
m ∈ L∞(Ω,F ,µ), and a unitary operator U : L2(Ω,F ,µ)→H such that

UMm = TU

where Mm denotes the multiplication operator by m, defined by Mm f (ω)= m(ω) f (ω),
for all ω ∈Ω and all f ∈ L2(Ω,F ,µ)

Example 4.4.2 Let H = L2([0,1]) and T : H→H defined by T f (t) = t f (t), for t ∈
[0,1] and f ∈H. This operator is diagonalisable since it is already a multiplication
operator.

Notice that a diagonalisable operator is always normal because the multiplication
operator is normal. The following theorem asserts the converse.

Theorem 4.4.3 Every normal operator acting on a Hilbert space is diagonalis-
able.

Proof: Long but without any particular difficulty; it can be found in [1], pp. 52–55.
�

4.5 Spectral measures and functional calculus

Start again from some heuristic ideas. Let (Ω,F ,µ) be a probability space and
f : Ω→ R a bounded measurable function. Standard integration theory states that
f can be approximated by simple functions. More precisely, for every ε > 0, there
exists a finite family (Ei)i of disjoint measurable sets Ei ∈F and a finite family of
real numbers (αi)i such that | f (ω)−∑i αi1 Ei(ω)|< ε for all ω ∈Ω. It is instructive
to recall the main idea of the proof of this elementary result.

Let m = inf f (ω), M = sup f (ω), and subdivide the interval [m,M] into a finite
family of disjoint intervals (I j) j, with |I j|< ε (see figure 4.1.) For each j, select an
arbitrary α j ∈ I j; in the subset f−1(I j) ∈F , the values of f lie within ε from α j.
Therefore, we get the desired result by setting E j = f−1(I j). If for every Borel set
B ∈B(R), we define P(B) = 1 f−1(B) (this is a function-valued set function!), the
approximation result can be rewritten as

| f (ω)−∑
j

α jP(I j)(ω)|< ε, ∀ω ∈Ω.



m
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Figure 4.1: The approximation of a bounded measurable function by simple func-
tions

Now, P is set function (a measure actually) and the sum ∑ j α jP(I j) tends (in some
sense3) to

∫
αP(dα).

Summarising the heuristics developed so far: the approximability of a real-
valued, bounded, measurable function f by simple functions can be expressed by
writing f =

∫
αP(dα), where P is the function-valued measure

B(R) 3 B 7→ P(B) = 1 f−1(B)

with the following properties:

1. P is idempotent: i.e. P(B)2 = P(B) for all B ∈B(R),

2. P is multiplicative: i.e. P(B∩C) = P(B)P(C) for all B,C ∈B(R),

3As a matter of fact, it is possible to construct a descent theory of integration in which
∫

αP(dα)
acquires a precise meaning.



3. P is supported by Ran( f ): i.e. P(B) ≡ 0 for all B ∈ B(R) such that B∩
Ran( f ) = /0.

The measure P reflects the properties of f ; it is called the spectral measure of f .

In the non-commutative setting, the analogue of a bounded, real-valued, mea-
surable function is a bounded Hermitean operator on H. Idempotence, character-
ising indicators in the commutative case, is verified by projections belonging to
P(H). Hence, we are seeking approximations of bounded Hermitean operators by
complex finite combinations of projections. Now we can turn into precise defini-
tions.

Definition 4.5.1 Let (X,F ) be a measurable space and H a Hilbert space. A
function P : F →P(H) is called a spectral measure on (X,F ) if

1. P(X) = 1 ,

2. if (Fn)n∈N is a sequence of disjoint elements in F , then P(∪n∈NFn)= ∑n∈N P(Fn).

Example 4.5.2 Let (X,F ,µ) be a probability space and H = L2(X,F ,µ). Then
the mapping F 3 F 7→ P(F) ∈P(H), defined by P(F) f = 1 F f for all f ∈H, is a
spectral measure.

Exercise 4.5.3 If P is a spectral measure on (X,F ), then P( /0) = 0 and P is finitely
disjointly additive.

Theorem 4.5.4 Let (X,F ) be a measurable space and H a Hilbert space. If P
is a finitely disjointly additive function F → P(H) such that P(X = 1 then (for
F,G ∈F )

1. P is monotone: F ⊆ G⇒ P(F)≤ P(G),

2. P is subtractive: F ⊆ G⇒ P(G\F) = P(G)−P(F),

3. P is modular: P(F ∪G)+P(F ∩G) = P(F)+P(G),

4. P is multiplicative: P(F ∩G) = P(F)P(G).

Proof: The statements 1 and 2 are immediate by noticing that F1 ⊆ F2 ⇒ F2 =
F1t (F2 \F1).



3) Since F ∪G = (F \G)t (F ∩G)t (G \F) we have: P(F ∪G) + P(F ∩G) =
[P(F \G)+P(F ∩G)]+ [P(G\F)+P(G∩F)] = P(F)+P(G).

4) By 1)
P(F ∩G)≤ P(F)≤ P(F ∪G). (∗)

Multiplying the first inequality of (*) by P(F∩G, we get P(F∩G)≤P(F)P(F∩G)
and since P(F)≤ 1 , the right hand side of the latter inequality is bounded further
by P(F ∩G). Hence P(F)P(F ∩G) = P(F ∩G). Similarly, multiplying the second
inequality of (*) by P(F) and since again P(F ∪G)≤ 1 , we get P(F)P(F ∪G) =
P(F). Adding the thus obtained equalities, we get:

P(F)[P(F ∪G)+P(F ∩G)] = P(F ∩G)+P(F)

and we conclude by modularity. �

Exercise 4.5.5 Show that for all F,G ∈F , we have [P(F),P(G)] = 0.

Theorem 4.5.6 Let (X,F ) be a measurable space and H a Hilbert space. A map
P : F →P(H) is a spectral measure if and only if

1. P(X) = 1 , and

2. for all f ,g ∈H, the set function µ f ,g : F → C, defined by

µ f ,g(F) = 〈 f |P(F)g〉,F ∈F ,

is countably additive.

Proof:

(⇒): If P is a spectral measure, then statements 1 and 2 hold trivially.

(⇐): Suppose, conversely, that 1 and 2 hold. If F ∩G = /0 then 〈 f |P(F ∪G)g〉=
〈 f |P(F)g〉+ 〈 f |P(G)g〉 = 〈 f | [P(F)+P(G)]g〉, hence P is finitely addi-
tive (hence multiplicative). Let now (Fn)n be a sequence of disjoint sets
in F . Multiplicativity of P implies (P(Fn))n is a sequence of orthogonal
projections and hence (P(Fn)g)n a sequence of orthogonal vectors for any
g ∈ H. Let F = ∪nFn. Hence, for all f ,g ∈ H, we have: 〈 f |P(F)g〉 =
〈 f | ∑n P(Fn)g〉, due to the countable additivity property of µ− f ,g. We are
tempted to conclude that P(F) = ∑n P(Fn). Yet, it may happen that ∑n P(Fn)
does not make any sense because weak convergence does not imply con-
vergence in the operator norm. However, ∑n ‖P(Fn)g‖2 = ∑n 〈g |P(Fn)g〉=
〈g |P(F)g〉= ‖P(F)g‖2. It follows that the sequence (P( fn)g)n is summable.
If we write ∑n P( fn)g = T g, it defines a bounded operator T coinciding with
P(F).
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Notation 4.5.7 Let (X,F ) be a measurable space and F : X→ C. We denote by
‖F‖ ≡ sup{|F(x)| : x ∈ X}, and B(X) = {F : X→ C | measurable, ‖F‖< ∞}.

Henceforth, the Hilbert space H will be fixed and B(H) (respectively P(H))
will denote as usual the set of bounded operators (respectively projections) on H.

Theorem 4.5.8 Let (X,F ) be a measurable space and H a Hilbert space. If P is
a spectral measure on (X,F ) and F ∈B(X), then there exists a unique operator
TF ∈B(H) such that

〈 f |TFg〉=
∫

X
F(x)〈 f |P(dx)g〉,

for all f ,g ∈H. We write TF =
∫
X F(x)P(dx).

Proof: The boundedness of F implies that the right hand side of the integral gives
rise to a well-defined sesquilinear functional φ( f ,g) =

∫
X F(x)〈 f |P(dx)g〉, for

f ,g ∈ H. Moreover, |φ( f , f )| ≤
∫
X |F(x)|‖P(dx) f‖2 ≤ ‖F‖‖ f‖2, hence the func-

tional φ is bounded. Existence and uniqueness of TF follows from the Riesz-
Fréchet theorem. �

Theorem 4.5.9 (Spectral decomposition theorem) If T ∈Bh(H) then there ex-
ists a spectral measure on (C,B(C)), supported by spec(T )⊆ R, such that

T =
∫
spec(T )

λP(λ ).

Proof: Let p ∈ R[t] and f ,g ∈ H be two arbitrary vectors. Denote by L f ,g(p) =
〈 f | p(T )g〉. Then |L f ,g(p)| ≤ ‖p(T )‖‖ f‖‖g‖ and since p(T ) ∈ B(H) we have
also ‖p(T )‖= sup{|p(λ )| : λ ∈ spec(T )} (exercise!). Since spec(T ) is a bounded
set, ‖p(T )‖ < ∞ for all p ∈ R[t]. Hence the linear functional L f ,g is a bounded
linear functional on R[t]. By Riesz-Fréchet theorem, there exists consequently a
unique complex measure µ f ,g, supported by spec(T ), such that

L f ,g(p)≡ 〈 f | p(T )g〉=
∫
spec(T )

p(λ )µ f ,g(dλ ),

for all p∈R[t], verifying |µ f ,g(B)| ≤ ‖ f‖‖g‖, for all B∈B(C). Using the unique-
ness of µ f ,g, it is immediate to show that for every B ∈B(C), SB( f ,g) = µ f ,g(B)
is a sesquilinear form. Now, |SB( f ,g)| = |µ f ,g(B)| ≤ ‖ f‖‖g‖, for all B. Hence
the sesquilinear form is bounded; therefore, there exists an operator P(B)∈Bh(H)



such that SB( f ,g) = 〈 f |P(B)g〉 for all f ,g ∈ H. Recall that neither µ f ,g, nor SB,
nor P depend on the initially chosen polynomial p. Choosing p0(λ ) = 1, we get∫
spec(T ) 〈 f |P(dλ )g〉 = 〈 f |P(spec(T ))g〉 = 〈 f |g〉 and choosing p1(λ ) = λ , we

get
∫
spec(T ) 〈 f |λP(dλ )g〉 = 〈 f |T g〉, for all f ,g ∈ H. To complete the proof, it

remains to show that P is a projection-valued measure. It is enough to show the
multiplicativity property. For any fixed pair f ,g ∈ H and any fixed real polyno-
mial q, introduce the auxiliary complex measure ν(B) =

∫
B q(λ )〈 f |P(dλ )g〉, with

B ∈B(C). For every real polynomial p, we have∫
p(λ )ν(dλ ) =

∫
p(λ )q(λ )〈 f |P(dλ )g〉

= 〈 f |P(p(T )q(T )g〉
= 〈q(T ) f | p(T )g〉

=
∫

p(λ )〈q(T ) f |P(dλ )g〉.

Therefore,

ν(B) =
∫

q(λ )1 B(λ )〈 f |P(dλ )g〉

= 〈q(T ) f |P(B)g〉
= 〈 f |q(T )P(B)g〉

=
∫

q(λ )〈 f |P(dλ )P(B)g〉.

Since q is arbitrary,

〈 f |P(B∩C)g〉 =
∫

C
〈 f |P(dλ )P(B)g〉

= 〈 f |P(B)P(C)g〉,

and since f ,g ∈H are arbitrary, we get P(B∩C) = P(B)P(C). �

Theorem 4.5.10 If T is a normal operator in B(H), then there exists a necessar-
ily unique complex spectral measure on (C,B(C)), supported by spec(T ), such
that

T =
∫
spec(T )

λP(dλ ).

Proof: Exercise! (Hint: T = T1 + iT2 with T1,T2 ∈Bh(H).) �

4.6 Some basic notions on unbounded operators

The operators arising in quantum mechanics are very often unbounded.



Definition 4.6.1 Let H be a Hilbert space. An operator on H, possibly unbounded,
is a pair (Dom(T ),T ) where Dom(T )⊆H is a linear manifold and T : Dom(T )→
H is a linear map. The set of operators on H is denoted L(H).

The graph of an operator T ∈ L(H) is the linear sub-manifold of H⊕H of the
form

Γ(T ) = {(( f ,T f ) ∈H×H : f ∈ Dom(T )}.

The operator T is closed if Γ(T ) is closed. The operator T is closable if there
exists T̂ ∈ L(H) such that Γ(T̂ ) = Γ(T ) in H⊕H. Such an operator is unique and
is called the closure of T . An operator T is said densely defined if Dom(T ) = H.

If T1,T2 ∈L(H) with Dom(T1)⊆Dom(T2) and T1 f = T2 f for all f ∈Dom(T1),
then T2 is called an extension of T1 and T1 the restriction of T2 on Dom(T1); we
write T1 ⊆ T2. If T is bounded on its domain and Dom(T ) = H, then T can be
extended by continuity on the whole space.

The definitions of null space and range are also modified for unbounded oper-
ators:

ker(T ) = { f ∈ Dom(T ) : T f = 0}
Ran(T ) = {T f ∈H : f ∈ Dom(T )}.

The operator T is invertible if ker(T ) = {0} and its inverse, T−1 is the operator
defined on Dom(T−1) = Ran(T ) by T−1(T f ) = f for all f ∈ Dom(T ).

If T1,T2 ∈L(H), then T1 +T2 is defined on Dom(T1 +T2)=Dom(T1)∩Dom(T2)
by (T1 +T2) f = T1 f +T2 f . Similarly, the product T1T2 is defined on Dom(T1T2) =
{ f ∈ Dom(T2) : T2 ∈ Dom(T1)} by (T1T2) f = T2(T1 f ).

Definition 4.6.2 Suppose that T is densely defined. Then T is the adjoint oper-
ator with Dom(T ∗) = {g ∈ H : sup |〈g |T f 〉| < ∞, f ∈ Dom(T ),‖ f‖ = 1}; since
Dom(T ) = H, by Riesz theorem, there exists a unique g∗ ∈H such that 〈g∗ | f 〉=
〈g |T f 〉 for all f ∈ Dom(T ). We define then T ∗g = g∗.

Example 4.6.3 (The position operator) Let (Ω,F ,µ) be any separable, σ -finite
measure space, H = L2(Ω,F ,µ;C), and f ∈H measurable. Let T ∈ L(H) be the
operator defined by Dom(T ) = {g ∈ H :

∫
(1 + | f |2)|g|2dµ < ∞} and T g(ω) =

f (ω)g(ω) for g ∈ Dom(T ) and ω ∈ Ω. Then T is closed, densely defined, with
Dom(T ∗) = Dom(T ) and T ∗g(ω) = f (ω)g(ω). When Ω = R, F = B(R), and
µ is the Lebesque measure, we say that T is the position operator; it is obviously
self-adjoint.



Example 4.6.4 (The momentum operator) Let H = L2(R). A function u : R→
R is called absolutely continuous, (a.c.) if there exists a function v : R→ R such
that

u(b)−u(a) =
∫ b

a
v(x)dx, for all a < b.

In such a case, we write u′ = v, u′ is called the derivative of u. The function v is
determined almost everywhere. Define now T ∈ L(H) on

Dom(T ) = { f ∈H : f a.c.,
∫

(| f |2 + | f ′|2)dx < ∞}

by T f = f ′. Then T is a closed, densely defined operator with T ∗ = −iT . The
operator −iT is called the momentum operator.

Exercise 4.6.5 Let q be the position operator, p the momentum operator. Show
that [q, p]⊆ i1 .

Exercise 4.6.6 (Heisenberg’s uncertainty principle) Denote by S(R) the Schwartz
space of indefinitely differentiable functions of rapid decrease. If f ∈ S(R), denote
by f̂ its Fourier transform f̂ (ξ ) =

∫
R f (x)exp(−iξ x)dx. Let p : S(R)→ S(R) be

defined by p f =−i f ′ and q : S(R)→ S(R) by q f (x) = x f (x), for all x ∈ R. Show
that [q, p] = i1 . If 〈 · | · 〉 denotes the L2 scalar product on S(R), show that

|〈 f | f 〉| ≤ 2‖p f‖2‖q f‖2.

Conclude that for any f ∈ S(R),

‖ f‖2 ≤ 4π‖x f‖L2(R)‖ξ f̂‖L2(R̂).

Below are depicted the graphs of pairs | f (x)|2 and | f̂ (ξ )|2, chosen among a
class of Gaussian functions, for different values of some parameter. How do you
interpret these results?



Chapter 5
Propositional calculus

5.1 Introduction

Phenomenology is an essential step in constructing physical theories. Phenomeno-
logical results are of the following type: if a physical system is subject to conditions
A,B,C, . . ., then the effects X ,Y,Z, . . . are observed. We further introduced yes-no
experiments consisting in measuring questions in given states. However, there may
exist questions that depend on other questions and hold independently of the state
in which they are measured. More precisely, suppose for instance that QA denotes
the question: “does the physical particle lie in A, for some A ∈B(R3)?” Let now
B⊇A be another Borel set in R3. Whenever QA is true (i.e. for every state for which
QA is true) QB is necessarily true. This remark defines a natural order relation in the
set of questions. Considering questions on given physical system more abstractly,
as a logical propositions, it is interesting to study first the abstract properties of a
partially ordered set of propositions. This abstract setting allows the statement of
the basic axioms for classical or quantum systems on an equal footing.

5.2 Lattice of propositions

Let Λ be a set of propositions and for any two propositions a and b, denote by a≤ b
the implication “whenever a is true, it follows that b is true”

Definition 5.2.1 The pair (Λ,≤) is a partially ordered set (poset) if the relation≤
is a partial order (i.e. a reflexive, transitive, and antisymmetric binary operation).
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For a,b ∈ Λ, we say that u is a least upper bound if

1. a≤ u and b≤ u,

2. if a≤ v and b≤ v for some v ∈ Λ, then u≤ v.

If a least upper bound of two elements a and b exists, then it is unique and denoted
by sup(a,b) ∈ Λ,

Definition 5.2.2 A lattice is a set Λ with two binary operations, denoted respec-
tively by ∨ (’join’) and ∧ (’meet’), and two constants 0 ∈ Λ and 1 ∈ Λ, satisfying,
for all a,b,c ∈ Λ the following properties:

1. idempotence: a∧a = a = a∨a,

2. commutativity: a∧b = b∧a and a∨b = v∨a,

3. associativity: a∧ (b∧ c) = (a∧b)∧ c and a∨ (b∨ c) = (a∨b)∨ c,

4. identity: a∧1 = a and a∨0 = a,

5. absorption: a∧ (a∨b) = a = a∨ (a∧b).

Theorem 5.2.3 Let (Λ,≤) be a poset. Suppose that

1. Λ has a least element 0 and a greatest element 1, i.e. for all a ∈ Λ, we have
0≤ a≤ 1,

2. any two elements a,b ∈ Λ have a least upper bound in Λ, denoted by a∨b,
and a greatest lower bound in Λ, denoted by a∧ b. Then (Λ,∧,∨,0,1) is a
lattice.

Conversely, if (Λ,∧,∨,0,1) is a lattice, then, on defining a≤ b whenever a∧b = b,
the pair (Λ,≤) is a poset verifying properties 1 and 2 of definition 5.2.1

Proof: : Exercise! �

Definition 5.2.4 A lattice (Λ,∧,∨,0,1) is called distributive if it verifies, for all
a,b,c ∈ Λ,

a∨ (b∧ c) = (a∨b)∧ (a∨ c),

and
a∧ (b∨ c) = (a∧b)∨ (a∧ c).



{ }

{1}
{2}

{3}

{1, 2}
{1, 3}

{2, 3}

{1, 2, 3}

Figure 5.1: The Hasse diagram of the lattice of subsets of the set {1,2,3}.

Remark 5.2.5 A finite lattice (or finite poset) can be represented by its Hasse
diagram in the plane. The points of the lattice are represented by points in the
plane arranged so that if a≤ b then the representative of b lies higher in the plane
than the representative of a. We join the representatives of a and b by a segment
when b covers a, i.e. when a≤ b but there is no c ∈ Λ such that a < c < b.

Example 5.2.6 Let S be a finite set and P(S) the collection of its subsets. Then
(P(S),⊆) is a poset, equivalent to the lattice (P(S),∩,∪, /0,S), called the lattice
of subsets of S. This lattice is distributive. For the particular choice S = {1,2,3}
its Hasse diagram is depicted in figure 5.1.

Exercise 5.2.7 Let V = R2 (viewed as a R-vector space) and E1,E2,E3 be three
distinct one-dimensional subspaces of V. Denote by ≤ the order relation “be a
vector subspace of”. Show that there is a finite set S of vector subspaces of V
containing E1,E2, and E3 such that (S,≤) is a lattice. Is this lattice distributive?

In any lattice Λ, a complement of a∈Λ is an element a′ ∈Λ such that a∧a′= 0 and
a∨a′ = 1. Complements may fail to exist and they may be not unique. However,
in a distributive lattice, any element has at most one complement.

Definition 5.2.8 A Boolean algebra is a complemented distributive lattice (i.e. a
distributive lattice in which any element has a — necessarily unique — comple-
ment.)
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Figure 5.2: The Hasse diagram of the Dilworth lattice.

When the lattice Λ is infinite, one can consider infinite subsets F ⊆ Λ. When
both ∧a∈Fa and ∨a∈Fa exist (in Λ) for any countable subset F , the lattice is called
σ -complete. A Boolean σ -algebra is a Boolean algebra that is σ -complete.

Definition 5.2.9 A lattice Λ is called modular of it satisfies the modularity condi-
tion:

a≤ c⇒∀b ∈ Λ,a∨ (b∧ c) = (a∨b)∧ c.

A complemented lattice is called orthomodular if satisfies the orthomodularity con-
dition: for every complement a′ of a,

a≤ b⇒ b = a∨ (a′∧b).

Example 5.2.10 The Dilworth lattice, whose Hasse diagram is depicted in figure
5.2, is orthomodular but not distributive.

Exercise 5.2.11 Show that a Boolean algebra is always modular.

Definition 5.2.12 An atom in a lattice is a minimal non-zero element, i.e. a ∈ Λ

is an atom if a 6= 0 and if x < a for some x ∈ Λ then x = 0. A lattice is atomic if
every point is the join of a finite number of atoms.



Definition 5.2.13 A homomorphism from a complemented lattice Λ1 into a com-
plemented lattice Λ2 is a map h : Λ1→ Λ2 such that

1. h(01) = 02 and h(11) = 12,

2. h(a′) = h(a)′ for all a ∈ Λ1,

3. h(a∨b) = h(a)∨h(b) and h(a∧b) = h(a)∧h(b), for all a,b ∈ Λ1

An isomorphism is a lattice homomorphism that is bijective. If the condition 3
above holds also for countable joins and meets, h is called a σ -homomorphism. If
Λ1 = Λ2 a lattice isomorphism is called lattice automorphism.

Theorem 5.2.14 Let Λ be a Boolean σ -algebra. Then there exist an abstract set
X, a σ -algebra, X , of subsets of X and a σ -homomorphism h : X → Λ.

Proof: It is first given in [6] and later reproduced in [14]. �

This theorem serves to extend the notion of measurability, defined for maps be-
tween measurable spaces, to maps defined on abstract Boolean σ -algebras. Recall
that if X is an arbitrary set of points equipped with a Boolean σ -algebra of subsets
X , and Y a complete separable metric space equipped with its Borel σ -algebra
B(Y), a map f : X→ Y is called measurable if for all B ∈B(Y), f−1(B) ∈X .

Definition 5.2.15 Let Λ be an abstract Boolean σ -algebra and (Y,B(Y)) a com-
plete separable metric space equipped with its Borel σ -algebra. A Y-valued classi-
cal observable associated with Λ is a σ -homomorphism h : B(Y)→ Λ. If Y = R,
the observable is called real-valued.

The careful reader will have certainly remarked that the previous definition is com-
patible with axiom 2.2.14. As a matter of fact, with every real random variable
X on an abstract measurable space (Ω,F ) is associated a family of propositions
QX

B = 1 {X∈B}, for B ∈B(R). The aforementioned σ -homomorphism h : B(R)→
F is given by

h(B) = {ω ∈Ω : QX
B(ω) = 1}= X−1(B) ∈F .

Notice that this does not hold for quantum systems where some more general no-
tion is needed.



5.3 Classical and quantum logics, observables, and states

5.3.1 Logics

Definition 5.3.1 Let (Λ,≤) be a poset (hence a lattice). By an orthocomplemen-
tation on Λ is meant a mapping ⊥: Λ 3 a 7→ a⊥ ∈ Λ, satisfying for a,b ∈ Λ:

1. ⊥ is injective,

2. a≤ b⇒ b⊥ ≤ a⊥,

3. (a⊥)⊥ = a,

4. a∧a⊥ = 0.

A lattice with an orthocomplementation operation is called orthocomplemented.

We remark that from condition 2 it follows that 0⊥= 1 and 1⊥= 0. From condition
3 it follows that ⊥ is also surjective. Finally, conditions 1, 2, and 3 imply that
a∨a⊥ = 1.

Definition 5.3.2 An orthocomplemented lattice, Λ, is said to be a logic if

1. for any countable sequence (an)n∈N of elements of Λ, both ∨n∈Nan and ∧n∈N
exist in Λ,

2. if a1,a2 ∈ Λ and a1 ≤ a2, then there exists b ∈ Λ, such that b ≤ a⊥1 and
b∨a1 = a2.

Without loss of generality, we can always assume that an orthocomplemented
lattice verifies orthomodularity for a⊥ = a′. Remark also that the element whose
existence is postulated in item 2 of the previous definition is unique and equal in
fact to a⊥1 ∧a2. In fact, if b≤ a⊥1 is such that b∨a1 = a2, then necessarily, a1 ≤ b⊥

and b⊥∧a⊥1 = a⊥2 . Using orthomodularity, a1∨(b⊥∧a⊥1 ) = b⊥ and substituting the
left hand side parenthesis by a⊥2 , we get the dual of the required equality. Dualising,
we conclude.

The element a⊥ is called the orthogonal complement of a in Λ. If a ≤ b⊥ and
b≤ a⊥, then a and b are said orthogonal and we write a⊥ b.



Exercise 5.3.3 Assume that (Λ,≤) is a poset (hence a lattice) that is orthocom-
plemented. Let a,b ∈ Λ be such that a < b. Denote by

Λ[a,b] = {c ∈ Λ : a≤ c≤ b}.

Show that

1. Λ[0,b] becomes a lattice in which countable joins and meets exist and whose
zero element is 0 and unit element is b,

2. if we define, for x∈Λ[0,b], x′= x⊥∧b, then the operation ′ : Λ[0,b]→Λ[0,b]
is an orthocomplementation,

3. conclude that Λ[0,b] is a logic.

Example 5.3.4 Any Boolean σ -algebra is a logic provided we define, for any
element a, its orthocomplement to be its complement a′. Boolean σ -algebras are
called classical logics.

Example 5.3.5 Let H be a C-Hilbert space. Let Λ be the collection of all Hilbert
subspaces of H. If ≤ is meant to denote “be a Hilbert subspace of” and ⊥ the
orthogonal complementation in the Hilbert space sense, then Λ is a logic, called
standard quantum logic.

Axiom 5.3.6 In any physical system (classical or quantum), the set of all experi-
mentally verifiable propositions is a logic (classical or standard quantum).

5.3.2 Observables associated with a logic

Suppose that Λ is the logic of verifiable propositions of a physical system and let X
be any real physical quantity relative to this system. Denoting x(B) the proposition
“the numerical results of the observation of X lie in B”, it is natural and harmless
to consider that B ∈ B(R); obviously then, x is a mapping x : B(R)→ Λ. We
regard to physical quantities X and X ′ as identical whenever the corresponding
maps x,x′ : B(R)→ Λ are the same. If f : R→ R is a Borel function, we mean
by X ′ = f ◦X a physical quantity taking value f (r) whenever X takes value r. The
corresponding map is given by B(R) 3 B : x′ 7→ x′(B) = x( f−1(B)) ∈ Λ. Hence
we are led naturally to the following

Definition 5.3.7 Let Λ be a logic. A real observable associated with Λ is a map-
ping x : B(R)→ Λ verifying:



1. x( /0) = 0 and x(R) = 1,

2. if B1,B2 ∈B(R) with B1∩B2 = /0 then x(B1)⊥ x(B2),

3. if (Bn)n∈N is a sequence of mutually disjoint Borel sets, then x(∪n∈NBn) =
∨n∈Nx(Bn).

We write O(Λ) for the set of all real observables associated with Λ.

Exercise 5.3.8 Let Λ be a logic and x ∈ O(Λ). Show that for any sequence of
Borel sets (Bn)n∈N we have

x(∪n∈NBn) = ∨n∈Nx(Bn)

and
x(∩n∈NBn) = ∧n∈Nx(Bn).

Definition 5.3.9 Let Λ be a logic and O(Λ) the set of its associated observables.
A real number λ is called a strict value of an observable x ∈ O(Λ), if x({λ}) 6= 0.
The observable x ∈ O(Λ) is called discrete if there exists a countable set C =
{c1,c2, . . .} such that x(C) = 1; it is called constant if there exists c ∈ R such that
x({c}) = 1. It is called bounded if there exists a compact Borel set K such that
x(K) = 1.

Definition 5.3.10 We call spectrum of x ∈ O(Λ) the closed set defined by

spec(x) = ∩C closed :x(C)=1C.

The numbers λ ∈ spec(x) are called spectral values of x.

Any strict value is a spectral value; the converse is not necessarily true.

Exercise 5.3.11 Show that λ ∈ spec(x) if and only if any open set U containing
λ verifies x(U) 6= 0.

If (an)n∈N is a partition of unity, i.e. a family of mutually orthogonal propositions
in Λ such that ∨n∈Nan = 1, there exists a unique discrete observable admitting as
spectral values a given discrete subset {c1,c2, . . .} of the reals. In fact, it is enough
to define for all n ∈ N, x({cn}) = an and for any B ∈ B(R), x(B) = ∨n:cn∈Ban.
Notice however that discrete observables do not exhaust all the physics of quantum
mechanics; important physical phenomena involve continuous observables.



5.3.3 States on a logic

We have seen that to every classical system is attached a measurable space (Ω,F )
(its phase space); observables are random variables and states are probability mea-
sures that may degenerate to Dirac masses on particular points of the phase space.
This description is incompatible with the experimental observation for quantum
systems. For the latter, the Heisenberg’s uncertainty principle stipulates that no
matter how carefully the system is prepared, there always exist observables whose
values are distributed according to some non-trivial probability distribution.

Definition 5.3.12 Let Λ be a logic and O(Λ) its set of associated observables. A
state function is a mapping ρ : O(Λ) 3 x 7→ ρx ∈M +

1 (R,B(R)).

For every Borel function f : R→ R, for every observable x, and every Borel set B
on the line, we have:

ρ f◦x(B) = ρx( f−1(B)).

Denoting by o the zero observable and 0 the zero of R, we have that ρo = δ0.
In fact, suppose that f : R→ R is the identically zero map. Then f ◦o = o and

f−1(B) =
{

R if 0 ∈ B
/0 otherwise.

Hence, if 0 ∈ B, then ρo(B) = ρ f◦o(B) = ρo( f−1(B)) = 1, because ρo is a prob-
ability on R; if 0 6∈ B then similarly ρo(B) = 0. Therefore, in all circumstances,
ρo(B) = δ0(B).

If x ∈ O(Λ) is any observable and B ∈B(R) is such that x(B) = 0 ∈ Λ, then
ρx(B) = 0. In fact, for this B, we have 1 B◦x = o and ρx(B) = ρo({1}) = δ0({1}) =
0. This implies that if x is discrete, the measure ρx is supported by the set of the
strict values of x.

Definition 5.3.13 An observable q ∈O(Λ) is a question if q({0,1}) = 1. A ques-
tion is the necessarily discrete. If q({1}) = a ∈ Λ, then q is the only question such
that q({1}) = a; we call it question associated with the proposition a and denote
by qa if necessary.

Definition 5.3.14 Let Λ be a logic. A function p : Λ→ [0,1] satisfying

1. p(0) = 0 and p(1) = 1,



2. if (an)n∈N is a sequence of mutually orthogonal propositions of Λ, and a =
∨n∈Nan, then p(a) = ∑n∈N p(an)

is called state (or probability measure) on the logic Λ. The set of states on Λ is
denoted by S (Λ).

The concept of probability measure on a logic coincides with a classical prob-
ability measure when the logic is a Boolean σ -algebra. For non distributive log-
ics however, the associated probability measures are genuine generalisations of the
classical probabilities. For standard quantum logics, the associated states are called
quantum probabilities.

Theorem 5.3.15 Let p ∈S (Λ), where Λ is a logic.

1. On defining a map ρ p : O(Λ)→M +
1 (R,B(R)), by the formula: for every

x ∈ O(Λ) and for every B ∈ B(R), ρ
p
x (B) = p(x(B)), then ρ p is a state

function.

2. Conversely, if ρ is an arbitrary state function, then for every x ∈O(Λ), then
there exists a unique probability measure p ∈S (Λ) such that for every x ∈
O(Λ) and for every B ∈B(R), ρx(B) = p(x(B)).

Proof:

1. The map ρ
p
x : B(R)→ [0,1] is certainly a σ -additive, non-negative map.

Moreover, ρ
p
x (R) = p(1) = 1, hence it is a probability. If f : R→ R is a

Borel function,

ρ
p
f◦x(B) = p( f ◦ x(B)) = p(x( f−1(B))) = ρ

p
x (( f−1(B)).

Hence ρ p is a state function.

2. Let ρ be a state function. If a ∈ Λ and qa ∈ O(Λ) the question associated
with proposition a, then ρqa is a probability measure on B(R). Since qa is a
question, ρqa({0,1}) = 1. Define p(a) = ρqa({1}). Obviously, for all a ∈ Λ,
p(a) is well defined and is taking values in [0,1]. It remains to show that p
is a probability measure on Λ, that is to say verify σ -additivity and normali-
sation. For 0 ∈ Λ, q0({1}) = 0. Hence ρq0({1}) = 0 = p(0). Similarly, we
show that = p(1) = 1. This shows normalisation.

Let (an)n∈N be a sequence of mutually orthogonal elements of Λ, and denote
by a = ∨n∈Nan. Let xinO(Λ) be the discrete observable defined by x({0}) =



a⊥ and x({n}) = an, for n = 1,2, . . .. Then, 1 {n} ◦ x({1}) = x({n}) = an.
Hence qan = 1 {n}◦x and p(an) = ρx({n}). Since ρx is a probability measure,
∑n p(an) = ρx({1,2,3, . . .}) = ρx(N). Similarly, 1 N ◦ x = qa because 1 N ◦
x({1})= x(N)=∨n∈Nx({n})=∨n∈Nan = a. Hence, finally, p(a)= ∑n p(an)
establishing thus σ -additivity of p. Finally, for x ∈ O(Λ) and B ∈B(R),

ρx(B) = ρ1 B◦x({1}) = ρqx(B)({1}) = p(x(B)).

�

If p ∈S (Λ) and x ∈ O(Λ), the map B(R) 3 B 7→ p(x(B)) ∈ [0,1] defines a
probability measure on B(R). It is called the probability distribution induced on
the space of its values by the observable x when the system is in state p and is
denoted ρ

p
x . The expected value of x in state p is

Ep(x) =
∫

R
tρ p

x (dt)

and for a Borel function f : R→ R, we have

Ep( f ◦ x) =
∫

R
f (t)ρ p

x (dt)

(provided the above integrals exist.) If Ep(x2) < ∞, the variance of x in p is
Varp(x) = Ep(x2)− (Ep(x))2.

Axiom 5.3.16 Observables of a physical system described by the logic Λ are
O(Λ).

Axiom 5.3.17 States of a physical system described by the logic Λ are S (Λ).

Axiom 5.3.18 Measuring whether the values of a physical observable x ∈ O(Λ)
lie in B∈B(R) when the system is prepared in state p∈S (Λ) means determining
ρ

p
x (B).

5.4 Pure states, superposition principle, convex decompo-
sition

Proposition 5.4.1 Let S (Λ) be the set of states on the logic Λ. Let (pn)n∈N be
a sequence in S (Λ) and (cn)n∈N a sequence in R+ such that ∑n∈N cn = 1. Then
p = ∑n∈N cn pn, defined by p(a) = ∑n∈N cn pn(a) for all a ∈ Λ, is a state.



Proof: Exercise! �

Corollary 5.4.2 For any logic Λ, the set S (Λ) is convex.

Remark 5.4.3 Notice that if p = ∑n∈N cn pn as above, for every x ∈ O(Λ), we
have that ρ

p
x = ∑n∈N cnρ

pn
x . In fact, for all B ∈B(R),

ρ
p
x (B) = p(x(B)) = ∑

n∈N
cn pn(x(B)) = ∑

n∈N
cnρ

pn
x (B).

This decomposition has the following interpretation: the sequence (cn)n∈N defines
a classical probability on N meaning that in the sum defining p, each pn is chosen
with probability cn. Therefore, for each integrable observable x ∈ O(Λ), the ex-
pectation Ep(x) = ∑n∈N cnEpn(x) consists in two averages: a classical average on
the choice of pn and a (may be) quantum average Epn(x).

Exercise 5.4.4 Give a plausible definition of the notion of integrable observable
used in the previous remark and then prove the claimed equality: Ep(x)= ∑n∈N cnEpn(x)

Definition 5.4.5 A state p ∈S (Λ) is said to be pure if the equation p = cp1 +
(1− c)p2, for p1, p2 ∈S (Λ) and c ∈ [0,1] implies p = p1 = p2. We write Sp(Λ)
for the set of pure states of Λ. Obviously Sp(Λ) = ExtrS (Λ).

Definition 5.4.6 Let D ⊆S (Λ) and p0 ∈S (Λ). We say that p0 is a superposi-
tion of states in D if for a ∈ Λ,

∀p ∈D , p(a) = 0⇒ p0(a) = 0.

It is an exercise to show that the state p = ∑n∈N cn pn defined in the proposition
?? is a superposition of states in D = {p1, p2, . . .}. In the case Λ is a Boolean σ -
algebra, the next theorem 5.4.7 shows that this is in fact the only kind of possible
superposition. This implies, in particular, the unicity of the decomposition of a
classical state into extremal (pure) states. If Λ is a standard quantum logic, unicity
of the decomposition does not hold any longer!

Theorem 5.4.7 Let Λ be a Boolean σ -algebra of subsets of a space X. Suppose
that

1. Λ is separable1,
1i.e. there is a countable collection of subsets An ⊆ X, n ∈ N, generating Λ by complementation,

intersections, and unions.



2. for all a ∈ X, {a} ∈ Λ.

For any a ∈ X and any A⊆ X, let δa be the state defined by

δa(A) =
{

1 if a ∈ A
0 otherwise.

Then, (δa)a∈X is precisely the set of all pure states in Λ. If D ⊆Sp(Λ) and p0 ∈
Sp(Λ), then p0 is a superposition of states in D if and only if p0 ∈D .

Proof: Denote {A1,A2, . . .} a denumerable collection of subsets of X generating Λ.
Purity of δa is trivially verified. Suppose that p is a pure state. If for some A0 ∈ Λ

we have 0 < p0(A) < 1, then, on putting for A ∈ Λ

p1(A) =
1

p(A0)
p(A∪A0) (∗)

and
p2(A) =

1
1− p(A0)

p(A∩Ac
0), (∗∗)

we get p(A) = p(A0)p1(A)+ (1− p(A0))p2(A). Yet, applying (*) and (**) to A0,
we get p1(A0) = 1 and p2(A0) = 0, hence p1 6= p2. This is in contradiction with the
assumed purity of p. Therefore, we conclude that for all A ∈ Λ, we have p(A) ∈
{0,1}. Replacing An by Ac

n if necessary, we can assume without loss of generality
that p(An) = 1 for all the sets of the collection generating Λ. Let B = ∩nAn. Then
p(B) = 1 and consequently B cannot be empty. Now B cannot contain more than
one point either. In fact, the collection of all sets C ∈ Λ such that either B ⊆C or
B∩C = /0 is a σ -algebra containing all the sets An, n ∈N. Hence, it coincides with
Λ. As singletons are members of Λ, the set B must be a singleton, i.e. B = {a}
for some a ∈ X. Put then p = δa. Finally, let p0 be a superposition of states in D
(all its elements are pure states). If p0 = δa0 but p0 6∈ D , then p({a0}) = 0 for all
p ∈D but p0({a0}) 6= 0, a contradiction. �

5.5 Simultaneous observability

In quantum systems, the Heisenberg’s uncertainty principle, already shown in chap-
ter 2, there are observables that cannot be simultaneously observed with arbitrary
precision.

Definition 5.5.1 Let a,b ∈ Λ. Propositions a and b are said to be simultaneously
verifiable, denoted by a↔ b, if there exists elements a1,b1,c ∈ Λ such that



1. a1,b1,c are mutually orthogonal and,

2. a = a1∨ c and b = b1∨ c hold.

Observables x,y∈O(Λ) are simultaneously observable if for all B∈B(R), x(B)↔
y(B). For A,B⊆ Λ, we write A↔ B if for all a ∈ A and all b ∈ B we have a↔ b.

Lemma 5.5.2 Let a,b ∈ Λ. The following are equivalent:

1. a↔ b,

2. a∧ (a∧b)⊥ ⊥ b,

3. b∧ (a∧b)⊥ ⊥ a,

4. there exist x ∈ O(Λ) and A,B ∈B(R) such that x(A) = a and x(B) = b,

5. there exists a Boolean sub-algebra of Λ containing a and b.

Proof:

1⇒ 2:

a↔ b ⇔ a = a1∨ c and b = b1∨ c

⇒ c≤ a and c≤ b

⇒ c≤ a∧b.

From the definition 5.3.2 (logic), it follows that there exists d ∈ Λ such that
c⊥ d and c∨d = a∧b.

Now d ≤ c∨ d = a∧ b ≤ a and d ≤ c⊥ (since d ⊥ d.) Hence, d ≤ a∧
c⊥ = a1 (see remark immediately following the definition 5.3.2.) Similarly,
d ≤ b1⇒ d ≤ b1∧ q1 = 0. Therefore d = 0 and consequently c = a∧ b. It
follows a1 = a∧ (a∧b)⊥. Yet, a1 ⊥ c and a1 ⊥ b1 so that a1 ⊥ (b1 ⊥ c) = b.
Summarising, a∧ (a∧b)⊥ ⊥ b.

1⇒ 3: By symmetry.

2⇒ 1: Since a∧ (a∧b)⊥ ⊥ b, on writing a1 = a∧ (a∧b)⊥, b1 = b∧ (a∧b)⊥, and
c = a∧ b, we find a = a1 ∨ c and b = b1 ∨ c. Since a1 ⊥ b, it follows that
a1⊥ b1 and a1⊥ c, while, by definition, c⊥ b1 which proves the implication.

Henceforth, the equivalence 1⇔ 2⇔ 3 is established.



1⇒ 4: If a = a1∨c, b = b1∨c and a1,b1,c mutually orthogonal, write d = a1∨b1∨c
and define x to be the discrete observable such that x({0}) = a1, x({1}) = b1,
x({2}) = c, and x({3}) = d. Then x({0,2}) = a and x({1,2}) = b.

4⇒ 5: x(A∩(A∩B)c) = a∧(a∧b)⊥ and x(B∩(A∩B)c) = b∧(a∧b)⊥. On writing
a1 = a∧ (a∧ b)⊥, a2 = a∧ b, a3 = b∧ (a∧ b)⊥, and a4 = (a∨ b)⊥, we see
that (ai)i=1,...,4 are mutually orthogonal and a1∨a2∨a3∨a4 = 1. If

A = {ai1 ∨ . . .∨aik : k ≤ 4;1≤ i1 ≤ . . .≤ ik ≤ 4},

it is easily verified that A is Boolean sub-algebra of Λ. Since a,b ∈A , this
proves the implication.

5⇒ 2: Let A be a Boolean sub-algebra of Λ containing a and b. Now, [a∧ (a∧
b)⊥]∧b = 0. As a,b,a∧ (a∧b)⊥,b⊥ ∈A , it follows that

a∧ (a∧b)⊥ = [(a∧ (a∧b)⊥)∧b]
∨[(a∧ (a∧b)⊥)∧b⊥]

= [(a∧ (a∧b)⊥)∧b⊥]
≤ b⊥.

Therefore a∧ (a∧b)⊥ ⊥ b.

�

The significance of this lemma is that if two propositions are simultaneously
verifiable, we can operate on them as if they were classical.

Theorem 5.5.3 Let Λ be any logic and (xλ )λ∈D a family of observables. Sup-
pose that xλ ↔ xλ ′ for all λ ,λ ′ ∈ D. Then there exist a space X, a σ -algebra
X of subsets of X, a family of measurable functions gλ : X→ R, λ ∈ D, and a
σ -homomorphism τ : X → Λ such that τ(g−1

l (B) = xλ (B) for all λ ∈ D and all
b ∈B(R). Suppose further that either Λ is separable or D is countable. Then, for
all λ ∈ D, there exist a x ∈O(Λ) and a measurable function fλ : R→ R such that
xλ = fλ ◦ x.

The proof of this theorem is omitted. Notice that it allows to construct functions
of several observables that are simultaneously observable. This latter result is also
stated without proof.

Theorem 5.5.4 Let Λ be any logic and (x1, . . . ,xn) a family of observables that are
simultaneously observable. Then there exists a σ -homomorphism τ : B(Rn)→ Λ

such that for all B ∈B(R) and all i = 1, . . . ,n,

xi(B) = τ(π−1
i (B)), (∗)



where πi : Rn → R is the projection π(t1, . . . , tn) = ti, i = 1, . . . ,n. If g is a Borel
function on Rn, then g◦ (x1, . . . ,xn)(B) = τ(g−1(B)) is an observable. If g1, . . . ,gk
are real valued Borel functions on Rn and yi = gi ◦ (x1, . . . ,xn), then y1, . . . ,yk are
simultaneously observable and for any real valued Borel function h on Rk, we have
h◦(y1, . . . ,yk)= h(g1, . . . ,gk)◦(x1, . . . ,xn) where, for t =(t1, . . . , tn), h(g1, . . . ,gk)(t)=
h(g1(t), . . . ,gk(t)).

An immediate consequence of this theorem is that if p is a probability measure
on Λ, then ρ

p
x1,...,xn(B) = p(τ(B)), for B ∈B(Rn), is the joint probability distribu-

tion of (x1, . . . ,xn) in state p.

5.6 Automorphisms and symmetries

Let Λ be a logic. The set Aut(Λ), of automorphisms of Λ, acquires as usual a group
structure; they induce naturally automorphisms on S (Λ), called convex automor-
phisms.

Let, in fact, α ∈Aut(Λ) and p∈S (Λ). If we define α̃ to be the induced action
of α on p, by α̃(p)(a) = p(α−1(a)), for all a∈Λ, then α̃ is a convex automorphism
of S (Λ).

Definition 5.6.1 A map β : S (Λ)→S (Λ) is a convex automorphisms if

1. β is bijective and

2. if (cn)n∈N is a sequence of non-negative reals such that ∑n∈N cn = 1 and
(pn)n∈N is a sequence of states in S (Λ), then

β ( ∑
n∈N

cn pn) = ∑
n∈N

cnβ (pn).

The set of convex automorphisms of S (Λ) is denoted Aut(S (Λ)).

Lemma 5.6.2 Let α ∈ Aut(Λ). Then the induced automorphism α̃ on S (Λ) is
convex.

Proof: Bijectivity of α̃ follows immediately from the bijectivity of α . If p =
∑n∈N cn pn ∈S (Λ) (with the notation of definition 5.6.1), then α̃(p)(a)= p(α−1(a))=
∑n∈N cn pn(α−1(a)) = ∑n∈N cnα̃(pn)(a) for all a ∈ Λ. �



Remark 5.6.3 It is obvious that convex automorphisms map pure states of Sp(Λ)
into pure states.

Dynamics, i.e. time evolution of a system described by a logic Λ can be defined
in the following manner. For each t ∈R, there exists a unique map D(t) : S (Λ)→
S (Λ) having the following interpretation: if p ∈S (Λ) is the state of the system
at time t0, then D(t)(p) will represent the state of the system at time t + t0.

Definition 5.6.4 Let G be a locally compact topological group. By a representa-
tion of G into Aut(S (Λ)), we mean a map π : G→ Aut(S (Λ)) such that

1. π(g1g2) = π(g1)π(g2) for all g1,g2 ∈ G,

2. for each a ∈ Λ and each p ∈S (Λ), the mapping g 7→ π(g)(p)(a) is B(G)-
measurable.

Axiom 5.6.5 Time evolution of an isolated physical system described by a logic
Λ, is implemented by a map R 3 t 7→ D(t) ∈ Aut(S (Λ)). This map provides a
representation of the Abelian group (R,+) into Aut(S (Λ)). More generally, any
physical symmetry, implemented by the action of a locally compact topological
group G, induces a representation into Aut(S (Λ)).

Here is an interpretation and/or justification of this axiom. If p = ∑n∈N cn pn

represents the initial state of the system, we can realise this state as follows. First
chose an integer n ∈ N with probability cn and prepare the system at state pn. Let
the system evolve under the dynamics. Then at time t it will be at state p′n =
D(t)(pn) with probability cn. Assuming now that D(t) is a convex automorphism
means that D(t)(p) = ∑n∈N cnD(t)(pn), i.e. at time t, the system is in state p′n =
D(t)(pn) with probability cn, exactly the result we obtained with the first procedure.

To further exploit the notions of logic, states, observables, and convex auto-
morphisms, we must specialise the physical system.





Chapter 6
Standard quantum logics

We recall that a standard quantum logic Λ was defined in chapter 4 to be the set
of Hilbert subspaces of C-Hilbert space H. For every Hilbert subspace M ∈ Λ,
we denote by PM the orthogonal projection to M. If x ∈ O(Λ), then B 7→ Px(B),
for B ∈ B(R), is a projection-valued measure on B(R). Conversely, for every
projection-valued measure P on B(R), there exists an observable x ∈ O(Λ) such
that P(B) = Px(B), for all B∈B(R). We identify henceforth Hilbert subspaces with
the orthogonal projectors mapping the whole space on them (recall exercise 3.3.7.)

6.1 Observables

Lemma 6.1.1 Let M1,M2 ∈ Λ. Then propositions associated with M1 and M2 are
simultaneously verifiable if and only if [PM1 ,PM2 ] = 0.

Proof:

• (⇒): Propositions M1 and M2 are simultaneously verifiable if there exist
mutually orthogonal elements N1,N2,N ∈ Λ such that Mi = Ni ∨N, for i =
1,2. Then PMi = PNi + PN and the commutativity of the projectors follows
immediately.

• (⇐): If [PM1 ,PM2 ] = 0, let P = PM1PM2 . Then P is a projection. Define
Qi = PMi −P, for i = 1,2; it is easily verified that Qi are projections and
PQi = QiP = 0. Therefore Q1Q2 = Q2Q1 = 0. If we define Ni = Qi(H),
for i = 1,2 and N = P(H), then N1,N2,N are mutually orthogonal and Mi =
Ni∨N which proves that M1↔M2.
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Theorem 6.1.2 Let Λ be a standard logic with associated Hilbert space H. For
any x ∈ O(Λ), denote X the self-adjoint (not necessarily bounded) operator on H
with spectral measure given by the mapping B(R) 3 B 7→ Px(B) ∈ Λ. Then

1. the map x 7→ X is a bijection between O(Λ) and self-adjoint operators on H,

2. the observable x is bounded if and only if X ∈Bh(H),

3. two bounded observables x1 and x2 are simultaneously observable if and
only if the corresponding bounded operators X1 and X2 commute,

4. if x is a bounded observable and Q ∈R[t], then the operator associated with
Q◦ x is Q(X),

5. more generally, if x1, . . . ,xr are bounded observables any two of them being
simultaneously observable, and Q ∈ R[t1, . . . , t2], then the observable Q ◦
(x1, . . . ,xr) has associated operator Q(X1, . . . ,Xr).

Proof: Assertions 1–4 are simple exercises based on the spectral theorem for self-
adjoint operators. Assertion 5 is a direct consequence of theorem 5.5.4. �

6.2 States

In chapter 2, we defined (pure) quantum states to be unit vectors of H. In chapter
5, states have been defined as probability measures on a logic. We first show that
in fact rays correspond to states viewed as probability measures on Λ.

Unit vectors of H are called rays. Let ξ ∈H, with ‖ξ‖= 1 be a ray and denote
by pξ : Λ→ [0,1] the map defined by

Λ 3M 7→ pξ (M) = 〈ξ |PMξ 〉= ‖PMξ‖2.

We have: pξ (1)≡ pξ (H) = 1, pξ (0)≡ pξ ({0}) = 0, and if (Mn)n∈N is a sequence
of mutually orthogonal Hilbert subspaces of H and M = ∨n∈NMn, then

pξ (M) = ‖PMξ‖2 = ∑
n∈N
〈ξ |PMnξ 〉= ∑

n∈N
pξ (Mn).

Hence pξ ∈S (Λ). If c ∈ C, with |c|= 1, then pcξ = pξ .



Theorem 6.2.1 Let H be a Hilbert space, (εn)n∈N an orthonormal basis in it an
T ∈B+(H). We define the trace of T by

tr(T ) = ∑
n∈N
〈εn |T εn 〉 ∈ [0,+∞].

Then for all T,T1,T2 ∈B+(H) the trace has the following properties

1. is independent of the chosen basis,

2. tr(T1 +T2) = tr(T1)+ tr(T2),

3. tr(λT ) = λ tr(T ) for all λ ≥ 0,

4. tr(UTU∗) = tr(T ), for all U ∈ U(H).

Proof: (To be filled in a later version.) �

Definition 6.2.2 Let T ∈B(H). The operator T is called trace-class operator if
tr(|T |) < ∞. The family of trace-class operators is denoted by T1(H).

Lemma 6.2.3 The space T1(H) is a two-sided ideal of B(H) and tr(T B)= tr(BT )
for all B ∈B(H).

Proof: (To be filled in a later version.) �

Definition 6.2.4 If D is a bounded, self-adjoint, non-negative, trace-class operator
on H, then D is called a von Neumann operator. If further tr(D) = 1, then D is said
to be a density matrix (operator). The set of density matrices on H is denoted by
D(H).

The states pξ , for ξ a ray of H, can also be described in another way. Let
Dξ be the projection operator on the one-dimensional subspace1 Cξ . Then Dξ is
trace-class and for every X ∈ B(H), it follows that Dξ X is also trace-class. Let
(εn)n∈N be an arbitrary orthonormal basis of H; without loss of generality, we can
then assume that ε1 = ξ . We have

tr(Dξ X) = tr(XDξ )

= ∑
n∈N
〈εn |XDξ εn 〉

= 〈ξ |Xξ 〉
= Eξ (X).

1We recall that the term subspace always means closed subspace.



In particular, if X = PM for M ∈ Λ,

pξ (M) = 〈ξ |PMξ 〉= tr(Dξ PM).

Lemma 6.2.5 Let (ξn)n∈N be an arbitrary sequence of rays in H and (cn)n∈N an
arbitrary sequence of non-negative reals such that ∑n∈N cn = 1. Denote by Dn the
projection operator on the one-dimensional subspace Cξn, for n ∈ N. Then

D = ∑
n∈N

cnDn

is a well defined density matrix.

Proof: Exercise. �

Exercise 6.2.6 Show that D(H) is convex.

Lemma 6.2.7 Let D be a density matrix defined as in lemma 6.2.5 and p : Λ→R
the mapping defined by Λ3M 7→ p(M) = tr(PMD). Then p∈S (Λ) and moreover
it can be decomposed into p = ∑n∈N cn pξn .

Proof: First the superposition property follows from the linearity of the trace: for
all M ∈ Λ, we have p(M) = tr(PMD) = ∑n∈N cn tr(PMDn) = ∑n∈N cn pξn(M). It is
now obvious that p is a state: in fact, p(0) = p({0}) = 0 and p(1) = p(H) = 1. �

Conversely, if D is any density matrix, then the map Λ3M 7→ p(M) = tr(DPM)
is a state in S (Λ). States of this type are called tracial states. The natural question
is whether every state in S (Λ) arises as a tracial state. The answer to this question
is one of the most profound results in the mathematical foundations of quantum
mechanics, the celebrated Gleason’s theorem:

Theorem 6.2.8 (Gleason) Let H be a complex separable Hilbert space with 3 ≤
dimH ≤ ℵ0, D(H) the convex set of density matrices on H, and Λ the logic of
subspaces of H. Then

1. the map D(H) 3 D 7→ ρD ∈ S (Λ), defined by ρD(M) = tr(DPM) for all
M ∈ Λ, is a convex isomorphism of D(H) on S (Λ),

2. a state p ∈S (Λ) is pure if and only if p = pξ for some ray ξ inH,



3. two pure states pξ and pζ are equal if and only if there exists a complex
number c with |c|= 1 such that the rays ξ and ζ verify ξ = cζ .

The proof, lengthy and tricky, is omitted. It can be found, extending over 13 pages
(!), in [12], pages 147–160.

6.3 Symmetries

Definition 6.3.1 A linear map S : H→H is a symmetry if

1. S is bijective, and

2. for all f ,g ∈H, the scalar product is preserved: 〈S f |Sg〉= 〈 f |g〉.

Exercise 6.3.2 Let α ∈ Aut(Λ) where Λ is the standard quantum logic associated
with a given Hilbert space H. Show that

1. there exists a symmetry S ∈B(H) such that for all M ∈ Λ, α(M) = SM,

2. if S′ is another symmetry corresponding to the same automorphism α , then
there exists a complex number c, with |c|= 1 such that S′ = cS,

3. if S is any symmetry of H, the map Λ 3M 7→ SM ∈ Λ is an automorphism
of Λ.

Notice that unitaries are obviously symmetries. It turns out that they are the only
symmetries encountered in elementary quantum systems2.

2In general, anti-unitaries may also occur as symmetries. They are not considered in this course.





Chapter 7
Two illustrating examples

7.1 The harmonic oscillator

In chapter 5, a general formalism, covering both classical and quantum logics,
has been introduced. Here we present a simple physical example, the harmonic
oscillator, in its classical and quantum descriptions. Beyond providing a concrete
illustration of the formalism developed so far, this example has the advantage of
being completely solvable and illustrating the main similarities and differences
between classical and quantum physics.

7.1.1 The classical harmonic oscillator

The system is described by a mass m attached to a spring of elastic constant k. The
motion is assumed frictionless on the horizontal direction and the mass originally
equilibrates at point 0. The spring is originally elongated to position q0 and the
system evolves then freely under the equations of motion. The setting is described
in figure 7.1. The system was already studied in chapter 2. The equation of motion,
giving the elongation q(t) as a function of time t, is

mq̈(t) = f (q(t)) =−kq(t)
q(0) = q0

q̇(0) = v0 = 0.
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0 q0

Figure 7.1: The experimental setting of the one-dimensional harmonic oscillator.

Introducing the new variable p = mq̇ and transforming the second order differential
equation into a system of first order equations, we get the vector equation

dω

dt
(t) = Aω(t), (∗)

where

ω(t) =
(

q(t)
p(t)

)
, with initial condition ω(0) =

(
q0
p0

)
and

A =
(

0 1
m

−k 0

)
.

The solution to equation (∗) is given by a flow on the phase space Ω = R2 given
by

ω(t) = T t
ω(0),

where

T t = exp(tA) =

(
cos(µt) sin(µt)

mµ

− k
µ

sin(µt) cos(µt)

)
,

and µ =
√

k/m. Since detT t = 1, it follows that the evolution is invertible and

(T t)−1 = T−t . The orbit of the initial condition ω(0) =
(

q0
0

)
under the flow reads

(T tω)t∈R, where ω(t) = T tω =
(

q0 cos(µt)
−q0

k
µ

sin(µt)

)
.

The system is classical, hence its logic Λ is a Boolean σ -algebra; the natural
choice is Λ = B(R2). Now observables in O(Λ) are mappings x : B(R)→ Λ ≡
B(R2). Identify henceforth indicator functions with Borel sets in B(R2) (i.e.
for any Borel set B ∈B(R), instead of considering x(B) = F ∈B(R2) we shall
identify x(B) = 1 F .)



Let now X : Ω→ R be any measurable bounded mapping and chose as x(B) =
1 X−1(B) for all B ∈B(R). Then, on defining X =

∫
λx(dλ ), a bijection is estab-

lished between x and X . Now since (T tω)t∈R = (exp(tA)ω)t∈R is the orbit of the
initial condition ω0 in Ω, the value X(T tω) is well defined for all t ∈R; we denote
by Xt(ω)≡ X(T tω). Then

dXt

dt
(ω) = ∂1X(T t

ω)
d(T tω)1

dt
+∂2X(T t

ω)
d(T tω)2

dt

= ∂1X(T t
ω)

dq
dt

(t)+∂2X(T t
ω)

d p
dt

(t),

provides the evolution of X under the flow (T t)t .

The Hamiltonian is a very particular measurable bounded map on the phase
space (hence an observable) H : Ω→ R, having the formula H(ω) = kω2

1/2 +
ω2

2/2m. It evolves also under the flow (T t)t : Then

dHt

dt
(ω) = kq(t)q̇(t)+

p(t)
m

ṗ(t)

= kq(t)q̇(t)+ q̇(t)(−kq̇(t))
= 0.

Thus, the Hamiltonian is a constant of motion. Physically it represents the energy
of the system. Initially, H(q0, p0) = kq2

0
2 = E and during the flow, the energy always

remains E, so that the energy takes arbitrary (but constant with respect to the flow)
values E ∈ R+. Moreover, ∂1H(T tω) = kq(t) = −ṗ(t) and ∂2H(T tω) = p(t)

m =
q̇(t). Hence we recover the Hamilton equations

dq
dt

(t) =
∂H
∂ p

= ∂2H

d p
dt

(t) = −∂H
∂q

=−∂1H.

Therefore, dXt
dt = ∂1X∂2H + ∂2X(−∂1H) = LHX with LH = −(∂1H∂2− ∂2H∂1).

Hence, denoting for every two function f ,g ∈C1(Ω) by { f ,g}= ∂1 f ∂2g−∂2 f ∂1g
the Poisson’s bracket, we have for the flow of an observable, assuming integrability
of the evolution equation, Xt = exp(tLH)X . This means that the flow (T tω)t) on Ω

induces a flow (exp(tLH)X)t on observables. Notice also that Xt = exp(tLH)X is a
shorthand notation for

Xt =
∞

∑
n=0

(−t)n

n!
{H,{H, . . .{H,X} . . .}}.

Theorem 7.1.1 (Liouville’s theorem) Let µ be the Lebesgue measure on Ω, i.e.
µ(dω1dω2) = dω1dω2. Then



1. the measure µ is invariant under T t , i.e. µ(T tB) = µ(B) for all B ∈B(R2)
and all t ∈ R,

2. the operator LH is formally skew-adjoint on L2(Ω,F ,µ).

Proof:

1. µ(T tB) =
∫

T t B dω1dω2. Now, if ω ∈ T tB⇒ T−tω ∈ B. Hence, denoting
(x1,x2) = T−t(ω1,ω2), we have

∫
T t B

dω1dω2 =
∫

B

∂ (ω1,ω2)
∂ (x1,x2)

dx1dx2

=
∫

B
dx1dx2 = µ(B),

because the Jacobian verifies

∂ (ω1,ω2)
∂ (x1,x2)

= detexp(tA) = 1.

2. LH is not bounded on L2(Ω,F ,µ). It can be defined on dense subset of
L2(Ω,F ,µ), for instance the Schwartz space S(R2). For f ,g ∈ S(R2), we
have

〈 f |LHg〉 =
∫

f (ω)LHg(ω)µ(dω)

= −
∫

LH f (ω)g(ω)µ(dω)+ bdry terms.

Now the boundary terms vanish because f and g vanish at infinity. Hence,
on S(R2), the operator is skew-adjoint L∗H =−LH and hence formally skew-
adjoint on L2(Ω,F ,µ).

�

Notice that, as a consequence of the previous theorem, exp(tLH) is formally
unitary on L2(Ω,F ,µ).

Any probability measure p on Λ is a state. We have for all B ∈B(R), ρx(B) =
p(x(B))= p(X−1(B)) while ρxt = p(xt(B))= p(X−1

t (T−tB))= p(x(T−tB)). Hence
the flow T t on Ω induces a convex automorphism α̃(p)(x(B)) = p(x((T−tB)) on
states.



7.1.2 Quantum harmonic oscillator

Standard quantum logic Λ coincides with the family of subspaces of an infinite-
dimensional Hilbert space H. Since all separable Hilbert spaces are isomorphic,
we can chose any of them. The Schrödinger’s choice for the one-dimensional
harmonic oscillator is H = L2(R). States are probability measures p : Λ→ [0,1]
and thanks to Gleason’s theorem, we can limit ourselves to tracial states, i.e.

Λ 3M 7→ p(M) = tr(PMD) = pD(M),

for some D∈D(H). Symmetries are implemented by unitary operators on H (auto-
morphisms on Λ.) Let U ∈ U(H). Then α : M 7→ α(M) =UM induces a projection
PUM = U∗PMU . Subsequently, the automorphism α induces a convex automor-
phism on S (Λ), given by

α̃(p)(M) = pD(α(M))
= tr(PUMD)
= tr(U∗PMUD)
= tr(PMD(U)),

with D(U) = UDU∗. Physics remains invariant under time translations. Hence
time translation (evolution) must be a symmetry implemented by a unitary operator
U(t) acting on H. Define U(t) = exp(−itH/h̄) (this a definition of H.) Then H
is formally self-adjoint, hence an observable (a very particular one!) generating
the Lie group of time translations. It will be shown below that H is time invariant.
Now U(t) acts on rays of H to give a flow. Denoting ψ(t)U(t)ψ , we have the
Schrödinger’s evolution equation in the Schrödinger’s picture:

ih̄
dψ

dt
(t) = Hψ(t).

Thanks to the spectral theorem (and, identifying for x ∈ O(Λ) and B ∈B(R),
x(B) with the projection-valued measure corresponding to the subspace x(B)),
there is a bijection between x ∈ O(Λ) and self-adjoint operators on H through
X =

∫
λx(dλ ). For every tracial states pD, we have EpD(X) =

∫
λ tr(x(dλ )D) and

Eα̃(pD)(X) =
∫

λ tr(x(dλ )DU(t))

=
∫

λ tr(U∗(t)x(dλ )U(t)D)

= EpD(Xt),

where we defined Xt = U∗(t)XU(t). Hence the flow U(t)ψ on H induces a flow
on observables satisfying

dXt

dt
=

i
h̄
[H,X ] = LHX



with LH(·) = i
h̄ [H, ·]. Notice incidentally that dHt/dt = 0 proving the claim that H

is a constant of motion. Moreover, H has dimensions M.L2/T 2 (energy), therefore
H is interpreted as the quantum Hamiltonian. If the flow is integrable, we have

Xt = exp(tLH)X

=
∞

∑
n=0

(it)n

n!
[H, [H, . . . , [H,X ] . . .]].

Physics remains invariant also by space translations. Hence they must corre-
spond to a symmetry implemented by a unitary transformation.

Lemma 7.1.2 The operator ∇x is formally skew-adjoint on L2(R).

Proof: For all f ,g∈ S(R) (dense in L2(R)), we have, 〈 f |∇xg〉=
∫

f (x) d
dx g(x)dx =

−
∫ d

dx f (x)g(x)dx+ f g|∞−∞. �

Consequently, the operator exp(x ·∇x) is formally unitary and since exp(x ·
∇x)ψ(y) = ψ(y+x), ∇x is the generator of space translations. If we write p = h̄

i ∇x

then p is formally self-adjoint, has dimensions L ·M · (L/T 2) · (1/L) = M · L/T
(momentum), and exp(ix ·∇x/h̄) is unitary and implements space translations.

Define Hosc = p2/2m+kq2 as the formally self-adjoint operator on L2(R), with
p = h̄

i ∇x and qψ(x) = xψ(x), the multiplication operator. Introduce µ =
√

k/m,
Q =

√
mµ/h̄q, P = (1/

√
mµ h̄)p, and H = (1/h̄µ)Hosc. Then H = (1/2)(P2 +Q2)

where P =−i∇ and Q is the multiplication operator; these two latter operators are
formally self-adjoint and verify the commutation relation [P,Q] =−i1 .

Definition 7.1.3 (Creation and annihilation operators) Define the creation
operator A∗ = 1√

2
(P+ iQ) and the annihilation operator A = 1√

2
(P− iQ).

Exercise 7.1.4 For the creation and annihilation operators, show

1. [A,A∗] = 1 ,

2. H = A∗A+1 /2,

3. [H,A] =−A,

4. [H,A∗] = A∗,

5. for n ∈ N, [H,(A∗)n] = n(A∗)n.



Lemma 7.1.5 If ψ0 ∈ S(R) is a ray (in the L2 sense) satisfying Aψ0 = 0 then

1. ψ0(x) = π−1/4 exp(−x2/2),

2. Hψ0 = ψ0/2, and

3. H(A∗)nψ0 = (1/2+n)A∗nψ0, for all n ∈ N.

Proof:

Aψ0 = 0 ⇒ 1√
2
(P− iQ)ψ0

⇒ −i
d
dx

ψ0(x)− ixψ0(x) = 0

⇒ ψ0(x) = xexp(−x2/2),

and by normalisation, c = π−1/4. �

Lemma 7.1.6 Denote, for n ∈ N, ψn = 1√
n!

A∗nψ0. Then

1. (ψn)n∈N is an orthonormal sequence,

2. A∗ψn =
√

n+1ψn+1, for n≥ 0,

3. Aψn =
√

nψn−1, for n≥ 1, and

4. A∗Aψn = nψn, for n≥ 0.

Proof: All the assertions can be shown by similar arguments. It is enough to show
the arguments leading to orthonormality:

〈ψ0 |AnA∗nψ0 〉 = 〈ψ0 |An−1AA∗A∗n−1
ψ0 〉

= 〈ψ0 |An−1(1 +A∗A)A∗n−1
ψ0 〉

...

= n〈ψ0 |An−1A∗n−1
ψ0 〉

...

= n!〈ψ0 |ψ0 〉.

�

Theorem 7.1.7 The sequence (ψn)n∈N is a complete orthonormal sequence in H.



The proof is based on an analogous result for Hermite polynomials that can be
shown using the two following lemmata.

Lemma 7.1.8 Let cn, j = n!
(n−2 j)!2 j j! , for n ∈ N, and j ∈ N such that 0 ≤ j ≤ n/2.

Then

cn, j = (1− 2 j
n+1

)cn+1, j =
2( j +1)

(n+1)(n−2 j)
)cn+1, j+1

and if

ηn(x) =
[n/2]

∑
j=0

(−1) jcn, jxn−2 j,

then
(x− d

dx
)ηn(x) = ηn+1(x)

while xn = ∑
[n/2]
j=0 cn, jηn−2 j(x).

Proof: Substitute and make induction. �

Lemma 7.1.9 (A∗nψ0)(x) = ηn(
√

2x)ψ0(x).

Proof: True for n = 0. Conclude by induction. �

Corollary 7.1.10 spec(H) = 1/2+N.

Therefore the energy is quantised in quantum mechanics i.e. it can take only dis-
crete values. It is this surprising phenomenon that gave its adjective quantum to
the term quantum mechanics.

Exercise 7.1.11 Using Dirac’s notation |n〉 ≡ ψn, for n ∈ N,

1. H|n〉= (1/2+n)|n〉,

2. A∗|n〉=
√

n+1|n+1〉,

3. A|n〉=
√

n|n−1〉, and

4. A∗A|n〉= n|n〉.

7.2 Tunnel effect



Chapter 8
Turing machines, algorithms,
computing, and complexity classes

All computers, from Babbage’s never constructed project of analytical machine
(1833) to the latest model of supercomputer, are based on the same principles. A
universal computer uses some input (a sequence of bits) and a programme (a se-
quence of instructions) to produce an output (another sequence of bits.) Universal
computers are modelled by Turing machines. Never forget however that an abstract
Turing machine never computed anything. We had to wait until the first ENIAC was
physically constructed to obtain the first output of numbers.

8.1 Deterministic Turing machines

There are several variants of deterministic Turing machines; all of them are equiv-
alent in the sense that a problem solvable by one variant is also solvable by any
other variant within essentially the same amount of time (see below, definition ??
and section 8.3.) A Turing machine is a model of computation; it is to be thought
as a finite state machine disposing of an infinite scratch space (an external tape1.)
The tape consists of a semi-infinite or infinite sequence of squares, each of which
can hold a single symbol. A tape-head can read a symbol from the tape, write a
symbol on the tape, and move one square in either direction (for semi-infinite tape,
the head cannot cross the origin.) More precisely, a Turing machine is defined as
follows.

1Mind that during Turing’s times no computer was physically available. The external tape was
invented by Alan Turing — who was fascinated by typewritters — as an external storage device.
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Definition 8.1.1 A deterministic Turing machine is a quadruple (A,S,u,s0) where

1. A is a finite set, the alphabet, containing a particular symbol called the blank
symbol and denoted by ]; the alphabet deprived from its blank symbol, de-
noted Ab = A\{]}, is assumed non-empty,

2. S is a finite non-empty set, the states of the machine, partitioned into the set
Si of intermediate states and the set S f of final states,

3. D = {L,R} ≡ {−1,1} is the displacement set,

4. u : A×S→ A×S×D is the transition function, and

5. s0 ∈ Si the initial state of the machine.

The set of deterministic Turing machines is denoted by DTM.

The machine is presented an input, i.e. a finite sequence of contiguous non-blank
symbols, and either it stops by producing an output, i.e. another finite sequence of
symbols, else the programme does never halt.

Example 8.1.2 (A very simple Turing machine) Let M ∈DTM with A = {0,1, ]},
S = Si∪S f where Si = {go}, S f = {halt}, and transition function u(a,s) = (a′,s′,d)
defined by the following table:

a s a′ s′ d
0 go 0 go L
1 go 1 go L
] go ] halt R

If the programme, described by this Turing machine, starts with the head over any
non-blank symbol of the input string, it ends with the head over the leftmost non-
blank symbol while the string of symbols remains unchanged.

Other equivalent variants of the deterministic Turing machine may have dis-
placement sets with a 0 (do not move) displacement, have their alphabet A par-
titioned into external and internal alphabet, etc. The distinction into internal and
external alphabet is particularly useful in the case of semi-infinite tape, an internal
character ∗, identified as “first symbol”, can be used to prevent the head from going
outside the tape. It is enough to define U(∗,go) = (∗,go,R).



Notation 8.1.3 If W is a finite set, we denote by W ∗ =∪n∈Z+W n and W ∞ = ∂W =
W Z+ . Notice that Z+ = {0,1,2, . . .} 6= N = {1,2, . . .} and that W 0 = { /0}. Elements
of W ∗ are called words of finite length over the alphabet W . For every w∈W ∗, there
exists n ∈ Z+ such that w ∈W n; we denote then by |W |= n the length of the word
w.

For every α ∈ A∗b, we denote by α ∈ A∞ the completion of the word α by
blanks, namely α = (α1, . . . ,α|α|, ], ], ], . . .).

Considering the example 8.1.2, we can, without loss of generality, always as-
sume that the machine starts at the first symbol of the input string α = α ∈ A∗b.
Starting from (α,s0,h0 = 1), successive applications of the transition function U
induce a dynamical system on X = A∗×S×Z. A configuration is an instantaneous
description of the word written on the tape, the internal state of the machine, and
the position of the head, i.e. an element of X.

Let τα = inf{n ≥ 1 : sn ∈ S f }. The programme starting from initial configu-
ration (α,s0,h0 = 1) stops running if τα < ∞, it never halts when τα = ∞. While
1 ≤ n < τα , the sequence (α(n),sn,hn)n≤τα

is defined by updates of single charac-
ters; if, for 0 ≤ n < τα , we have u(α(n)

hn
,sn) = (a′,s′,d), then (α(n+1),sn+1,hn+1),

is defined by

sn+1 = s′

hn+1 = hn +d

α
(n+1) = (α(n)

1 , . . . ,α
(n)
hn−1,a

′,α
(n)
hn+1, . . . ,α

(n)
|α(n)|).

If the machine halts at some finite instant, the output is obtained by reading the
tape from left to right until the first blank character. The sequence of words (α(n))n

is called a computational path or computational history starting from α .

8.2 Computable functions and decidable predicates

Every M ∈ DTM computes a particular partial function φM : A∗b → A∗b. Since the
value of φM(α) remains undetermined when the programme M does not halt, the
function φM is termed partial because in general Dom(φM)⊂ A∗b.

Definition 8.2.1 A partial function f : A∗b→A∗b is called computable if there exists
a M ∈ DTM such that φM = f . In that case, f is said to be computed by the
programme M.

Exercise 8.2.2 Show that there exist non-computable functions.



Definition 8.2.3 A predicate, P, is a function taking Boolean values 0 or 1. A
language, L, over an alphabet A is a subset of A∗b.

Thus, for predicates P with Dom(P) = A∗b, the set {α ∈ A∗b : P(α)} is a language.
Hence predicates are in bijection with languages.

Definition 8.2.4 A predicate P : A∗b → {0,1} is decidable, if the function P is
computable.

Let P be a predicate and L the corresponding language. The predicate is decidable
if there exists a M ∈DTM such that for every word α , the programme halts after a
finite number of steps and

• if α ∈ L, then the machine halts returning 1, and

• if α 6∈ L, then the machine halts returning 0.

Definition 8.2.5 Let M ∈ DTM and sM, tM : Z+→ R+ be given functions. If for
every α ∈ A∗b, the machine stops after having visited at most sM(|α|) cells, we say
that it works in computational space sM. We say that it works in computational
time tM if τα ≤ tM(|α|).

8.3 Complexity classes

Computability of a function does not mean effective computability since the com-
puting algorithm can require too much time or space. We say that r : N→R+ is of
polynomial growth if there exist constants c,C > 0 such that r(n)≤Cnc, for large
n. We write symbolically r(n) = poly(n).

Henceforth, we shall assume Ab ≡ A = {0,1}.

Definition 8.3.1 The complexity class P consists of all languages L whose predi-
cates P are decidable in polynomial time, i.e. for every L in the class, there exists a
machine M ∈ DTM such that φM = P and tM(|α|) = poly(|α|) for all α ∈ A∗.

Similarly, we can define the class PSPACE of languages whose predicates are de-
cidable in polynomial space. functions computable in polynomial space.

Other complexity classes will be determined in the subsequent sections. Obvi-
ously P ⊆ PSPACE.



Conjecture 8.3.2 P 6= PSPACE.

8.4 Non-deterministic Turing machines and the NP class

Definition 8.4.1 A non-deterministic Turing machine is a quadruplet (A,S,u,s0)
where A, S and s0 are as in definition 8.1.1; u is now a multivalued function, i.e.
there are r different branches ui, i = 1, . . . ,r and ui : A×S→ A×S×D. For every
pair (a,s) ∈ A×S there are different possible outputs (a′i,σ

′
i ,di)i=1,...,r, the choice

of a particular branch can be done in a non-deterministic way at each moment. All
such choices are legal actions. The set of non-deterministic Turing machines is
denoted by NTM.

A computational path for a M ∈ NTM is determined by a choice of one legal tran-
sition at every step. Different steps are possible for the same input. Notice that
NTM do not serve as models of practical devices but rather as logical tools for the
formulation of problems rather than their solution.

Definition 8.4.2 A language L (or its predicate P) belongs to the NP class if there
exists a M ∈ NTM such that

• if α ∈ L (i.e. P(α) = 1) for some α ∈ A∗, then there exists a computational
path with τα ≤ poly(|α|) returning 1,

• if α 6∈ L (i.e. P(α) = 0) for some α ∈A∗, then there exists no computational
path with this property.

It is elementary to show that P ⊆ NP. Clay Institute offers you2 USD 1 000 000
if you solve the following

Exercise 8.4.3 Is it true that P = NP?

8.5 Probabilistic Turing machine and the BPP class

Definition 8.5.1 Let R̃ be the set of real numbers computable by a deterministic
Turing machine within accuracy 2−n in poly(n) time. A probabilistic Turing ma-
chine is a quintuple (A,S,u,p,s0) where A, S, u, and s0 are as in definition 8.4.1

2http://www.claymath.org/millennium/



while p = (p1, . . . , pr) ∈ R̃+, with ∑
r
i=1 pi = 1 is a probability vector on the set of

branches of u. All branches correspond to legal actions; at each step, the branch i
is chosen with probability pi, independently of previous choices. The set of prob-
abilistic Turing machine is denoted by PTM.

Each α ∈ A∗ generates a family of computational paths. The local probability
structure on the transition functions induces a natural probability structure on the
computational path space. The evolution of the machine is a Markov process with
the state space A∗b×S×Z and stochastic evolution kernel determined by the local
probability vector p. Hence, any input gives a set of possible outputs each of them
being assigned a probability of occurrence. A machine in PTM is also called a
Monte Carlo algorithm.

Definition 8.5.2 Let ε ∈]0,1/2[. A predicate P (hence a language L) belongs to
the BPP class if there exists a M ∈ BPP such that for any α ∈ A∗, τα ≤ poly(|α|)
and

• if α ∈ L, then P(P(α) = 1)≥ 1− ε , and

• if α 6∈ L, then P(P(α) = 1)≤ ε .

Exercise 8.5.3 Show that the definition of the class does not depend on the choice
of ε provided it lies in ]0,1/2[.

Church-Turing thesis . . .

8.6 Boolean circuits

Notation 8.6.1 For b ∈ N and Zb = {0, . . . ,b−1}, we denote by x = 〈xn1 · · ·x0 〉b
the mapping defined by

Zn
b 3 (x0, . . . ,xn) 7→ x = 〈xn · · ·x0 〉b =

n−1

∑
k=0

xkbk ∈ Zbn .

Since conversely for every x ∈ Zbn the sequence (x0, . . . ,xn) ∈ Zn
b is uniquely de-

termined, we identify x with the sequence of its digits. For b = 2 we omit the basis
subscript and we write simply 〈 · 〉.



Definition 8.6.2 Let f : An→ Am be a Boolean function of n entries and m out-
puts. Let B be a fixed set of Boolean functions of different arities. We call Boolean
circuit of f in terms of the basis B a representation of f in terms of functions from
B.

Example 8.6.3 (Addition with carry of 2 binary 2-digit numbers) Let x =
〈x1x0 〉 and y = 〈y1y0 〉. We wish to express z = x+y = 〈z2z1z0 〉 in terms of Boolean
functions in B = {XOR, AND} = {⊕,∧}. The truth table is given in table 8.1. We

x1 x0 y1 y0 z2 z1 z0

0 0 0 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 1 0
1 1 0 0 0 1 1
0 0 0 1 0 0 1
0 1 0 1 0 1 0
1 0 0 1 0 1 1
1 1 0 1 1 0 0
0 0 1 0 0 1 0
0 1 1 0 0 1 1
1 0 1 0 1 0 0
1 1 1 0 1 0 1
0 0 1 1 0 1 1
0 1 1 1 1 0 0
1 0 1 1 1 0 1
1 1 1 1 1 1 0

Table 8.1: The truth table of the Boolean function A4 → A3 implementing the
addition with carry of two binary 2-digit numbers.

verify immediately that:

z0 = x0⊕ y0

z1 = (x0∧ y0)⊕ (x1⊕ y1)
z2 = (x1∧ y1)⊕ [(x1⊕ y1)∧ (x0∧ y0)]

Consequently, the Boolean circuit is depicted in figure ??.

A basis B is complete if any Boolean function f can be constructed as a circuit
with gates from B.

Example 8.6.4 {NOT, OR, AND} is a complete but redundant basis; {NOT, OR},
{NOT, AND}, and {AND, XOR} are complete minimal bases.



Definition 8.6.5 The minimal number of gates from B needed to compute f , de-
noted by cB( f ), is circuit complexity of f in B.

The function implementing the addition with carry of table 8.1 over the basis B =
{AND, XOR}, has circuit complexity 7.

Any DTM can be implemented by circuits.

8.7 Classical information, entropy, and irreversibility

The information content of a message is a probabilistic notion. The less probable
a message is, the more information it carries. Let X be a random variable defined
on (Ω,F ,P) taking values in the finite set X = {x1, . . . ,xn} Let PVn = {p ∈ Rn

+ :
∑

n
i=1 pi = 1}. To each element p ∈ PVn corresponds a probability measure Pp

X de-
fined by Pp

X(xi) = pi, for i = 1, . . . ,n. Ask about the information content carried by
the random variable X is the same thing as trying to quantify the predictive power
of the law PX . The main idea is that the information content of X is equal to the av-
erage information missing in order to decide the outcome value of X when the only
thing we know is its law PX . Some reasonable requirements on the information
content of X are given below:

• Suppose that all pi, i = 1, . . . ,n but one are 0 and p j = 1, for some j. Then
Pp

X(x j) = 1 and no information is missing, there is no uncertainty about the
possible outcome of X ;

• Suppose on the contrary that pi = 1/n, i = 1, . . . ,n. Our perplexity is maxi-
mal and this perplexity increases with n.

• If S is to be interpreted as a missing information associated with a probability
vector p ∈ PVn, on denoting PV = ∪n∈NPVn, the function S : PV→ R+ and
the first statement implies that S(1,0,0, . . . ,0) = 0 while S(1/n, . . . ,1/n) is
an increasing function of n.

• The function S must be invariant under permutations of its arguments i.e.
S(pσ(1), . . . , pσ(n)) = S(p1, . . . , pn) for all the permutations σ ∈ Sn.

• If we split the possible outcome values into two sets, the function S must
verify the grouping property, i.e.

S(p1, . . . , pn; pn+1, . . . , pN) = S(qA,qB)

+qAS(
p1

qA
, . . . ,

pn

qA
)

+qBS(
pn+1

qB
, . . . ,

pN

qB
),



where qA = p1 + . . .+ pn and qB = pn+1 + . . .+ pN .

• Finally, we require S(p1, . . . , pn;0, . . . ,0) = S(p1, . . . , pn).

Theorem 8.7.1 The only function S : PV→R+ satisfying the above requirements
is the function defined by

PV 3 (p1, . . . , pn) 7→ S(p1, . . . , pn) =−k
n

∑
i=1

pi log pi,

where k is an arbitrary non-negative constant and the convention 0log0 = 0 is
used. The function S is called the (classical) entropy of the probability vector.

Proof: (To be filled in a later version.) �

Entropy is closely related to irreversibility since the second principle of ther-
modynamics states: Entropy of an isolated system is a non decreasing function of
time. It can remain constant only for reversible evolutions. For a system A under-
going an irreversible transformation the entropy increases; however the system can
be considered as part of a larger isolated composite system (A and environment),
undergoing globally a reversible transformation. In that case the total entropy (of
the system A and of the environment) remains constant but since the entropy of A
must increase, the entropy of the environment must decrease3 hence the missing in-
formation decreases. In other words, when the system A undergoes an irreversible
transformation, the environment gains information.

This leads to the Landauer’s principle: When a computer erases a single bit of
information, the environment gains at least k ln2 units of information, where k > 0
is a constant.

Classical computers are based on gates {XOR, AND} for example. It is easily
shown that these gates are irreversible. Therefore it is intuitively clear why classical
computers can produce information. What is much less intuitively clear is how
quantum processes can produce information since they are reversible (unitary).

In 1973, BENNETT predicted that it is possible to construct reversible universal
gates. In 1982, FREDKIN exemplifies such a reversible gate. Fredkin’s gate is a 3
inputs - 3 outputs gate, whose truth tableau is given in table ??. This gate produces
both AND (since inputs 0,x,y return outputs x∧ y,x∧ y,x) and NOT gates (since
inputs 1,0,x return outputs x,x,x.) The gates AND and NOT forming a complete
basis for Boolean circuits, the universality of Freidkin’s gate is established.

3Notice that this assertion is not in contradiction with the second principle of thermodynamics
because the environment is not isolated.



Input Output
a b c a′ b′ c′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 1
1 0 0 1 0 0
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 1 1

Table 8.2: The truth table of Fredkin’s gate. We remark that c′ = c and if c = 0
then (a′ = a and b′ = b) else (a′ = b and b′ = a.)

In 1980, BENIOFF describes how to use quantum mechanics to implement a
Turing machine, in 1982, FEYNMAN proves that there does not exist a Turing
machine (either deterministic or probabilistic) on which quantum phenomena can
be efficiently simulated; only a quantum Turing machine could do so. Finally, in
1985, DEUTSCH constructs (on paper) a universal quantum Turing machine.

8.8 Composite quantum systems, tensor products, and en-
tanglement

Definition 8.8.1 Let V,W be two vector spaces. Their tensor product is a vector
space, denoted V ⊗W , and a bilinear map ⊗ : V ×W → V ⊗W , satisfying the
following universality property: for any vector space Z and any bilinear map β :
V ×W → Z, there is a unique linear map f : V ⊗W → Z, such that β (v,w) =
f (v⊗w) for all v ∈C and w ∈W .

Remark 8.8.2 The meaning of this definition for finite dimensional spaces is the
following: if (e1, . . . ,edimV ) and ( f1, . . . , fdimW ) are bases of V and W , then (ei⊗
f j)1≤i≤dimV ;1≤ j≤dimW is a basis of Var⊗W and if v = ∑i viei and w = ∑ j w j f j, then
⊗(v,w) = v⊗w = ∑i, j viw jei⊗ f j.

Corollary 8.8.3 dim(V ⊗W ) = dimV dimW.



Let (|0〉, |1〉) ≡ (|x〉)x∈A, where A = {0,1}, be a basis in H = C2. Then a
basis of H⊗n is given by

(|0〉⊗ · · ·⊗ |0〉, . . . , |1〉⊗ · · ·⊗ |1〉)
= (|xn · · ·x1 〉)xi∈A

= (|x〉)x∈{0,...,2n−1}).

Hence any basis vector represent the integer x = ∑
n
i=1 xi2i−1 ∈ Z2n . Therefore the

vector ψ = ∑
2n−1
x=0 ψx|x〉, with ψx = 1/2n/2 represents simultaneously 2n integers.

An operator X acting on H can be represented in an arbitrary orthonormal basis
(| i〉)i=1,...,dimH by the matrix (possibly infinite-dimensional) of matrix elements x jk
by

X = ∑
j,k

x j,k| j 〉|k 〉,

where x jk = 〈 j |Xk 〉.

The scalar product in H⊗n reads

〈(|ψ1 〉⊗ · · ·⊗ |ψn 〉) | |ξ1 〉⊗ · · ·⊗ |ξn 〉)〉
= 〈ψ1 · · ·ψn |ξ1 · · ·ξn 〉
= 〈ψ1 |ξ1 〉 · · · 〈ψn |ξn 〉.

The tensor product of operators is defined similarly

(A⊗B)|ψ 〉|ξ 〉= (A|ψ 〉)⊗ (B|ξ 〉).

If A = ∑a j,k| j 〉k and B = ∑b j,k| j 〉k, then C = A⊗B has matrix elements

c( jk)(lm) = a jlbkm.

Definition 8.8.4 Let ψ ∈ H1⊗ ·· · ⊗Hn, for n ≥ 2. The pure state ψ is called
entagled if it cannot be written as a tensor product ψ = ψ1⊗·· ·⊗ψn, with ψi ∈Hi,
for all i = 1, . . . ,n.

Example 8.8.5 Let n = 2 and H1 = H2 = C2. A basis of H⊗2 is given by (|00〉, |01〉, |10〉, |11〉).
An arbitrary vector ψ ∈H⊗2 is decomposed as

ψ = ψ0|00〉+ψ1|01〉+ψ2|10〉+ψ3|11〉.

If ψ2 = ψ3 = 0, then ψ = ψ0|00〉+ψ1|01〉= |0〉⊗ (ψ0|0〉+ψ1|1〉) and the state
is not entangled. If ψ1 = ψ2 = 0 while ψ0ψ3 6= 0 then the state is entangled since
it cannot be written as a tensor product.



8.9 Quantum Turing machines

Definition 8.9.1 Let C̃ be the set of complex numbers whose real and imagi-
nary part can be computed by a deterministic algorithm with precision 2−n within
poly(n) time. A pre-quantum Turing machine is a quadruple (A,S,c,s0), where
A,S,s0 are as for a deterministic machine and c : (A×S)2×D→ C̃, where D is the
displacement set.

Any configuration x of the machine is represented by a triple x = (α,s,h) ∈
A∗× S×Z = X. The quantum configuration space H is decomposed into HT ⊗
HS⊗HH , where the indices T,S,H stand respectively for tape, internal states, and
head. The space H is spanned by the orthonormal system (|ψ 〉)ψ∈X =(|αsh〉)α∈A∗,s∈S,h∈Z.

Define now onservables having (|α 〉)α∈A∗ , (|s〉)s∈S, and (|h〉)h∈Z as respec-
tive eigenvectors. To do so, identify the sets A with {0, . . . , |A| − 1} and S with
{0, . . . , |S|−1}. Denoty by T̂ , Ŝ, and Ĥ the self-adjoint operators describing these
observables, i.e.

Ŝ =
|S|−1

∑
s=0

s|s〉〈s |

Ĥ = ∑
h∈Z

h|h〉〈h |

T̂ = ⊗i∈ZT̂i where T̂i =
|A|−1

∑
a=0

a|a〉〈a |.

Due to the linearity of quantum flows, it is enough to describe the flow on the
basis vectors ψ = |α,s,h〉;a ∈ AZ,s ∈ S,h ∈ Z. The machine is prepared at some
initial pure state ψ = |α,s,h〉, with α a string of contiguous non blank symbols
and we assume that the time is discretised:

|ψn 〉= Un|ψ 〉.

Suppose that the displacement set D reads {−1,0,1}. Then for ψ = |α,s,h〉 and
ψ ′ = |α ′,s′,h′ 〉

Uψ,ψ ′ = 〈α ′,s′,h′ |Uα,s,h〉
= [δh′,h+1c(αh,s,α ′h,s

′,1)
+δh′,hc(αh,s,α ′h,s

′,0)
+δh′,h−1c(αh,s,α ′h,s

′,−1)] ∏
j∈Z\{h}

δα j,α ′j
.

Definition 8.9.2 A pre-quantum Turing machine is called a quantum Turing ma-
chine if the function c is such that the operator U is unitary.



Exercise 8.9.3 Find the necessary and sufficient conditions on the function c so
that U is unitary.

Wavelets, Cuntz-Krieger algebras, Bratteli-Jørgensen . . .

To halt the machine, we can not perform intermediate measurements of the
composite state because quantum mechanical measurement perturbs the system.
To proceed, suppose that S f = {halt} ≡ {0} and introduce a halting flag operator
F̂ = |0〉〈0 |. Once the state s is set to 0, the function c is such that U does not any
longer change either the state s or the result of the computation.

A predicate is a projection operator Pα = |α 〉〈α |. Let the machine evolve
for some time n: it is at the state |ψn 〉 = Un|ψ 〉. Perform the measurement
〈ψn |Pα ⊗ F̂⊗ Iψn 〉= p ∈ [0,1].

Definition 8.9.4 A language L belongs to the BQP complexity class if there is a
machine M ∈ QTM such that

• if α ∈ L, then the machine accepts with probability p > 2/3,

• if α 6∈ L, then the machine rejects with probability p > 2/3,

within a running time poly(|α|).

Theorem 8.9.5 P ⊆ BPP ⊆ BQP ⊆ PSPACE.





Chapter 9
Cryptology

Cryptology, grouping cryptography and cryptanalysis, is an old preoccupation of
mankind because information is, as a matter of fact, a valuable resource. Nowa-
days classical technology allows secure ciphering of information that cannot be
deciphered in real time. However, the cryptologic protocols used nowadays are
all based on the unproven conjecture that factoring large integers is a hard compu-
tational task. Should this conjecture be proved false, and an efficient polynomial
factorisation algorithm be discovered, the security of our communication networks
could become vulnerable. But even without any technological breakthrough, the
ciphered messages we exchange over public channels (internet, commutated tele-
phone network, fax, SMS, etc.) can be deciphered by spending 8–10 months of
computing time; hence our information exchange is already vulnerable for trans-
porting information that remains important 10 months after its transmission.

Quantum information acquired an unprecedented impetus when Peter SHOR

[11] proved that on a quantum computer, factoring is a polynomially hard prob-
lem. On the other hand, quantum communication can use the existing technology
to securely cipher information. It is therefore economically and strategically impor-
tant to master the issues of advanced cryptography and to invent new cryptologic
methods.
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9.1 An old idea: the Vernam’s code

In 1917, Gilbert VERNAM proposed [15] the following ciphering scheme1 Let A be
a finite alphabet, identified with the set {0, . . . , |A|−1} and m a message of length
N over the alphabet A, i.e. a word m ∈ AN . The Vernam’s ciphering algorithm uses
a ciphering key of same length as m, i.e. a word k∈AN and performs character-wise
addition as explained in the following

Algorithm 9.1.1 VernamsCiphering
Require: Original message m ∈ AN and UNIFRANDOMGENERATOR(AN)
Ensure: Ciphered message c ∈ AN

Choose randomly ciphering key k ∈ AN

i← 1
repeat

Add character-wise ci = mi + ki mod |A|
i← i+1

until i > N

The recipient of the ciphered message c, knowing the ciphering key k performs
the following

Algorithm 9.1.2 VernamsDeciphering
Require: Ciphered message c ∈ AN and ciphering key k ∈ AN

Ensure: Original message m ∈ AN

i← 1
repeat

Subtract character-wise mi = ci− ki mod |A|
i← i+1

until i > N

As far as the ciphering key is used only once and the key word has the same
length as the message, the Vernam’s algorithm is proved [9] to be perfectly secure.
The main problem of the algorithm is how to securely communicate the key k?

9.2 The classical cryptologic scheme RSA

Theorem 9.2.1 (Fermat’s little theorem) Let p be a prime. Then

1Appeared as a first patent US Patent 1310719 issued on 22 July 1919, and further improved in a
series of patents: US Patent 1416765, US Patent 1584749, and US Patent 1613686.

http://www.google.com/patents?vid=1310719
http://www.google.com/patents?vid=1416765
http://www.google.com/patents?vid=1584749
http://www.google.com/patents?vid=1613686


1. any integer a satisfies ap = a mod p,

2. any integer a, not divisible by p, satisfies ap−1 = 1 mod p.

Definition 9.2.2 The Euler’s function φ : N→ N is defined by

φ(n) = card{0 < a < n : gcd(a,n) = 1},n ∈ N.

In particular, if p is prime, then φ(p) = p−1.

Theorem 9.2.3 (Euler’s) If gcd(a,m) = 1, then aφ(m) = 1 mod m.

Proposition 9.2.4 Let m be an integer, strictly bigger than 1, without square fac-
tors, and r a multiple of φ(m). Then

• ar = 1 mod m, for all integers a relatively prime with respect to m, and

• ar+1 = a mod m for all integers.

The proofs of all the previous results are straightforward but outside the scope
of the present course; they can be found in pages 50–60 of [?].

The RSA protocols, named after its inventors RIVEST, SHAMIR, AND ADLE-
MAN [7], involves two legal parties: Alice and Bob, and an eavesdropper, Eve. Bob
produces by the classical key distribution algorithm a private key d and a public
key π . Alice uses the public key of Bob to cipher the message and Bob uses his
private key to decipher it. Eve, even if she intercepts the ciphered message, cannot
decipher it in real time.

Algorithm 9.2.5 ClassicalKeyDistribution
Require: Two primes p and q
Ensure: Public, π , and private, d, keys of Bob

n← pq (hence φ(n) = (p−1)(q−1))
Choose any e < n, such that gcd(e,φ(n)) = 1
d← e−1 mod φ(n)
π ← (e,n)

Bob publishes his public key π on his internet page. Alice uses π to cipher the
message m using the following



Algorithm 9.2.6 Ciphering
Require: Public key π = (e,n) and message m ∈ N, with m < n
Ensure: Ciphered text c ∈ N

c← me mod n

Alice transmits the ciphered text c through a vulnerable public channel to Bob.
He uses his private key to decipher by using the following

Algorithm 9.2.7 Deciphering
Require: Private key d and ciphered message c ∈ N
Ensure: Deciphered text µ ∈ N

µ ← cd mod n

Theorem 9.2.8 µ = m

Proof:

cd = med mod n

ed = 1+ kφ(n), for some k ∈ N
med = m1+kφ(n),

and since n = pq has no square factors, by using proposition 9.2.4, we get m1+kφ(n)

mod n = m mod n. �

If Eve intercepts the message, to compute d she must know φ(n), hence the
factoring of n into primes. Security of the protocol is based on the conjecture that
it is algorithmically hard to factor n. If we denote by N = logn, then it is worth
noticing that when the RSA protocol has been introduced, the best known algo-
rithm of factor n run in exp(N) time. The best 2 known algorithm nowadays [4]
runs in exp(N1/3(logN)2/3) time. This algorithmic improvement, combined with
the increasing in the computational capabilities of computers, allows the factoring
of a 1000 digits number in ca. 8 months instead of a time exceeding the age of
the universe at the moment the algorithm has been proposed. Until May 2007, the
RSA company ran an international contest offering several hundreds thousand dol-
lars to whoever could factor multi-digit numbers they provided on line. When the
contest stopped the company gave the official reasons explained in RSA factoring
challenge.

2See also [5] for an updated state of the art.

http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
http://www.rsa.com/rsalabs/node.asp?id=2094
http://www.rsa.com/rsalabs/node.asp?id=2094


9.3 Quantum key distribution

Theorem 9.3.1 (No cloning theorem) Let |φ 〉 and |ψ 〉 be two rays in H such that
〈φ |ψ 〉 6= 0 and |φ 〉 6= exp(iθ)| psi〉. Then there does not exist any quantum device
allowing duplication of φ and ψ .

Proof: Suppose that such a device exists. Then, for some n ≥ 1, there exists a
unitary U : H⊗(n+1)→H⊗(n+1) and some ancillary ray |α1 · · ·αn 〉 ∈H⊗n such that
we get

|φφβ1 · · ·βn−1 〉 = U |φα1 · · ·αn 〉
|ψψγ1 · · ·γn−1 〉 = U |ψα1 · · ·αn 〉.

Then

〈ψ |φ 〉 = 〈ψα1 · · ·αn |U∗U |φα1 · · ·αn 〉

= 〈ψ |φ 〉2
n−1

∏
i=1
〈γi |βi 〉.

Since 〈φ |ψ 〉 6= 0 we get 〈ψ |φ 〉∏n−1
i=1 〈γi |βi 〉= 1 and since |φ 〉 6= exp(iθ)| psi〉,

it follows that 0 < |〈ψ |φ 〉| < 1. Subsequently, ∏
n−1
i=1 |〈γi |βi 〉| > 1 but this is im-

possible since for every i, |〈γi |βi 〉| ≤ 1. �

This theorem is at the basis of the BB84 quantum key distribution protocol [2].
Alice and Bob communicate through a quantum and a classical public channels;
they agree publicly to use two different orthonormal bases of H = C2 (describing
the photon polarisation):

B+ = {ε+
0 = |0〉,ε+

1 = |1〉}

B× = {ε×0 =
|0〉− |1〉√

2
,ε×1 =

|0〉+ |1〉√
2
}.

The first element of each basis is associated with the bit 0, the second with the bit
1. Moreover Alice and Bob agree on some integer n = (4+δ )N with some δ > 0,
where N is the length of the message they wish to exchange securely; it will be
also the length of their key. Alice needs also to know the function T : {0,1}2→H
defined by

T (x,y) =


ε

+
0 if (x,y) = (0,0)

ε
+
1 if (x,y) = (0,1)

ε
×
0 if (x,y) = (1,0)

ε
×
1 if (x,y) = (1,1).



Algorithm 9.3.2 AlicesKeyGeneration
Require: UNIFRANDOMGENERATOR({0,1}), T , n
Ensure: Two strings of n random bits a,b ∈ {0,1}n and a sequence of n qubits

(|ψi 〉)i=1,...,n

Generate randomly a1, . . . ,an

a← (a1, . . . ,an) ∈ {0,1}n

Generate randomly b1, . . . ,bn

b← (b1, . . . ,bn) ∈ {0,1}n

i← 1
repeat
|ψi 〉 ← T (ai,bi)
Transmit |ψi 〉 to Bob via public quantum channel
i← i+1

until i > n

On reception of the ith qubit, Bob performs a measurement of the projection
operator P] = |ε]

1 〉〈ε
]
1 |, where ] ∈ {+,×}.

Algorithm 9.3.3 BobsKeyGeneration
Require: UNIFRANDOMGENERATOR({0,1}), n, sequence |ψi 〉 for i = 1, . . . ,n,

P] for ] ∈ {+,×}
Ensure: Two strings of n bits ′,b′ ∈ {0,1}n

Generate randomly b′1, . . . ,b
′
n

b′← (b′1, . . . ,b
′
n) ∈ {0,1}n

i← 1
repeat

if b′i = 0 then
ask whether P+ takes value 1

else
ask whether P× takes value 1

end if
if Counter triggered then

a′i← 1
else

a′i← 0
end if
i← i+1

until i > n
a′← (a′1, . . . ,a

′
n) ∈ {0,1}n

Transmit string b′ ∈ {0,1}n to Alice via public classical channel

When Alice receives the string b, she performs the conciliation algorithm de-



scribed below.

Algorithm 9.3.4 Conciliation
Require: Strings b,b′ ∈ {0,1}
Ensure: Sequence (k1, . . . ,kL) with some L≤ n of positions of coinciding bits

c← b⊕b′
i← 1
k← 1
repeat

k←min{ j : k ≤ j ≤ n such that c j = 0}
if k ≤ n then

ki← k
i← i+1

end if
until k > n
L← i−1
transmit (k1, . . . ,kL) to Bob via public classical channel

Theorem 9.3.5 If there is no eavesdropping on the quantum channel then

P((a′k1
, . . . ,a′kL

) = (ak1 , . . . ,akL)|a,b) = 1.

Proof: Compute 〈ψi |P+ψi 〉 and 〈ψi |P×ψi 〉 for all different possible choices of
ψi ∈ B+ ∪ B×. We observe that for those i’s such that b′i = bi we have P(a′i =
ai) = 1. Hence on deciding to consider only the substrings of a and a′ defined on
the locations where b and b′ coincide, we have the certainty of sharing the same
substrings, although a and a′ have never been exchanged. �

Lemma 9.3.6 If there is no eavesdropping, for N large enough, L is of the order
2N.

Proof: Elementary use of the law of large numbers. �

If Eve is eavesdropping, since she cannot copy quantum states (no-cloning
theorem), she can measure with the same procedure as Bob and in order for the
leakage not to be apparent, she re-emits a sequence of qubits | ψ̃i 〉 to Bob. Now
again L is of the order 2N but since Eve’s choice of the b’s is independent of the
choices of Alice and Bob, the string a′ computed by Bob will coincide with Alice’s
string a at only L/2' N positions.

Hence to securely communicate, Alice and Bob have to go through the eaves-
dropping detection procedure and reconciliation.



Bob randomly chooses half of the bits of the substring (a′k1
, . . . ,a′kL

), i.e. (a′r1
, . . . ,a′rL/2

)
with ri ∈ {k1, . . . ,kL} and ri 6= r j for i 6= j, and sends the randomly chosen po-
sitions (r1, . . . ,rL/2) and the corresponding bit values (a′r1

, . . . ,a′rL/2
) to Alice. If

(a′k1
, . . . ,a′kL

) = (ak1 , . . . ,akL) (reconciliation) then Alice announces this fact to Bob
and they use the complementary substring of (a′k1

, . . . ,a′kL
) (of length L/2' N) as

their key to cipher with Vernam’s algorithm. Else, they restart BB84 protocol.

Notice that Alice and Bob never exchanged the ultimate substring of N bits
they use as key.



Chapter 10
Elements of quantum computing

In this chapter, B denotes the set {0,1} and elements b ∈ B are called bits; H
will denote C2 and rays |ψ 〉 ∈ H are called qubits. Similarly, arrays of n bits are
denoted by b = (b1, . . . ,bn) ∈ Bn; arrays of n qubits by |ψ 〉= |ψ1 · · ·ψn 〉 ∈H⊗n.

10.1 Classical and quantum gates and circuits

A classical circuit implements a Boolean mapping f : Bn→Bn by using elementary
gates of small arities1, chosen from a family G; A quantum circuit implements
a unitary mapping U : H⊗n → H⊗n by using unitary elementary gates of small
arities2, chosen from a family G.

Definition 10.1.1 Let U : H⊗n → H⊗n for some n and G be a fixed family of
unitary operators of different arities. A quantum circuit over G is a product of
operators from G acting on appropriate qubit entries.

It is usually assumed that G is closed under inversion.

Definition 10.1.2 Let V : H⊗n→H⊗n be a unitary operator. This operator is said
to be realised by a unitary operator W : H⊗N → H⊗N , with N ≥ n entries, acting
on n qubits and N−n ancillary qubits, if for all |ξ 〉 ∈H⊗n,

W (|ξ 〉⊗ |0N−n 〉) = (V |ξ 〉)⊗|0N−n 〉.
1usually acting on O(1) bits.
2usually acting on O(1) qubits.
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Ancillary qubits correspond to some memory in a fixed initial state we borrow for
intermediate computations that is returned into the same state. Returning ancillary
qubits into the same state can be relaxed. What cannot be relaxed is that ancilla
must not be entangled with the n qubits (it must remain in tensor form); otherwise
the anicllary subsystem could not be forgotten.

Quantum circuits are supposed to be more general than classical circuits. How-
ever, arbitrary Boolean circuits cannot be considered as classical counterparts of
quantum ones because the classical analogue of a unitary operator on H⊗n is an
invertible map on Bn, i.e. a permutation π ∈ S2n . Since to any n-bit array ξ =
(ξ1 · · ·ξn) ∈ Bn corresponds a basis vector |ξ 〉 = |ξ1 · · ·ξn 〉 ∈ H⊗n, to every per-
mutation π ∈ S2n naturally corresponds a unitary operator π̂ , defined by

π̂|ξ 〉= |π(ξ )〉,

with π̂∗ = π̂−1 = π̂−1. Hence we can define:

Definition 10.1.3 Let G ⊆ S2n . A reversible circuit over G is a sequence of per-
mutations from G.

An arbitrary Boolean function F : Bm → Bn can be extended to a function F⊕ :
Bm+n→ Bm+n, defined by

F⊕(x,y) = (x,y⊕F(x)),

where the symbol ⊕ in the right hand side stands for the bit-wise addition modulo
2. It is easily checked that F⊕ is a permutation. Moreover F⊕(x,0) = (x,F(x)).

Notice that 2-bit permutation gates do not suffice the realise all functions of the
form F⊕. On the contrary G = {NOT,Λ} with Λ : B3→ B3 the Toffoli gate, defined
by Λ(x,y,z) = (x,y,z⊕ (x∧ y)), is a basis.

10.2 Approximate realisation

There are uncountably many unitary operators U : H⊗n→ H⊗n. Hence if a quan-
tum computer is to be constructed, the notion of exact realisation of a unitary oper-
ator must be weakened to an approximate realisation. The same rationale prevails
also in classical computing, instead of all real functions (uncountably many), only
Boolean functions are implemented.

Lemma 10.2.1 An arbitrary unitary operator U : Cm → Cm can be represented



as a product V = ∏
m(m−1)/2
i=1 V (i) of matrices of the form

1
. . .

1 (
a b
c d

)
1

. . .
1


,

(
a b
c d

)
∈ U(2).

Moreover, the sequence of matrices appearing in the product can be explicitly con-
structed in a running time O(m3)poly(log(1/δ )) where δ = ‖U−V‖.

Proof: An exercise if one recalls that for all c1,c2 ∈ C, there exists a unitary oper-
ator W ∈ U(2) such that

W
(

c1
c2

)
=
(√
|c1|2 + |c2|2

0

)
.

�

Basic properties of the operator norm are recalled below:

‖XY‖ ≤ ‖X‖‖Y‖
‖X‖ = ‖X‖
‖U‖ = 1

‖X⊗Y‖ = ‖X‖‖Y‖,

where X and Y are arbitrary operators and U is a unitary.

Definition 10.2.2 A unitary operator U ′ approximates a unitary operator U within
δ if ‖U−U ′‖ ≤ δ .

Lemma 10.2.3 If a unitary U ′ approximates a unitary U within δ , then U ′−1 ap-
proximates U−1 within δ .

Proof: Since U ′−1(U ′−U)U−1 = U−1−U ′−1, it follows that ‖U−1−U ′−1‖ ≤
‖U ′−U‖ ≤ δ . �

Lemma 10.2.4 If unitary operators (U ′k)k=1,...,L approximate unitary operators
(Uk)k=1,...,L within δk, then U ′=U ′L · · ·U ′1 approximates U =UL · · ·U1 within ∑

L
k=1 δk.



Proof: ‖U ′2U ′1−U2U1‖ ≤ ‖U ′2(U ′1−U1)+(U ′2−U2)U1‖ ≤ δ1 +δ2. �

Definition 10.2.5 A unitary operator U : H⊗n→H⊗n is approximated by a unitary
operator U : H⊗N →H⊗N , with N ≥ n, within δ if for all |ξ 〉 ∈H⊗n

‖U ′(|ξ 〉⊗ |0N−n 〉)−U |ξ 〉⊗ |0N−n 〉‖ ≤ δ‖ξ‖.

Definition 10.2.6 For every unitary operator U : H⊗n→H⊗n there exists a unitary
operator C(U) : H⊗H⊗n→H⊗H⊗n, called the controlled-U operator, defined for
all |ξ 〉 ∈H⊗n by

C(U)|ε 〉⊗ |ξ 〉=
{
|ε 〉⊗ |ξ 〉 if ε = 0
|ε 〉⊗U |ξ 〉 if ε = 1

Similarly, multiply controlled-U Ck(U) : H⊗k⊗H⊗n→H⊗n⊗H⊗n, is defined by

Ck(U)|ε1 · · ·εk 〉⊗ |ξ 〉=
{
|ε1 · · ·εk 〉⊗ |ξ 〉 if ε1 · · ·εk = 0
|ε1 · · ·εk 〉⊗U |ξ 〉 if ε1 · · ·εk = 1

Example 10.2.7 Let σ1 =
(

0 1
1 0

)
be the unitary operator corresponding to the

classical NOT gate. Then C2(σ1) = Λ̂, where Λ is the Toffoli gate.

Definition 10.2.8 The set

G = {H,K,K−1,C(σ1),C2(σ1)},

with H = 1√
2

(
1 1
1 −1

)
(Hadamard gate) and K =

(
1 0
0 −i

)
(phase gate), is called

the standard computational basis.

Theorem 10.2.9 Any unitary operator U : H⊗n→H⊗n can be approximated within
δ by a poly(log(1/δ ))-size circuit over the standard basis using ancillary qubits.
There is a poly(n)-time algorithm describing the construction of the approximating
circuit.

Proof: An exercise, once you have solved the exercise 10.2.10 below. �

Exercise 10.2.10 Let σ0,...,3 be the 3 Pauli matrices augmented by the identity

matrix, H the Hadamard gate, and Φ(φ) =
(

1 0
0 exp(2iφ)

)
.



1. Show that if A ∈M2(C) with A2 = 1 and φ ∈ R, then

exp(iφA) = cosφσ0 + isinφA.

2. Let R j(θ) = exp(−i θ

2 σ j), for j = 1,2,3 and Rn̂(θ) = exp(−i θ

2 n̂ ·~σ), where
n̂ = (N1,n2,n3) with n2

1 + n2
2 + n2

3 = 1 and ~σ = (σ1,σ2,σ3). Express R j(θ)
and Rn̂(θ) on the basis σ0, . . . ,σ3.

3. Show that H = exp(iφ)R1(α)R3(β ), for some φ ,α,β to be determined.

4. If |ξ 〉 ∈ C2 is a ray represented by a vector of the Bloch sphere S2 = {x ∈
R3 : ‖x‖2 = 1}, show that

Rn̂(θ)|ξ 〉= |Tn̂(θ)x〉

where Tn̂(θ)x is the rotation of x around n̂ by an angle θ .

5. Show that every U ∈ U(2) can be written as

U = exp(iα)Rn̂(θ)

for some α,θ ∈ R.

6. Show that every U ∈ U(2) can be written as

U = exp(iα)R3(β )R2(γ)R3(δ )

for some α,β ,γ,δ ∈ R.

7. Suppose that m̂ and n̂ are two not parallel vectors of S2. Show that every
U ∈ U(2) can be written as

U = exp(iα)Rn̂(β1)Rm̂(γ1)Rn̂(β2)Rm̂(γ2) · · · .

8. Establish identities

Hσ1H = σ3

Hσ2H = −σ2

Hσ3H = σ1

HΦ(
π

8
)H = exp(iα)R1(

π

4
)

for some α .



10.3 Examples of quantum gates

10.3.1 The Hadamard gate

H =
1√
2

(
1 1
1 −1

)
.

H|ε 〉= 1√
2
((−1)ε |ε 〉+ |1− ε 〉),ε ∈ B.

H⊗3|000〉= 1√
8

7

∑
x=0
|x〉.

10.3.2 The phase gate

Φ(φ) =
(

1 0
0 exp(2iφ)

)
.

Φ(φ)|ε 〉= exp(2iεφ)|ε 〉

Φ(
π

4
+

φ

2
)HΦ(θ)H|0〉= cosθ |0〉+ exp(iφ)sinθ |1〉.

10.3.3 Controlled-NOT gate

C(σ1) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

For any x ∈ B, C(σ1)|x0〉= |xx〉, but for arbitrary |ψ 〉= α|0〉+β |1〉,

C(σ1)|ψ0〉= α|00〉+β |11〉 6= |ψψ 〉.

10.3.4 Controlled-phase gate

C(Φ(φ)) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(2iφ)

 .



For x,y ∈ B,
C(Φ(φ))|xy〉= exp(2iφxy)|xy〉.

10.3.5 The quantum Toffoli gate

For all x,y,z ∈ B,
C2(σ3)|xyz〉= |x,y,(x∧ y)⊕ z〉.

Suppose that f : Bm → Bn is a Boolean function, implemented by the unitary
operator U f : H⊗(n+m)→H⊗(n+m). If |ψ 〉= 1

2m/2 ∑ε1,...,εm∈B |ε1, . . . ,εm 〉 then

U f |ψ 〉⊗ |0n 〉= 1
2m/2

2m−1

∑
x=0
|x, f (x)〉.

Hence computing simultaneously all values of f over its domain of definition re-
quires the same computational effort as computing the value over a singleton of the
domain.
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