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Part I

Introduction to the physical problem
and its mathematical formalism

1





In this part, we make a very short historical review of the scientific problems and
experimental facts that led to the development of the quantum theory during the first
part of the 20th century. A gentle introduction to the mathematical formalism of quan-
tum theory is given by treating some elementary finite-dimensional examples and ex-
hibiting the analogy there exists between discrete finite classical random systems and
discrete finite quantum systems but underlying also the profound differences among
them in this setting.

To make the text self-contained, we include some basic facts about Hilbert spaces
and linear operators on these spaces and stress on some aspects (spectral theorems, ten-
sor products) that are not always thoroughly treated in introductory texts on Hilbert
spaces. We conclude this part by explaining some counter-intuitive phenomena stem-
ming from the quantum formalism.
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1
Physics, mathematics, and mathematical

physics

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it’s wrong. In that simple statement is
the key to science”.

Richard P. FEYNMAN, Lecture on The character of physical law, Cornell Uni-
versity (1964).

« La mathématique est une science expérimentale. Contrairement en effet à un
contresens qui se répand de nos jours (. . . ), les objets mathématiques préexistent
à leurs définitions ; celles-ci ont été élaborées et précisées par des siècles d’activité
scientifique et, si elles se sont imposées, c’est en raison de leur adéquation aux
objets mathématiques qu’elles modélisent ».

Michel DEMAZURE, Calcul différentiel, Presses de l’École Polytechnique,
Palaiseau (1979).

1.1 Experiments

Physics relies ultimately on experiment. Observation of many different experi-
ments of similar type establishes a phenomenology revealing relations between the
experimentally measured physical observables. A phenomenology, even relying on
false hypotheses, can still be useful if it predicts correctly quantitative relationships
occurring in yet unrealised experiments 1. The experimental nature of Physics implies

1. For instance, the Antikythera mechanism is a mechanical device of the size of a modern laptop
constituted of more than 30 bronze gears that has been found in a ship wreck. Its approximate date

5



1.1. Experiments

the statistical character of its crude experimental results; nevertheless, sound results
can be obtained thanks to the statistical reproducibility of the physical experiments.

The next step is inductive: physical models are proposed satisfying the phenomeno-
logical relations. Then, new phenomenology is predicted, new experiments designed
to verify it, and new models are proposed. When sufficient data are available, a phys-
ical theory is proposed, encompassing all the models that have been developed so
far and all the phenomenological relations that have been established. The theory can
deductively predict the outcome for yet unrealised experiments. If it is technically pos-
sible, the experiment is performed. Either the subsequent phenomenology contradicts
the theoretical predictions — and the theory must be rejected — or it is in accordance
with them — and this precise experiment serves as an additional validity check of the
theory. Therefore, physical theories have not a definite status: they are accepted as
long as no experiment contradicts them!

Experiment Phenomenology

ModelTheory

Figure 1.1 – The endless loop of Physics

It is a philosophical debate how mathematical theories emerge. Some scientists —
among them the author of these lines — share the opinion expressed by Michel De-
mazure (see quotation on page 5), claiming that Mathematics is as a matter of fact an
experimental science. Accepting, for the time being, this view, hypotheses for partic-
ular mathematical branches are the pendants of models. What differentiates strongly
mathematics from physics is that once the axioms are stated, the proved theorems (phe-
nomenology) need not be experimentally corroborated, they exist per se. The experi-
mental nature of mathematics is hidden in the mathematician’s intuition that served to
propose a given set of axioms instead of another.

Mathematical physics is physics, i.e. its truth relies ultimately on experiment but
it is also mathematics, in the sense that physical theories are stated as a set of axioms
(called postulates in the physical literature) and the resulting physical phenomenol-
ogy must derive both as theorems and as experimental truth. Although experimental
results can have random outcomes, an important epistemological requirement is that
they must exhibit some kind of statistical reproducibility. Therefore, all physical the-
ories can be described as a statistical model augmented by a dynamical law.

of manufacture is estimated between 150 BC and 100 BC. It uses geocentric astronomical knowledge
of Ptolemy’s era to predict movements of Mercury, Venus, Mars, Jupiter and Saturn. Although the
phenomenology prevailing in the Antikythera mechanism is known now to be wrong, the mechanism
had nevertheless sufficient predictive power, in line with the technology available at that time.
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Physics, mathematics, and mathematical physics

1.2 A brief history of modern Physics

1.2.1 End of 19th century: the era of false certainties

By the end of 19th century, the success of Physics to describe the phenomena known
at that time was such that most physicists acquired the certainty that all physical phe-
nomena could be explained by the then known Physics.

— Space was thought as an infinite Euclidean space R3; time as an one-dimension-
al space R, independent of space. Space and time were absolute entities, time
serving only to describe motion (evolution) in space.

— Matter was thought as a continuum, described by densities, and its motion was
precisely described by the equations of motion established 2 centuries ago by
Newton that remained invariant under transformations of the Galileo’s group.

— Light, like all other electromagnetic phenomena, was governed by Maxwell’s
equations that remained invariant under transformations of the Poincaré’s group.

— Thermodynamics and open thermal systems were phenomenologically under-
stood.

All problems of Physics seemed to reduce in obtaining the correct solution of the ade-
quate underlying differential equation.

Nevertheless, some (considered as) minor problems were remaining, like:
— The experimental spectrum of a radiating black-body was in disagreement

with the theoretical computations in terms of Maxwell equations of electromag-
netism.

— When Maxwell equations were considered without sources, they admitted so-
lutions in the form of electromagnetic waves. By analogy with sound or water
waves, electromagnetic waves were supposed to require a medium into which
they can propagate. The existence of the luminiferous aether, as the adequate
medium for the propagation of electromagnetic waves, has then been conjec-
tured.

But is was only a matter of time to definitely settle those . . . small vexations. Several se-
nior scientists were supposedly 2 discouraging brilliant young fellows from pursuing
studies in Physics since . . . there was nothing interesting that remained to be discov-
ered. It turned out that this false certainty was one of the greatest fallacies in the history
of sciences since almost all branches of physics have been revolutionised in the early
20th century.

2. Such a quote is misattributed to Lord Kelvin though there is no evidence that he said anything of
the sort. The only historically proven quote on the subject is due — quite ironically — to the American
physicist Andrew Abraham Michelson (one of the experimenters who proved that aether does not exist)
who — as reported in the University of Chicago Annual Registrer 1894, page 159 — said:

“While it is never safe to affirm that the future of Physical Science has no marvels in store even more
astonishing than those of the past, it seems probable that most of the grand underlying principles
have been firmly established and that further advances are to be sought chiefly in the rigorous
application of these principles to all the phenomena which come under our notice. It is here that
the science of measurement shows its importance — where quantitative work is more to be desired
than qualitative work. An eminent physicist remarked that the future truths of physical science are
to be looked for in the sixth place of decimals.”
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1.2. A brief history of modern Physics

1.2.2 1895 – 1932: Everything is falling down

Aether does not exist. We have seen that the existence of the luminiferous aether
has been conjectured as a necessary medium ensuring the propagation of elec-
tromagnetic waves. But if such a medium existed, it should be possible to detect
it experimentally. After a series of ingenious experiments peformed in 1887 and
later during the period 1902 – 1905, by Andrew Abraham Michelson 3 and Ed-
ward Morley proved that the aether does not exist! Therefore, the then available
understanding of Maxwell’s equations turned out to be incomplete.

Matter is discontinuous. It is remarkable that already in the 7th century BC, ques-
tioning about the organisation of Nature started to occupy philosophers 4. The
existence of atoms has then been conjectured 5 not on the basis of experimental
observation but on the basis 6 of logical necessity! However, during the post-
renaissance era of science, and until the early 19th century, the atomic hypothe-
sis has been dismissed giving place to a continuum description of matter.
In the beginning of the 19th century, John Dalton, a chemist, showed that chem-
ical reactions were compatible with an atomistic description of matter. In 1827,
Robert Brown, a botanist, while looking through a microscope at particles trapped
in cavities inside pollen grains in water, noted that the particles moved errati-
cally (performed a called — at present —Brownian motion) through the water
but he was not able to determine the mechanisms that caused this motion.
In 1866, Ludwig Boltzmann, in his thesis, establishes a kinetic theory of gases in
which he explains the thermodynamic behaviour of gases in terms of mechan-
ical equations of its atomic constituents. Nevertheless, the atomic hypothesis
— as it is called by that time — is not accepted (if not rejected with sheer hos-
tility) by the scientific establishment. In 1897 Joseph John Thomson discovers
the electron and proposes a (wrong) model of the atom. In 1905, Albert Einstein
proves mathematically that the erratic motion of a witness particle in a liquid
(the Brownian motion) is explained by the random collisions of atoms of the
liquid on the witness particle, provided that the witness particle is significantly
larger than the atoms of the liquid. He obtains moreover precise quantitative re-
lationships between various physical quantities that were instrumental to Jean
Perrin for experimentally 7 proving the existence of atoms in 1908. Another of
the false certainties of the 19th century felt down . . . . Matter is not continuous!

Matter is not stable. Modern Chemistry emerged with the work of Antoine Lavoisier

3. Michelson won the 1907 Nobel Prize in Physics.
4. Thales (624 – 546 BC) and Anaximander (ca. 610 – ca. 546 BC)
5. By Leucippus (unknown dates during the 5th century BC) and Democritus (460 – 370 BC) and

later Epicurus (341 – 270 BC).
6. The ancient atomists theorised that the two fundamental and oppositely characterised constituents

of the natural world are indivisible bodies — atoms, etymologically meaning “that cannot be cut into
pieces” — and void. Void is described simply as nothing, or the negation of body. Atoms are by their
nature intrinsically unchangeable; they can only move about in the void and combine into different
clusters. Since the atoms are separated by void, they cannot fuse, but must rather bounce off one another
when they collide. Because all macroscopic objects are in fact combinations of atoms, everything in the
macroscopic world is subject to change, as their constituent atoms shift or move away. Thus, while the
atoms themselves persist through all time, everything in the world of our experience is transitory and
subject to dissolution.

7. And wining the 1927 Nobel Prize in Physics for this discovery.
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who cut short, in 1783, the dreams and speculations of generations of alchemists 8

who pretended to transmutate ordinary metals to gold. As a matter of fact,
Lavoisier established that substances intervening in a chemical reaction are only
recombinations of the participating chemicals 9. In 1896, Henri Becquerel dis-
covers radioactivity of uranium, a phenomenon confirmed later by Maria Skłodowska-
Curie and Pierre Curie on uranium, radium and polonium 10. Radioactivity
appeared then as the transmutation of a chemical consisting of one species of
atoms, like radium, to another species 11. Thus radioactive isotopes 238

92 U or 234
92 U

of uranium, after a sequence of radioactive cascades transmutate eventually to
the stable isotope 206

82 Pb of lead.

Space and time are not absolute. Equations of classical mechanics are invariant un-
der Galileo group; equations of electromagnetism are invariant under Poincaré
group. Why two different invariance groups are needed? In 1905, Albert Ein-
stein starting from two simple principles, namely that the speed of light c is a
universal constant, the same in all reference frames, and that the laws of physics
must remain identical in all inertial frames, establishes special relativity, uni-
fying classical mechanics and electormagnetism. In the framework of special
relativity, the notion of aether is no longer needed for light to propagate, at the
expense of merging absolute space and time in a single relative space-time, en-
dowed with a flat pseudo-Euclidean metric where physical events occur.

Physical space-time is curved. In 1913, Einstein extends the special relativity, he
had conceived some eight years earlier, to include gravitational phenomena.
The new theory is called the general relativity. In this new theory, the space-
time becomes a pseudo-Riemannian manifold whose geometry (metric tensor)
becomes itself a field. The local curvature of the manifold is determined by
the local density of the matter. On a Riemannian manifold, the role of straight
lines is played by geodesics. For instance, the Moon is revolving around the
Earth because the mass of the Earth curves locally the space-time so that the
geodesic followed by the Moon becomes a closed orbit around the Earth. The
main idea of General Relativity is that matter (and energy) shapes the space-
time geometry and space-time geometry imposes the way matter moves. Most
of the predictions of general relativity have been repeatedly tested (e.g. preces-
sion of the perihelion of Mercury, gravitational lensing observed during total
solar eclipses, etc.). The most decisive test of the theory was the experimental
detection of gravitational waves; their existence has been theoretically predicted
in 1916 by Einstein but they have been experimentally detected only one century
later, on 14 September 2015, when the front of the gravitational wave generated
by the merging of two black holes reached the Earth. The article announcing
this detection [1] appeared on 11 February 2016 12. But one must not think that

8. Even the great Sir Isaac Newton versed in those speculations during the period 1668–1675.
9. Think of the chemical reaction NaOH + HCl→NaCl + H2O. Sodium (Na), oxygen (O), hydrogen

(H), and chlorine (Cl) are only recombined but globally preserved.
10. The 1903 Nobel Prize in Physics has been awarded for the discovery of radioactivity to Antoine

Becquerel, Maria Skłodowska-Curie and Pierre Curie.
11. Nowdays, we know that radioactivity is a transmutation of the atomic nucleus.
12. The American physicists Rainer Weiss, Kip Thorne and Barry Barish who made the detection —

but, sadly, not the French theoretical physicist Thibault Damour, who made the computations that were
essential for rendering the experimental discovery possible — were awarded the Nobel Prize in Physics
on 2017.

/Users/dp/a/ens/iq-intro.tex
2019-10-24 • 16:08:05.

9



1.2. A brief history of modern Physics

general relativity is some esoteric discipline only predicting some phenomena
totally irrelevant to every-day life. For instance, general relativity is necessary
to an every-day life technological application: the global positioning system 13.

Energy is not continuous. In 1887, Heinrich Hertz observed that ultraviolet light
falling on some electrodes make them sparking more easily (photoelectric ef-
fect). In 1900, Max Karl Ernst Planck gives a groundbreaking phenomenological
derivation of the black-body radiation spectrum. If the energy levels of light
wave can only take discrete values, then a perfect agreement between experi-
mental observation and computation can be achieved. In 1905, Albert Einstein
— elaborating on the idea of Max Planck — proposes that a beam of light is not
a continuous wave propagating through space but a collection of discrete wave
packets — he termed Lichtquanten (light quanta), presently called the photons,
— having an energy proportional to their frequency 14. Under this hypothesis,
he gives an explanation of the photoelectric effect and proposes a quantitive es-
timate of the photoelectric current. These theoretical predictions have been ex-
perimentally verified 15 by Robert Andrews Millikan in 1914. Niels Bohr, Louis
de Broglie, Werner Heisenberg, Wolfgang Pauli, Paul Adrien Maurice Dirac, Er-
win Schrödinger, John von Neumann and others, during the golden era 1913 –
1932, considered Planck’s idea seriously and established Quantum Mechanics 16

named after the fact that energy is not continuous but “quantified” (i.e. its pos-
sible values arise as integer multiples of a fundamental “quantum” of energy).
However, by 1926, two — apparently irreconcilable — theories describe quan-
titatively atomic phenomena: matrix mechanics, advocated by Heisenberg, and
wave mechanics, advocated by Dirac. Pauli argues that the two theories should
be equivalent. The equivalence is proved by von Neumann in 1927 by show-
ing that Heisenberg “matrices” are in fact operators acting on a Hilbert space
defined as the L2 space of Dirac waves.

1.2.3 Physics after 1932

A general physical theory must describe all physical phenomena in the universe,
extending from elementary particles to cosmological phenomena. Numerical values
of the fundamental physical quantities, i.e. mass (M), length (L), and time 17 (T), span

13. The GPS performs localisation of a car on the surface of the Earth by measuring its position relative
to three satellites whose coordinates are precisely known and proceeding by triangulation. The estimate
of the car-satellite distance is obtained by the time needed for an electromagnetic signal to travel to and
fro. To be useful, the precision of the localisation must be of the order of metre. Now, the mass of Earth
curves the space-time in its vicinity so that time lapses differently near Earth and near the satellites; to
achieve the required precision of localisation, this curvature effect must be taken into account!

14. The frequency determines the colour of the light.
15. And allowed Einstein to win the 1921 and Millikan the 1923 Nobel Prize in Physics for the expla-

nation and the experimental confirmation of the photoelectric effect.
16. All founders of Quantum Mechanics, but von Neumann, have been laureates of the Nobel Prize

in Physics: Planck in 1918, Bohr in 1922, de Broglie in 1929, Heisenberg in 1932, Schrödinger and Dirac
in 1933, Pauli in 1945.

17. The upper bound of physical times (1017s ' 1.4× 1010a) is identified with the “age of the uni-
verse”. It turns out that the “age of the universe” is a badly defined concept since there is not yet a
generally accepted physical/mathematical theory encompassing both quantum field theory and gravi-
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vast ranges:

10−31kg ≤ M ≤ 1051kg; 10−15m ≤ L ≤ 1027m; 10−23s ≤ T ≤ 1017s.

Units used in measuring fundamental quantities, i.e. kilogramme (kg), metre (m), and
second (s) respectively, were introduced after the French Revolution so that everyday
life quantities are expressed with reasonable numerical values (roughly in the range
10−3 − 103). The general theory believed to describe the universe 18 is called quantum
field theory; it contains two fundamental quantities, the speed of light in the vacuum,
c = 2.99792458 × 108m/s, and the Plank’s constant h̄ = 1.05457 × 10−34J·s. These
constants have extraordinarily atypical numerical values. Everyday velocities are neg-
ligible compared to c, everyday actions are overwhelmingly greater than h̄. Therefore,
everyday phenomena can be thought as the c → ∞ and h̄ → 0 limits of quantum field
theory; the corresponding theory is called classical mechanics.

It turns out that considering solely the c → ∞ limit of quantum field theory gives
rise to another physical theory called quantum mechanics; it describes phenomena for
which the action is comparable with h̄. These phenomena are important when dealing
with atoms and molecules.

The other partial limit, h̄→ 0, is physically important as well; it describes phenom-
ena involving velocities comparable with c. These phenomena lead to another physical
theory called special relativity.

Quantum field theory

Special relativity

Classical mechanics

Quantum mechanics

c→ ∞h̄→ 0

c→ ∞ h̄→ 0

Figure 1.2 – Physical theories (with the exception of gravity) as special cases of more general theories

Although quantum field theory is still mathematically incomplete, the theories ob-
tained by the limiting processes described above, namely quantum mechanics, special
relativity, and classical mechanics are mathematically closed, i.e. they can be formu-
lated in a purely axiomatic fashion and all the experimental observations made so far
(within the range of validity of these theories) are compatible with the derived theo-
rems.

Among the three theories mentioned above, quantum mechanics has a very partic-
ular status:

— can be formulated in a totally axiomatic way;
— all its predictions have been verified with unprecedented accuracy;
— not a single experiment has ever put the theory in difficulty;

tational phenomena beyond the Planck’s scale. When we extrapolate the estimates of the theory valid
before the Planck’s scale beyond that scale, an initial singularity is predicted, commonly termed Big-
Bang. The “age of the universe” is the elapsed time since the thus determined initial singularity.

18. This claim is true if gravitational phenomena are not taken into account.
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1.2. A brief history of modern Physics

— current technology, developed essentially during the second half of the 20th cen-
tury, has been shaped by the achievements of quantum physics so that quantum
phenomena play a prominent role in the global economy (a very conservative
estimate is that 35–40% of the global wealth relies on exploiting quantum phe-
nomena).

1.2.4 Perspectives on the foundational aspects in the 21st century

In spite of the tremendous usefulness, pertinence, predictive power, and its math-
ematically closed form, quantum theory — almost one century after its conception
— has still an awkward and counterintuitive formulation. It remains still difficult to
understand what really happens during the measurement process and apprehend phe-
nomena like entanglement, teleportation, decoherence, etc. Contrary to other physical
theories — classical mechanics, special and general relativity, electromagnetism, ther-
modynamics, etc. — whose formulation is based on a small number of physically
reasonable postulates that are begging for a specific mathematical formalism, in quan-
tum theory, a mathematical formalism based on the abstract notion of a Hilbert space
— emerging out of nowhere — precedes the formulation of the basic postulates. But,
as Asher Peres [116, page 373] put it: “quantum phenomena do not occur in a Hilbert
space; they occur in a laboratory”. We have an extraordinarily predictive theory but we
still lack a satisfactory explanation scheme; the theory looks as if a conceptual building
block were missing in its description.

During many decades, the core of physicists adopted the “shut up and compute”
stance with foundational aspects neglected — if not contemptuously abandoned to the
quest of philosophers. The situation is fortunately changing and foundational aspects
win renewed interest. Even the philosophical basis of quantum mechanics is ques-
tioned by joint efforts of physicists [11] and philosophers.

The main challenge in modern Physics remains the quest for the “big unification”,
i.e. the conception of a theory encompassing — in a mathematically coherent and phys-
ically verifiable way — quantum and gravitational phenomena. Two candidate theo-
ries are competing these days: string theory and loop quantum gravity. String theory
supposes that the universe holds many dimensions: the four (spatio-temporal) de-
grees of freedom are unbounded; the other (many) dimensions remain bounded. Loop
quantum gravity [126] is more radical in the sense that it predicts that space-time itself
is discrete; its continuum appearance is only an illusion because every-day distances
contain a tremendous number of space quanta 19.

Another theoretical challenge remains the understanding of decoherence. Decoher-
ence is the phenomenon responsible for the quantum-to-classical transition occurring
in any realistic, i.e. non isolated from its environment, quantum system; it constitutes
the main impediment to the physical realisation of large scale quantum computers.
Fully incorporating decoherence as a primitive notion into the mathematical founda-

19. The space quantum corresponds to the distance where gravitational and quantum phenomena
become of the same order of magnitude. This distance is known as the Planck scale and corresponds to
10−35m.
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tions of quantum mechanics remains a challenging open problem. Possibly, the full
understanding of decoherence will be ultimately achieved only when the gravitational
phenomena will be successfully incorporated into quantum theory. In that respect, the
discreteness of space-time — advocated by quantum loop gravity — may be the correct
idea to understand the mechanisms underlying quantum measurement and decoher-
ence.

1.3 Technological impact of quantum physics

1.3.1 The era of the first quantum revolution

Quantum mechanics intervenes in a decisive manner in the explanation of vast
classes of phenomena in other fundamental sciences and in technology. Without being
exhaustive, here are some examples of such quantum phenomena:

— atomic and molecular physics (e.g. stability of — non-radioactive — matter,
physical properties of matter), quantum optics (e.g. lasers), nuclear magnetic
resonance and positron emission tomography (e.g. medical imaging),

— chemistry (e.g. valence theory) and biology (e.g. photosynthesis — including
industrially mimicked photosynthesis —, structure of DNA),

— solid state physics (e.g. physics of semiconductors, transistors),
— tunnel effect (e.g. atomic force microscope) and nanotechnology,
— supraconductivity (e.g. magnetic levitation to sustain ultra-fast trains) and su-

perfluidity
— . . . and the list keeps growing.
Nevertheless, present time technology is still based on macroscopic systems; for in-

stance we still use currents or laser beams to transport information, solid state devices
(transistors) to process information, etc. All these physical systems involve tremen-
dous numbers of particles (1015 photons in laser beam of typical power, 1023 electrons
in a typical current). Therefore, the behaviour of the system must be described statis-
tically, by applying the law of large numbers. This produces an averaging of the be-
haviour so that we can still use classical reasoning. Our present technology, although
relying on quantum achievements is understandable/describable in classical terms.
We are still in the era of the first quantum revolution.

1.3.2 The second quantum revolution

Starting with some pioneering experiments (like trapping of one single electron
[155] in Washington or manipulating an individual pair of photons [7] in Orsay), physi-
cists become able of manipulating various single microscopic quantum objects.

There is however another major technological breakthrough that is foreseen with
a tremendous socio-economical impact: if the integration of electronic components
continues at the present pace (see figure 1.3), within 10–15 years, only some tenths
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of silicium atoms 20 will be required to store a single bit of information 21 Classical
(Boolean) logics does not apply any longer to describe atomic logical gates, quantum
(orthocomplemented lattice) logics is needed instead.

Figure 1.3 – The evolution of the number of transistors on integrated circuits in the period 1971–2011.
(Source: Wikipedia, transistor count.)

Theoretical exploration of this new type of informatics has started and it is proven
[136] that some algorithmically complex problems, like the integer prime factoring
problem — for which the best known classical algorithm [100] requires a time that is
superpolynomial in the number of digits — can be achieved in polynomial time using
quantum logic. The present time technology does not yet allow the prime factoring
of large integers but it demonstrates that there is no fundamental physical obstruc-
tion to its achievement for the rapidly improving computer technology. Should such
a breakthrough occur, all our electronic transmissions, protected by classical crypto-
logic methods could become vulnerable. The table 1.1 gives a very rough estimate
of the time needed to factor an n = 1000 digits numbers, assuming an operation per
nanosecond for various hypotheses of algorithmic complexity.

On the other hand, present day technology allows to securely and unbreakably ci-
pher messages using quantum cryptologic protocols. For instance, one can buy quan-
tum random generators in the form of USB sticks (see figure 1.4) or general quantum
cryptographic devices.

20. The last generation of microprocessors has a etch thickness of some 14 nm while the silicium
interatomic distance in the crystal is 0.2 nm.

21. See the video zooming on a micrprocessor prepared by Frank Kusiak of the University of Califor-
nia at Berkeley.

/Users/dp/a/ens/iq-intro.tex
2019-10-24 • 16:08:05.

14

http://en.wikipedia.org/wiki/Transistor_count
https://www.youtube.com/watch?v=Fxv3JoS1uY8


Physics, mathematics, and mathematical physics

n O(exp(n)) O(exp(n1/3(log n)2/3)) O(n3)
100 1.26× 1021s = 4.01× 1013a 3.13s = 9.93× 10−8a 1× 10−3s = 3.17× 10−11a
500 3.27× 10141s = 1.31× 10134a 6.74× 1010s = 2139a 0.125s = 3.96× 10−9a
1000 1.07× 10292s = 3.39× 10284a 6.42× 1017s = 2.03× 1010a 1s = 3.17× 10−8a

Table 1.1 – A very rough estimate of the order of magnitude of the time needed to factor an n-
bit number (with n = 100, 500, 1000), under the assumption of execution of the algorithm on a
hypothetical computer performing an operation per nanosecond, as a function of the time complexity
of the used algorithm. When the cryptologic protocol RSA has been proposed [125] in 1978, the best
factoring algorithm had a time complexity in O(exp(n)). The best known algorithm (the general
number field sieve algorithm) reported in [101] requires time O(exp(n1/3 log2/3 n)) to factor a n-
bit number. The Shor’s quantum factoring algorithm [136] requires time O(n3). We recall for
comparison: “age of the universe” 1.5× 1010 a.

Figure 1.4 – Quantum random number generation and quantum cryptography are not speculative
dreams of physicists but already full-fledged pre-industrial applications. In this figure is reproduced a
screen copy of the online catalog of the company selling quantum random number generators as well
as general quantum cryptographic devices. (By courtesy of Id-Quantique).

The figure 1.5 represents currently foreseen advancements in quantum information
technology for the coming years. (Source: Quantum Manifesto 2010 22). The same
efforts are deployed outside Europe. For instance, on 16 August 2016, at 01:40 local
time, China has launched the world’s first satellite, Micius, dedicated to testing the
fundamentals of quantum communication in space in the framework of the Quantum
Experiments at Space Scale (QUESS) mission. On 29 September 2017 the first inter-
continental videoconference encrypted by quantum methods has been held between
the Austrian and Chinese academies of sciences in Vienna and Beijing (separated by
7400 km), using the Chinese satellite Micius facility. This experiment paves the road for
a worldwide quantum communication network foreseen for the forthcoming decade.
It proves the possibility of entanglement between particles separated by such a large
distance 23.

Companies in the United States are also very actively developing quantum algo-
rithms and test them on prototypal quantum computers. IBM launched, on 4 May

22. http://qurope.eu/manifesto
23. The notion of entanglement is explained in §3.10.
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Communication Simulators Sensors Computers
0–5 years

Quantum repeaters Simulator of motion of elec-
trons in materials

Quantum sensors for niche
applications (gravity and
magnetic sensors for health
care, geosurvey and secu-
rity)

Operation of a logical qubit
with error correction

Secure point-to-point quan-
tum links

New algorithms for quan-
tum simulators and net-
works

More precise atomic clocks
for synchronisation of future
smart networks

New algorithms for quan-
tum computers

Small quantum processor
executing technologically
relevant algorithms

5–10 years
Quantum networks between
distant cities

Development and design of
new complex materials

Quantum sensors for larger
volume applications (auto-
motive, construction, etc.)

Solving chemistry and mate-
rials science problems with
special purpose quantum
computer > 100 physical
qubit

Quantum credit cards Versatile simulator of quan-
tum magnetism and electric-
ity

Handheld quantum naviga-
tion devices

≥ 10 years
Quantum repeaters with
cryptography and eaves-
dropping detection

Simulators of quantum dy-
namics and chemical reac-
tion mechanisms to support
drug design

Gravity imaging devices
based on gravity sensors

Integration of quantum cir-
cuit and cryogenic classical
control hardware

Secure Europe-wide internet
merging quantum and clas-
sical communication

Quantum sensors integrat-
ing consumer applications
including mobile devices

General purpose quantum
computers exceeding com-
putational power of classical
computers

Figure 1.5 – Advancement in quantum information technology foreseen for the coming years (extracted
from the 2010 Quantum Manifesto). Similar roadmaps have been also established by the NFS. In
view of the present achievements, the objectives set for the 10 years — i.e. to be achieved by ca.
2020 — sound quite realistic.
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2016, the world’s first publicly accessible quantum computer operating on 5 qubits 24.
On 14 November 2017, IBM launched a quantum computer prototype, IBM Q, operat-
ing with 50 qubits and constituting an important threshold because the computational
power of a quantum computer with 50-qubit registers outperforms all known classical
computers; beyond 50 qubits we enter in the zone of quantum supremacy. Quantum
supremacy is defined as the ability of quantum devices without error correction to per-
form a well-defined computational task beyond the possibilities of the state of the art
of classical computers.

The enthusiasm of achieving large-scale universal computers in the foreseen future
seems nevertheless overoptimistic. What sounds more realistic seems to be spe-
cial purpose machines (like machines exploiting quantum tunnelling phenomena) to
perform optimisation tasks. As a matter of fact, Nature, by choosing the lowest energy
configurations, performs a non-trivial optimisation task. If this ability of Nature can be
tamed, then we can solve complicated optimisation problems by quantum evolution.
Such ideas prevailed in the work [2], where DNA-computing has been used to encode
and solve the “travelling salesman problem”, a problem known to be algorithmically
NP-complete. Such methods are used in some commercially available architectures
like the D-waveTM computer.

Beyond those foreseen advances in technology, computer science, information trans-
mission and protection, material sciences, etc. another emerging usefulness is the back-
action of quantum processes to introduce quantum-inspired methods applied to cog-
nitive and decisional sciences (see e.g. [145, 137, 33, 105]). It is also important to realise
that several natural transformations induced by quantum phenomena (eg. photosyn-
thesis) can be formalised as quantum computational tasks.

We start entering into the second quantum revolution.

1.4 Plan of the lectures

These lecture notes are divided in three parts:

1. The mathematical foundations of quantum mechanics are presented into the
simplest finite-dimensional case.

2. We then deal with the applications of finite-dimensional quantum mechanics
into the rapidly developing field of quantum information, computing, com-
munication, and cryptology.

3. Finally, the mathematical foundations are revisited in the general infinite-di-
mensional case. Algebra, analysis, probability, and statistics are necessary to
describe and interpret this theory. Its predictions are often totally counter-intu-
itive. Hence it is interesting to study this theory that provides a useful applica-
tion of the mathematical tools, a source of inspiration 25 for new developments

24. Qubit is the quantum analog of bit.
25. Recall that entire branches of mathematics have been developed on purpose, to give precise math-

ematical meaning to — initially — ill-defined mathematical objects introduced by physicists to formulate
and handle quantum theory. To mention but the few most prominent examples of such mathematical
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1.4. Plan of the lectures

for the underlying branches of mathematics, and a description of unusual phys-
ical phenomena.

The third part does not depend on the second. Therefore, a course towards applications
in quantum information can include only parts 1 and 2. A course orientated to more
fundamental aspects can contain only parts 1 and 3.

theories: von Neumann algebras, spectral theory of operators, theory of distributions, non-commutative
probabilities.
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2
Phase space, observables and effects,

states, measurement, probability

Probability theory did not enter into quantum mechanics at the outset. The
pioneers of the field had no reason or intention to make quantum mechanics
a probabilistic subject. The stochastic nature of quantum mechanics was
reluctantly accepted later when it proved to an intrinsic, inescapable part of the
field.

Stanley P. GUDDER: Stochastic methods in quantum mechanics, [78].

2.1 Statistical models and measurements

As is the case in all experimental sciences, information on a physical system is ob-
tained through observation (also called measurement) of the possible values or out-
comes — within a prescribed set — that can take the physical observables. There exists
an abstract set O of observables; every observable X ∈ O has possible outcomes in a
given set X := XX. The acquisition procedure of the information must be described
operationally in terms of

— macroscopic instruments, designed to reveal the outcomes of the observables
and

— prescriptions on the application of instruments on the observables of an objecti-
fied physical system.

The biggest the set of observables whose values are known, the finest is the knowl-
edge about the physical system. Since crude physical observables (e.g. number of par-
ticles, energy, velocity, etc.) can take values in various sets (N, R+, R3, etc.), a practical
way in order to have a unified treatment for general systems is to reduce any physical
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2.2. Some reminders from probability theory

experiment into a series of measurements of a special class of observables, called yes-
no experiments or (sharp) effects. This is very reminiscent of the approximation of
any integrable random variable by a sequence of step functions. Therefore, ultimately,
we can focus on observables taking values in the set {0, 1}. Systems are prepared in
some precise state ρ in some abstract set S of states. Measurement of an observable X
(by means of the appropriate instrument) consists in registering the outcome of X. In
general, an observable can give different outcomes. The formalism provides us with
the probability distribution of possible outcomes of X when the system is prepared in
state ρ. The process of measurement is summarised in the box on page 21.

It turns out that physical observables for classical systems can be described as ran-
dom variables while states are probability measures on some measurable space called
the phase space. The first mathematically sound description [148] of quantum systems
was in the framework of Hilbert spaces. This description is sufficient to describe finite
systems and is the only one we shall use in this introductory section. The phase space
of a quantum system is a Hilbert space, observables are generally non-commuting Her-
mitean operators acting on the Hilbert space while states constitute a special subclass
of Hermitean operators (postive operators having a normalised trace), known as den-
sity operators, on the same Hilbert space. We will show that this description conveys
an intrinsically and irreducibly stochastic character to the predictions of quantum me-
chanics. This stochastic character remains to all other possible formulations — to be
developed in later chapters — of quantum mechanics.

2.2 Some reminders from probability theory

2.2.1 Three seemingly anodyne questions of the utmost importance

Start by three very naïve-looking questions:

1. Is it possible to play “heads-or-tails” with the help of a honest die, i.e. simulate
the outcome of a single realisation of a honest coin from the outcome of a single
realisation of a honest die?

2. Is it possible to play dice with the help of a honest coin, i.e. simulate a single
outcome of a honest die from the outcome of a single realisation of a honest
coin?

3. More profoundly, how to play a random game having a finite set of outcomes?

The first question has an easy answer: the die outcomes form the space Ω =
{1, . . . , 6} equipped with the uniform probability determined by the constant prob-
ability vector ρ(ω) = 1/6 for all ω ∈ Ω. The space of the coin outcomes is X = {0, 1};
we can obviously silmulate a honest coin with the help of the map X : Ω→ X, defined,
for instance, by

X(ω) =

{
0 if ω = even,
1 if ω = odd.
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To become quantifiable and theoretically exploitable, experimental observa-
tions must be performed under very precise conditions, known as the experi-
mental protocol.

— Firstly, the objectified system must be carefully prepared in an initial
condition known as the state of the system. Mathematically, the state
ρ incorporates all the a priori information we have on the system, it
belongs to some abstract space of states S.

— Secondly, the system enters in contact with a measuring apparatus (in-
strument), specifically designed to measure the outcomes of a given
observable X. Observables belong to some abstract space O.

— Interaction of the system with the measuring apparatus returns out-
comes of the observables; the outcome space is some measurable space
(X,X ) with X some discrete or continuous Borel subset of R. This is
precisely the measurement process.

— The whole physics relies on the postulate of statistical reproducibility
of experiments: if the same measurement is performed on a very num-
ber of copies of the system prepared in the same state, the experimen-
tally observed data for a given observable take random outcomes in X

scattered with some fluctuations around some central value. However,
when the number of repetitions tends to infinity, the empirical distribu-
tion of the observed data tends to some probability distribution ν on
the space of outcomes (X,X ).

Thus, abstractly, a single measurement can be thought as a black box assign-
ing to a pair (ρ, X) ∈ S×O

— the outcome of the observable X and
— the probability of the occurrence of the given outcome.

When the experiment is repeated on a large ensemble of identically prepared
systems, the probability measure ν

ρ
X on the space of outcomes, i.e. the map ν

defined by:

S×O 3 (ρ, X) 7→ ν(ρ, X) := ν
ρ
X ∈ M1(X,X ),

whose meaning is, for all A ∈ X ,

ν
ρ
X(A) = P(X takes values in A|system has been prepared at ρ).

is also empirically determined.
The pair (S, O) is called a statistical model. The protocol implemented in or-
der to determine the possible outcomes and the map ν is called measurement.
Mathematically, ν is fully determined by a stochastic transformation kernel
expressed in terms of X and ρ. For that reason, very often the measurement is
identified with this stochastic kernel.

Measurement
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Then the distribution of X on the space of outcomes X reads

ν
ρ
X(x) = ∑

ω∈X−1(x)

ρ(ω) = 1/2, for x ∈ X.

The second question sounds awkward: the roles of Ω and X are now interchanged,
reading respectively Ω = {0, 1} and X = {1, . . . , 6}. Obviously any mapping X : Ω→
X can take at most 2 distinct values in X, since |X(Ω)| ≤ 2. Therefore, the space Ω
is not sufficiently large to host all possible outcomes of a die. As a matter of fact, it is
possible to simulate a die by throwing 2 or 3 times a honest coin. It can be shown that,
in the long run (a very large number N of die outputs), one must throw the honest coin
N log2 6 times (recall that 2 < log2 6 < 3) on average to simulate N realisations of the
die, since the entropy of a honest die is log2 6 bits (see lecture notes [120]).

We come now to the third question. The two previous questions showed that it is
possible to choose some space Ω sufficiently large, equipped with a probability vector
ρ, and a map X from Ω to a set of possible outcomes X, provided that X(Ω) ⊇ X. The
probability distribution of X is directly determined as the image probability of the vec-
tor ρ given by ν

ρ
X(x) = ∑ω∈X−1(x) ρ(ω). But, as the careful reader has already under-

stood, we still need some known probabilistic model Ω equipped with its probability
vector ρ, in order to simulate other random games. The above described procedure —
known as Kolmogorov’s axiomatisation of probability theory [97] — does provide an
answer to the question whether is it possible to play a random game but does not an-
swer the crucial question how to simulate a given random game. All the construction
relies on the assumption that an abstract probabilistic model (Ω, ρ) exists; it can then
be shown that any other probabilistic game can be built on it. It sounds as if standard
probability theory is about transformations of an object we don’t know how to con-
struct into concrete realisations. These profound questionings obsessed Kolmogorov
and led him to introduce another fundamental concept — known these days as Kol-
mogorov’s complexity (see for instance [144] for a detailed exposition of the subject,
or [121] for a freely accessible resource) — characterising the nature of truly random
sequences. It is astonishing that the far-reaching conclusions of Kolmogorov on this
topic are seldom mentioned in standard courses of probability theory. As a matter of
fact, an immediate corollary of his approach of complexity is that there does not exist
either a computer algorithm (a Turing machine) or a classical finite system allowing
to produce a truly random sequence! As a matter of fact, truly random sequences do
exist in Nature but they are not produced by classical finite systems or by computer
algorithms. We shall show in this course that it is very easy to produce a sequence of
random bits by a small quantum physical device; you can even buy such a device (see
figure 1.4).

2.2.2 Random variables and probability kernels

The mappings X used in the previous subsection are archetypal examples of ran-
dom variables. Let us recall the mathematical definition of a random variable.

Definition 2.2.1 (Random variable). Let (Ω,F ) be an abstract space of events, and
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(X,X ) a concrete space of events 1 (the space of outcomes). A function X : Ω → X

such that for every event A ∈ X of the space of outcomes, its inverse image is an event
of the abstract space (i.e. X−1(A) ∈ F ) is called (X-valued) random variable. When
the abstract space (Ω,F ) comes equipped with a probability ρ, the random variable X
induces a probability ν

ρ
X on (X,X ) (i.e. ν

ρ
X(A) = ρ({ω ∈ Ω : X(ω) ∈ A}), for A ∈ X ),

called the law (or distribution) of X.

Notation 2.2.2. The notation ν
ρ
X for the law of the random variable X can be simplified

to νX or simply ν when, from the context, it is clear which probability ρ and which
random variable X we are considering. Note also that in classical probability texts, the
probability ρ is usually denoted by P and the law of the random variable PX. We stick
to the more precise notation introduced in definition 2.2.1. Occasionally we shall also
use the notation X∗ρ or ρ ◦ X−1 as equivalent expressions for ν

ρ
X. Finally recall that

on finite spaces X, the probability ν
ρ
X is identified with a probability vector 2 on X, i.e.

ν
ρ
X : X→ [0, 1] with ∑x∈X ν

ρ
X(x) = 1.

Remark 2.2.3. The careful reader will certainly have noted that the probability mea-
sure ρ (or ν

ρ
X) is not a constituent of the definition of random variable: the only re-

quirement is (F ,X )-measurability of X. Nevertheless, every ρ ∈ M1(F ) uniquely
determines a ν

ρ
X ∈ M1(X ), the law of X.

Example 2.2.4. Let X = {0, 1}, X be the algebra of subsets of X, and νX({0}) =
νX({1}) = 1/2 the law of a random variable X (the honest coin tossing). A possible
realisation of (Ω,F , ρ) is ([0, 1],B([0, 1]), λ), where λ denotes the Lebesgue measure,
and a possible realisation of the random variable X is

X(ω) =

{
0 if ω ∈ [0, 1/2[
1 if ω ∈ [1/2, 1].

Notice however that the above realisation of the probability space involves the
Borel σ-algebra over an uncountable set, quite complicated an object indeed. A much
more economical realisation should be given by Ω = {0, 1},F = X , and ρ(0) = ρ(1) =
1/2. In the latter case the random variable X should read X(ω) = ω: on this smaller
probability space, the random variable is the identity function; such a realisation is
called minimal.

Exercise 2.2.5. (An elementary but important exercise)! Generalise the above minimal
construction to the case we consider two random variables Xi : Ω → X, for i = 1, 2.
Are there some plausible requirements on the joint distributions for such a construction
to be possible?

Notation 2.2.6. For every abstract space of events (Ω,F ), we denote by

mF = { f : Ω→ R; f random variable} and bF = { f ∈ mF : sup | f (ω)| < ∞}

1. Technically, both spaces are measurable spaces, i.e. F and X are σ-algebras of events. In order to
be able to define regular conditional distributions, we require the space X to be a Polish space (i.e. a
metrisable, complete, and separable space), a requirement that will be automatically be fulfilled since
we shall only consider the cases X = R or a discrete subset of R, in this course.

2. In the finite case, we often write ν
ρ
X(x) instead of ν

ρ
X({x}).
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the vector spaces of random variables and bounded random variables respectively. We
denote by mF+ or bF+ non-negative measurable or non-negative bounded measurable
functions. M1(F ) denotes the convex set of probability measures on F ; M+(F ) the
set of non-negative σ-finite measures andM(F ) the set of σ-finite measures.

Another important notion in probability theory is that of a stochastic kernel.

Definition 2.2.7 (Stochastic kernel). Let (W,W) and (X,X ) be two measurable spaces.
A map

W×X 3 (w, A)→ K(w, A) ∈ [0, 1],

such that

1. for each fixed w ∈W, the map K(w, ·) is a probability measure on (X,X ), and
2. for each fixed A ∈ X , the map K(·, A) is (W ,B([0, 1])-measurable,

is termed a stochastic kernel (or probability kernel, or transition kernel) from (W,W)

to (X,X ), denoted by (W,W)
K
 (X,X ). Notice that when W and X are finite sets,

the stochastic kernel K is in fact a matrix.

Definition 2.2.8. Let K be a probability kernel (W,W)
K
 (X,X ). For f ∈ mX+, we

define a function on mW+, denoted by K f , by the formula:

∀w ∈W, K f (w) =

ˆ
X

K(w, dx) f (x) = 〈K(w, ·), f 〉.

The function f ∈ mX+ is not necessarily integrable with respect to the measure
K(w, ·). The function K f is defined with values in [0,+∞] by approximating by step
functions. The definition can be extended to f ∈ mX by defining K f = K f+ − K f−

provided that the functions K f+ and K f− do not take simultaneously infinite values.

Definition 2.2.9. Let K be a probability kernel (W,W)
K
 (X,X ). For µ ∈ M+(W),

we define a measure ofM+(X ), denoted by µK, by the formula:

∀A ∈ X , µK(A) =

ˆ
W

µ(dw)K(w, A) = 〈µ, K(·, A)〉.

Note that the transition kernel (W,W)
K
 (X,X ) acts contravariantly on functions

and covariantly on measures. In the language of categories, the whole picture reads:

M(W) M(X )

(W,W) (X,X )

bW bX

M(K) := K

K

b(K) := K

M M

b b
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Notation 2.2.10. When the space X is denumerable (finite or infinite), we assume that
the σ-algebra X is the exhaustive one, i.e. X = P(X). Since singletons belong obvi-
ously to this X , we simplify notation by denoting K(w, x) := K(w, {x}). Similarly, if
ρ ∈ M1(X ), instead of writing ρ({x}) we simplify into ρ(x). Therefore, we identify
probability measures on denumerable sets with probability row 3 vectors and stochas-
tic kernels between denumerable sets with stochastic matrices K(w, x).

Example 2.2.11. (Kernel of a noisy channel). Suppose that an optical fibre connects
two distant positions in a network. Inputs are digitised signals (encoded in a binary
alphabet A = {0, 1}), and outputs are also digitised signals (encoded in a binary al-
phabet B ' A = {0, 1}). Since transmission is through a physical device (fibre), single
bits suffer a random noise. Thus a 0 input bit will be transmitted correctly to an output
bit 0 with probability P00 and erroneously to a 1 bit with probability P01 (verifying of
course P00 + P01 = 1. Similarly, input bit 1 will be transmitted correctly with probability
P11 and erroneously with probability P10. The matrix P = (Pab)a∈A,b∈B is an archety-
pal example of a stochastic transformation kernel, i.e. a matrix with non-negative el-
ements, whose every line sums up to 1, otherwise stated, every line is interpreted as
a probability on the output space. The matrix elements are interpreted as conditional
probabilities:

Pab = P(output bit = b|input bit = a).

If the input bits are randomly distributed according to the (row) probability vector ρ,
then we can compute the joint input-output distribution

κ(a, b) := P(input bit = a, output bit = b) = ρ(a)Pab

and the output (row) probability vector ν as the second marginal of the joint probabil-
ity: ν(b) = ∑a∈A κ(a, b) = ∑a∈A ρ(a)Pab, for b ∈ B.

In the same spirit, the observation of a given output influences the distribution of
the input. We can infer on this influence by computing the conditional probability

P(input bit = a|output bit = b) =
ρ(a)Pab

ν(b)
.

The formula of total probability guarantees that we recover

P(input bit = a) = ∑
b

P(input bit = a|output bit = b)ν(b) = ∑
b

ρ(a)Pab = ρ(a),

i.e. the marginal probability for the input equals the probability obtained as the weighted
sum of conditional probabilities given the possible outputs. The reader with basic
knowledge of probability theory may wonder why we are stating such elementary
facts here. The answer is “in order to stress them”, because this elementary formula
will not be any longer valid in the quantum case (see §2.6.2)!

3. The reason we insist in representing probabilities on a denumerable set W by a row vector is
that we view probabilities as linear functionals on the vector space of real random variables: the
probability measure ρ ∈ M1(W) acts on the real random variable X on W as the duality product
〈ρ, X〉 = ∑w∈W ρ(w)X(w) to give the expectation of X under ρ. In other words, the space of real ran-
dom variables on W is identified with RW and the expectation of X w.r.t. ρ is nothing else than the
product of the vectors ρX.
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2.3 Classical physics as a probability theory with a dy-
namical law

2.3.1 A motivating example: gambling with a classical die

Let Ω = {1, . . . , 6} and X = {−1, 0, 1}, thought as finite subsets of R — assumed
equipped with their exhaustive σ-algebras F = P(Ω) and X = P(X), thought as sub-
algebras of B(R) — and let X(ω) = (ω − 1) mod 3− 1 be a fixed X-valued random
variable on Ω. Think of this random variable as representing a sharp decision rule:
if the die shows up face ω, the gambler irrefutably wins X(ω) e. There are various
equivalent descriptions of the random variable X:

1. X can be thought as a vector of XΩ ⊂ RΩ:

X =


−1
0
1
−1
0
1

 ∈ XΩ ⊂ RΩ.

2. Plotting the graph of X, as in figure 2.1, we observe that the graph is also equiv-
alent to the matrix K ∈M|Ω|×|X|({0, 1}) with elements

K =


1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

 with elements K(ω, x) =

{
1 if X(ω) = x
0 otherwise.

We see immediately that K is a stochastic matrix (kernel), i.e. for all ω, the ωth

line sums up to 1, i.e. ∑x∈X K(ω, x) = 1. The significance of its matrix elements
is of the conditional probability

K(ω, x) = P(gain = x| die shows face ω).

Additionally, the stochastic matrix is of a very special type: in every line, there is
exactly one element that is 1, all other elements being 0. Such a stochastic kernel
is termed deterministic stochastic kernel. We have thus established that a X-
valued random variable on Ω is equivalent to a deterministic stochastic kernel
K between Ω and X; we denote it by KX if we wish to stress its equivalence to
X.

3. The matrix K := KX has |X| columns. Denote by E[x] its xth column (we may
write EX[x] instead of E[x] when we wish to stress that E is a column of the
stochastic matrix KX stemming from the random variable X). Then E[x] is a
vector in {0, 1}Ω ⊂ RΩ, i.e. a random variable. The value E[x](ω) = 1X−1(x)(ω)
represents the decision (yes or no) to the question “does the gambler win x?”
taken whenever the die shows up ω. There are some useful identities that we
can obtain:
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(a) It is immediate to see that the random variable X is reconstructed from
the collection of elementary questions (E[x])x∈X through the formula X =
∑x∈X E[x]x, meaning that for every ω ∈ Ω, we have

X(ω) = ∑
x∈X

1X−1(x)(ω)X(ω) = ∑
x∈X

EX[x](ω)x = ∑
x∈X

KX(ω, x)x.

These identities establish the fact that the datum X is equivalent to KX and
to the collection (E[x])x∈X.

(b) Let (εx)x∈X be the canonical basis of RX (written as row vectors), i.e.

ε−1 = (1, 0, 0), ε0 = (0, 1, 0), and ε1 = (0, 0, 1).

These row vectors are probability vectors on X and as a matter of fact the
extreme points of the convex set of probability vectors in M1(X). We can
now reconstruct K as 4

K = ∑
x∈X

E[x]⊗ εx,

meaning that for all (ω, A) ∈ Ω×X , we have

K(ω, A) = ∑
x∈X

E[x](ω)εx(A) = ∑
x∈A

K(ω, x).

(Recall that K has been defined as a random variable w.r.t. its first argument
and as a probability measure w.r.t. its second).

4. Since K represents a conditional probability, if ρ ∈ M1(Ω) is given (as a row
vector of RΩ), then we can compute the joint probability on Ω×X by:

P(die shows face ω, gambler wins x) = ρ(ω)K(ω, x).

From this formula follow

(a) the second marginal, i.e. the probability on X:

P(gambler wins x) = ν
ρ
X(x) = ∑

ω∈Ω
ρ(ω)K(ω, x) = ∑

ω∈Ω
ρ(ω)E[x](ω)

= 〈ρ, E[x]〉 = ρE[x] = E(E[x]),

(b) the expectation of E[x]

E(E[x]) = ∑
ω∈Ω

ρ(ω)E[x](ω) = ∑
ω∈Ω

ρ(ω)K(ω, x) = ν
ρ
X(x),

4. The symbol ⊗ stands for the tensor product. For A ∈ Mm,n(C) and B ∈ Mp,q(C), the tensor
product is the matrix A⊗ B ∈Mmp,nq(C) that can be written in block form as

A⊗ B :=

A11B . . . A1nB
...

...
...

Am1B . . . AmnB

 6=
AB11 . . . AB1q

...
...

...
ABp1 . . . ABpq

 = B⊗ A.

More precisely, the matrix elements of A⊗ B are given by (A⊗ B)rs = AijBkl , where r = (i− 1)p + k,
for 1 ≤ k ≤ p and s = (j− 1)q + l, for 1 ≤ l ≤ q and 1 ≤ i ≤ m, 1 ≤ j ≤ n. More details about tensor
products are given in §3.8.
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(c) the expectation of X

EX = ∑
ω∈Ω

ρ(ω) ∑
x∈X

E[x](ω)x = ∑
ω∈Ω

ρ(ω) ∑
x∈X

K(ω, x)x

= ∑
x∈X

ρKX(x)x = ∑
x∈X

ν
ρ
X(x)x,

(d) the reverse conditional law 5

P(die shows face ω| gambler won x) =
ρ(ω)E[x](ω)

〈ρ, E[x]〉 ,

(e) the formula of total probability

P(die shows face ω) = ∑
x∈X

P(die shows face ω| gambler won x)P(gambler won x)

= ∑
x∈X

ρ(ω)E[x](ω)

〈ρ, E[x]〉 〈ρ, E[x]〉 = ρ(ω).

The profound meaning of this formula is that the observation of the output
leaves the initial state of the system unchanged.

5. Denote by O and I the “zero” and “one” random variables respectively, defined
by O(ω) = 0 and I(ω) = 1; obviously we have O ≤ E[x] ≤ I component-wise.
If A is an arbitrary subset of X we write E[A] = ∑x∈A E[x], with E[X] = I and
E[∅] = O; if A ∩ B = ∅, then E[A t B] = E[A] + E[B]. As a matter of fact, E is a
probability measure taking as values random variables (of a particular type, i.e.
random variables that are indicators). Finally E[A]2 = E[A] (where the square
is computed component-wise); therefore (E[A])A∈X are projections.

6. The random variables (E[x])x∈X appearing in the above resolution of unity
are called sharp classical effects. The corresponding random variable X =
∑x∈X E[x], or equivalently its kernel K (or equivalently the collection of ques-
tions (E[x])x∈X), is called a sharp classical observable. (See precise definition
2.3.5 below).

Exercise 2.3.1. Denote by A, B, and C three coins: coin A is honest, coin B gives 1 with
probability 1/3 and coin B with probability 7/8. We toss coin A. If it shows 0, then the
second toss is performed again with coin A, else with coin B. If the two tosses have
shown equal faces, i.e. if 00 or 11 has occurred, the third tossing is performed with
coin C, else with coin A. Let Ω denote the minimal space allowing to model the face
outcomes during this experiment.

1. Give precisely Ω (assumed to be equipped with its exhaustive σ-algebra F ).
2. Determine the probability vector ρ ∈ M1(Ω,F ) induced by this experiment.
3. Let X : Ω → X := {0, 1, 2, 3} be random variable counting the number of 1’s.

Determine the stochastic kernel K describing this variable.
4. Determine the effects (E[x])x∈X.
5. Determine the probability vector ν

ρ
X.

6. Determine the conditional probability ρx(·).
5. We can write ρ(ω)E[x](ω) = E[x](ω)ρ(ω)E[x](ω) beacause E[x](ω) ∈ {0, 1}, hence E[x]2 = E[x].

The last form will be shown formally equivalent to the form we shall obtain in the quantum case.
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X(ω)

ω

−1

0

1

1 2 3 4 5 6

Figure 2.1 – The non-zero elements of the matrix K are depicted as coloured dots. The answer to the
question E[−1] (i.e. does the random variable X take the value −1?) is the yes-no-valued random
variable 1F, with F = X−1({−1}) = {1, 4}. Obviously, the collection (E[x])x∈X provides with a
partition of unity because

´
X

E[dx] := ∑x∈X E[x] = E[X] = 1Ω = I on Ω.

Exercise 2.3.2. The component-wise partial ordering in the set of indicator-valued
random variables {0, 1}Ω (defined by A ≤ B ⇔ A(ω) ≤ B(ω), ∀ω ∈ Ω) turns the set
{0, 1}Ω into a partially ordered set or poset (for details see chapter 13). For the case
|Ω| = 3, propose an arrangement of the elements of {0, 1}Ω on a plane so that the
order relation among them becomes graphically visible. What is the role played by the
random variables O and I?

The ideas developed in the previous paragraph can be extended to arbitrary ran-
dom variables provided they are defined and take values on adequate measurable
spaces. The example 2.3.3 suggests that a bijection between arbitrary random variables
and deterministic stochastic kernels prevails in the case (Ω,F ) ' (X,X ) ' (R,B(R))
or more generally whenever these spaces are standard Borel spaces (i.e. isomorphic to
Polish spaces).

Example 2.3.3. (Approximating a measurable function). Let (Ω,F ) ' (X,X ) ' (R,B(R))
and X : Ω → X a bounded Borel function. Standard integration theory states that X
can be approximated by simple functions. More precisely, for every ε > 0, there exists a
finite family (Fi)i of disjoint measurable sets Fi ∈ F and a finite family of real numbers
(xi)i such that |X(ω)−∑i xi1Fi(ω)| < ε for all ω ∈ Ω.

It is instructive to recall the main idea of the proof of this elementary result. Let
m = inf X(ω), M = sup X(ω), and subdivide the interval [m, M] into a finite family of
disjoint intervals (Aj)j, with |Aj| < ε (see figure 2.2).

For each j, select an arbitrary xj ∈ Aj; in the subset X−1(Aj) ∈ F , the values of X
lie within ε from xj. Therefore, we get the desired result by setting Fj = X−1(Aj). If
for every Borel set A ∈ X , we define E[A] = 1X−1(A) (this is a random variable!), the
approximation result can be rewritten as

|X(ω)−∑
j

xjE[Aj](ω)| < ε, ∀ω ∈ Ω.
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ω

X(ω)

F(1)
j F(2)

j F(3)
j

xj Aj

Figure 2.2 – The approximation of a bounded measurable function X by simple functions. Observe
that X−1(Aj) = F(1)

j ∪ F(2)
j ∪ F(3)

j = Fj. In the figure, we depict the summand E[Aj]xj of the
decomposition X = ∑j E[Aj]xj. For any xj ∈ Aj and any ω ∈ Fj we have |X(ω)− xj| < ε.

Now, E is a set function-valued random variable (a probability measure-valued ran-
dom variable actually) and the sum ∑j E[Aj]xj tends to

´
E[dx]x. More precisely, the

function X is equivalent to the deterministic stochastic kernel K from (Ω,F ) to (R,B(R)),
defined by the formula

Ω×B(R) 3 (ω, A) 7→ K(ω, A) = E[A](ω) = 1X−1(A)(ω) = εX(ω))(A) = εω(X−1(A)).

The kernel K acts (to the right) on positive measurable functions g defined on X by:

Kg(ω) =

ˆ
X

K(ω, dx)g(x) =
ˆ

X

E[dx](ω)g(x) =
ˆ

X

εX(ω)(dx)g(x) = g(X(ω)).

In particular, if g = id then we recover the formula X =
´

X
E[dx]x established above.

If the space (Ω,F ) carries a probability measure P, then the space (X,X ) acquires
also a probability measure PX, the law of X, determined through the standard trans-
port formula

PX(A) = PK(A) =

ˆ
Ω

P(dω)K(ω, A) =

ˆ
Ω

P(dω)E[A](ω) = E(E[A]).

That means that the law PX is disintegrated into
´

Ω P(dω)K(ω, A), i.e. conditioning
arises as disintegration. Assuming that the spaces (Ω,F ) and (X,X ) are standard
Borel spaces, the existence of a disintegration in terms of the conditional probabilities
encoded in KX is proven in [35, theorems 1 and 2].

We are now in position to proceed with the general case.

Remark 2.3.4. As stressed in remark 2.2.3, the pertinent property in the defintion of
a random variable X is the measurability of the map X : Ω → X. Suppose that the
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X contains all singletons. It is then elementary to show [32] that the datum of X is
equivalent to the datum of a deterministic Markovian kernel KX : Ω × X → [0, 1]
such that KX(ω, A) = εX(ω)(A) = 1X−1(A)(ω) = 1A(X(ω)). The kernel K := KX acts
to the right on the vector space bX : bX 3 f 7→ K f ∈ bF the right hand side being
defined by the formula

K f (ω) :=
ˆ

X

K(ω, dx) f (x) ∈ bF , ∀ω ∈ Ω,

and to the left on the convex setM1(F ), by

M1(F ) 3 µ 7→ µK(A) :=
ˆ

Ω
µ(dω)K(ω, A) ∈ M1(X ), ∀A ∈ X .

Now for every A ∈ X , the kernel K(·, A) is a random variable defined on (Ω,F ). On
denoting E[A] := EX[A] the random variable 6 defined by

E[A](ω) := K(ω, A) = 1A(X(ω)) = 1A ◦ X(ω), A ∈ X ,

we verify that the set function defined on F = B(R) by

B(R) 3 A 7→ E[A] = 1X−1(A) ∈ bF

is positive, majorised by E[X] = I, where I is the constant 1 random variable I(ω) = 1,
and by monotone convergence σ-additive. Hence, E[·] is a random-variable-valued
probability. Morover, E has the following properties

1. E is multiplicative: i.e. E[B ∩ C] = E[B]E[C] for all B, C ∈ B(R) (hence E is
idempotent),

2. E is supported by Ran(X): i.e. E[A] ≡ 0 for all A ∈ B(R) such that A∩Ran(X) =
∅.

Therefore E is a projection and, in particular, from 2, if B ∩ C = ∅ then E[B]E[C] = 0.

2.3.2 Sharp classical effects and observables

Definition 2.3.5. Let (Ω,F ) be an abstract measurable space and (R,B(R)) the con-
crete Borel space on the reals.

1. Define a set function 7 E : B(R)→ bF by

B(R) 3 A 7→ E[A] ∈ {0, 1}Ω ⊂ bF

such that E is

(a) normalised: E[R] = I.
(b) multiplicative: E[B ∩ C] = E[A]E[B] (hence idempotent: E[A]2 = E[A] for

all Borel sets A).

6. We use this special notation to remind constantly to the reader that E[A] is still a function — a
random variable actually — that must be evaluated at a given point ω to give the number E[A](ω) ∈
{0, 1}.

7. This function verifies, for all A ∈ B(R), the inequalities O ≤ E[A] ≤ I (the inequalities holding
component-wise).
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(c) σ-additive: for any disjoint sequence (An)n∈N of Borel sets, we have E[tn∈NAn] =
∑n∈N E[An],

The probability measure E on(R,B(R)) — defined above — taking as values
{0, 1}-valued random variables, is called a sharp classical effect over (Ω,F ).
The set of sharp classical effects over (Ω,F ) is denoted by Es(Ω,F ). If E ∈
Es(Ω,F ) is a fixed sharp classical effect, then X =

´
R

E[dx]x defines a real val-
ued random variable on (Ω,F ) by X(ω) =

´
R

E[dx](ω)x. Such a random vari-
able is called a sharp classical observable. The set of sharp classical observables
over (Ω,F ) is denoted by Os(Ω,F ); it is isomorphic to the vector space RΩ.

2. If E ∈ Es(Ω,F ) is a fixed sharp classical effect (or equivalently X a sharp classi-
cal observable), the stochastic kernel defined in the previous item, can be recon-
structed 8 as K =

´
R

E[dx]⊗ εx. Since deterministic kernels are in bijection with
random variables, the kernel is also called sharp classical observable.

3. Reciprocally, when a real valued random variable X is given on (Ω,F ), then
there exists a sharp effect E associated with X defined by E[A] = 1X−1(A).

4. If X is the observable associated with the effect E, then the measure E is sup-
ported by the set of outcomes X = im(X) = X(Ω), i.e. E[A] = O for all Borel
sets A, such that A ∩ im(X) = ∅.

The quantity E[A] appears in various disciplines; what renders it a little mysterious
is that every discipline uses a different term for it. Depending on the context, E[A] is
called

— a question or a sharp effect or a yes-no experiment (in quantum mechanics)
because the random variable E[A] can be interpreted as questioning whether

the event {X ∈ A} occurs and its possible values (answers) are 0 or 1,
— a projective resolution of the identity (in measure theory) since E[A]2 = E[A]

for all A ∈ B(R) (hence it is a projection) and
´

R
E[dx] = E[R] = I, where I is

the constant random variable defined by I(ω) = 1 for all ω ∈ Ω (hence it is a
resolution of identity),

— a spectral projection (in functional analysis) because it is a projection and its
“spectral” nature will become apparent later (see a simple example in the sub-
paragraph Interpretation of postulate 2.6.4 and a more general development in
§12.5),

— a deterministic decision rule (in mathematical statistics) for reasons that will
become apparent later (see question 2 of exercise 2.5.3),

— a crisp set (in fuzzy logic); since for all A ∈ B(R), the indicator-function-valued
probability E[A] can be interpreted as the membership in the set A, the set A is
a crisp set. (See remark 2.3.9 below).

2.3.3 Unsharp classical effects and observables

This paragraph is a motivation for the notions of unsharp quantum effects and
observables introduced in page 52. In quantum cryptography, contrary to classical
one, an eavesdropper intrusion in the communication channel disturbs necessarily the

8. The meaning of this formula is that when applied on (ω, A) ∈ Ω × X , we get K(ω, A) =´
X

E[dx](ω)εx(A).
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transmitted message; to analyse precisely the relationship between information gain
and induced disturbance the notion of quantum unsharp effect is needed. Since these
notions will not be used before §6.5, this paragraph can be omitted in first reading.

Suppose now that K is a genuine (non-deterministic) stochastic kernel between
(Ω,F ) and (X,X ), i.e. for every ω ∈ Ω, the probability K(ω, ·) ∈ M1(X ) is not
extremal. We can again consider for each A ∈ X the random variable E[A] defined by
E[A](ω) = K(ω, A). For X ⊂ R and X ⊆ B(R), the map E : B(R)→ bF defined by

B(R) 3 A 7→ E[A] ∈ [0, 1]Ω ⊂ bF

verifies the properties of a sharp effect but multiplicativity (hence projection).

Definition 2.3.6. Let (Ω,F ) be an abstract measurable space and (R,B(R)) the con-
crete Borel space on the reals.

1. Define a set function E by

B(R) 3 A 7→ E[A] ∈ bF

verifying O ≤ E[A] ≤ I for all A ∈ B(R) such that
(a) E is normalised: E[R] = I.
(b) E is supermultiplicative: E[A ∩ B] ≥ E[A]E[B] (hence powers are contract-

ing: E[A]2 ≤ E[A] for all Borel sets A).
(c) E is σ-additive: for any disjoint sequence (An)n∈N of Borel sets, we have

E[tn∈NAn] = ∑n∈N E[An],
The probability measure E defined on (Ω,F ) taking as values [0, 1]-valued ran-
dom variables is called a (unsharp) classical effect over (Ω,F ). The set of clas-
sical effects over (Ω,F ) is denoted by E(Ω,F ), with Es(Ω,F ) ⊂ E(Ω,F ).

2. With any fixed classical effect E ∈ E(Ω,F ) we can associate a genuine (gener-
ally non-deterministic) stochastic kernel K, defined by K =

´
R

E[dx]⊗ εx. (The
meaning of this formula is that when applied on (ω, A) ∈ Ω × B(R), we get
K(ω, A) =

´
R

E[dx](ω)εx(A)). The kernel K is termed an R-valued (unsharp)
classical observable. The set of classical observables over (Ω,F ) is denoted by
O(Ω,F ).

Remark 2.3.7. If E ∈ E(Ω,F ) \ Es(Ω,F ), the random variable X =
´

X
E[dx]x —

provided that the function x 7→ x is integrable with respect to the probability E —
can again be constructed. Nevertheless, X is not any longer in bijection with K =´

R
E[dx]⊗ εx; instead, X is corresponds to a conditional expectation (see exercise 2.3.8).

Exercise 2.3.8. (Gambling with a die according to a randomised decision rule). Con-
sider the spaces Ω and X introduced in §2.3.1 but with a genuine stochastic matrix 9

K =


2/3 0 1/3

0 1 0
1/3 0 2/3
2/3 0 1/3

0 1 0
1/3 0 2/3

 leading to the effects E[−1] =


2/3

0
1/3
2/3

0
1/3

 , E[0] =


0
1
0
0
1
0

 , E[1] =


1/3

0
2/3
1/3

0
2/3

 .

9. Think of a randomised decision rule as induced by an experimental uncertainty. Suppose that
every time the die is thrown, a LED display marks −1, 0, or 1, but the − sign LED of the display is
defunct: when a − sign must be displayed, with probability 1/3 the LED stays off, and conversely,
when it must not be displayed with probability 1/3 the LED turns on.
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1. Determine the random variable X = ∑x∈X E[x]x.
2. Determine the deterministic stochastic kernel L associated with X and verify

that L 6= K.
3. Show that along with the column decomposition K = ∑x∈X E[x] ⊗ εx, we can

also decompose K line-wise: K = ∑ω∈Ω eω ⊗ ν[ω], where ν[ω] is the row proba-
bilty vector on X associated with the ωth line of K and eω ∈ RΩ the ωth column
unit vector of RΩ.

4. Use the previous line decomposition of K to interpret the values −1, 0, 1 as a
randomised gain G corresponding to the gambling with this die.

5. Show that X = E(G|F ).

Remark 2.3.9. In set theory, a (crisp) set A is a precisely determined collection of el-
ements, i.e. for any a, we can unambiguously determine whether it belongs to A or
not. It is therefore clear that a set A can be identified with its indicator 1A, taking val-
ues in {0, 1}. The sharp effects being precisely indicators, they correspond to a crisp
delimitation of the indexing set A.

Now, when sets are used to model physical objects, things may be less clear-cut
than the previous situation. Think, for instance, of the atmosphere: it is usually stated
that the atmosphere is a thin 10 gaseous mantle with a thickness of 10 km above Earth’s
surface. Does it mean that a molecule of oxygen at 9999.9999 m from the surface be-
longs to the atmosphere and another at 10000.0001 m not? If you have some doubts
look at the photograph 2.3 of a sunset taken from ISS and read carefully the caption of
that figure.

Figure 2.3 – Photograph of a sunset taken from the International Space Station. The atmosphere
is the blueish mantle above the Earth’s surface. Instead of a membership function associated with
an indicator falling sharply from 1 to 0, a more appropriate description of the membership function
is that of a function falling smoothly from 1 to 0, the point where its value is 1/2 corresponding
to approximately a distance of 10 km from Earth. Identification of a (fuzzy) set with its smooth
membership function is known as fuzzification.

In summarising, any sharp classical observable X on (Ω,F , ρ) is associated with a
projection-valued probability measure (PVM) E := EX supported by the set X = X(Ω),
also known as the spectrum of X. Conversely, any PVM E supported on some set X ⊆
R uniquely determines a sharp classical observable X. Therefore, for classical sharp

10. Its thickness of 10 km must be compared with the radius of the Earth, ca. 6000 km.
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Figure 2.4 – Example of sharp (left) and fuzzy (right) effects (E[c])c∈{red, blue} on Ω = [0, 1].

observables, X and the corresponding PVM EX are both called abusively sharp classical
observables. Unsharp classical observables on the contrary are merely defined in terms
of their stochastic kernel (or equivalently in terms of the corresponding unsharp effect
E that is a positive random variable valued measure. This distinction will remain valid
in the quantum case.

2.3.4 Postulates for classical systems

To describe a physical system, we need a scene on which the system is physically
realised and where all legitimate questions we can ask about the system receive def-
inite answers. This scene is called phase space in classical physics. Nevertheless, the
only objects having physical pertinence are the family of questions we can formulate
about the system and the answers we receive in some very precise preparation of the
system. From this conceptual view, the classical phase space shares the same indeter-
minacy as the probability space. The only objects having physical relevance are the
physical observables (as is the case for random variables in probability theory). In the
same way a random variable is determined merely through its space of outcomes and
its law, a given physical system can be described by different phase spaces; if the ques-
tions formulated about the system are identically answered within the two descrip-
tions, then we say the system admits different but mathematically equivalent physical
realisations.

Example 2.3.10. (Dice rolling by the mathematician) Let the physical system be a die
and the complete set of questions to be answered the family (E[x])x=1,...,6 where E[x]
stands for the question: “When the die lies at equilibrium on the table, does the top
face read x?” An obvious choice for the phase space is Ω = {1, . . . , 6}. The random
variable X corresponding to the physical observable “value of the top face” is realised
by X(ω) = ω, ω ∈ Ω, the questions read then E[x] = 1{X=x}, for x = 1, . . . , 6, and
X = ∑x∈X E[x]x.

Example 2.3.11. (Dice rolling by the layman) Consider the same space of outcomes
as in example 2.3.10 and the same set of questions but think of the die as a solid body
that can evolve in the space. To completely describe its state, we need 3 coordinates
for its barycentre, 3 coordinates for the velocity of the barycentre, 3 coordinates for
the angular velocity, and the direction of the unit exterior normal at the centre of face
“6”. Thus, Ω = R9 × S2. Now the realisation X : Ω → {1, . . . , 6} is much more
involved (but still possible in principle) and the questions are again represented by
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E[x] = 1{X=x}, for x = 1, . . . , 6. Additionally, again X = ∑x∈X E[x]x, but we don’t
even dare to write down the explicit function X : Ω → X realising this experiment.
Yet, the phase spaces given here and given in example 2.3.10 provide us with two
different but mathematically equivalent physical realisations of the system “die”.

Postulate 2.3.12 (Phase-space). The phase space of a classical system is an abstract mea-
surable space (Ω,F ). Events of this space correspond to measurable sets F ∈ F . When two
systems, respectively described by (Ω1,F1) and (Ω2,F2) are merged and considered as a sin-
gle system, their phase space is (Ω1×Ω2,F1⊗F2), whereF1⊗F2 is the σ-algebra generated
by F1 ×F2.

Before continuing with the postulates, it is instructive to study the convexity prop-
erties of the set of probability measuresM1(Ω,F ). Obviously, it is a convex set, i.e. of
µ1, µ2 ∈ M1(Ω,F ) and α ∈ [0, 1] then µ = αµ1 + (1− α)µ2 ∈ M1(Ω,F ).

Definition 2.3.13. A probability µ ∈ M1(Ω,F ) is called extremal if it cannot be non-
trivially written as a convex combination of other probability measures, i.e. if µ =
αµ1 + (1− α)µ2 ∈ M1(Ω,F ) with some α ∈]0, 1[, then necessarily µ1 = µ2 = µ. The
set of extremal points is denoted by ∂eM1(Ω,F ) or extrM1(Ω,F ).

The following lemma gives a practical method to test extremality.

Lemma 2.3.14. A probability µ is extremal if, and only if, for all F ∈ F we have µ(F) ∈
{0, 1}.

Proof. [⇐: ] Suppose that for all F ∈ F we have µ(F) ∈ {0, 1} and µ is non-trivially
decomposable µ = αµ1 + (1− α)µ2 for some α ∈]0, 1[ and µ1, µ2 ∈ M1(Ω,F ).
Now, if F is such that µ(F) = 0, then 0 = µ(F) = αµ1(F)+ (1− α)µ2(F) and both
terms in the last part of the equality are non-negative. Hence both must vanish
and since neither α nor 1− α vanish, it must be µ1(F) = µ2(F) = µ(F) = 0. If F
is such that µ(F) = 1, then again the equality 1 = µ(F) = αµ1(F) + (1− α)µ2(F)
can be satisfied only if µ1(F) = µ2(F) = µ(F) = 1 because both α and 1− α are
strictly less than 1. In summarising, for every F ∈ F , we have µ1(F) = µ2(F) =
µ(F), concluding to the extremality of µ.

[⇒: ] If µ ∈ ∂eM1(Ω,F ), without verifying µ(F) ∈ {0, 1} for every F ∈ F , then
there exists some F0 with 0 < α := µ(F0) < 1. Define then for all F ∈ F ,

µ1(F) =
1

µ(F0)
µ(F ∩ F0) and µ1(F) =

1
1− µ(F0)

µ(F ∩ Fc
0).

With these definitions, we can write µ(F) = αµ1(F) + (1− α)µ2(F) for all F ∈
F , with α ∈]0, 1[. Now µ1(F0) = 1 while µ2(F0) = 0 meaning that µ1 6= µ2
and we have a non-trivial convex decomposition of µ. But this constitutes a
contradiction because µ has been supposed extremal.

Corollary 2.3.15. We have that {εω , ω ∈ Ω} ⊆ ∂eM1(Ω,F ).
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Nevertheless, we have not the converse inclusion in general. For instance consider
the case where F = {∅, F, Fc, Ω} with |F| ≥ 2 and |Fc| ≥ 2. Then the probability
verifying µ(F) = 1 and µ(Fc) = 0 is extremal but it cannot be written as a Dirac mass.

The following proposition gives the conditions under which the reverse inclusion
holds.

Proposition 2.3.16. If F
1. is separable — or denumerably generated — (i.e. there exists a sequence 11 (Fn)n∈N

such that F = σ{Fn, n ∈N}) and
2. contains all singletons {ω},

then {εω , ω ∈ Ω} = ∂eM1(Ω,F ).

Proof. It is enough to show the inclusion ∂eM1(Ω,F ) ⊆ {εω , ω ∈ Ω}. We shall show
in fact that any µ ∈ ∂eM1(Ω,F ) coincides with a Dirac mass.

Suppose µ ∈ ∂eM1(Ω,F ). Then, for all n ∈N, we have µ(Fn) ∈ {0, 1}. Define

Gn =

{
Fn if µ(Fn) = 1
Fc

n if µ(Fn) = 0.

Consequently, µ(Gn) = 1 for all n, hence µ(∩n∈NGn) = 1, i.e. H := ∩n∈NGn 6= ∅.
We shall show that the set H, supporting the measure µ, cannot contain more than one
element either. Consider in fact the family of sets G (a sub-σ-algebra of F as a matter
of fact) verifying

{Fn, n ∈N} ⊂ G := {A ∈ F : A ∩ H = ∅ or H ⊆ A} ⊆ F .

Since F = σ{Fn, n ∈N}, it follows that G = F . Now F contains all singletons. Hence
for every ω either {ω} ∩ H = ∅ or H ⊆ {ω}. Hence H must be a singleton.

Corollary 2.3.17. If (Ω,F ) = (Rd,B(Rd)) or Ω is finitely or infinitely denumerable and
F = P(Ω) then {εω , ω ∈ Ω} = ∂eM1(Ω,F ). More generally, the same result holds if
(Ω,F ) is a standard Borel space.

In the sequel, only phase spaces in one of the class covered by the previous corollary
2.3.17 will be considered.

Postulate 2.3.18 (States). The set S of states of a classical system is the convex set of prob-
ability measures on (Ω,F ). Pure states Sp are the extremal points of S; they correspond to
Dirac masses, i.e. Sp ∼= {εω , ω ∈ Ω}.
Postulate 2.3.19 (Evolution). Any time evolution of an isolated classical system is im-
plemented by an invertible measurable transformation T : Ω → Ω leaving the set of states
invariant, i.e. for every ρ ∈ S, we have T∗ρ := ρ ◦ T−1 ∈ S.

In 2.3.19, the measurability of T is required but not of T−1. It is not generally true
that the inverse map is also measurable. However, for T bijective (in fact injective) and
(Ω,F ) a standard Borel space, one can show — though not so straightforwadly (see
[93, §15.A], for instance) — that T−1 is also measurable.

11. Note that such a sequence is not unique!
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Preparation of
system in state ρ

Instrument, de-
signed to measure
effect E, interact-
ing with system

Registering out-
come of effect E

Figure 2.5 – A large ensemble of N identical systems are prepared in the same state ρ. Every system
interacts with an ad hoc instrument specially designed to measure the possible outcomes of a given
effect E. A single system of the ensemble gives a single outcome possibly different from another
system of the ensemble. The frequencies of outcomes falling in the set A converge, when N → ∞,
towards the probability ν

ρ
E(A).

Postulate 2.3.20 (Effects and observables). The sets of effects and observables are respec-
tively the sets E(Ω,F ) and O(Ω,F ) defined in 2.3.6. The set Os(Ω,F ) of sharp observ-
ables of a classical system is the set of real random variables X ∈ mF (with space of outcomes
(X,X ) = (R,B(R))). The corresponding set Es(Ω,F ) of sharp effects or questions are the
extremal points of E(Ω,F ); they are of the form E[A] : Ω → {0, 1} and any X ∈ Os(Ω,F )
can be decomposed into its complete set of questions through X =

´
x∈R

E[dx]x.

Postulate 2.3.21 (Measurement). Measuring an effect E ∈ E when the system is prepared
in state ρ ∈ S corresponds in determining the possible values of its outcomes — i.e. answers 0
or 1 — and the distribution with which those outcomes occur, given by the probability measure
ν

ρ
E ∈ M1(X ), defined by ν

ρ
E(A) = E(E[A]) =

´
Ω ρ(dω)E[A](ω) = 〈ρ, E[A]〉 =: ρE[A],

for all A ∈ X .

Hence a classical experiment designed to measure an effect E can always be thought
as as the sequence of operations shown in the figure 2.5.

Exercise 2.3.22. (Convexity of the set of effects). Let (Ω,F ) be an abstract measurable
space. Show that

1. E(Ω,F ) is convex and
2. extr(E(Ω,F )) = Es(Ω,F ).

Exercise 2.3.23. Let ρ ∈ S be a state on (Ω,F ), X ∈ Os a X-valued random variable
(X ⊆ R), and E[A] the question 1A ◦ X for some fixed A ∈ B(R).

1. Compute the expectation of E[A] w.r.t. ρ.
2. What happens if ρ is a pure state?
3. What happens if (Ω,F ) is minimal for the random variable X?

Solution: We have already established in example 2.3.3 that E(E[A]) = ν
ρ
X(A). We

compute further:

1. ρE[A] =
´

Ω 1{X∈A}(ω)ρ(dω) =
´

Ω 1A(X(ω))ρ(dω).
2. If ρ = εω0 for some ω0, then ρE[A] =

´
Ω 1{X∈A}(ω)εω0(dω) = 1A(X(ω0)) =

ν
ρ
X(A) ∈ {0, 1}. This result means that when measuring a sharp observable in a

pure state, any measurable set of the space of outcomes, either occurs with cer-
tainty or almost surely does not occur. This is a far reaching result establishing
the reducibility of the classical randomness.
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3. If the space is minimal for X, then X(ω) = ω and we get respectively: ρE[A] =´
Ω 1A(X(ω))ρ(dω) = ρ(A) for arbitrary state P and ρE[A] = εω0(A) in case of

a pure state ρ = εω0 . �

Exercise 2.3.24. What is the minimal phase space for a mechanical system composed
by N point particles in dimension 3?

2.3.5 Interpretation of the postulates for classical systems

We stick to example provided by the physical system “die”.

Phase space. From what is explained previously, we can use as phase space the
set Ω = {1, . . . , 6}, equipped with its exhaustive σ-algebra F = P(Ω). All
pertinent questions we can formulate on the system “die” can thus receive a
definite answer. Events correspond to F -measurable subsets of Ω.

States. The state of the system corresponds to the preparation of the physical sys-
tem, i.e. the precise probability measure ρ ∈ M1(Ω,F ). A die is called honest
if it comes out from the factory prepared in the state ρ with ρ(ω) = 1/6, for all
ω ∈ Ω. But any other probability is an admissible state of the die. There is a
statistical way to describe the state ρ: if we receive a load of N identically pre-
pared dice, throw them, and denote by N(ω) the number of dice having given
outcome ω, with ω ∈ Ω, when they were thrown. Then, limn→∞

N(ω)
N = ρ(ω),

by the law of large numbers.
Suppose now that we have two types of loads of dice delivered by the factory,
N1 in state ρ1 and N2 in state ρ2 and mix all N = N1 + N2 of them in an urn. Dice
are chosen randomly from the urn, thrown, and the numbers N(ω) where the
face ω is observed are registered. Then limN→∞

N(ω)
N = pρ1(ω) + (1− p)ρ2(ω),

where p = limN→∞
N1
N and 1− p = limN→∞

N2
N , with p ∈ [0, 1]. We have thus

prepared a new die system into a state, convex combination of the two previous
ones. Therefore convexity ofM1(Ω,F ) is not merely a mathematical property
of the set of states, it is associated directly with the physical preparation of the
system; it allows by mixing in different proportions systems prepared in given
states, to obtain statistical ensembles that can be in any possible state.

Evolution. The physical realisation of the system die is irrelevant. Usually a die
is thought as a standard cubic die. However, throwing a cubic die and waiting
for its stopping on the table does not describe an isolated system! The solid
body “die” must lose all its kinetical energy by transforming it into heat when
it meats the plastic surface of the table. To speak about an isolated system, we
have to think of another realisation. For instance, a frictionless hexachromatic
perfectly rigid ball whose 6 coloured regions on its surface have equal area is
another possible physical realisation of a honest die 12. Isolated evolution of this
die, corresponds to gently rolling the ball on a frictionless table. The “output”

12. Another possible realisation of an isolated system correspond to a cubic die launched in the outer
space from the spatial station. The die rotates about itself without friction in the interstellar space. The
outcome of the die is identified with the face of the die having the largest projection area on the space
station window. Since the motion of the die is free, the sequence of the “outcomes” are a permutation
over the states {1, . . . , 6}.
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of this new “die” is the colour of the area containing at each moment the unique
point of the ball in contact with the table. Sampling the colour of the contact
point at every second — say — implements a mapping T : Ω → Ω that is
measurable and reversible. Reversible means that if a film shows this evolution
as the time passes or during its rewinding, the two animations are physically
indistinguishable. There is no physical way to distinguish the evolution T from
its inverse T−1. Now since T is a measurable map from Ω into Ω, it is a Ω-valued
random variable on Ω. Hence it can also be represented by a stochastic kernel
— in fact a matrix if Ω is finite — KT that must invertible; hence a permutation.

Effects and observables. The example of gambling with a classical die, presented
in §2.3.1, gives a precise description of what a sharp effect is, while the example
of a randomised die given in §2.3.3, of what an unsharp effect is.

Measurement. As explained in §2.3.1, the probability, ν
ρ
X, on the outcome space

X ⊆ R is given, for a sharp observable X, by

ν
ρ

E[x](x) = ρ(X−1(x)) = ∑
ω∈Ω

ρ(ω)E[x](ω) = 〈ρ, E[x]〉.

Consider now the significance of the quantity

ρ(ω)E[x](ω) = ρ(ω)K(ω, x) = P(die shows face ω; gain is x};

i.e. it represents the joint distribution of die outcome and gambler’s gain. With
this interpretation, we can compute
— the a posteriori probability on X as second marginal: ν

ρ
X(x) = ∑ω∈Ω ρ(ω)E[x](ω),

— the a priori probability on Ω as the first marginal: ρ(ω) = ∑x∈X ρ(ω)E[x](ω),
— the conditional probability for the die showing face ω given that the gain has

been x:

ρx(ω) := P(die shows ω|X = x) =
ρ(ω)E[x](ω)

〈ρ, E[x]〉 =
E[x]ρ(ω)E[x](ω)

〈ρ, E[x]〉 .

Thus the joint probability can also be expressed through the formula

P(die shows ω; X = x) = ρx(ω)〈ρ, E[x]〉

so that by applying the formula of total probability we get consistently

P(die shows ω) = ∑
x∈X

P(die shows ω; X = x)

= ∑
x∈X

ρx(ω)〈ρ, E[x]〉 = ∑
x∈X

ρ(ω)E[x](ω) = ρ(ω).

With this formula, it becomes apparent that ν
ρ

E[x] is obtained as the second marginal
of the joint probability and we get a totally coherent system of probabilities
thanks to the formula of total probability that holds in the classical setting. It
is precisely this statement that fails in the quantum setting and gives so an un-
usual and counter-intuitive interpretation of quantum mechanics.

We conclude this paragraph by another extremely trivial looking example. Its raison
d’être here is that it will turn to the most awkward example when considered in the
quantum setting (see example 2.6.6).
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Example 2.3.25. (A classical Gedankenexperiment 13). Suppose a lorry has uncharged
a huge amount, N, of dice, guaranteed by the producing factory to give outcomes
distributed according to a known probability vector ρ (e.g. uniform). Consider the
following experiment. We consider the random variable X : Ω → X ' Ω defined by
X(ω) = ω and for some fixed x ∈ {1, . . . , 6}, ask the question E[x] meaning “does
the die show face x?” We group dice according to the response we got to the previous
question. If we got answer “yes”, we place the die in the group of “yes answerers” and
if not to the group of “no-nswerers”. When the question has been asked to all the N
dice, we get a group of N[x] yes-answerers and a group of N − N[x] no-answerers. Of
course, both experimental practice and elementary probabilistic reasoning show that
the proportion N[x]/N is approximately equal to ρ(x). Now, ask the same question
but only to the subgroup of “yes-answerers”. (Assume that the initial amount N was
so large that N[x] is also a huge number and proceed as before to form a sub-group
of “yes-yes-answerers” and a subgroup of “yes-no-answerers” according to the their
response to the second question and denote by N[xx] the number of yes-yes answers.
Experimental practice and standard probabilistic reasoning give of course N[xx]/N[x]
approximately equal to ρ(x) and N[xy]/N[x] ' ρ(y).

2.4 Classical physics does not suffice to describe Nature!

Quantum mechanics has been introduced in the 1930’s to explain physical phe-
nomena without classical description. Therefore, there are numerous experiments in
the early years of the 20th century having only quantum explanation. The present
notes are not intending to present an historical development of quantum theory but
to provide the (non-physicist) reader with a feeling of the deadlocks reached by classi-
cal physics. The most famous experiment of this type is the “double slit” experiment,
popularised by the Nobel Prize winner — and unparalleled pedagogue — Richard
Feynman in his memorable 14 6th (out of a series of seven “Messenger lectures”) he
gave at Cornell university in 1964 and intended to more “profane” an audience than
his Lectures on Physics taught at Caltech [58].

Suppose that a plane wave of wavelength λ reaches a wall pierced with two slits
whose distance is of the order of magnitude λ. Suppose further that a screen is placed
parallel to the wall at a large distance D from it (see figure 2.6). Classical wave prop-
agation predicts that the amplitude (hence intensity) of the wave at different points of
the screen follows a standard interference fringes pattern.

Now suppose that macroscopic classical material particles, for instance gun bullets,
are sent on the wall. If the lower slit is closed and the upper open, then on the screen,
we observe a Gaussian distribution of the density of particle impacts centred at the
point in front of the open slit as depicted in figure 2.7 below. When the two slits are
open the density of the impact points follows a distribution obtained as a superposition

13. The term Gedankenexperiment — introduced by Einstein — means literally thought experiment. It
is used to describe a powerful epistemological method of logically inferring on the possible results one
would obtain if the experiment should be actually performed.

14. Whose video recording can be found on https://www.youtube.com/watch?v=f27bh4CIky4.
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λ

ridge lines of plane wave

D � λ

ampltude
δ

Figure 2.6 – Schematic setting of the double-slit experiment for waves. The amplitude of the wave
at every point of the screen depends on the difference δ between the lengths of the paths between
the slits and the screen. When δ = nλ (for integer n), the amplitude has a local maximum, when
δ = (n + 1

2 )λ then the amplitude vanishes. The continuous variation of the amplitude between
these extremes gives rise to the built-up of the characteristic interference fringes observed in the wave
scattering case. Notice that the picture above is not in scale! The distance between two successive
maxima of the amplitude should be equal to λ.

of two Gaussians.

Turn now to the experiment where instead of macroscopic gun bullets we use elec-
trons as projectiles 15, sent one by one to the screen. If only one slit is open, then the
density of individual impact points follows a Gaussian distribution. Therefore, we
have the confirmation that electrons are material particles that hit the screen individu-
ally. Now, when the two slits are open, we get the very awkward distribution of impact
points depicted in figure 2.8. A recent realisation of the experiment is described in [6],
where a video recording of the impact points on the screen is proposed. We observe
that the number of impacts per unit area tends to a continuous distribution reminiscent
of the interference fringes observed for waves. Therefore, microscopic particles (elec-
trons) behave in some respects as particles (when only one slit is open) and in some
other as waves (when the two slits are open). This behaviour cannot be explained by
classical physics but is perfectly explainable by the formalism of quantum physics. Of
course, there exists a long list of other experiments unexplainable in classical physics
but perfectly well explained within quantum physics (e.g. EPR correlations, tunnel
effect, stability of atoms, laser — i.e. light amplification by stimulated emission of ra-
diation —, superconductivity, superfluidity etc.).

2.5 Classical probability does not suffice to describe Na-
ture!

The previous section gave an example of experiment not explicable in terms of clas-
sical physics. Since classical physics can be formulated as a classical probability the-
ory augmented by a dynamical law, it is not surprising that classical probability turns
out to be not sufficient to explain Nature. So, the careful reader may wonder why to
include the present section. The reason is that in the historical development of quan-

15. Electrons are sub-atomic particles with mass 9.10938215(45)× 10−31 kg.
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lower slit closed d = 4 d = 3 d = 2 d = 1

Figure 2.7 – Schematic setting of the double-slit experiment for gun bullets. When only the upper slit
is open, we observe a Gaussian distribution of the density of impact points on the screen, centred in
front of the upper slit. When the two slits are open, the density of impact points follows a distribution
obtained as the superposition of two Gaussians centred in front of the slits. Depending on the distance
among the slits the superposition can appear as unimodal or bimodal. In the above figure, the distance
d among slits is given in ad hoc units (mutiples of the standard deviation of the Gaussian).

Figure 2.8 – Experimental observation of the impact points left on the screen by electrons in a double
slit experiment. The four pictures a) – d) correspond at different instants of the experimental process.
Picture a) corresponds to an early snapshot having accumulated only 11 impacts of individual electrons
on the screen, picture b) has 200, c) has 600, and d) has 40000. Continuing the accumulation of
impact points, we get a continuous density of impacts that follows a pattern of interference fringes as
is classically the case for waves! Source of pictures: Wikipedia, distributed under Creative Commons
Licence BY-SA 3.0.
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tum mechanics, the statement about insufficiency of probability theory turned out to
be more controversial than the experimental evidence of the insufficiency of classical
physics!

Quantum mechanics has been proposed as a theory explaining physical phenom-
ena occurring mainly in microscopic systems. The formalism of quantum mechanics
in use these days has been successfully tested in all known experimental situations;
not a single prediction made by quantum theory has ever been falsified by an exper-
iment! Nevertheless, the quantum formalism remains highly counter-intuitive and
several physicists have advocated the hypothesis that the theory is incomplete. The
most prominent among those physicists was Einstein who refused to admit the intrin-
sically stochastic nature of quantum mechanics. In the last paragraph of his 52nd letter
to Max Born — written in a joking mood on 4th December 1926 — he states [55]:

„Die Quantenmechanik ist sehr achtunggebietend. Aber eine innere Stimme
sagt mir, daß das noch nicht der wahre Jakob ist. Die Theorie liefert viel,
aber dem Geheimnis des Alten bringt sie uns kaum näher. Jedenfalls bin
ich überzeugt, daß der nicht würfelt a (. . . )“.

a. Quantum mechanics is certainly imposing. But an inner voice tells me that it
is not yet the real thing. The theory says a lot, but does not really bring us any closer
to the secret of the “old one”. I, at any rate, am convinced that He is not playing at
dice [55].

This quotation remained in the folklore of Quantum Mechanics paraphrased into the
short aphorism „Gott würfelt nicht“ (or translated as “God does not play dice”).

In 1935, Einstein writes, jointly with Podolsky and Rosen, a seminal and influential
paper [54], based on a Gedankenexperiment and known as the EPR paradox 16. This
paradox will be presented and explained in §3.10.

When dealing with physical theories, we are confronted with two basic notions,
locality and realism. Locality means that we can always take actions that have con-
sequences only within a small region of space. In physics, locality stems from the
finiteness of the speed of light. Since no interaction can propagate faster than light,
no influence can be sensed in space points lying beyond the wave front of light. Re-
alism means that although experiments have always random outputs, the observed
randomness is nothing else than the reflection of the imperfection of the measuring
instruments. In a theory where realism applies, there is no conceptual obstruction to
think that there exists a state in which the system can be perfectly described in princi-
ple, i.e. the observables have determinate values before they have been measured. The
observed randomness reflects only the fact that information is missing preventing us
from having complete knowledge of the precise state of the system. As we shall see
later, when the standard formalism of quantum mechanics will be introduced, this is
not any longer the case for quantum systems: quantum systems exhibit an irreducible
randomness, a randomness that cannot be removed by better describing the state. The
role of the EPR paradox was to show the incompleteness of the quantum theory be-

16. See the “Analyse” item at http://bibnum.education.fr/physique/physique-quantique/le-
paradoxe-epr for the unconventional beginnings and fate of the EPR paper.
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cause a physical theory — as Einstein, Podolsky, and Rosen conceived it — ought to be
realist. As the authors put it:

“From this follows that either (1) the quantum mechanical description of
reality given by the wave function is not complete or (2) when the operators
corresponding to two physical quantities do not commute the two quantities
cannot have simultaneous reality. For if both of them had simultaneous
reality — and thus definite values — these values would enter into the
complete description, according to the condition of completeness. If then
the wave function provided such a complete description of reality, it would
contain these values; these would then be predictable. This not being the
case, we are left with the alternatives stated.”

This paper triggered extremely fruitful (although sometimes epic) discussions between
the tenants and the opponents of quantum formalism. Schrödinger, in a letter (in
German) addressed to Einstein on 7 June 1935, uses for the first time the term Ver-
schränkung; he translates it into entanglement 17 in the two papers he published [131,
132] to give a quantum explanation of “the EPR paradox”. In [131], Schrödinger re-
alised that entanglement refutes any paradoxical aspect of the EPR correlations. He
has been led to consider entanglement as the distinctive future of quantum mechan-
ics. In his own words:

“When two systems (. . . ) enter into temporary physical interaction (. . . )
and when after a time of mutual influence the systems separate again, then
they can no longer be described in the same way as before, viz. by endowing
each of them with a representative of its own. I would not call that one but
rather the characteristic trait of quantum mechanics, the one that enforces
its entire departure from classical lines of thought. By the interaction
the two representatives have become entangled.”

Based on Einstein’s refutations, Bohm proposed, in [25, 26], a new formalism of
quantum mechanics, expanded by postulating the existence of — unobserved — “hid-
den variables”, allowing to describe the same phenomenology as quantum mechanics
without postulating an intrinsically stochastic nature of the theory. Therefore, the hid-
den variables formalism intended to restore the realism of quantum mechanics. The
introduction of hidden variables did not predict any new phenomenon beyond those
predicted by standard quantum theory and for many years, it was the root of a mainly
philosophical controversy between the tenants of standard quantum theory (the only
one we shall present in the sequel of this course) and the tenants of the hidden variables
description.

A long-lasted and widely spread popular belief among physicists was that John von
Neumann had refuted the possibility of existence of hidden variables in his seminal
foundations of 1932 (reprinted in [149]). However, the hypotheses he did were too
strong to be realisable in physical systems 18, as discovered by John Bell some thirty
years later, in [18].

17. This notion will be defined in §3.10.
18. The result shown by von Neumann will be given in proposition 4.5.3.
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The first mathematically sound refutation of hidden variables has been provided by
John Bell, in the seminal paper [17], where he established the so-called Bell’s inequal-
ities (these inequalities are proven in proposition 2.5.2). This result established that if
we impose the existence of hidden variables (i.e. classical — Kolmogorovian — unob-
served variables) to assign determinate values to the quantum observables prior to the
measurement process, their existence induces classical statistical correlations incom-
patible with the statistical predictions of quantum mechanics. The major conceptual
step performed by Bell was that if hidden variables existed then they should have pre-
dictable consequences that could be experimentally tested.

In spite of the fundamental interest such an experiment would have in the concep-
tual foundations of the theory, during several years it was dismissed by the scientific
establishment — in another outburst of arrogance — as an uninteresting philosophical
quest not worth the efforts of respectable scientists 19. Due to the enormous success
of quantum mechanics to quantitatively predict all observed phenomena, a utilitarian
attitude condensed into the motto “shut up and compute” prevailed in the scientific
circles. It was only thanks to the ingeniousness of several groups of physicists around
the world (Clauser, Shimony, Horne, Holt, Aspect, Dalibard, Roger who persevered in
willing to experimentally test the hypothesis of hidden variables) that the existence of
both local and realistic physical theories has been refuted in the three seminal papers
[8, 9, 7] of the group at the Université d’Orsay. This experiment, of the utmost funda-
mental importance, is described in paragraph 2.5.2. It establishes that a theory that is
simultaneously local and realistic cannot reproduce all the predictions of quantum me-
chanics (hence cannot explain experimental observations either). Phrased differently,
assuming realism, the phenomenon observed in this experience — when interpreted
within classical probability — appears as non-local. This fact is sometimes wrongly
termed quantum non-locality in the literature. This term will never be used in the
sequel of this course.

Therefore, before presenting the form of quantum mechanics accepted at the present
time, we spend some lines to describe Bell’s inequalities and explain in some details the
Orsay experiment (see §2.5.2 below) that has been designed in order to check whether
a Kolmogorovian theory is compatible with experimental observation or, else, refute
the hidden variables hypothesis. We follow the exposition of [104]. The quantum me-
chanical explanation of the Orsay experiment — postponed after the introduction of
the quantum formalism — will be given in §4.4.

2.5.1 Bell’s inequalities

Proposition 2.5.1 (The three-variable Bell’s inequality). Let X1, X2, X3 be an arbitrary
triple of {0, 1}-valued random variables defined on some probability space (Ω,F , P). Then

P(X1 = 1, X3 = 0) ≤ P(X1 = 1, X2 = 0) + P(X2 = 1, X3 = 0).

19. Readers so inclined to philosophical meditation are invited to consider the ravages “fashion-led”
a.k.a. “project-oriented” research can cause to the advancement of science.
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Proof:

P(X1 = 1, X3 = 0) = P(X1 = 1, X2 = 0, X3 = 0) + P(X1 = 1, X2 = 1, X3 = 0)
≤ P(X1 = 1, X2 = 0) + P(X2 = 1, X3 = 0).

�

Proposition 2.5.2 (The four-variable Bell’s inequality). Let X1, X2, Y1, Y2 be an arbitrary
quadruple of {0, 1}-valued random variables defined on some probability space (Ω,F , P).
Then

P(X1 = Y1) ≤ P(X1 = Y2) + P(X2 = Y2) + P(X2 = Y1).

Proof: The random variables being {0, 1}-valued, it is enough to check on all 16 possible
realisations of the quadruple (X1(ω), X2(ω), Y1(ω), Y2(ω)) that

{X1 = Y1} ⊆ {[X1 = Y2] ∨ [X2 = Y2] ∨ [X2 = Y1]}.

�

2.5.2 The Orsay experiment(s)

The idea behind what remained in the quantum folklore as “the Orsay experi-
ment” 20 is to associate precise physical observables with the {0, 1}-valued quantities
occurring in Bell’s inequalities. Classical theory describes light as an electromagnetic
wave; the electric field oscillates in a plane perpendicular to the propagation direction
known as polarisation. (Some additional details on the nature and properties of light
are given in appendix A). When monochromatic light emitted from a random source
(i.e. unpolarised) of some intensity I passes through a polariser, the emerging beam is
polarised in the direction of the polariser and has intensity I/2. Now, it has been es-
tablished that a light beam is composed of a great number of elementary light quanta
called photons. Therefore, the statement on intensities made above has only a statis-
tical meaning; if a photon passing through a polariser oriented in a given direction α
encounters a second polariser oriented in a direction β, it has probability 1

2 cos2(α− β)
to pass through (see figure 2.9). This is an experimental fact, in accordance with both
quantum mechanical prescriptions and with classical electromagnetic theory of light.

If the experiment is to be explained in terms of classical probability, with every
polariser in direction α ∈ [0, π/2] is associated a random variable Xα ∈ {0, 1}; the
random variables X are defined on a probability spaces (Ω,F , P) where ω ∈ Ω repre-
sent the microscopic state of the photon. Now for the experimental setting depicted in
figure 2.9, the random variables X are correlated as

E(XαXβ) = P(Xα = 1, Xβ = 1) =
1
2

cos2(α− β).

But now there is a problem because this correlation cannot be that of classical random
variables. Choosing in fact three polarisations α1, α2, and α3, we have P(Xαi = 1, Xαj =

20. As a matter of fact, there has been two experiments.
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α β

Figure 2.9 – When a photon passes through the first polariser — oriented in direction α — emerges
polarised in that direction. When it encounters a second polariser — oriented in direction β — passes
through with probability cos2(α− β). If the photon is initially already polarised in direction α, nothing
changes if the first polariser is removed.

0) = P(Xαi = 1)− P(Xαi = 1, Xαj = 1) = 1
2(1− cos2(αi − αj)) = 1

2 sin2(αi − αj) for
i, j ∈ {1, 2, 3}. The three-variable Bell inequality 2.5.1 reads then

1
2

sin2(α1 − α3) ≤
1
2

sin2(α1 − α2) +
1
2

sin2(α2 − α3).

The choice α1 = 0, α2 = π/6, and α3 = π/3 leads to the impossible inequality 3/8 ≤
1/8 + 1/8. Therefore, classical probability cannot describe this simple experiment.

On a second reading, this experiment is not very convincing because on arranging
polarisers on the optical table as described above, there is nothing preventing concep-
tually the second random variable Xβ to depend in fact on both α and β. But then the
correlation reads E(XαXα,β) = P(Xα = 1, Xα,β = 1) = 1

2 cos2(α− β) and this can be
satisfied by choosing, for instance, Xα and Xα,β independent with P(Xα = 1) = 1/2
and P(Xα,β = 1) = cos2(α− β) which of course can be easily conceived.

The irrefutable evidence of the impossibility of describing Nature with merely clas-
sical probability is provided through the second experiment Aspect, Dalibard and
Roger performed in 1982, [7], schematically described in figure 2.10. (Please carefully
read the caption of this figure where the precise experimental setting is described). The
same analysis can be made as in the previous experimental setting. Denoting by Xα the
{0, 1}-valued random variable quantifying the passage of the photon through the left
polariser and Yβ through the right one, it is experimentally established in [7] that,

P(Xα = Yβ) =
1
2

sin2(α− β),

for every choice of α and β. (Note incidentally that the same conclusion is obtained
using — the not yet presented — quantum formalism). Now the choice α1 = 0, α2 =
π/3, β1 = π/2, and β2 = π/6, should read 1 ≤ 1/4 + 1/4 + 1/4, manifestly violating
the four variable Bell’s inequality 2.5.2.

To better grasp the significance of this experiment, it has been proposed, see [104]
for instance, to think of it as a card game between two players X and Y who can pre-
agree on any conceivable strategy in order to win the game. The game is described in
the following
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αi

PM1

Coincidence monitoring

PM2

β j
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Figure 2.10 – Schematic view of the Orsay experiment [9]. A beam of calcium (Ca) atoms is
triggered by a laser. When thus excited, a calcium atom emits simultaneously two photons (at
different frequencies) in opposite directions and having correlated polarisations. Two polarisers stand
to the left and to the right the calcium beam, at equal optical distances from it. An ingenious
system of rapid optical switches is used whose net effect can be described by the following equivalent
description. After the two photons have been emitted, the left polariser is oriented according to an
angle randomly chosen in the set {α1, α2}, the right polariser according to an angle randomly chosen
in the set {β1, β2}. The optical distance between the beam and the polarisers is sufficiently large
to allow enough time for the switching to take place after the emission of the photons and before
their reaching the polarisers (so that any causal influence of the choice of orientations on the manner
the photons are emitted is safely excluded). After passing through the polarisers, the photons are
detected by photomultipliers (PM1) and (PM2) and only photons in synchronisation are recorded.

Exercise 2.5.3. (The Orsay experiment as a card game [104]) The game is played be-
tween players X, Y (see figure 2.10), and A (like . . . Aspect) who acts as an arbiter and
as game leader.

Description of the game

— A disposes of a well shuffled deck of red and black cards (consider it as an
infinite sequence of i.i.d. {red, black}-valued random variables uniformly dis-
tributed on {red, black} := {r, b}).

— X and Y are free to use random resources (e.g. dice) if they wish.
— Before the game starts, X and Y agree on given strategy (deterministic, non-

deterministic, or random) how to determine a {yes, no}-valued variable out of
the colour of the card they will be presented. Once the game starts, the players
are not allowed any longer to communicate.

— A picks two cards from the deck and presents the one to X and the other to Y
(mind that X and Y don’t know each other’s card).

— X and Y apply their own pre-agreed strategy to the colour they are presented
and simultaneously say yes or no.

— After the announcement of the players, the cards are laid on the table. Four
different card pairs are possible (rr), (rb), (br), (bb), where the first colour refers
to the colour of the X’s card and the second to the Y’s one (consider these colour
pairs as boxes in a 2× 2 board). If both players have given the same answer
then 1 is written in the corresponding box, else 0 is marked.

— In the course of the game, the boxes get filled by sequences of 0’s and 1’s.
— Let πcc′ , with c, c′ ∈ {r, b}, be the limit of the empirical probability of 1’s in the

box corresponding to colours (cc′) when the game runs indefinitely. The players
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win the game if πrr > πrb + πbr + πbb. The purpose is to show that there exists
no strategy (deterministic or random) allowing the players to win the game.

Questions

1. Suppose that X and Y have agreed on the following strategy: X always says
“yes”, independently of the colour of the card presented to her/him and Y an-
swers the question “is my card red?”. Compute explicitly the values of πcc′ for
c, c′ ∈ {r, b} and show that with this deterministic strategy, the numbers πcc′

satisfy the four variable Bell’s inequality πrr ≤ πrb + πbr + πbb.
2. In the above strategy, the decision making process is described through the ma-

trices DX and DY with DX : {r, b} × {0, 1} → [0, 1] (and similarly for DY), de-
fined respectively by

DX =

(
0 1
0 1

)
and DY =

(
0 1
1 0

)
,

interpreted as meaning P(Answer of X is a | card colour is c) = DX(c, a) for
c ∈ {r, b} and a ∈ {0, 1} (and similarly for Y). Hence the previously described
strategies are termed deterministic strategies. There are 4 deterministic strate-
gies for every player. Determine all 16 pairs of deterministic strategies and show
that for all of them, Bell’s inequality is verified.

3. Propose a plausible parametrisation of the space of all strategies (deterministic
and random) and show that this space is convex. Is it a simplex? Show that the
previous deterministic strategies are extremal points of this space.

4. Conclude that in general any strategy can be written as a convex combination
of deterministic strategies. Is this decomposition unique? How such a convex
combination is related to hidden variables? Conclude that no classical strategy
exists allowing to win this game.

Some hints concerning convexity and convex decomposition of stochastic matrices
needed for the the two last questions can be found in the chapter “Markov chains
on finite state spaces” of the lecture notes [119].

This exercise shows that any system described in terms of classical probabilities,
even augmented to incorporate hidden variables, cannot win this game. But the Orsay
experiment proved that Nature wins! Therefore, the quantum strategy used by Nature
is strictly more powerful than any classical strategy. Probably the first person to really
understand this power was Feynman (see [83, chap. 7 and 15] for instance), who first
conjectured the computational power of quantum mechanics and was the first who
proposed to use atoms as quantum computers.

Later on, many other experiments have been performed to refute the hidden vari-
ables hypothesis. We shall present in §?? the most recent one based on the violation of
Bell’s test in the form of the so called CHSH inequalities.
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2.6 Quantum systems (elementary formulation)

Quantum mechanics emerged thanks to various experimental and theoretical ad-
vances, due mainly to Bohr, Planck, Schrödinger, Heisenberg, Dirac, and many oth-
ers. Various formulations of quantum mechanics are possible. We start from the most
straightforward one [149], based on the Hilbert space formalism, introduced by von
Neumann in 1932. It turns out that shortly after the publication of this text, von
Neumann confessed that he was not satisfied with the Hilbert space formulation of
quantum mechanics (see [122] for a review of the ideas of von Neumann on quantum
mechanics that pays due attention to historical facts). Later on, a more general for-
mulation [146], based on quantum logics and C∗-algebras, will be given; this formula-
tion has the advantage of allowing a unified treatment for both classical and quantum
systems. Another possible formulation is provided by the operational formulation of
quantum mechanics, based on the notion of instrument (see [45, 112, 114, 115]) or in-
formational formulation (see [36, 37] for instance). The reader may wonder why so
many formulations have been proposed so far. The answer is that although all the for-
mulations are totally satisfactory from the computational point of view, their predic-
tive power, and their adaptedness to explain diverse experiments, none of the existing
ones is philosophically and epistemologically satisfactory. Quantum mechanics is a
partial theory, describing fragile systems, i.e. systems that eventually leave the quan-
tum realm to enter the classical one; such a fragility demands for a unified treatment
of classical and quantum formalism, not guaranteed by any of the existing formalisms.
The most counter-intuitive postulate of quantum mechanics is the measurement postu-
late that obsessively tormented physicists since the early days of quantum mechanics
(see [141, 139, 140] or [12] for a critical account of the previous references).

2.6.1 Postulates of quantum mechanics (sharp effects and pure states)

For the time being, we proclaim that a quantum system verifies the following pos-
tulates, given in the same order as the postulates for classical systems. These postulates
hold for very simple quantum systems (mainly for systems with finite degrees of free-
dom with non-degenerate observables). They will be completed and extended later to
cover more complicated systems.

Postulate 2.6.1 (Phase space). The phase space of a quantum mechanical system is a separable
complex Hilbert space H. Events are associated with Hilbert subspaces of H. When two
systems, respectively described by Hilbert spaces H1 and H2, are considered as a single system,
the composite system is described by the Hilbert space H1 ⊗H2 where ⊗ denotes the tensor
product.

The notion of tensor product will be precisely defined in §3.8. For the time being, it
must be thought as a means to construct composite systems from simpler ones. How-
ever, at this point, an important remark must be made. A system composed from two
different subsystems, described respectively by Hilbert spaces H1 and H2, is well de-
scribed by the Hilbert space H1 ⊗H2. But if the subsystems describe identical (i.e. in-
distinguishable) systems, not the whole tensor product is physically accessible but only
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either the symmetric or the antisymmetric component of it, depending on the precise
nature of the subsystems. Their is one kind of systems (called bosonic) where sym-
metric subspaces are relevant and another kind of systems (called fermionic) where
only antisymmetric subspaces are relevant. What determines the bosonic or fermionic
character of the system is its spin, a quantity introduced defined in §16.4.29. However,
the connection between the bosonic/fermionic character and the relevance of symmet-
ric/antisymmetric subspace of the tensor product space is a much deeper result that
can only be obtained in the more general setting of quantum field theory. The connec-
tion is shown there to be a theorem, known as spin-statistics theorem. For a thorough
study of this theorem, the reader can consult the book [47], where the detailed proof is
provided together with many historical remarks. Since this important result lies out-
side the scope of this course, we supplement the previous postulate by the following

Supplement to postulate 2.6.1 (Symmetrisation postulate). The phase space of a sys-
tem containing 2 identical (i.e. indistinguishable) particles is either the antisymmetric
subspace of H1 ⊗H2 or the symmetric one (with respect to permutation of the parti-
cles).

Postulate 2.6.2 (States). Unit vectors 21 of H correspond to pure 22 quantum states Sp.
More precisely, with a unit vector ψ, we associate the spanned one-dimensional Hilbert sub-
space Cψ and we denote by ρ = ρψ the orthoprojection onto Cψ. The set of pure states is then
identified with Sp = {ρψ, ψ ∈H, ‖ψ‖ = 1} ' Cψ.

Postulate 2.6.3 (Evolution). Any time evolution of an isolated quantum system is described
by a unitary operator acting on H. Conversely, any unitary operator acting on H corresponds
to a possible invariance 23 of the system.

Postulate 2.6.4 (Observables). The set Os of sharp observables of a quantum system is the
set of bounded self-adjoint operators X acting on the phase space H of the system. The space of
outcomes of a sharp observable X is its spectrum, i.e. X = spec(X). Sharp effects E[A] are
special self-adjoint operators occurring as spectral projections of an observable. The set of sharp
effects is denoted by Es. Conversely, if a projective resolution of unity E : B(R) → P(H) is
given 24, we can associate the self-adjoint operator X having E as spectral projections. The set
of all effects E effects (unsharp or fuzzy ones) is the closed convex hull of Es.

Postulate 2.6.5 (Measurement). Measuring a sharp observable represented by its spectral
projectors (effects) E, in the pure state ρψ described by the unit vector ψ, corresponds to deter-
mining the possible outcomes and the probability measure ν

ρψ

E on the real line induced by the
spectral projectors through the formula

ν
ρψ

E (B) = tr(ρψE[B]) = 〈ψ | E[B]ψ 〉, ∀B ∈ B(R) = tr(ρψE[B]) = 〈ρψ, E[B]〉,

where 〈·, ·〉 denotes the duality bracket on Sp ×Os

21. Strictly speaking, equivalence classes of unit vectors differing by a global phase, called rays. For
the sake of simplicity we stick to unit vectors in this introductory section.

22. The structure of the set of arbitrary states is postponed to postulate 3.12.17 that generalises the
present one.

23. The time evolution of an isolated system leaves the physical quantity “energy” invariant. Unitary
operators are associated with conserved quantities. See definition 13.5.4 and the reformulation of the
present postulate as postulate 13.5.5 for precise statements.

24. We denote by P(H) the set of orthoprojections onto subspaces of H.
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2.6.2 Interpretation of the basic postulates

These postulates will be revisited later, after some basic notions on Hilbert spaces
have been reminded. For the time being, it is instructing to illustrate the implications
of these axioms on a very simple non-trivial quantum system and interpret their sig-
nificance. Beyond its pedagogical interest, this simple example has also an intrinsic
interest since it describes any physical system with two internal degrees of freedom
serving to model a qubit, the quantum analog of a bit.

Phase space. We study a quantum system whose phase space H = C2. This is the
simplest non-trivial situation that might occur and could describe, for instance,
the internal degrees of freedom of an atom having two states. In spite of its
apparent simplicity, the systems carries already very interesting features. Notice
however that in general, even for very simple finite systems, the phase space is
not necessarily finite-dimensional.
Every f ∈ H can be decomposed into the canonical basis (ε1, ε2) as f = f1ε1 +
f2ε2 with f1, f2 ∈ C. If ‖ f ‖ 6= 0, denote by φ = f /‖ f ‖ the corresponding
normalised vector 25.

(Pure) states. Now φ = φ1ε1 + φ2ε2 with |φ1|2 + |φ2|2 = 1 corresponds to a pure
state. The numbers |φ1|2 and |φ2|2 are non-negative reals summing up to 1;
therefore, they are interpreted as a probability on the finite set of coordinates
{1, 2}. Consequently, the complex numbers φ1 = 〈 ε1 | φ 〉 and φ2 = 〈 ε2 | φ 〉 are
complex probability amplitudes, their squared moduli represent the probability
that a system in a pure state φ is in the pure state ε1 or ε2.
Notice that pure states can be written as linear superpositions φ = φ1ε1 + φ2ε2
meaning that a pure state φ can have components in two other pure states ε1
and ε2. But this does not mean that the pure state φ can be written as a convex
combination of the pure states ε1 and ε2. The complex numbers φ1 and φ2 have
no direct probabilistic interpretation; only their squared amplitudes have.

Evolution. A unitary operator on H is a 2× 2 matrix U, verifying UU∗ = U∗U =
I. If φ is a pure state, then ψ = Uφ verifies ‖ψ‖2 = 〈Uφ |Uφ 〉 = 〈 φ |U∗Uφ 〉 =
‖φ‖2. Therefore quantum evolution transforms pure states into pure states (pre-
serves purity of states). Moreover, due to the unitarity of U, we have φ = U∗ψ,
and since U∗ is again unitary, it corresponds to a possible time evolution (as a
matter of fact to the time reversed evolution of the one corresponding to U.)
This shows that time evolution of isolated quantum systems is reversible.

(Sharp) effects and observables. Recall that any normal operator X admits a spec-
tral decomposition X =

´
spec(X) E[dx]x. If X is self-adjoint, then spec(X) ⊆ R.

Let us illustrate with a very simple example: chose for X the matrix

X =

(
1 2i
−2i −2

)
.

We compute easily

25. General (unnormalised) vectors of H are denoted by small Latin letters f , g, h, etc.; normalised
vectors, representing rays, by small Greek letters φ, χ, ψ, etc.
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Eigenvalues Eigenvectors Projectors
x ζ[x] E[x]

−3 1√
5

(
−i
2

)
1
5

(
1 −2i
2i 4

)
2 1√

5

(
2i
1

)
1
5

(
4 2i
−2i 1

)
Hence

X = ∑
x∈{−3,2}

E[x]x = (−3)
1
5

(
1 −2i
2i 4

)
+ 2

1
5

(
4 2i
−2i 1

)
.

Since the operator X is self-adjoint (hence normal), eigenvectors associated with
different eigenvalues are orthogonal (see §3.7, corollary 3.7.4 ). The operators
E[−3] and E[2] are self-adjoint (hence they correspond to observables) and oth-
oprojectors to mutually orthogonal subspaces. Since their spectrum is {0, 1},
they play the role of yes-no questions for a quantum system.

Measurement. This axiom in some respects generalises straightforwardly the clas-
sical case; in some other it has the most counter-intuitive consequences.
Straightforward generalisation of classical case: Let ψ ∈ H be a pure phase; since

ζ[−3] and ζ[2] are two orthonormal vectors of H (hence also pure phases),
they serve as basis to decompose ψ = z−3ζ[−3]+ z2ζ[2], with ‖ψ‖2 = |z−3|2 +
|z2|2 = 1. Thus any pure state ψ, with probability |〈ψ | ζ[−3] 〉|2 is in the pure
state ζ[−3] and with probability |〈ψ | ζ[2] 〉|2 is in the pure state ζ[2].
Compute further

ν
ρψ

X (x) = tr(ρψE[x]) = 〈ψ | E[x]ψ 〉
= ∑

x′ ,x′′∈spec(X)

zx′zx′′〈 ζ[x′] | E[x]ζ[x′′] 〉 = |zx|2 ∈ [0, 1].

Thus (|zx|2)x∈spec(X) can be interpreted as a probability on the set of the spec-
tral values. Hence, the scalar product 〈ψ |Xψ 〉 = ∑x∈spec(X) x|zx|2 is the ex-
pectation of the spectral values with respect to the decomposition of ψ on the
basis of eigenvectors. It is worth noticing that expectation of a classical ran-
dom variable X taking values in a finite set {x1, . . . , xn} with probabilities
p1, . . . , pn respectively, is

EX =
n

∑
k=1

xk pk =
n

∑
k=1

√
pkxk
√

pk =
n

∑
k=1

√
pk exp(−iθk)xk

√
pk exp(iθk),

with arbitrary θk ∈ R, k = 1, . . . , n. Hence, classically, EX = 〈ψ |Xψ 〉 with

ψ =


√

p1 exp(iθ1)
...√

pn exp(iθn)

, verifying ‖ψ‖ = 1 and with X =

x1 0
. . .

0 xn

.

We have moreover seen that classical probability is equivalent to classical
physics; thanks to the previous lines, it turns out that it is also equivalent
to quantum physics involving solely diagonal self-adjoint operators as ob-
servables. The full flavour of quantum physics is obtained only when the
observables are represented by non-diagonal self-adjoint operators.
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Counter-intuitive consequences: Consider now,

f [x] = E[x]ψ =

{
〈 ζ[x] |ψ 〉ζ[x] if x ∈ spec(X)
0 otherwise.

The vector f [x] is in general unnormalised; the corresponding normalised
state φ[x] = E[x]ψ

‖E[x]ψ‖ , well defined whenever x ∈ spec(X) and ψ has a non-
zero ζ[x]-component, has a very particular interpretation. Suppose we ask
the question: “does the physical observable take the value−3?” The answer,
as in the classical case, is a probabilistic one:

P({X = −3}) = ν
ρψ

X (−3) = |z−3|2 = 〈 f [−3] | f [−3] 〉 = ‖E[−3]ψ‖2 = tr(ρψE[−3]).

What is new, is that once we have asked this question, the state ψ is projected
on the eigenspace E[−3]H and is represented by the state φ[−3]. This means
that asking a question on the system has irreversibly changed its state! The
conditional state ρφ[x] given that we have asked the question E[x] reads now

ρφ[x] =
E[x]ρψE[x]
tr(ρψE[x])

.

But now, the state has been irreversibly modified. If we apply the total prob-
ability formula, we obtain

∑
x∈spec(X)

ρφ[x] tr(ρψE[x]) = ∑
x∈spec(X)

E[x]ρψE[x] 6= ρψ,

due to the non-commutativity of ρψ and E[x]. This is a totally new phe-
nomenon without classical counterpart. Asking questions about a quan-
tum system corresponds to a quantum measurement and the above formula
shows that measurement irreversibly changes (projects) the state of the sys-
tem. It will be shown later that the above averaging over the possible out-
comes of a sharp observable X irreversibly transforms the quantum state ρψ

into the state ∑x∈spec(X) E[x]ρψE[x] that is isomorphic to a classical state.

Example 2.6.6. (A quantum Gedankenexperiment). Suppose that a a huge number, N,
of copies of a “quantum die” has been prepared in a quantum state ρ guaranteed to
give output x with probability tr(E[x]ρ) and repeat the experiment as described in the
classical setting of the example 2.3.25. Then of course, N[x]/N will tend to tr(E[x]ρ)
as was the case in the classical situation. But now it follows from the formalism and
is experimentally verified that N[xx]/N[x] → 1! This is a totally new phenomenon,
without classical counterpart. It is termed collapse of the quantum state after a sharp
measurement.

There are many other counter-intuitive quantum phenomena; we shall study some
of them in this course.

Summarising the interpretation of these axioms, we have leapro:linear-hidden-donot-
existrnt that
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— quantum mechanics has a probabilistic interpretation, generalising the classical
probability theory to a quantum (non-Abelian) one,

— quantum evolution is reversible (as is the classical one),
— quantum measurement is irreversible and this constitutes a highly counter-intuitive

aspect of quantum mechanics.
Were only to consider this generalisation of probability theory to a non-commutative

setting and to explore its implications for explaining quantum physical phenomena,
should the enterprise be already a fascinating one. But there is even much more fas-
cination about it: there has been demonstrated lately that quantum phenomena can
serve to cipher messages in an unbreakable way and these theoretical predictions have
already been exemplified by currently working pre-industrial prototypes 26.

In a more speculative perspective, it is even thought that in the near future there
will be manufactured computers capable of performing large scale computations us-
ing quantum algorithms 27. Should such a construction be realised, a vast family of
problems in the (classical) complexity class of “exponential time” could be solved in
polynomial time on a quantum computer.

2.7 Some complements on effects

2.7.1 Necessity of considering quantum unsharp effects

We have seen that the set Es of sharp effects of a system (classical or quantum) is is
the set of projection-valued measures on (R,B(R))

Es := {E : B(R)→ Proj},

where B(R) stands for the Borel σ-algebra on R and Proj for the set of projections on
the adequate space.

In the classical case — where the phase space is a measurable space (Ω,F ) — the
set Proj stands for the set I := I(Ω,F ) of {0, 1}-valued random variables (in-
dicators)

Proj = {ι : Ω→ {0, 1}, ι measurable} =: I(Ω,F ),
endowed with componentwise multiplication.

In the quantum case — where the phase space is a Hilbert space H — the set Proj
stands for the set P := P(H) of orthoprojections to Hilbert subspaces of H

Proj = {P : H→H, P orthoprojection} =: P(H).
In both classical and quantum cases, the set of effects E is defined as the closed convex
hull of Es, i.e. E = co(Es).

26. See the article [70], articles in Le Monde (they can be found on the website of this course), the
website www.idquantique.com of the company commercialising quantum cryptologic and teleporting
devices, etc.

27. Contrary to the quantum transmitters and cryptologic devices that are already available (within
pre-industrial technologies), the prototypes of quantum computers that have been manufactured so far
have still extremely limited scale capabilities.
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In the classical situation, unsharp effects have been motivated by the introduction
of randomised decision rules or by the weakening of crisp membership functions (cor-
responding to indicator functions) to fuzzy ones. Therefore, in the classical case, un-
sharp effects correspond to some generalisation of the theory to encompass these new
decision rules or memberships.

It turns out that in the quantum case, unsharp effects show up both as a conse-
quence of the mathematical formalism (even at its simplest level presented in this
chapter) and as a sheer experimental necessity. As a matter of fact, there are exper-
iments involving two successive projective measurements that cannot be described
by a projective measurement. This phenomenon is purely quantum (has no classical
counterpart) and is illustrated in the following example occurring when the spin of
an electron is measured by two successive Stern-Gerlach apparatus in general posi-
tions. The notion of spin and the functioning of the Stern-Gerlach apparatus will be
explained much later in this text (in §16.7). For the time being, just keep in mind that
in a Stern-Gerlach experiment, silver atoms are sent through a strong inhomogeneous
magnetic field caused by a magnet (see figure 2.11 and carefully read its caption).

Figure 2.11 – Schematic view of the experimental setting of Stern-Gerlach experiment. Silver atoms
emerge from a furnace (1) and are collimated (2) to form a beam entering a strongly inhomogeneous
magnetic field (3). Atoms are detected on the screen at the left. Only the trajectories of the atoms
having travelled in the vertical plane passing through the middle of the magnet are shown in the
figure. If the atoms were classical particles, they should reach the screen at any position within the
segment (4). Instead, atoms emerging from the magnet hit the screen only at two possible positions
(5) corresponding to the upper and lower extrema of the previous segment. Source: from file provided
by Theresa Knott on Wikipedia; distributed under licence CC BY-SA 4.0.

Quantum mechanically the above experiment can be described by asking a question
(measuring a sharp effect that will be specified shortly) on a quantum system in a two-
dimensional Hilbert space H = C2.

Rays of C2 are classes of unit vectors differing by a global phase factor, i.e. ψ ∈ C2,
with ‖ψ‖ = 1, where vectors ψ and exp(iγ)ψ, with γ ∈ R, are identified. It turns out
that the set of rays is isomorphic to the unit sphere of R3. In fact, let (ε1, ε2) denote
the canonical basis of C2. Since for every ψ = ψ1ε1 + ψ2ε2, the condition ‖ψ‖2 = 1
implies |ψ1|2 + |ψ2|2 = 1, we can chose ψ1 = cos(θ) exp(iα) and ψ2 = sin(θ) exp(iβ),
α, β ∈ R. Omission of global phase implies that any ray can be reparametrised by
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Euclidean points on the unit sphere 28 in R3:

ψ := ψ(θ, φ) =

(
cos(θ)eiφ/2

sin(θ)e−iφ/2

)
, θ ∈ [0, π], φ ∈ [0, 2π],

as shown in figure 2.12.

z

y

x

ψ(θ, φ)

x

y

z

φ

θ
ψ(θ, φ)

Figure 2.12 – The set of rays in C2 is isomorphic to the Euclidean sphere S2 (left figure). The ray
corresponding to the point having spherical coordinates (r = 1, θ, φ) is represented by the vector
ψ := ψ(θ, φ) = cos(θ)eiφ/2ε1 + sin(θ)e−iφ/2ε2 ∈ C2, where ε1, ε2 are the canonical basis vectors of
C2. The right figure depicts the convention used to name angles.

With any point in R3 with spherical coordinates (1, θ, φ), is associated a vector ψ :=
ψ(θ, φ): we denote by P := P(θ, φ) the orthoprojector onto the one dimensional space
Cψ spanned by ψ. It reads 29

P := P(θ, φ) =

(
cos2(θ) cos(θ) sin(θ) exp(iφ)

cos(θ) sin(θ) exp(−iφ) sin2(θ)

)
.

Return now to the Stern-Gerlach experiment. Suppose that the electron is sent
through a first Stern-Gerlach apparatus oriented as shown in the picture and we ask
the question “does the electron hit the screen at the upper point”? It corresponds to the

sharp effect EA := EA[up] = P(0, 0) =
(

1 0
0 0

)
. Suppose now that instead of placing

a screen after the first apparatus, we stop the electrons emerging in the lower beam
and let the electrons emerging in the upper beam pass through a second Stern-Gerlach
magnet oriented so that the upper beam emerging from the first magnet enters the sec-
ond magnet at its axis. Then again only two possible beams will emerge in directions
“up” or “down” w.r.t. the new north-south pole orientation. Ask again the question
“does the electron hit the screen at the upper point (w.r.t. the new north-south orien-
tation)”? It corresponds to a sharp effect. For the sake of concreteness 30, suppose that

28. This sphere is known as the Bloch sphere in Quantum Physics, as the Poincaré sphere in Optics,
and as the Riemann sphere in Projective Geometry.

29. In §3.9 it is explained how to compute easily the expression of the orthoprojector onto the subspace
spanned by a given vector. For the time being, it is enough to verify that the proposed operator P
orhtoprojects an arbitrary vector h ∈H to Ph = 〈ψ | h 〉ψ ∈ Cψ.

30. As a matter of fact, we can arrange the two experiments so that to make the second effect corre-
spond to an arbitrary value of (θ, φ).

/Users/dp/a/ens/iq-phase.tex
2019-11-24 • 15:18:04.

58



Phase space, observables and effects, states, measurement, probability

the new effect reads EB := EB[up] = P(π/3, π/4) =

(
1/4 (1 + i)

√
6/8

(1− i)
√

6/8 3/4

)
.

Now the electrons emerging in the “upper” beam from the second magnet are those
that emerged surely from the upper beam of the first magnet. Suppose that the incom-
ing electron is in an arbitrary state ρξ , where ξ = aε1 + bε2 with |a|2 + |b|2. Following
the formalism introduced in the previous section, the state of the electron after hav-
ing passed through the first magnet is ρA =

EAρξ EA
tr(ρξ EA)

. Hence, the probability that the
electron emerges ultimately from the upper beam in the composite experiment is

tr(ρAEB) tr(ρξ EA) = tr(EAρξ EAEB) = 〈 ξ | EAEBEAξ 〉.

If we suppose that he composite experiment can be described by some sharp effect
F, we must have tr(ρξ F) = 〈 ξ | Fξ 〉 = 〈 ξ | EAEBEAξ 〉 for an arbitrary ξ. But Q =

EAEBEA =

(
1/4 0

0 0

)
is not a projector since Q2 6= Q. Nevertheless it is a positive

operator (since 31 spec Q = {0, 1/4}), verifying O ≤ Q ≤ I. Hence, the product of
quantum sharp effects is in general an unsharp effect. This is a purely quantum phe-
nomenon — in the classical situation, the product of two indicators 1F1G is always the
indicator 1F∩G — that is due to the non-commutative nature of quantum effects. As
a matter of fact, the product of two sharp effects EA and EB remains a sharp effect, if,
and only if, they commute, i.e. [EA, EB] = O. We conclude that considering unsharp
effects is a necessity in quantum theory, imposed both by the mathematical formalism
and the experimental observation.

2.7.2 Effect algebras and states

Sharp effects are measures defined on the Borel σ-algebra B(R) and take values
in the set of projections; general effects take values in co(Proj). Now, technically, the
σ-algebra B(R) is a σ-complete Boolean algebra; a Boolean algebra of subsets is also a
poset (partially ordered set) of subsets ordered by inclusion and is also a lattice since
every two sets have an upper bound (their union) and a lower bound (their inter-
section). The same observations hold for the set of (classical or quantum) projectors.
Hence effects appear as morphisms between very closely related algebraic structures.
Those ideas will be developed in chapter 13. The purpose of this subsection is to strip
B(R) and co(Proj) from all superstructures in order to get their quintessential elemen-
tary algebraic properties encoded into a — so called — effect algebra introduced in
[62] and further developed in [49, 48, 77] among others).

Presently, Boolean algebras are thought as algebraic structures (B,+, ·,′ , 0, 1) on a
set B endowed with a unary operation denoted ′, two binary operations + and ·, and
two particular elements 0 et 1, such that (B,+, 0) is an Abelian group with neutral
element 0, (B, ·, 1) is a commutative monoid with neutral element 1, binary operations
are distributive with respect to one another and the unary operation is such that a +
a′ = 1 and a · a′ = 0, for every a ∈ B. These rules imply that both addition and
multiplication are idempotent.

31. See §3.11.
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This definition of Boolean algebra is efficient and instrumental since it encompasses
its essential properties. However, Boole used to think of Boolean algebra as a structure
with partially defined operations. In his own words [30, chap. II, pp. 32–33]:

“We are not only capable of entertaining the conceptions of objects, as
characterized by names, qualities, or circumstances, applicable to each in-
dividual of a group of objects consisting of partial groups, each of which is
separately named and described. For this purpose we use the conjunctions
“and,” “or,” &c (sic). [. . . ] In strictness, the words “and,” “or,” interposed
between the terms descriptive of two or more classes of objects, imply that
those classes are quite distinct, so that no member of one is found in
another. In this and in all other respects the words “and” “or” are
analogous with the sign + in algebra, and their laws are identi-
cal.”

Definition 2.7.1. An effect algebra is a structure (E,�, 0, 1) where E is a set endowed
with a partially defined binary operation� and two particular elements 0 et 1 such that,
for all a, b, c ∈ E, the following laws are satisfied:

Commutativity: a� b is defined if, and only if, b� a is defined, and in that case
a� b = b� a.

Associativity: a� b and (a� b)� c are defined if, and only if, b� c and a� (b� c)
are defined, and in that case a� (b� c) = (a� b)� c.

Complementation: For any a, there exists a unique a′ such that a� a′ is defined
and a� a′ = 1.

Zero-one law: If a� 1 is defined in E, then a = 0.

Writing a� b in the sequel, implies that a� b is defined in E. An effect algebra can
be naturally endowed with a partial order ≤ defined by

[a ≤ b]⇔ [∃c ∈ E : a� c = b].

We write then c = b� a. In particular, a′ = 1� a and if a ≤ b then b� a = (b′ � a)′. A
partially ordered set is termed poset.

Example 2.7.2. 1. Let (Ω,F ) be a measurable space and I(Ω,F ) = {ι : Ω →
{0, 1}, ι measurable} the set of measurable indicators on Ω. On denoting o
the constant zero function o(ω) = 0, ∀ω ∈ Ω, and u the constant one function
u(ω) = 1, ∀ω ∈ Ω, the set I , endowed with a partial pointwise addition ι1 �
ι2 defined if, and only if, ι1 and ι2 are disjointly supported, becomes an effect
algebra (I(Ω,F ),�, o, u).

2. Le H be a Hilbert space and P(H) = {P : H → H, P orthoprojection} the set
of orthoprojections to Hilbert subspaces of H. On denoting O the orthoprojec-
tion to the trivial subspace {0} and I the identity on H, the set P(H) endowed
with a partial addition P1 � P2 defined if, and only if, P1 and P2 commute, be-
comes an effect algebra (P(H),�, O, I).

3. Let (G,+) be a partially ordered Abelian group, i.e. an Abelian group endowed
with a translation invariant partial order ≤. Choose an element u 6= 0 in its
positive cone, i.e. u ∈ G≥ := {g ∈ G : g ≥ 0} and denote by Γ(G, u) := {g ∈ G :
0 ≤ g ≤ u}. Then, endowed with a partial addition g1� g2 defined if, and only
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if, g1 + g2 ≤ u, this set becomes an effect algebra (Γ(G, u),�, 0, u), called an
interval effect algebra. In particular if G = R and u = 1, then Γ(R, 1) = [0, 1]
gives rise to an interval effect algebra.

4. Let X be a set andX ⊆ P(X) a family of subsets of X that contains the empty set
and is closed by complementation and finite union; then (X ,∪,∩, (·)c, ∅, X) is
a Boolean algebra. On denoting by � the partially defined operation of disjoint
union, i.e. a� b is defined on X if, and only if, a ∩ b = ∅ as a� b = a t b, this
Boolean algebra can be viewed as an effect algebra (X ,�, ∅, X).

Definition 2.7.3. A lattice L is a non-empty poset in which any two elements a and
b have a greatest lower bound or meet, denoted by a ∧ b, and a least upper bound or
join, denoted by a ∨ b.

Lemma 2.7.4. In a lattice (L,∨,∧), the following laws are satisfied, for all a, b, c ∈ L:

Idempotence: a ∧ a = a and a ∨ a = a.
Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a.
Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c.
Absorption: a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

Moreover, the condition a ≤ b is equivalent to each of the following consistency conditions

a ∧ b = a and a ∨ b = b.

Definition 2.7.5. Let E be an effect algebra.

1. If E is also endowed with a lattice structure, we speak about a lattice effect
algebra.

2. The algebra E is a convex effect algebra if for any a, b ∈ E and λ, µ ∈ [0, 1], the
following laws are satisfied:

(a) λa ∈ E,
(b) λ(µa) = (λµ)a,
(c) if a� b is well defined in E, then (λa)� (λb) is also well defined in E and

moreover, (λa)� (λb) = λ(a� b),
(d) 1a = a.

Example 2.7.6. 1. The effect algebras introduced in the example 2.7.2 are all lattice
effect algebras. Among them, only the case 3 constitutes a convex effect algebra.

2. Let (Ω,F ) be a measurable set. The set (E(Ω,F ),�, o, u), where E := E(Ω,F )
stands for the set of measurable fuzzy membership functions E := {φ : Ω →
[0, 1]; φ measurable} on Ω, and � a partial addition such that φ1� φ2, defined
if, and only if, for all ω ∈ Ω, φ1(ω) + φ2(ω) ≤ 1, constitutes a convex lattice
effect algebra. Remark that E = coI .

3. Let H be a Hilbert space and E := E(H) = {X ∈ L(H) : O ≤ X ≤ I} the set
of linear operators that satisfy the claimed inequalities for the natural ordering
of operators (see definition 3.11.1). On denoting� the binary operation defined
if, and only if, X + Y ∈ E, by X � Y = X + Y is a convex effect algebra, called
Hilbert space effect algebra.

Definition 2.7.7. Let E be an effect algebra. A morphism µ : E→ [0, 1] from the effect
algebra E to the interval effect algebra [0, 1] is called a state on E. The set of states on E
is denoted by S := S(E).
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An effect-state space is a triple (E, S, F), where F is a map F : E × S → [0, 1]
satisfying the following conditions for a, b ∈ E:

1. there exist 0, 1 ∈ E such that

F(0, µ) = 0 and F(1, µ) = 1, ∀µ ∈ S;

2. if F(a, µ) ≤ F(b, µ), forall µ ∈ S, then there exists a unique c ∈ E, such that
F(a, µ) + F(c, µ) = F(b, µ);

3. if λ ∈ [0, 1], then λa ∈ E and F(λa, µ) = λF(a, µ), for all µ ∈ S.

We conclude this introductory section on effect algebras and states on them by un-
derlying that they provide a very general and versatile framework for applications by

— identifying Boolean algebras 32 and the [0, 1] as effect algebras,
— proving that unsharp observations correspond to convex effect algebras,
— identifying states (probability charges or measures) as morphisms between ef-

fect algebras.
These ideas will be further developed in chapter 13 to offer a unified treatment to
both classical and quantum systems. State-effect spaces can be even extended beyond
classical and quantum theories by providing richer (although unphysical) structures
on which we can test ideas and better apprehend the specificities of physical theories
making them so special.

32. The same holds true for σ-algebras.
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3
Short resumé of Hilbert spaces

Hilbert spaces have been introduced during the period 1890–1932. The early steps
of their development have been initiated by the need to give a rigorous status to the
computation of extrema arising in the calculus of variations. In [67], Fredholm gener-
alises the results of Cramér in linear algebra to an “infinite dimensional algebra” and
shows what is known these days as the “Fredholm alternative” by inverting a math-
ematical object to obtain what is called the resolvent of an integral operator. Between
1904 and 1910 Hilbert (see [85, pp. 56–72 and 94–145] for a more easily accessible refer-
ence than the original articles) develops these ideas and introduces the spaces — now
denoted `2(N) — of square summable sequences as archetypes of such infinite dimen-
sional algebras. Between 1905 and 1908 Fischer [60, 59], Riesz [124], Schmidt [130], and
Fréchet [63, 64, 65, 66] complete the geometrisation of spaces of square summable se-
quences and introduce vectors and scalar products. These methods were subsequently
generalised to arbitrary normed spaces in [13]. In their infinite-dimensional variety,
Hilbert spaces are generalisations of the vector spaces Rd or Cd studied in introductory
linear algebra courses. They are endowed with rich structures (geometrical, topologi-
cal, metric, probabilistic) that make them very versatile.

During the years 1926–1932, the Hilbert space formalism of quantum mechanics,
initiated in [84], is worked out systematically by von Neumann and culminated with
his seminal book on the “Mathematical foundations of quantum mechanics” in 1932
(reprinted later in [149] and translated into French in 1946 [152] and into English in
[150]) in 1955. 1 For this reason, von Neumann continued in searching for a better for-
mulation of quantum mechanics that led him to develop the lattice theoretic approach
(explained in chapter 13) and later to introduce the concept of what is presently nowa-
days known as “von Neumann algebras” (presented in chapter 11) as better adapted

1. Quite ironically, after having completed the Hilbert space formulation of quantum mechanics, von
Neumann proved dissatisfied with his wonderful achievement. The following quotation is from Redei’s
historical account [122] on von Neumann’s work:
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3.1. Scalar products and Hilbert spaces

to the formulation of quantum mechanics.

Despite the afterthoughts made by von Neumann, Hilbert space formulation of
quantum mechanics remains a powerful tool allowing an elementary and pedagogi-
cal introduction to the topic. For the sake of completeness, some standard results on
Hilbert spaces are reminded in this chapter. Most of the proofs in this chapter are
omitted because they are considered as exercises; they can be found in the classical
textbooks [3, 79, 87, 123, 127, 157] which are strongly recommended for further read-
ing.

This chapter is written with two different readerships in mind: those interested
solely in finite dimensional applications of quantum mechanics and those interested in
full-fledged applications. The former can skip the passages printed in colour.

3.1 Scalar products and Hilbert spaces

Hilbert spaces have many distinct features. They are C-vector spaces (hence are
algebraic objects) equipped with a Hermitean scalar product (hence angles and ge-
ometry follow) from which a Hilbert norm can be defined (they thus become analytic
objects) for which they are complete (hence a unit vector ψ has components on an or-
thonormal basis (en) reading ∑n |ψn|2 = 1; therefore its components can be interpreted
as probability amplitudes).

Definition 3.1.1. Let V be a C-vector space, u, v, w ∈ V, and α, β ∈ C. A form s :
V×V→ C is

— sesquilinear if it is
— linear with respect to the second 2 argument: s(u, αv + βw) = αs(u, v) +

βs(u, w), and
— antilinear with respect to first argument: s(αu+ βv, w) = αs(u, w)+ βs(v, w);

— Hermitean if it is sesquilinear and s(u, v) = s(v, u),
— positive if s(v, v) ≥ 0, and
— definite if s(v, v) = 0⇔ v = 0.

A Hermitean positive definite form is a a scalar product. The scalar product s is de-
noted usually 〈 · | · 〉 and the pair (V, 〈 · | · 〉) is called a pre-Hilbert space. Two vectors
v and w are called orthogonal if 〈 v |w 〉 = 0.

“I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert
space any more. After all, Hilbert space (as far as quantum mechanical things are concerned) was
obtained by generalizing Euclidean space, footing on the principle of conserving the validity of all
formal rules. Now we begin to believe that it is not the vectors which matter, but the lattice of all
linear (closed) subspaces. Because:

1. The vectors ought to represent the physical states, but they do it redundantly, up to a
complex factor, only

2. and besides, the states are merely a derived notion, the primitive (phenomenologically
given) notion being the qualities which correspond to the linear closed subspaces.”

2. Notice that very often in the mathematical literature, the scalar product is defined to be linear with
respect to its first argument. This is only a matter of taste that must be consistently kept in the whole
formalism. We stick in the definition given here because it greatly simplifies formulæ arising in the
quantum mechanical setting.
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Lemma 3.1.2. Let (V, 〈 · | · 〉) be a pre-Hilbert space and u, v ∈ V. The following hold:
— Buniakowski-Cauchy-Schwarz inequality: |〈 u | v 〉| ≤

√
〈 u | u 〉

√
〈 v | v 〉,

— The scalar product defines uniquely a norm ‖v‖ =
√
〈 v | v 〉, called the Hilbert norm;

the scalar product is recovered from the Hilbert norm through the polarisation equal-
ity

〈 u | v 〉 = 1
4

3

∑
k=0

ik‖u + ikv‖2.

— The function 〈 · | · 〉 : V×V→ C (hence the norm) is continuous.
— The parallelogram rule holds, i.e.

‖u− v‖2 + ‖u + v‖2 = 2‖u‖2 + 2‖v‖2.

Lemma 3.1.3. [153, Th. 1.6, p. 9]: Let (V, ‖ · ‖) be a normed space. The norm is stemming
from a scalar product on V if, and only if, the norm satisfies the parallelogram rule.

Exercise 3.1.4. (Pythagoras theorem). Let (V, 〈 · | · 〉) be a vector space equipped with
a scalar product and denote by ‖ · ‖ the corresponding Hilbert norm.

1. Show that if u and v are orthogonal then

‖u + v‖2 = ‖u‖2 + ‖v‖2.

2. Is the condition of orthogonality necessary for the above equality to hold. Hint:
consider V a complex pre-Hilbert space.

As stated above, the scalar product of a pre-Hilbert space (V, 〈 · | · 〉) induces a
Hilbert norm ‖v‖ =

√
〈 v | v 〉 turning (V, ‖ · ‖) into a normed space; furthermore,

the Hilbert norm defines a distance d(x, y) = ‖x− y‖, turning thus (V, d) into a metric
space. We can therefore define the notion of a fundamental (Cauchy) sequence on V

as being a sequence v = (vn)n∈N of vectors vn ∈ V such that for every ε > 0 there
exists N = N(ε) ∈ N such that for m, n ≥ N, we have d(vn, vm) < ε. Nevertheless,
nothing imposes that any fundamental sequence converges within V. If such is the
case, the metric space (V, d) (or the normed space (V, ‖ · ‖) is termed complete or Ba-
nach space. A pre-Hilbert space that is complete for the metric induced by its Hilbert
norm is called a Hilbert space. A subset A ⊂ V of a Banach space is termed closed if
it contains the limits of all Cauchy sequences constructed from elements of A.

Usually we use the symbols F, G, H to denote Hilbert spaces instead of the generic
symbol U, V, W, X, Y, used for arbitrary spaces, i.e. when no further precision is
given, F, G, H will stand for Hilbert spaces. In the same vein, vectors of a Hilbert
space are usually denoted by e, f , g, h, etc. or ε, ζ , η, φ, ψ, etc. instead of the generic
notation u, v, w, x, y, z, etc. for vectors in an arbitrary vector space.

Definition 3.1.5. Let (V, ‖ · ‖) be a normed space and A ⊂ V. The linear span of A,
denoted vect(A), is the intersection of all subspaces of V which contain A; the closed
linear span of A, denoted vect(A), is the intersection of all closed subspaces of V which
contain A.
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We recall that a complete metric space (V̂, d̂) is called a completion of a metric
space (V, d) if there exists an isometric embedding ι : V → V̂ such that the image
ι(V) is dense in V̂. An arbitrary normed space (not necessarily complete) can be com-
pleted via a standard procedure we recall here briefly. Let CS(V) be the set of Cauchy
sequences on V, ∼ an equivalence relation on CS(V) defined, for sequneces v = (vn)
and w = (wn), by

v ∼ w⇐⇒ lim
n→∞
‖vn − wn‖ = 0,

and V̂ = CS(V)/ ∼ the set of equivalence classes of ∼. The space V̂ has a natural
vector space structure and through the definition

V̂ 3 [v] 7→ ‖[v]‖ = lim
n→∞
‖vn‖

— that can be shown to be independent of the representative v of [v] — becomes a
complete normed space. On identifying elements of V with constant sequences in V̂

we establish a canonical embedding ι : V→ V̂.

Theorem 3.1.6. For each normed (pre-Hilbert) vector space V, there exists a completion V̂.
Two arbitrary completions (stemming from the same norm) are isomorphic.

Proof. See [87, §1.6, pp. 17–21] or [153, Th. 4.11, p. 64].

Exercise 3.1.7. The following are classical examples of normed spaces.

1. The finite-dimensional vector space V = Cd with the ordinary scalar product
〈 u | v 〉 = ∑d

n=1 unvn is obviously a Hilbert space.
2. Let V = Md,d′(C) the set of d × d′ matrices with complex coefficients. Then
〈 u | v 〉 = tr(u∗v), where u∗ denotes the transposed complex conjugate matrix
of u, is a scalar product.

3. On defining ‖v‖p = (∑n∈N |vn|p)1/p for 1 ≤ p < ∞ and ‖v‖∞ = supn∈N |vn|,
the spaces V = `p(N) are complete normed (Banach) spaces 3 for all 1 ≤ p ≤ ∞.
The case p = 2 is very special, since `2(N) a Hilbert space with a scalar prod-
uct, compatible with ‖ · ‖2, defined by 〈 u | v 〉 = ∑n∈N unvn. It is the infinite-
dimensional generalisation of the example 1.

4. A finer classification of sequence spaces is possible. Let

`∞ = {v : N→ C s.t. ‖v‖∞ := sup
n∈N

|vn| < ∞},

c0 = {v : N→ C s.t. lim
n∈N

vn = 0},

`p = {v : N→ C s.t. ‖v‖p
p := ∑

n∈N

|vn|p < ∞}, 1 ≤ p < ∞,

s = {v : N→ C s.t. ∀p ≤ 0, lim
n∈N

npvn = 0},

f = {v : N→ C s.t. vn = 0 for all but finitely many n}.

3. Note that ‖v‖p = (∑n∈N |vn|p)1/p is well defined also for 0 < p < 1; nevertheless, in those cases,
‖v‖p is not a norm. The spaces (`p(N), dp) with dp(v, w) = ∑n∈N |vn − wn|p are metric spaces for
0 < p < 1.
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The following inclusions are in force for 1 ≤ p < ∞:

f ⊂ s ⊂ `p ⊂ c0 ⊂ `∞.

Moreover, the spaces `∞ and c0 are Banach for the norm ‖ · ‖∞, `p is Banach
for the norm ‖ · ‖p, and s is a Fréchet space 4. The interest of this cascade of
inclusions is that f is dense in `p (for the norm ‖ · ‖p, p < ∞) and dense in c0 for
the ‖ · ‖∞) norm. Even the set f of sequences with only rational coefficients is
dense on `p and c0 with the above norms; this result establishes the separability
of `p and c0. The space `∞ is not separable (see [123, page 69] for instance).

5. More generally, let A be an arbitrary set (not necessarily countable), µ : A →
]0, ∞[, and p ∈ [1, ∞[. Consider functions v : A → C vanishing outside a
countable set (that generally depends on v) and denote by

`p(A, µ) = {v : A→ C, s.t. v ≡ 0 but on a countable set, ∑
a∈A

|v(a)|pµ(a) < ∞} ⊆ CA.

On defining ‖v‖p := (∑a∈A |v(a)|pµ(a))1/p, the space `p(A, µ) becomes a normed
space. In particular, `2(A, µ) is a Hilbert space.

6. The space V = Lp([a, b], λ) with 1 ≤ p < ∞ can be equipped with a norm

‖ · ‖p defined by ‖v‖p =
(´

[a,b] |v(t)|pλ(dt)
)1/p

. Then (V, ‖ · ‖p) is a Banach
space. For p = 2, it becomes also a Hilbert space for the scalar product 〈 u | v 〉 =´
[a,b] u(t)v(t)λ(dt).

7. The space V = Ck([a, b]) can be equipped with a scalar product 〈 u | v 〉 =

∑k
j=0
´
[a,b] u(j)(t)v(j)(t)dt. The corresponding norm is denoted ‖ · ‖Wk,2 but the

normed space (V, ‖ · ‖Wk,2) is not complete. Its completion is called Sobolev
space Wk,2([a, b]) and is a Hilbert space. In particular, W0,2([a, b]) = L2([a, b]).

Recall that a subset C of a real or complex vector space V is convex if for all point
(vectors) x, y ∈ C and all λ ∈ [0, 1], the point λx + (1− λ)y belongs to C.

Theorem 3.1.8. Let C be a non-empty, closed, convex set in a Hilbert space H. For any
h ∈H, there exists a unique point c ∈ C lying closer to h than any other point of C, i.e.

∀h ∈H, ∃!c := c(h) ∈ C : ‖h− c‖ = inf
a∈C
‖h− a‖.

Corollary 3.1.9. Let G be a Hilbert subspace of H. Then, for all h ∈H, there exists a unique
g ∈ G, such that

‖h− g‖ = inf
f∈G
‖h− f ‖ and h− g ⊥ G.

Exercise 3.1.10 (An important one for probabilists). Let L1(Ω,F , P; R) denote the
vector space of integrable random variables over some probability space (Ω,F , P) and
G a sub-σ-algebra of F . Denote by F = L2(Ω,F , P; R) and G = L2(Ω, G , P; R). On
F a sesquilinear form s can be defined by s(X, Y) =

´
Ω X(ω)Y(ω)P(dω) that can be

turned into a scalar product by considering the space L2 instead of L2.

4. A Fréchet space is a locally convex topological vector space (i.e. a topological vector space which
has a 0-neighborhood basis consisting of convex sets) whose topology 0-neighborhood basis is count-
able.
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3.2. Orthogonal and orthonormal systems; orthogonal complements

1. Use corollary 3.1.9 to establish that for every X ∈ F there exists a Y ∈ G (unique
up to modifications differing from X on P-negligible sets), such that X−Y ⊥ Z
for all Z ∈ G.

2. Use the previous result, with Z = 1G for an arbitrary G ∈ G, to establish that Y
is a version of the (classical) conditional expectation E(X|G).

3. Use the density of L2 into L1 and the monotone convergence theorem to estab-
lish that for every random variable X ∈ L1(Ω,F , P; R), there exists a random
variable Y ∈ L1(Ω, G , P; R) verifying

∀G ∈ G ,
ˆ

G
X(ω)P(dω) =

ˆ
G

Y(ω)P(dω).

3.2 Orthogonal and orthonormal systems; orthogonal com-
plements

Lemma 3.2.1. Let (ei)i=1,...,n be a collection of vectors of a Hilbert space H.
1. If the collection are orthogonal, then ‖∑n

i=1 ei‖2 = ∑n
i=1 ‖ei‖2.

2. If the collection are orthonormal, (λi)i=1,...,n are arbitrary complex numbers and h ∈H

arbitrary, then

‖h−
n

∑
i=1

λiei‖2 = ‖h‖2 +
n

∑
i=1
|λi − ci|2 −

n

∑
i=1
|ci|2,

where ci = ci(h) := 〈 ei | h 〉.

The significance of the previous result is better grasped in the following:

Theorem 3.2.2. If (ei)i=1,...,n is an orthonormal collection of vectors in H, the vector g ∈
vect(e1, . . . , en) lying closest to h is the vector g = ∑n

i=1 〈 ei | h 〉ei, verifying ‖h − g‖2 =
‖h‖2 −∑n

i=1 |〈 ei | h 〉|2.

In particular, if h ∈ vect(e1, . . . , en), then h = g = ∑n
i=1 〈 ei | h 〉ei. These results

extend to the case of an infinitely denumerable orthonormal system.

Theorem 3.2.3 (Bessel inequality). If (en)n∈N is an orthonormal system in H, then

∀h ∈H, ∑
n∈N

|〈 en | h 〉|2 ≤ ‖h‖2.

Theorem 3.2.4. Let (en)n∈N be an orthonormal system in H, and (λn)n∈N a sequence of
arbitrary complex numbers. Then ∑n∈N λnen converges — in Hilbert norm — towards a
vector h ∈H if, and only if, ∑n∈N |λn|2 < ∞.

The complex numbers 〈 en | h 〉 are known as Fourier coefficients of h. Combined
with Bessel’s inequality, the previous theorem states that the Fourier series of any
h ∈ H converges towards a vector of g ∈ H. Without any additional condition how-
ever, it is not guaranteed that g = h. This additional condition is completeness of the
orthonormal system (en)n∈N, defined in the following
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Short resumé of Hilbert spaces

Definition 3.2.5. Let H be a Hilbert space.
— A family (not necessarily countable) (ea)a∈A of vectors (not necessarily orthonor-

mal) of H is said to be total if

[ ∀a ∈ A, 〈 h | ea 〉 = 0 ]⇒ [ h = 0 ].

— The space H is separable if it contains an at most infinitely countable dense
subset.

Theorem 3.2.6. If a Hilbert space H is separable, then the indexing set A of every orthonormal
system (ea)a∈A is countable, i.e. |A| ≤ ℵ0.

Very often it is required the space to be separable, i.e. to possess a denumerable
dense subset, but this requirement is not technically part of the definition of a Hilbert
space. And as a matter of fact, there exist non separable Hilbert spaces as the following
example shows.

Example 3.2.7. [See [3, §15, p. 49] or [154, Beispiel V.1(f), page 208] for instance].
Consider the family of functions (eλ)λ∈R defined, for t ∈ R, by eλ(t) = exp(iλt).
Form the linear hull L = vect{eλ, λ ∈ R}. For f , g ∈ L, define the scalar product
〈 g | h 〉 = limT→∞

1
2T
´ T
−T g(t)h(t)dt. Since g and h are finite sums of vectors eλ, i.e.

g(t) = ∑m
k=1 akeλk(t) and h(t) = ∑n

s=1 bseµs(t), their scalar product reads:

〈 g | h 〉 = lim
T→∞

1
2T

ˆ T

−T
g(t)h(t)dt

=
m

∑
k=1

n

∑
s=1

akbs

(
lim

T→∞

1
2T

ˆ T

−T
exp(−it(λk − µs))dt

)

=
m

∑
k=1

n

∑
s=1

akbsδλk ,µs .

This scalar product induces a norm ‖g‖2 = ∑m
k=1 |aλk |

2 because ‖g‖2 ⇔ g = 0. On
completing L for the norm stemming from the above scalar product, we get a Hilbert
space, denoted AP2(R), which is not separable because it contains the uncountable
orthonormal system (eλ)λ∈R (notice that ‖eλ − eµ‖ =

√
2 for λ 6= µ).

The mathematician Harald Bohr 5 [27] (see also [23]) showed that a continuous
function g belongs to AP2(R) if, and only if, is almost-periodic, i.e. for every ε > 0,
there exists an l := l(ε) such that in every interval of length l there exist a number τ:
|g(t + τ)− g(t)| < ε, for all t ∈ R.

In the sequel, when we say Hilbert space we always mean separable Hilbert space.
If H is separable, every total orthonormal system is denumerable (finite or infinite).
An infinite sequence of vectors is total if and only if the sequence are closed in H. For
separable Hilbert spaces, the following theorem characterises total systems.

Theorem 3.2.8 (Characterising total systems for separable spaces). Let (en)n∈N be an
orthonormal system in H. The following are equivalent:

5. Brother of the physicist Niels Bohr, one of the prominent founders of quantum mechanics.
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3.2. Orthogonal and orthonormal systems; orthogonal complements

1. The system (en)n∈N in H is total.
2. vect(en, n ∈N) = H.
3. For all h ∈H, ‖h‖2 = ∑n∈N |〈 en | h 〉|2 (Parseval’s equality).
4. For all h ∈H, h = ∑n∈N 〈 en | h 〉en, equality holding in Hilbert norm.

Exercise 3.2.9. If (en)n∈N is a total orthonormal system in H, then for all g, h ∈ H,
〈 g | h 〉 = ∑n∈N 〈 g | en 〉〈 en | h 〉.

Definition 3.2.10. 1. Two vectors g, h ∈H are orthogonal if 〈 g | h 〉 = 0.
2. Two subsets A, B ⊂ H are called orthogonal if ∀a ∈ A and ∀b ∈ B, we have
〈 a | b 〉 = 0.

3. If A ⊂H, its orthogonal complement is defined as

A⊥ := {h ∈H : ∀a ∈ A, 〈 a | h 〉 = 0} .

Theorem 3.2.11. If A ⊂H, then A⊥ is a Hilbert subspace (closed vector subspace) of H.

Theorem 3.2.12. Let G be a Hilbert subspace of H and h ∈ H. Then h ∈ G⊥ if, and only if,
for all g ∈ G, we have ‖h− g‖ ≥ ‖h‖.

Definition 3.2.13. Let V be a vector space and X, Y vector subspaces of V.

1. If for every v ∈ V, there exists a unique x ∈ X (and consequently a unique
y ∈ Y) such that v = x + y, we say that V is the direct sum of X and Y and
write V = X⊕Y.

2. If X is a Hilbert space (or at least is equipped with a scalar product) and Y =
X⊥, then V = X⊕X⊥ is an orthogonal direct sum.

Example 3.2.14. 1. As special cases of the above example, consider, for instance,
V = L2([a, b]) and −∞ ≤ a ≤ c ≤ b ≤ ∞, and X = { f ∈ L2(R) : f =
0 for a.e. x ∈ [a, c]} and Y = { f ∈ L2(R) : f = 0 for a.e. x ∈ [c, b]}. Then
V = X⊕Y is an orthogonal direct sum.

2. In the same vein, let V = L2([−a, a]) for some a > 0, and X± = { f ∈ L2([−a, a]) :
f (x) = ± f (−x), x ∈ [−a, a]}. Then V = X− ⊕X+ is also an orthogonal direct
sum.

3. Let A be an arbitrary set (not necessarily countable) and (Hα)α∈A a family of
pre-Hilbert spaces. Define

H = {h = (hα)α∈A ∈ ×α∈AHα, hα = 0 for all but countably many α, ∑
α∈A

‖hα‖2 < ∞}.

Then 〈 h | h′ 〉 = ∑α∈A 〈 hα | h′α 〉 is a scalar product on H. H is Hilbert if, and
only if, all spaces Hα are Hilbert. On identifying

Hα ' {(hβ)β∈A : hβ ∈Hβ, β ∈ A, and hβ = 0 if β 6= α},

the family (Hγ)γ∈A are mutually orthogonal subspaces of H. The decomposi-
tion

H = ⊕α∈AHα

provides with an orthogonal direct sum.
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Short resumé of Hilbert spaces

Exercise 3.2.15. Consider the space H = `2(Z), endowed with an orthonormal basis
(εk)k∈Z, and two sequences α, β ∈ H. For a k ∈ Z, define Tk : H → H by the formula
(Tkα)n = αn−k. Assume that α and β constitute quadrature mirror filtres, i.e. the family
(T2kα, T2kβ)k∈Z are an orthonormal basis of H. For simplicity, we can assume that α
and β are finitely supported.

1. Show that the sequence ζ = (ζk)k∈Z, with ζ2k = ∑l∈Z α2k−lε l and ζ2k+1 =
∑l∈Z β2k−lε l, for k ∈ Z are a new orthonormal basis.

2. Denote by H0 = vect(ζ2k, k ∈ Z) and H1 = vect(ζ2k+1, k ∈ Z) (hence H =
H0 ⊕H1). This splitting can be iterated to get H = (H00 ⊕H01) ⊕ (H10 ⊕
H11) and then a finite number of times. Show that these splittings generate new
orthonormal bases of H.

3.3 Duality

Definition 3.3.1. Let V be a C-vector space. A map F : V → C such that for all
u, v ∈ V and all λ, µ ∈ C,

F(λu + µv) = λF(u) + µF(v),

is called a linear functional. The space of all linear functionals on V is called the
(algebraic) dual of V. (It is itself a C-vector space).

Example 3.3.2. 1. Let V = Cn and c1, . . . , cn be fixed complex numbers and (e1, . . . , en)
a fixed basis of V. The map F defined by F(v) = ∑n

i=1 civi where (vi) denote the
components of v in the basis (ei) is a linear functional.

2. V = C([0, 1]; R) and µ ∈ M1(B([0, 1])) a probability measure on [0, 1] having a
density ρ. The map F(v) =

´
[0,1] v(t)ρ(t)dt is a linear functional.

3. V = L1(Ω,F , P). The expectation of every integrable real random variable is a
linear functional.

4. V = H a Hilbert space and g a fixed vector in H. The map F(h) = 〈 g | h 〉 is a
linear functional.

When the vector space V is equipped with a norm ‖ · ‖, with which it is complete
(Banach space), we can consider continuous linear functionals.

Theorem 3.3.3. Let F be a linear functional on a complex Banach space (V, ‖ · ‖). The
following are equivalent:

1. F is continuous everywhere.
2. F is continuous at point 0.
3. sup{|F(v)|, v ∈ V, ‖v‖ ≤ 1} < ∞.

The previous theorem establishes continuity of F provided it is bounded on the unit
ball of V. The bound sup{|F(v)|, v ∈ V, ‖v‖ ≤ 1} constitutes a norm, denoted ‖F‖.
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3.4. Linear operators, inverses, adjoints

Theorem 3.3.4. Let (V, ‖ · ‖) be a Banach space. The space of continuous linear functionals

V′ = {F : F continuous linear functional on V}

is called the (topological) dual of V. When equipped with the norm ‖F‖ = sup{|F(x)|, x ∈
V, ‖x‖ ≤ 1}, it becomes a Banach space on its own.

Remark 3.3.5. The topological dual space of a Banach space V is usually (especially in
the French and German literature) denoted by V′. Mind however that this notation is
not universal; in the Anglo-Saxon literature the dual is usually denoted by V∗. There
does not exist a universal convention for denoting the algebraic dual. The action of a
linear form F on a vector v ∈ V is often denoted 〈F, v〉 and called the duality pairing.
In finite dimension the algebraic and topological duals of a normed space coincide.

Example 3.3.6. 1. Let `p(N; R), with 1 ≤ p < ∞, and q the conjugate exponent
verifying 1/p + 1/q = 1. Then (`p)′ = `q.

2. c′0 = `1.
3. Let X be a metric (or topological) compact space andX its Borel σ-algebra. Then

C(X)′ =M(X,X ), whereM(·) denotes the set of regular (signed) Borel mea-
sures of finite variation (see for instance [154, Th. II.2.5, p. 62]).

Exercise 3.3.7. Show that if F ∈ V′, then |F(v)| ≤ ‖F‖‖v‖.

The bi-dual V′′ of V is defined as V′′ = (V′)′. For every v ∈ V, define ι(v) : V′ →
C by ι(v)(F) = F(v), for all F ∈ V′. Then the canonical linear map ι : V→ V′′ defined
above is a (generally non-surjective) linear isometry.

The pre-dual of a space W is a space V whose dual is W, i.e. verifying V′ = W.

When the Banach space is a Hilbert space, we have a result generalising the corre-
sponding result on finite dimensional Euclidean spaces, namely:

Theorem 3.3.8 (Fréchet-Riesz). For every continuous linear functional F on a Hilbert space
H, there exists a unique vector f ∈ H such that for all h ∈ H, F(h) = 〈 f | h 〉. Additionally,
‖F‖ = ‖ f ‖.

The previous theorem establishes the existence of a map T : H→H′ defined by the
formula T f (·) := 〈 f | · 〉. This mapping is antilinear (i.e. T(λ f + µg) = λT f + µTg),
isometric (i.e. ‖T f ‖ = ‖ f ‖), and bijective. Therefore, T isometrically identifies H with
its dual H′; for this reason, we say that the Hilbert space is self-dual.

3.4 Linear operators, inverses, adjoints

Definition 3.4.1. Let V, W be C-vector spaces. A linear map X : V → W — i.e.
satisfying for all u, v ∈ V and all λ, µ ∈ C, the linearity condition X(λu + µv) =
λXu + µXv — is called a linear operator (or simply operator) from V to W.

1. The set of linear operators from V to W is denoted L(V, W) and is itself a C-
vector space; when V = W we denote this set simply by L(V). An operator
X ∈ L(V) is called (linear) operator on V.
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2. For X ∈ L(V, W), we define the kernel and the range respectively by

ker X = {v ∈ V : Xv = 0} ⊂ V and im X = {Xv, v ∈ V} ⊂W.

3. When (V, ‖ · ‖V) and (W, ‖ · ‖W) are normed spaces, we can define

‖X‖ = ‖X‖V,W := sup{‖Xv‖W, v ∈ V, ‖v‖V ≤ 1}.

‖ · ‖ is a norm, called operator norm 6. The set

B(V, W) := {X ∈ L(V, W) : ‖X‖ < ∞},

(or simply B(V) when V = W), is called the space of bounded operators.
Equipped with the operator norm, it becomes a normed vector space on its own.

Exercise 3.4.2. Let V and W be normed spaces. Any bounded operator X ∈ B(V, W)
is continuous.

Example 3.4.3. 1. L(Cm, Cn) = B(Cm, Cn) = Mn×m(C).
2. For any vector space V, its algebraic dual is L(V, C) and for any normed space

(V, ‖ · ‖), V′ = B(V, C).
3. Let H = L2([a, b]; C) with a < b. For any function f ∈ C([a, b]; C) define the

operator M := M f : H → H by Mh(t) = f (t)h(t), t ∈ [a, b]. Then M ∈ B(H),
with ‖M‖ = ‖ f ‖sup = supt∈[a,b] | f (t)|, is called the multiplication operator.

As item 1 of the above example shows, all linear operators over finite dimensional
Hilbert spaces are bounded. A natural question then arises: do there exist unbounded
operators? The answer is yes but this can occur only on infinite dimensional spaces as
the following example shows.

Example 3.4.4. Let H = `2(N) and consider the multiplication operator X ∈ L(H)
defined by Xh(n) = nh(n). Then X is not well defined on the whole space H but only
on the set

D = {h ∈H : ∑
n∈N

n2|h(n)|2 < ∞} ⊂H.

For instance, although the sequence h with h(n) = 1/n for n ≥ 1 and h(0) = 1 belongs
to H, its image Xh 6∈ H. The subset D is called the domain of X and denoted by
Dom(X).

The above example is a general result: an unbounded operator on a vector space
V can only be defined on a domain strictly smaller than V. The operator is said to be
essentially defined on V if Dom(X) is dense in V.

In general, im(X) is not necessarily a (closed) subspace of W. However, im(X)⊥ is
always a closed subspace. This subspace is known as the support of X and denoted by
supp(X). The rank of X is defined as rank(X) = dim supp(X).

Theorem 3.4.5. If (W, ‖ · ‖) is a Banach space, then for every normed space (V, ‖ · ‖), the
space B(V, W), equipped with the operator norm, is a Banach space.

6. Sometimes, the operator norm is denoted |||·|||.
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3.5. Classes of operators

Theorem 3.4.6. If U, V, W are normed spaces, X ∈ B(U, V), and Y ∈ B(V, W), then
XY ∈ B(U, W) and ‖XY‖ ≤ ‖X‖‖Y‖.

Definition 3.4.7. An operator X ∈ B(V, W) is invertible if there exists an operator
Y ∈ B(W, V), such that YX = IV and XY = IW. The operator Y is then termed the
inverse of X and is denoted by X−1.

Remark 3.4.8. Notice that in the above definition X−1 is required to be bounded in
order to be considered as the inverse of X. For instance, on H = `2(N), let (en)n∈N be a
total orthonormal system and define the operator X by its action on it, e.g. Xen = λnen,
with λn ∈ C \ {0} and supn |λn| < ∞ (for instance if λn = 1

n+1 ). Then X ∈ B(H) and
X−1 is well defined as an element of L(H) but not necessarily of B(H) since it may
happen that ‖X−1‖ = ∞; in that case, X is not invertible.

Exercise 3.4.9. If dim H < ∞ and X ∈ B(H), the the following are equivalent:
1. X is invertible.
2. X is injective.
3. X is surjective.
4. ∃Y ∈ B(H) : XY = I,
5. ∃Y ∈ B(H) : YX = I.

Remark 3.4.10. In infinite dimension the above claims are not equivalent. Provide
with an example!

Theorem 3.4.11. Let X ∈ B(H, F). There exists a unique operator Y ∈ B(F, H) such that

∀ f ∈ F, ∀h ∈H, 〈 f |Xh 〉F = 〈Y f | h 〉H.

The operator Y is then denoted X∗ and called the adjoint operator of X.

Exercise 3.4.12. For H = `2(N), show that the adjoint of the right shift is the left shift.

Theorem 3.4.13. For any pair of Hilbert spaces F and H, and any X ∈ B(F, H), we have
X∗∗ = X, where X∗∗ = (X∗)∗. Moreover, ‖X∗‖ = ‖X‖.

Exercise 3.4.14. For F, G, H arbitrary Hilbert spaces, X, X1, X2 ∈ B(F, G), Y ∈ B(G, H),
and λ1, λ2 ∈ C, show that

1. (YX)∗ = X∗Y∗.
2. (λ1X1 + λ2X2)

∗ = λ1X∗1 + λ2X∗2 .
3. ‖XY‖ ≤ ‖X‖‖Y‖.
4. ‖X‖ = ‖X∗‖ = ‖X∗X‖1/2.
5. If X is invertible, then X∗ is invertible and (X∗)−1 = (X−1)∗.

3.5 Classes of operators

3.5.1 Normal operators

Definition 3.5.1. Let X ∈ B(H) and X∗ its adjoint. The operator X is termed
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1. normal if [X, X∗] := XX∗ − X∗X = 0,
2. self-adjoint if X∗ = X,
3. skew-adjoint if X∗ = −X (hence iX is self-adjoint),
4. unitary if XX∗ = X∗X = I.

Self-adjoint, skew-adjoint, and unitary operators are all normal; nevertheless there
exist normal operators that are of none of those types. Consider, for example, X =(

1 1
−1 1

)
.

Exercise 3.5.2. Show that X ∈ B(H) is normal if, and only if, ‖Xh‖ = ‖X∗h‖ for all
h ∈H.

Definition 3.5.3. Two Hilbert spaces are isomorphic if there exists U : H1 → H2 that
is unitary, i.e.

〈Uh |Ug 〉H2
= 〈 h | g 〉H1

, ∀h, g ∈H1.

Corollary 3.5.4. There exist only two types of separable spaces, those isomorphic to Cn (for
some n ∈N) and those isomorphic to `2(N).

Exercise 3.5.5. Show that if X is normal and U unitary, then Y = UXU∗ is normal.

3.5.2 Projections

Definition 3.5.6. Let V be a vector space and decomposed as a direct sum V = X⊕Y

into two vector subspaces X and Y. Define a linear operator P : V→ X by

V 3 v = x + y 7→ Pv = P(x + y) := x ∈ X.

Remark 3.5.7. If P is the operator defined in 3.5.6, obviously P2v = P2(x + y) = Px =
x = Pv. Hence P2 = P. Additionally im P = X and ker P = Y.

Definition 3.5.8. A projection on a vector space V is a linear operator P ∈ L(V)
satisfying the condition P2 = P.

There exists a bijection between projections and decompositions in direct sums as
stated in the following important

Theorem 3.5.9. Let V be a vector space.
1. If an operator P ∈ L(V) is a projection on V, then V = im P⊕ ker P.
2. If X and Y are vector subspaces of V such that V = X⊕Y, then there exists a projec-

tion P on V such that im P = X and ker P = Y.

When the vector space is a Hilbert space H (hence equipped with a scalar prod-
uct) and F a Hilbert subspace of H, obviously we can decompose the space into the
orthogonal direct sum H = F⊕ F⊥. The projection operator is then defined analo-
gously, thanks to the theorem 3.5.9, but now we have for h = f + g and h′ = f ′ + g′

that
〈 Ph | h′ 〉 = 〈 h | f ′ + g′ 〉 = 〈 f | f ′ 〉 = 〈 f | Ph′ 〉 = 〈 h | Ph′ 〉.

We have thus:
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3.6. Various topologies on operator spaces

Definition 3.5.10. A linear operator P : H → H is an orthoprojection on H if P is a
projection (i.e. P2 = P) and for every pair h, h′ ∈ H, we have 〈 Ph | h′ 〉 = 〈 h | Ph′ 〉 (i.e.
P∗ = P). The set of orthoprojections of H is denoted by P(H).

Again we can establish a bijection between orthoprojections and decompositions
into orthogonal Hilbert subspaces as shown in the next

Theorem 3.5.11. 1. If P is an orthoprojection on H, then im P is closed and H = im P⊕
ker P.

2. If V is a Hilbert subspace of H then there exists an orthoprojection P on H such that
im P = V and ker P = V⊥.

Exercise 3.5.12. Let H = L2(R).

1. If V is the Hilbert subspace of even square integrable functions, then V⊥ is the
Hilbert subspace of odd square integrable functions, then P, Q defined by

Ph(x) =
h(x) + h(−x)

2
and Qh(x) =

h(x)− h(−x)
2

,

are orthoprojections on H.
2. If A ∈ B(R) and V = {h ∈ H : h = 1Ah}, then V is a vector subspace of H not

necessarily closed. Nevertheless, an orthoprojection P can be associated with
the decomposition H = V⊕V⊥, where V is the Hilbert subspace of functions
with support contained in A.

Exercise 3.5.13. An orthoprojection P 6= 0 on H has norm ‖P‖ = 1. Therefore, any
orthoprojection belongs to B(H).

3.6 Various topologies on operator spaces

We shall consider limits of sequences of operators in B(H) and we have seen that
this space is a Banach space for the operator norm. Nevertheless, the topology in-
duced by the Hilbert norm is too fine for certain important sequences. For instance,
let (εn)n∈N be an orthonormal basis of H and En the orthoprojection on the one-
dimensional space Cεn. Although the sum ∑n En does not converge in Hilbert norm,
we can nevertheless show that limN→∞ ‖∑N

n=1 Enh − h‖ = 0 for every h ∈ H. For
many practical purposes, it is therefore important to have alternative ways to study
asymptotic behaviour.

Definition 3.6.1. [Topologies]. Let H be a Hilbert space; denote by (Xn)n∈N, X opera-
tors in B(H) and g, h, (gn)n∈N, (hn)n∈N vectors in H.

1. (Xn) converges uniformly or in the operator norm topology to X, if

lim
n→∞
‖Xn − X‖ = 0.

We denote this convergence by limn→∞ Xn
u
= X.
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2. (Xn) converges ultrastrongly or in the ultrastrong operator topology to X, if

lim
n→∞ ∑

k∈N

‖(Xn − X)hk‖ = 0,

for all sequences (hk) ∈ H of vectors such that ∑k→∞ ‖hk‖2 < ∞. We denote
this convergence by limn→∞ Xn

u-s
= X.

3. (Xn) converges strongly or in the strong operator topology to X, if

lim
n→∞
‖(Xn − X)h‖ = 0,

for all h ∈H. We denote this convergence by limn→∞ Xn
sot
= X.

4. (Xn) converges weakly or in the weak operator topology to X, if

lim
n→∞
|〈 g | (Xn − X)h 〉| = 0,

for all g, h ∈H. We denote this convergence by limn→∞ Xn
wot
= X.

5. (Xn) converges ∗-weakly or in the weak∗ topology to X, if

∑
k→∞
|〈 gk | (Xn − X)hk 〉| = 0,

for all sequences of vectors (gk), (hk) ∈ H, such that ∑k→∞ ‖gk‖2 < ∞ and

∑k→∞ ‖hk‖2 < ∞. We denote this convergence by limn→∞ Xn
w∗
= X.

Sometimes, the term “ultraweak” is used in the literature instead of weak∗. This
choice is unfortunate since we have the following implications:

Xn
u−→ X Xn

u-s−→ X

Xn
sot−→ X

Xn
w∗−→ X

Xn
wot−→ X

Hence the term ultraweak will be not used in this course.

It is also useful to have in mind bases of open neighborhoods for these topologies.

Uniform: Vε(X) = {Y ∈ B(H) : ‖X−Y‖ < ε}.
Ultrastrong: Vε(X, (hk)k∈N) = {Y ∈ B(H) : ∑k∈N ‖(X − Y)hk‖2 < ε}, where

(hk)k∈N is an arbitrary sequence of vectors of H such that ∑k∈N ‖hk‖2 < ∞.
Strong: Vε(X, F) = {Y ∈ B(H) : ‖(X − Y) f ‖ < ε, ∀ f ∈ F} where F is a finite

subset of H.
Weak∗: Vε(X, (gk)k∈N, (hk)k∈N) = {Y ∈ B(H) : ∑k∈N |〈 gk | (X−Y)hk 〉|2 < ε},

where (gk)k∈N and (hk)k∈N are an arbitrary sequences of vectors of H such that
∑k∈N ‖gk‖2 < ∞ and ∑k∈N ‖hk‖2 < ∞.

Weak: Vε(X, F, G) = {Y ∈ B(H) : |〈 f | (X−Y)g 〉| < ε, ∀ f ∈ F, ∀g ∈ G} where F
and G are a finite subsets of H.
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3.7 Spectral theorem for normal operators (dim H < ∞)

The spectral theorem for infinite dimensional spaces is postponed until chapter 12.
Here only the very basic notions are given for normal matrices.

Exercise 3.7.1. Let X be a d× d matrix with complex coefficients. Show that

1. If the matrix is diagonal, then is normal;
2. (by induction on the dimension) if the matrix is normal and upper triangular,

then it is diagonal.
3. Conclude that a triangular matrix is normal if, and only if, it is diagonal.

We recall also Schur’s theorem, a classical result in linear algebra (see [71, Proposi-
tion 18.3, p. 421] for instance):

Theorem 3.7.2 (Schur’s theorem). Every X ∈ L(Cd) is unitarily similar to an upper trian-
gular matrix 7.

Theorem 3.7.3 (Spectral theorem). Let X ∈ L(Cd). The following statements are equiva-
lent:

1. X is normal.
2. X is unitarily similar to a diagonal matrix.
3. ∑1≤i,j≤d |Xij|2 = ∑1≤i≤d |λi|2, where λ1, . . . , λd are the eigenvalues of X counted with

their multiplicity.

Proof. 1⇔ 2: By proposition 3.7.2, X is unitarily similar to an upper triangular ma-
trix T. By exercise 3.5.5, normality of X is equivalent to normality of T. By ex-
ercise 3.7.1, T is equivalently diagonal. So X is unitarily similar to the diagonal
matrix T.

2⇒ 3: Suppose X is unitarily similar to a diagonal matrix D. Hence the diagonal
elements of D are the eigenvalues of X. We have thus:

∑
1≤i,j≤d

|Xij|2 = tr(X∗X) = tr(D∗D) = ∑
1≤i≤d

|λi|2.

3⇒ 2: By Schur’s theorem 3.7.2, X is unitarily similar to an upper triangular matrix
T. Hence,

tr(X∗X) = ∑
1≤i,j≤d

|Xij|2 = tr(T∗T) = ∑
1≤i,j≤d

|Tij|2.

But the triangular normal matrix T is in fact diagonal and its diagonal entries are
the eigenvalues of X, i.e. ∑1≤i,j≤d |Tij|2 = ∑1≤i≤d |Tii|2 = ∑1≤i≤d |λi|2 because
the non-diagonal entries of T vanish. Hence, X is unitarily similar to a diagonal
matrix.

Corollary 3.7.4. Let H ' Cd for some d and X ∈ L(H). X is normal if and only if there
exists an orthonormal basis of H composed solely of eigenvectors of X.

7. I.e. there exists a unitary matrix U such that X = UTU∗, where T is upper triangular.
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If X is normal, on denoting E[λ] the orthoprojection on the space spanned by the
eigenvectors associated with the eigenvalue λ, the previous results mean that X is
equal to ∑λ spec(X) λE[λ], where spec(X) is the set of eigenvalues of X. It will be estab-
lished in 12 that this formula has an infinite dimensional generalisation to the expres-
sion

´
spec(X) λE[λ], where E denotes now the spectral measure of X and spec(X) the

spectrum of X.

Speaking of spectral theory for an operator X, we mean
— determining its spectrum,
— determining a spectral measure E on (C,B(C)), and
— establishing that X =

´
spec X xE[dx].

3.8 Tensor product of Hilbert spaces

Tensor products appear naturally in quantum mechanics in order to deal with com-
posite systems. Since this topic is scarcely touched in functional analysis courses, some
precisions are due.

3.8.1 Algebraic aspects

In all this section, V, W, X denote C-vector spaces and Bil(V ×W; X) the set of
X- valued bilinear mappings on V×W 8. When X = C we simplify notation for the
set of bilinear forms to Bil(V×W). The symbols v, vi will denote generically vectors
of V and w, wi vectors of W. The symbols a, ai, c, ci, d, di denote generically complex
numbers while β, b, B, τ denote bilinear forms.

Remark 3.8.1. Let β ∈ Bil(V×W; X) and S = {β(v, w), v ∈ V, w ∈W}. Note that in
general S is a mere subset of X (i.e. S is not in general a vector subspace of X) as the
example 9 3.8.2 shows. The vector subspace spanned by S is termed image of β, i.e.

im β = vectS = vect{β(v, w), v ∈ V, w ∈W}.

Example 3.8.2. Let V 'W ' C2, X ' C4, and (ε0, ε1) a basis of C2 and (ζ0, ζ1, ζ2, ζ3)
a basis of C4. Let β ∈ Bil(V×W; X) be defined by its action on the basis vectors of
V and W through the relationship β(εi, ε j) = ζnum(ij), i, j ∈ {0, 1}. A vector x ∈ X

will belong to S if, and only if, there exist two vectors v ∈ V and w ∈ W such that,
on decomposing v = ∑1

i=0 viεi, w = ∑1
i=0 wiεi, we have xnum(ij) = viwj or, equivalently,

that x0x3 − x1x2 = 0. We conclude that both vectors x = 2ζ0 + 2ζ1 + ζ2 + ζ3 and
y = ζ0 + ζ2 of X fulfil the previous condition, hence x ∈ S and y ∈ S. Nevertheless
x− y = ζ0 + 2ζ1 + z3 6∈ S. Thus, S is not a subspace of X.

Remark 3.8.3. Observe that

8. Recall that a mapping β : V×W → X is bilinear if it is separately linear with respect to both
arguments.

9. From [73].
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1. The set L(V, X) is isomorphic to the set Hom(V; X).
2. The set V×W can be endowed with a natural linear structure on defining

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

a(v, w) = (av, aw).

3. Nevertheless Bil(V×W; X) fails to be isomorphic to Hom(V×W; X).

In view of this remark, the natural question that arises is: does there exist a vector
space Y, somehow canonically derived from V and W, such that Bil(V×W; X) be-
comes isomorphic to Hom(Y; X)? As we shall see, the answer to this question is yes,
at the expense of dealing with some space, provisionally denoted by Y, that is much
larger than V×W. As a matter of fact, the space Y will be denoted later V⊗W and
will be called the tensor product of V and W. We follow the approach of [143, Chap.
39, pp. 403–410] in this section.

Definition 3.8.4. Let β : V×W → X be a bilinear map. The spaces V and W are
β-linearly disjoint if, for any n ∈ N and for any two subsets {v1, . . . , vn} ⊂ V and
{w1, . . . , wn} ⊂ W such that the ∑n

i=1 β(vi, wi) = 0, it follows that the two conditions
below hold:

1. if (vi)i=1,...,n are linearly independent on V, then wi = 0, ∀i = 1, . . . , n,
2. if (wi)i=1,...,n are linearly independent on W, then vi = 0, ∀i = 1, . . . , n.

The raison d’être of the technical definition 3.8.4 is justified by the instrumental def-
inition 3.8.5 and notation 3.8.9.

Definition 3.8.5. An algebraic tensor product between the K-vector spaces V and W

is a pair (Y, τ) composed of a K-vector space Y and a bilinear map τ : V×W → Y

such that

1. the image im τ is exhaustive, i.e. τ(V×W) = Y, and
2. the spaces V and W are τ-linearly disjoint.

The rest of this subsection is devoted in establishing the existence of a tensor prod-
uct, its uniqueness up to isomorphisms, and its, so-called, “universality”, as formu-
lated in the theorem 3.8.7 below. We start by an equivalent definition of linear disjoint-
ness.

Proposition 3.8.6. Let V, W, and X be three vector spaces and β a bilinear map between V×
W and X. The spaces V and W are β-linearly disjoint if, and only if, the following condition
holds: for arbitrary linearly independent sets {v1, . . . , vm} ⊂ V and {w1, . . . , wn} ⊂ W,
with m, n ∈ N, the set {xij = β(vi, wj), i = 1, . . . , m, j = 1, . . . , n} ⊂ X consists of linearly
independent vectors.

Proof. [⇒]: Let {v1, . . . , vm} ⊂ V and {w1, . . . , wn} ⊂ W be independent sets in
their respective spaces and

m

∑
i=1

n

∑
j=1

cijxij =
m

∑
i=1

n

∑
j=1

cijβ(vi, wj) = 0.
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Bilinearity of β implies that ∑m
i=1 β(vi, Wi) = 0 with Wi = ∑n

j=1 cijwj, for i =

1, . . . , m. Since the vectors (vi) are linearly independent, linear disjointness im-
plies that W1 = . . . = Wm = 0, i.e. for all i = 1, . . . , m, ∑n

j=1 cijwj = 0. But
the vectors (wj) are independent, therefore all cij = 0. Hence (xij) are linearly
independent.

[⇐]: Suppose that (vi)i=1,...,m and (wi)i=1,...,m are vectors such that ∑m
i=1 β(vi, wi) =

0 and assume that the vectors (vi)i=1,...,m are independent (the case where the
vectors (wi)i=1,...,m are assumed independent is treated analogously). Denote by
(zj)j=1,...,n a basis (hence a linearly independent set) of the linear span vect(w1, . . . , wm);
hence every wi, i = 1, . . . , m, is expressible as a linear combination wi = ∑n

j=1 cijzj.
We have then

0 =
m

∑
i=1

β(vi, wi) =
m

∑
i=1

β(vi,
n

∑
j=1

cijzj) =
m

∑
i=1

n

∑
j=1

cijβ(vi, zj) =
m

∑
i=1

n

∑
j=1

cijyij,

where yij = β(vi, zj). Assume now that (yij) are independent; we conclude then
that all coefficients cij = 0. But this implies that wi = 0 for all i = 1, . . . , m. We
have thus established β-linear disjointness of V and W.

Theorem 3.8.7. Let V and W be K-vector spaces.

1. A tensor product (Y, τ) of V and W always exists.
2. Let (Y, τ) be a tensor product, X an arbitrary K-vector space, and β : V×W → X

an arbitrary bilinear map. Then there exists a unique linear map λ := λβ : Y → X

such that the following diagram commutes.

V×W

Y X

β
τ

λβ

3. If (Y1, τ1) and (Y2, τ2) are two tensor products, then there exists a linear map L :
Y1 → Y2 such that the following diagram commutes.

V×W

Y1 Y2

τ2τ1

L

The item 2 of this theorem establishes a universality property of the map τ, in the
sense that the same map τ serves to linearise any bilinear map β into a linear map
λβ. The vector space Y, whose existence is proclaimed in the theorem 3.8.7, will be
denoted V⊗W (and occasionally V⊗alg W) in the sequel.
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Definition 3.8.8. Let S be a fixed non empty set. A complex formal sum over S is an
expression ∑s∈S as · s, in which only finitely many as are non-zero complex numbers.
The set of all these formal sums become a vector space, called the free vector space
over S, if addition and scalar multiplication is defined by

∑
s∈S

as · s + ∑
s∈S

a′s · s = ∑
s∈S

(as + a′s) · s and c ·∑
s∈S

as · s = ∑
s∈S

(cas) · s.

This space is denoted by F := F(S). Notice that F(S) ' CS.

One can identify F(S) with

F̂ := F̂(S) = { f : S→ C : f ≡ 0 outside a finite subset F := Ff of S}.

On defining

es(s′) =

{
1 if s = s′

0 otherwise,

we can write f = ∑s∈Ff
ases, i.e. (es)s∈S is a basis of F̂.

If V and W are two vector spaces, their Cartesian product V ×W can be given
a natural vector product structure as pointed out in remark 3.8.3. Nevertheless, we
regard this product here as a mere set of pairs (v, w) without any further structure. In the
free vector space F := F(V×W) we cannot claim that (v1, w) + (v2, w) = (v1 + v2, w)
or that a(v, w) = (a · v, w) because these equalities are not implied by the definition 3.8.8.

The idea of the construction of the tensor product is to introduce a relation R ⊂
F× F, tailored to be the equivalence relation 10 that identifies naturally the following
pairs

(v1, w) + (v2, w) and (v1 + v2, w),
(v, w1) + (v, w2) and (v, w1 + w2),

a · (v, w) and (a · v, w),
a · (v, w) and (v, a · w).

The tensor product of V and W will be eventually defined as its equivalence classes
V⊗W = F×F/R.

Proof of theorem 3.8.7. 1. We start henceforth the explicit construction of a pair (Y, τ),
having the properties of a tensor product. It proves more convenient to work
with F̂ := F̂(V×W). Consider the basis (e(v,w))(v,w)∈V×W of F̂(V×W) and
define

F̂0 := vect{e(∑m
i=1 aivi ,∑n

i=1 cjwj)
−

m

∑
i=1

n

∑
i=1

aicje(vi ,wj)
},

with m, n ∈ N, (ai), (bj) ∈ C, (vi) ∈ V, and (wj) ∈ W. Denote further by Y =

F̂/F̂0 the set of equivalence classes, by π : F̂ → Y the canonical projection and

10. Recall that a relation is an equivalence if it is reflexive (I ⊆ R), symmetric (R−1 ⊆ R), and
transitive (R2 ⊆ R).
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define τ : V×W → Y by τ(v, w) := π(e(v,w)). Since the canonical projection
is a linear map, the map τ is easily checked to be bilinear. As a matter of fact,
e(av+cv′ ,w) − ae(v,w) − ce(v′ ,w) ∈ ker(π). Therefore

0 = π(e(av+cv′ ,w) − ae(v,w) − ce(v′ ,w))

= π(e(av+cv′ ,w))− aπ(e(v,w))− cπ(e(v′ ,w))

= τ(av + cv′, w)− aτ(v, w)− bτ(v′, w)

establishes the linearity with respect to the first argument; the linearity with
respect to the second one is obtained similarly.
We focus now on the linear span of τ. We have

vect{τ(v, w), v ∈ V, w ∈W} = vect{π(e(v,w)), v ∈ V, w ∈W} = π(F̂) = Y.

Therefore item 1) of the definition 3.8.5 is satisfied.
It remains to establish the τ-linear disjointness of V and W. Let r ∈ N and
(v1, . . . , vr) ⊂ V, (w1, . . . , wr) ⊂W be such that ∑r

i=1 τ(vi, wi) = 0 and suppose
that (w1, . . . , wr) are linearly independent. For every linear form f ∈ V′, define
the linear map L f : F̂ → W by its action on the basis elements: L f (ev,w) =

f (v)w. We remark that the map L f vanishes on F̂0 since, by linearity of f ,

L f (eav+cv′ ,w − aev,w − cev′ ,w) = f (av + cv′)w− a f (v)w− c f (v′)w = 0.

Consequently, L f induces a map L̃ f : Y → W such that for all ψ ∈ F̂, we have
L̃ f (π(ψ)) = L f (ψ). Now 0 = ∑r

i=1 τ(vi, wi) = π(∑r
i=1 evi ,wi). Hence

0 = L̃ f (π(
r

∑
i=1

evi ,wi)) = L f (
r

∑
i=1

evi ,wi) =
r

∑
i=1

f (vi)wi.

But (wi)i are supposed linearly independent. Therefore the previous equality
means that ∀i = 1, . . . , r : f (vi) = 0. But this conclusion holds for arbitrary f ∈
V′; consequently ∀i = 1, . . . , r : vi = 0. We have thus established item 2) of he
definition 3.8.5. Interchanging the roles of (vi)i and (wi)i, we establish similarly
item 1). Thus the spaces are τ-linearly disjoint. This result, combined with the
exhaustivity of the image of τ, proves the existence of the tensor product (Y, τ).

2. Let (Y, τ) be a tensor product of spaces V and W, X a vector space, and β :
V×W → X a bilinear form. Denote by (vi)i∈I and (wj)j∈J two bases of V and
W. We know that (τ(vi, wj))i∈I,j∈J is total in Y because vect(τ(V×W)) = Y;
by proposition 3.8.6, we know further that (τ(vi, wj))i∈I,j∈J are linearly indepen-
dent. Hence they form a basis of Y. We construct thus the map λβ as the unique
linear map Y→ X such that

∀i ∈ I, ∀j ∈ J, λβ(τ(vi, wj)) := β(vi, wj).

We have thus proven the commutativity of the diagram.

3. It remains to establish uniqueness (up to isomorphisms) of the tensor product.
Let (Y1, τ1) and (Y2, τ2) be two tensor products of the spaces V and W. We
denote by λ12 the map linearising the bilinear form τ2 : V×W → Y2 and by
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λ21 the map linearising the bilinear form τ1 : V×W→ Y1. Applying twice the
commutativity of the diagrams, we get

λ12 ◦ τ1 = τ2

λ21 ◦ τ2 = τ1.

We conclude that λ12 = λ−1
21 , establishing thus the isomorphism of Y1 and Y2.

Notation 3.8.9. The K-vector space Y, introduced in 3.8.7, will henceforth be denoted
V⊗W and termed the algebraic tensor product of the vector spaces V and W. The
map τ assigns to every pair of vectors (v, w) their tensor product τ(v, w) = v⊗ w.

Note that ∀v ∈ V and ∀w ∈W

0V ⊗ w = v⊗ 0W = 0V⊗W.

Similarly, for all a, c ∈ C such that ac = 1, we have

v⊗ w = (av)⊗ (cw).

In the same vein, any Ψ = ∑j cjgj ⊗ hj ∈ G⊗H can be rewritten as

Ψ = ∑
k

εk ⊗ ψk = ∑
l

φl ⊗ ζl ,

where (εk)k is an orthonormal system in vect{gj, j = 1, . . . , m} and (ζl)l is an orthonor-
mal system in vect{hj, j = 1, . . . , m} respectively.

Definition 3.8.10. Elements of V⊗W are called tensors. The set T = {v⊗ w : v ∈
V, w ∈ W} generates V⊗W. Elements of T are called simple or factored tensors
while the elements of (V⊗W) \T are the entangled tensors.

Since the set T generates V⊗W, it follows that every tensor t ∈ T admits a rep-
resentation t = ∑i∈I vi ⊗ wi, with a finite family I. As no condition is imposed on the
vectors vi and wi, this representation is not unique.

The tensor product between vectors defined above satisfies obviously the following
equalities:

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,
v⊗ (w1 + w2) = v⊗ (w1 + w2)

λ · v⊗ w = (λ · v)⊗ w) = v⊗ (λ · w).

Corollary 3.8.11. dim(V⊗W) = dim V dim W.

Exercise 3.8.12. Let X : V → X and Y : W → Y be linear maps. Define the bilinear
map B by

(v, w) 7→ B(v, w) = Xv⊗Yw.

Let L be the linearising map of B. Show 11 that L(v⊗ w) = Xv⊗Yw.

11. We write X⊗Y instead of L for this linear map.
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Definition 3.8.13. If X : V → X and Y : W → Y are linear operators, we define
X⊗Y : V⊗W→ X⊗Y by

(X⊗Y)(v⊗ w) = (Xv)⊗ (Yw).

Example 3.8.14. (Tensor product of finite dimensional spaces). If V = Cm and W =
Cn, then V⊗W = Cmn. Denote by (vi)i∈{1,...,m} and (wj)j∈{1,...,n} the Fourier coeffi-
cients of two arbitrary vectors v ∈ V and w ∈ W in arbitrary (fixed) bases of V and
W. Then, in the derived basis of V⊗W, the canonical map τ is defined by

τ
(
(vi)i∈{1,...,m}, (wj)j∈{1,...,n}

)
=
(
(viwj)i∈{1,...,m},j∈{1,...,n}

)
∈ V⊗W.

Example 3.8.15. (Tensor product of functions). Let A and B be two sets, and f , g
complex-valued functions on A and B. Denote by f ⊗ g the function on A× B defined
by

A× B 3 (a, b) 7→ f ⊗ g(a, b) := f (a)g(a) ∈ C.

Denote by F = { f : A → C} and G = {g : B → C}. On defining F⊗G = vect{ f ⊗ g :
f ∈ F, g ∈ G}, we see immediately that F ⊗ G is the tensor product of F and G.
If both A and B are topological spaces, and recalling that the support of a function
is the closure of the set of points on which the function does not vanish, we verify
immediately that supp( f ⊗ g) = supp( f )× supp(g).

3.8.2 Extension by multi-linearity

The notion of tensor product between two vector spaces can be extended to a tensor
product among an arbitrary number of spaces by multilinearity. More specifically, we
have the following

Definition 3.8.16. Let (Vi)i=1,...,p be a family of K-vector spaces and X a vector space.
A tensor product of the family (Vi)i=1,...,p is a pair (Y, τ) composed of a K-vector space
Y and a multilinear map (p-linear) τ := τp : V1 × · · · ×Vp → Y such that

1. im τ is exhaustive, i.e. τ(V1 × · · · ×Vp) = Y, and
2. their exists a unique (up to isomorphisms) universal linear map λµ : Y → X,

such that, for every multilinear (p-linear) mapping µ : V1 × · · · ×Vp → X on
an arbitrary K-vector space X, the universality property

V1 × · · · ×Vp

Y X

µ
τ

λµ

holds.
The tensor product space Y = τp(V1 × · · · ×Vp) is usually denoted V1 ⊗ · · · ⊗Vp
and when V1 = . . . = Vp = V, the tensor product (Y, τ) is denoted (V⊗p,⊗p).

Remark 3.8.17. The mappings τp can be defined inductively: τ2 ≡ τ and, for p ≥ 3,
τp(v1, v2, v3) = τ2(τp−1(v1, . . . , vp−1), vp).
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3.8.3 Symmetric and skew-symmetric tensors

As stated in the symmetrisation postulate (supplement to postulate 2.6.1), impor-
tant classes of tensors are the symmetric and the skew-symmetric ones since they serve
as state representatives of particular quantum systems (bosons and fermions respec-
tively).

Let Sp denote the symmetric group on p objects and V⊗p the p-fold tensor product
of a vector space V, p ≥ 2. Define, for every σ ∈ Sp, an operator Uσ acting on V⊗p by
its action on factored tensors t = v1 ⊗ · · · ⊗ vp:

Uσ(t) = Uσ(v1 ⊗ · · · ⊗ vp) = vσ−1(1) ⊗ · · · ⊗ vσ−1(p).

Obviously, U ∈ Aut(V⊗p). Moreover, for σ, σ′ ∈ Sp, UσUσ′ = Uσσ′ and if σ′ is the
identity permutation 1, then Uσ1 = Uσ, hence U is a representation of Sp.

Consider now the subspace N p(V) ⊆ V⊗p generated by products v1 ⊗ · · · ⊗ vp
such that vi = vj for at least one pair i 6= j, with 1 ≤ i, j ≤ p.

Lemma 3.8.18. For all t ∈ V⊗p and all σ ∈ Sp,

t− sign(σ)Uσt ∈ N p(V).

Proof. It is enough to establish the result for factored tensors t = v1 ⊗ · · · ⊗ vp ∈ V⊗p.

Step 1: Assume that σ is the transposition i↔ j. We have then

t− sign(σ)Uσt = v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · ⊗ vp

+ v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vi ⊗ · · · ⊗ vp

= v1 ⊗ · · · ⊗ (vi + vj)⊗ · · · ⊗ (vi + vj)⊗ · · · ⊗ vp

− v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vi ⊗ · · · ⊗ vp

− v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vj ⊗ · · · ⊗ vp ∈ N p(V).

Step 2: Assume that the result has been established for all σ ∈ Sp such that σ
is the product of m (m < p) transpositions. We shall establish that the re-
sult holds for σσ′, where σ′ is a transposition. By the reccurrence hypothesis,
t− sign(σ)Uσt ∈ Np(V). Since N p(V) is stable under transpositions, we have
further that Uσ′ t − sign(σ)Uσ′Uσt ∈ N p(V). Multiplying by sign(σ′) we get
sign(σ′)Uσ′ t− sign(σ′σ)Uσ′σt ∈ N p(V). On the other hand, t− sign(σ′)Uσ′ t ∈
N p(V). Adding the above relations, we get t− sign(σ′σ)Uσ′σt ∈ N p(V).

The claimed result holds by induction.

Definition 3.8.19. Define the linear operator Ap : V⊗p → V⊗p by

Ap =
1
p! ∑

σ∈Sp

sign(σ)Uσ.

This operator is called the anti-symmetriser; the subspace Ap(V) = im(Ap) ⊆ V⊗p is
the subspace of skew-symmetric tensors.
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Lemma 3.8.20. The anti-symmetriser is a projector; moreover

ker Ap = N p(V).

Proof. Let v1, . . . , vp be linearly independent vectors of V. Then, for every σ ∈ Sp, the
vectors vσ−1(1) ⊗ · · · ⊗ vσ−1(p) are linearly independent in V⊗p. It follows that

Ap(v1 ⊗ · · · vp) = ∑
σ∈Sp

sign(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(p) 6= 0.

Hence, we have
ApUσ = sign(σ)Ap, ∀σ ∈ Sp.

Suppose now that t = v1 ⊗ · · · vp is a generator of N p(V), i.e. vi = vj for some pair i, j
with i 6= j. Let σ be the transposition i ↔ j. Then Uσt = t. Hence, ApUσt = Apt =
sign(σ)Apt = −Apt. Therefore Apt = −Apt⇒ Apt = 0⇒ N p(V) ⊆ ker Ap.

To establish the reverse inclusion, observe that, for all t ∈ V⊗p, we have

Apt− t =
1
p! ∑

σ∈Sp

(sign(σ)Uσt− t) ∈ N p(V).

Now, if t ∈ ker Ap, then Apt = 0 and consquently t ∈ N p(V).

To prove the projective nature of Ap, in view of the previous result, we have,

A2
pt− Apt = 0, ∀t ∈ V⊗p

because N p(V) = kerAp. Hence A2
p = Ap.

Remark 3.8.21. We conclude that the following direct decomposition holds:

V⊗p = ker Ap ⊕ im Ap = N p(V)⊕Ap(V).

For every t ∈ V⊗p, the vector Apt is the skew-symmetric part of t.

In the same vein, define

Mp(V) = vect{t−Uσt, t ∈ V⊗p, σ ∈ Sp a transposition}.

Using similar arguments as in the proof of lemma 3.8.18, we establish the following

Lemma 3.8.22. For all t ∈ V⊗p and all σ ∈ Sp, we have

t−Uσt ∈ Mp(V).

Definition 3.8.23. The linear operator Sp : V⊗p → V⊗p defined by

Sp =
1
p! ∑

σ∈Sp

Uσ

is called the symmetriser; the image of the symmetriser S p(V) = im Sp ⊆ V⊗p is the
subspace of symmetric tensors.
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Lemma 3.8.24. The symmetriser is a projector; moreover

ker Sp =Mp(V).

Remark 3.8.25. We conclude that the following direct decomposition holds:

V⊗p = ker Sp ⊕ im Sp =Mp(V)⊕ S p(V).

For every t ∈ V⊗p, the vector Spt is the symmetric part of t.

Notation 3.8.26. Let V be a vector space with d = dim(V), B ' {0, . . . , d − 1} an
indexing set for any basis of V, and {v1, . . . , vd} a set of d (distinct) non null vectors of
V.

— Write as usual

Bp = {β = (β1, . . . , βp) s.t. ∀i = 1, . . . , p, βi ∈ B}.

— Similarly, write B
p
6= = ∅ when p > d, and

B
p
6= = {β = (β1, . . . , βp) s.t. ∀i = 1, . . . , p, βi ∈ B and βi 6= β j, for i 6= j} ⊂ Bp,

when p ≤ d.
— We define now an equivalence relation on Bp (or B

p
6=) by identifying words β

and γ when they are connected by a permutation, i.e. ∃σ ∈ Sp, such that γi =
βσ(i). We write

B
p
B = Bp/Sp = {[β] = [β1 · · · βp], 0 ≤ β1 ≤ · · · ≤ βp ≤ d− 1}

B
p
F = B

p
6=/Sp = {[β] = [β1 · · · βp], 0 ≤ β1 < · · · < βp ≤ d− 1},

for the indistinguishable p-uples of elements of B, i.e. the set of equivalence
classes of words identified by permutations. We denote by B

p
B those where the

same letter can be re-used — i.e. letters are sampled with replacement (without
exclusion) — and by B

p
F those where each letter can be used at most once — i.e.

letters are sampled without replacement (with exclusion). The subscripts B et F
stand for bosonic and fermionic statistics.

— Given a set {v1, . . . , vp} of distinct vectors and β ∈ Bp we write v(β) := vβ1 ⊗
· · · ⊗ vβp .

— Let now (ε0, . . . , εd−1) be a basis of V. Then,

∀β ∈ Bp : Sp(εβ1 ⊗ · · · ⊗ εβp) =
1
p! ∑

σ∈Sp

Uσ (ε(β)) =
1
p! ∑

γ∈[β]

ε(γ)

∀β ∈ B
p
6= : Ap(εβ1 ⊗ · · · ⊗ εβp) =

1
p! ∑

σ∈Sp

sign(σ)Uσ (ε(β)) =
1
p! ∑

γ∈[β]

sign(γ)ε(γ).

— Since the equivalence classes [β] ∈ B
p
B (or in B

p
F) do not depend on the order

of the letters appearing in [β] but only on the number of appearances of each
letter, on defining ν : Bp → Nd by ν(β) = ∑

p
i=1 1{b}(βi), for b ∈ B, we see

that Sp(ε(β)) can be uniquely determined by ν(γ), for an aribtrary γ ∈ [β] and
similarly for Ap(ε(β)). Such a representation is termed number representation
and plays an important role in second quantisation. For every b ∈ B, we have
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— in the bosonic case: 0 ≤ νb ≤ p,
— in the fermionic case: 0 ≤ νb ≤ 1.
Obviously in both cases ∑b∈B νb(β) = p. Moreover, the equivalence class [β]
is uniquely determined by the vector ν(γ), for an arbitrary γ ∈ [β]. Moreover,
given an arbitrary decomposition of p into d non-negative integers p = p1 +
. . . + pd, there exists a (unique) equivalence class [β] ∈ B

p
B such that νb([β]) =

pb, ∀b ∈ B.

Example 3.8.27. For d = 3 and p = 2, we get

Bp = {00, 01, 02, 10, 11, 12, 20, 21, 22}
B

p
B = {[00], [01], [02], [11], [12], [22]}

B
p
6= = {01, 02, 10, 12, 20, 21}

B
p
F = {[01], [02], [12]}.

[β] ∈ B
p
B γ ∈ [β] ν(β) Sp(ε([β]) [β] ∈ B

p
F γ ∈ [β] ν(β) Ap(ε([β])

[00] 00 200 ε0 ⊗ ε0 ∅
[01] 01 10 110 1

2! (ε0 ⊗ ε1 + ε1 ⊗ ε0) [01] 01 10 110 1
2! (ε0 ⊗ ε1 − ε1 ⊗ ε0)

[02] 02 20 101 1
2! (ε0 ⊗ ε2 + ε2 ⊗ ε0) [02] 02 20 101 1

2! (ε0 ⊗ ε2 − ε2 ⊗ ε0)
[11] 11 020 ε1 ⊗ ε1 ∅
[12] 12 21 011 1

2! (ε1 ⊗ ε2 + ε2 ⊗ ε1) [12] 12 21 011 1
2! (ε1 ⊗ ε2 − ε2 ⊗ ε1)

[22] 22 002 ε2 ⊗ ε2 ∅

Exercise 3.8.28. Let d = dim V and (ε1, . . . , εd) a basis of V⊗p and B ' {0, . . . , d− 1}
an indexing set for the basis. It is evident then that

—
(

Ap(ε(β))
)

β∈Bp is a total set Ap(V) and

—
(
Sp(ε(β))

)
β∈Bp is a total set in S p(V).

However these sets are not necessarily independent.

1. Show that

(a) |Bp| = dp,
(b) |Bp

6=| =
d!

(d−p)! for p ≤ d (and 0 otherwise),

(c) |Bp
B| = Cp

p+d−1, and

(d) |Bp
F| = Cp

d for p ≤ d (and 0 otherwise).

2. Show that for every γ ∈ [β], and every [β] ∈ B
p
B, the vector Sp(ε(γ)) is constant,

i.e. Sp(ε(β)) depends only on [β] ∈ B
p
B.

3. Similarly, for every γ ∈ [β], and every [β] ∈ B
p
F, the vector Ap(ε(γ)) is constant,

i.e. Ap(ε(β)) depends only on [β] ∈ B
p
F.

4. Conclude that

dimS p(V) = Cp
p+d−1 and dimAp(V) =

{
Cp

d if p ≤ dim V

0 otherwise.

5. Conclude that if d = 2 then V⊗2 = A2(V)⊕ S2(V).
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3.8.4 Tensor product of Hilbert spaces: the finite dimensional case

Consider the case of finite dimensional Hilbert spaces G and H with bases (εi)i=1,...,m
and (ζ j)j=1,...,n respectively. Decomposing arbitrary vectors g ∈ G and h ∈ H on these
bases, g = ∑m

i=1 giεi and h = ∑n
j=1 hiζ j, and using the bilinearity of the map τ, we get

τ(g, h) = g⊗ h =
m

∑
i=1

n

∑
j=1

gihjεi ⊗ ζ j,

where εi ⊗ ζ j := τ(εi, ζ j). Since (εi ⊗ ζ j)i,j span the space G⊗H and they are inde-
pendent, they form a basis of G⊗H. Unless otherwise stated, the standard ordering
of the basis elements of the tensor product space will be chosen as the lexicographic
ordering of the individual vectors.

We can now extend the notion of scalar product on G⊗H.

Proposition 3.8.29. Let G, H be given finite-dimensional Hilbert spaces and s : (G⊗H)×
(G⊗H)→ C be given by

s(
m

∑
j=1

ajgj ⊗ hj,
n

∑
k=1

ckgk ⊗ hk) =
m

∑
j=1

n

∑
k=1

ajck〈 gj | gk 〉〈 hj | hk 〉.

Then

1. s is sesquilinear,
2. s is a scalar product.

Proof. 1. Obvious!
2. To show that s is a scalar product, we must show that, for Ψ ∈ G⊗H, the fact

s(Ψ, Ψ) = 0 implies Ψ = 0. Let Ψ = ∑n
j=1 cjgj ⊗ hj ∈ G⊗H and (εa)a=1,...,p

an orthonormal basis of vect{g1, . . . , gm} and (ζb)b=1,...,q an orthonormal basis
of vect{h1, . . . , hn}. Then

s(εa ⊗ ζb, Ψ) =
n

∑
j=1

cjs(εa ⊗ ζb, gj ⊗ hj)

=
n

∑
j=1

cj〈 εa | gj 〉〈 ζb | hj 〉

=: dab.

Since (εa ⊗ ζb)ab is a basis of the subspace in which lives Ψ, the quantities dab
defined above are the Fourier coefficients of Ψ in that basis, i.e. Ψ = ∑a,b dabεa⊗
ζb. Hence s(Ψ, Ψ) = ∑a,b |dab|2 and

[s(Ψ, Ψ) = 0] =⇒ [∀a, b, dab = 0] =⇒ [Ψ = 0].
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If G and H are finite-dimensional, the previous result shows that G⊗H is also a
Hilbert space for the scalar product defined by s.

Example 3.8.30. Let G ∼= H ∼= C2 equipped with orthonormal bases (ε1, ε2) and
(ζ1, ζ2) respectively. The operators X ∈ L(G) and Y ∈ L(H) are represented in the
respective bases of G and H by the matrices

X =

(
X11 X12
X21 X22

)
and Y =

(
Y11 Y12
Y21 Y22

)
,

where Xij = 〈 εi |Xε j 〉 and Yij = 〈 ζi |Yζ j 〉, for i, j = 1, 2. The operator X⊗Y ∈ L(G⊗
H) will be represented on the lexicographically ordered basis (ε1 ⊗ ζ1, ε1 ⊗ ζ2, ε2 ⊗
ζ1, ε2 ⊗ ζ2) by the matrix

X⊗Y =


X11Y11 X11Y12 X12Y11 X12Y12
X11Y21 X11Y22 X12Y21 X12Y22
X21Y11 X21Y12 X22Y11 X22Y12
X21Y21 X21Y22 X22Y12 X22Y22

 =

(
X11Y X12Y
X21Y X22Y

)
6=
(

XY11 XY12
XY21 XY22

)
= Y⊗X,

i.e. (X⊗Y)ij,kl := 〈 εi ⊗ ζ j |X⊗Yεk ⊗ ζl 〉 = XikYjl, for i, j, k, l = 1, 2.

3.8.5 Tensor product of Hilbert spaces: the infinite dimensional case

In the infinite dimensional case, we can still introduce the sesquilinear form of
proposition 3.8.29 and establish that it defines a scalar product on the algebraic tensor
product of the Hilbert spaces. However, the completion of H1⊗H2, denoted H1⊗̂H2,
by the corresponding norm fails to verify the universality property in the categorical
sense 12.

This impossibility led Grothendieck to introduce the notion of nuclear spaces in
[74, 75, 76] in order to give a satisfactory general definition of the tensor product of
topological spaces.

In the sequel, we follow the construction of [92, pp. 125–139] (where detailed proofs
can be found) of a Hilbert space with a tensor product satisfying the universality prop-
erty.

Definition 3.8.31. Let H1, . . . , Hn be Hilbert spaces. A bounded multilinear func-
tional is a map φ : H1 × · · · ×Hn → C a map that is linear in each of its arguments
(while the other arguments remain fixed), verifying

|φ(h1, . . . , hn) ≤ C‖h1‖ · · · ‖hn‖, h1 ∈H1, . . . , hn ∈Hn

for some real constant C. The least such constant is called the norm of φ and is denoted
‖φ‖.

12. If V and W are topological vector spaces, a tensor product in the categorical sense should be
the pair (Y, τ) composed by a topological vector space X and a unique continuous bilinear map τ =
V×W→ Y, such that for every continuous bilinear map β : V×W→ X into an arbitrary topological
space X, there exists a unique continuous linear map λ := λβ : Y → X such that β = λ ◦ τ, verifying
thus the universality propoerty. It will be shown in §3.12 that such a construction is impossible in the
case the two Hilbert spaces V and W are infinite-dimensional.

/Users/dp/a/ens/iq-hilbe.tex
2020-01-07 • 14:15:25.

91



3.8. Tensor product of Hilbert spaces

Obviously a bounded multilinear functional is continuous w.r.t. the product of the
norm topologies on the Hilbert spaces.

Proposition 3.8.32. Let H1, . . . , Hn be Hilbert spaces and φ a bounded multilinear func-
tional on H1 × · · · ×Hn.

1. The sum
∑

b1∈B1,...bn∈Bn

|φ(b1, . . . , bn|2

has the same (finite or infinite) value for all orthonormal bases B1 of H1, . . . , Bn of Hn.
2. If G1, . . . , Gn are Hilbert spaces, Xm ∈ B(Hm, Gm) for m = 1, . . . , n, ψ : G1× · · · ×

Gn → C a bounded multilinear functional and

φ(h1, . . . , hn) = ψ(X1h1, . . . , Xnhn), ∀h1 ∈H1, . . . , hn ∈Hn,

then

∑
b1∈B1,...bn∈Bn

|φ(b1, . . . , bn|2 ≤ ‖X1‖2 · · · ‖Xn‖2 ∑
c1∈C1,...cn∈Cn

|ψ(c1, . . . , cn|2,

for arbitrary bases Bm of Hm and Cm of Gm for m = 1, . . . , n.

Definition 3.8.33. A Hilbert-Schmidt functional is a bounded multilinear functional
such that the sum in item 1 of proposition 3.8.32 is finite for one choice (hence for all) of
bases B1, . . . , Bn. The set of Hilbert-Schmidt functionals on H1 × · · · ×Hn is denoted
HSF (or HSF(H1 × · · · ×Hn) when disambiguation is necessary).

Proposition 3.8.34. Let HSF be the set of Hilbert-Scmidt functionals on H1 × · · · ×Hn.
Equip the set HSF with:

A linear structure defined by (aφ+ bψ)(h1, . . . , hn) = aφ(h1, . . . , hn)+ bψ(h1, . . . , hn).
An inner product by 〈 φ |ψ 〉 = ∑b1∈B1

· · ·∑bn∈Bn φ(b1, . . . , bn)ψ(b1, . . . , bn) for arbi-
trary orthonormal bases B1, . . . , Bn.

A norm by ‖φ‖2 = (〈 φ | φ 〉)1/2.

Then:

1. The sum defining the inner product is independent of the choice of the bases.
2. The set HSF becomes a Hilbert space on its own.
3. For each choice v1 ∈H1, . . . , vn ∈Hn, the equation φv1,...,vn(h1, . . . , hn) = 〈 v1 | h1 〉 · · · 〈 vn | hn 〉

defines an element of HSF and

〈 φv1,...,vn | φw1,...,wn 〉 = 〈w1 | vn 〉 · · · 〈wn | vn 〉
‖φv1,...,vn‖2 = ‖v1‖ · · · ‖vn‖.

4. The collection (φb1,...,bn)b1∈B1,...,bn∈Bn is an orthonormal basis of HSF.
5. There is a unitary transformation U : HSF � `2(B1 × · · · × Bn) defined by Uφ =

φ�B1×···×Bn .

The results concerning multilinear functionals are immediately generalised to mul-
tilinear mappings.

Definition 3.8.35. Let H1, . . . , Hn, G be Hilbert spaces.
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1. A bounded multilinear mapping is a map M : H1× · · ·×Hn → G that is linear
in each of its arguments (while the other arguments remain fixed), verifying

‖M(h1, . . . , hn)‖ ≤ C‖h1‖ · · · ‖hn‖, h1 ∈H1, . . . , hn ∈Hn

for some real constant C. The least such constant is called the norm of M and is
denoted ‖M‖.

2. A weak Hilbert-Schmidt mapping is a bounded multilinear mapping such that
for every g ∈ G, the functional defined by

Mg(h1, . . . , hn) = 〈 g |M(h1, . . . , hn) 〉

belongs to HSF. (Additionally, there exists a real number D such that ‖Mg‖2 ≤
D‖g‖). The least D for which these conditions are satisfied is denoted ‖M‖2.

Theorem 3.8.36. Let H1, . . . , Hn, G be Hilbert spaces.

1. There is a Hilbert space H and a weak Hilbert-Schmidt mapping τ : H1× · · · ×Hn →
H with the following universality property: for any weak Hilbert-Schmidt mapping
β : H1 × · · · ×Hn → G, there exists a unique bounded linear mapping L : H → G,
such that β = L ◦ τ; moreover ‖L‖ = ‖β‖2.

2. If H′ and τ′ have the properties attributed to H and τ in the previous item, there is a
unitary U : H�H′ such that τ′ = Uτ.

3. If vm, wm ∈Hm and Bm is an orthonormal basis of Hm, for m = 1, . . . , n, then

〈 τ(v1, . . . , vn) | τ(w1, . . . , wn) 〉 = 〈 v1 |w1 〉 · · · 〈 vn |wn 〉,

and the family (τ(b1, . . . , bm)b1∈B1,...,bn∈Bn is an orthonormal basis of H with ‖τ‖2 =
1.

Remark 3.8.37. The pair (H, τ) defined in item 1 of theorem 3.8.36 is defined (up
to isomorphisms) by the universal property. It is termed the Hilbert tensor product
of H1, . . . , Hn, G, denoted H1 ⊗ · · · ⊗Hn. The vector τ(h1, . . . , hn) is denoted h1 ⊗
· · · ⊗ hn. Finite linear combinations of such simple tensors form an everywhere dense
subspace H0 of H1 ⊗ · · · ⊗Hn.

Theorem 3.8.38. Let H1 and H2 be Hilbert spaces.

1. If B1 and B2 are total systems of vectors respectively from H1 and H2, then the system
{g⊗ h : g ∈ B1, h ∈ B2} is total in H1⊗H2.

2. If (ε j)j∈J and (ζk)k∈K are orthonormal bases of H1 and H2, then (ε j ⊗ ζk)j∈J,k∈K is an
orthonormal basis of H1⊗H2.

We conclude by a standard example-exercise on tensor products.

Exercise 3.8.39. Let G = L2(X,X , µ; C) and H = L2(Y,Y , ν; C) two separable Hilbert
spaces with respective orthonormal bases (φ(k))k∈N and (ψ(l))l∈N. Consider for k, l ∈
N, the family of functions Φ(k,l) ∈ F := L2(X×Y,X ⊗Y , µ⊗ ν; C) defined by Φ(k,l) =

φ(k)(x)ψ(l)(y).

1. Show that (Φ(k,l))(k,l)∈N2 is an orthonormal system.
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2. Suppose that a function f ∈ F verifies, for all k, l ∈N,ˆ
X×Y

f (x, y)φ(k)(x)ψ(l)(y)µ(x. )ν(y. ) = 0.

Use Fubini’s theorem to show that f = 0 for µ⊗ ν-almost all (x, y) ∈ X×Y.
3. Define the linear operator U : G⊗H→ F by its action on basis elements:

U : φ(k)ψ(l) 7→ Φ(k,l).

Show that U is unitary.
4. On extending U by linearity, establish that U(g ⊗ h)(x, y) = g(x)h(y), for all

(x, y) ∈ X×Y and all g ∈ G, h ∈H.
5. Conclude that U induces a natural isomorphism between L2(X,X , µ; C)⊗ L2(Y,Y , ν; C)

and L2(X×Y,X ⊗Y , µ⊗ ν; C).

Remark 3.8.40. (A classical case). The previous exercise establishes the fact that L2(R, λ1)⊗
L2(R, λ1) = L2(R2, λ2), where λd is the d-dimensional Lebesgue measure on B(Rd).
Suppose now that g, h ∈ L2(R, λ1) are non-negative such that bothˆ

R

g(x)λ1(dx) = 1 and
ˆ

R

h(y)λ1(dy) = 1.

These functions define probabilities P1 and P2 absolutely continuous w.r.r. λ1 such that
g and h are their Radon-Nikodým derivatives. Similarly, a f ∈ L2(R, λ2) such that f ≥
0 and

´
R2 f (x, y)λ2(dxdy) = 1 defines a probability P � λ2 whose Radon-Nikodým

derivative is f . Now, f is a general vector (tensor) of L2(R, λ2). In the particular case
where f = gh (i.e. the tensor f is factored) then P has marginals P1 and P2 and is a
determined through its marginals as a product measure P = P1 ⊗P2.

Remark 3.8.41. (The quantum analog). Let G ' H ' C2 and F = G⊗H. Assume
that G ∈ E(G), H ∈ E(H) and φ and ψ are unit vectors respectively in G and H. For
B ∈ B(R), denote by ν

φ
G(B) = 〈 φ |G[B]φ 〉 and ν

ψ
H(B) = 〈ψ |H[B]ψ 〉. Let now Φ ∈ F

be the factored tensor Φ = φ⊗ ψ. We compute immediately

〈 φ⊗ ψ | (G[B]⊗ I)φ⊗ ψ 〉 = ν
φ
G(B)

〈 φ⊗ ψ | (I ⊗ H[B])φ⊗ ψ 〉 = ν
ψ
H(B)

〈 φ⊗ ψ | (G[B]⊗ H[B])φ⊗ ψ 〉 = ν
φ
G(B)νψ

H(B).

Exactly as in the classical situation of remark 3.8.40 a factored tensor f led to product
probability measure P = P1 ⊗ P2, a factored tensor Φ = φ⊗ ψ in the quantum case
leads to a product probability measure νΨ

G⊗H = ν
φ
Gν

ψ
H. Similarly, as in the classical

case entangled tensors ( f 6= gh) give rise to general joint non-product measures, in the
quantum case entangled tensors (Φ 6= g ⊗ h) give rise to general joint non-product
measures.

3.8.6 Fock space

Assume in this subsection that we are interested in a system holding an indeter-
minate number of indistinguishable particles. Further, each individual particle is de-
scribed by a (separable) Hilbert space H. If the number of particles were fixed, p say,
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then the p-particle system should be described by a subset of the p-fold tensor prod-
uct H⊗p. (In the infinite dimensional case we assume that the tensor product is al-
ways completed). We have already mentioned that only the symmetrised S p(H) or
anti-symmetrisedAp(H) tensor products occur as phase space of bosonic or fermionic
indistinguishable particles. In this subsection, we treat the case where the particles are
bosons and their number is indeterminate. The solution to this problem was given by
Fock in 1932 [61]; more easily accessible sources are [78, pp. 189–193] and [22, pp. 1–6].

Let B be the indexing set (cardB = d ∈ N ∪ {∞}) of an orthonormal basis (εb)b∈B

of H, β ∈ Bp, and ν([β]) the number representation 13 of Sp(ε(β)). (As a matter of
fact, we tacitly — but straightforwardly (please work out the details) — extended the
definition of number representation to the infinite-dimensional case.

Exercise 3.8.42. For the above setting,
— show that

‖Sp(ε(β))‖2 =
∏b∈B (νb(β)!)

p!
.

— Consider an arbitrary decomposition of p into d (d ∈ N ∪ {+∞} non-negative
integers p = ∑b∈B pb and denote by p = (pb)b∈B. Then, there exists a unique
equivalence class [β] ∈ B

p
B such that ∀γ ∈ [β], we have ν(γ) = p. Show that

the set of vectors, indexed by the set number vectors,

Ψp =
( p!

∏b∈B (pb!)

)1/2
Spεβ1 ⊗ · · · ⊗ εβp ,

constitutes an orthonormal basis of B
p
B.

Definition 3.8.43. Let H be a separable Hilbert space. The Fock space associated with
H is the direct sum

Fock(H) = ⊕p∈NH⊗p,

with H0 = C. Similarly, we define the bosonic sector of the Fock space

Fock B(H) = ⊕p∈NS p(H).

A vector Ψ ∈ Fock B(H) will be identified with the sequence Ψ = (ψ(p))p∈N, where
ψ(p) ∈ S p(H) and ∑p∈N ‖ψ(p)‖2 < ∞.

We wish now define the number (of particles) operator N acting on Fock(H). If N
is to be interpreted as the number of particles, intuitively we expect that an arbitrary
unit vector of H⊗p is an eigenvector of N with eigenvalue p. Now we are facing some
subtleties because N is not necessarily a bounded operator, even in the case where H

is finite-dimensional.

Definition 3.8.44. We define

Dom(N) = {Ψ = (ψ(p))p∈N ∈ Fock(H) : ∑
p∈N

‖pψ(p)‖2 < ∞} ⊂ Fock(H)

13. Recall that this number depends only on the equivalence class [β] and not on the individual con-
figuration β (see exercise 3.8.28).
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and, for Ψ ∈ Dom(N), the number of particles operator N by

NΨ = ∑
p∈N

pψ(p).

For a ψ, ψ1, . . . , ψp ∈H, define the (bounded) operator C(ψ) : H⊗p →H⊗(p+1) by

C(ψ)ψ1 ⊗ · · · ⊗ ψp := ψ⊗ ψ1 ⊗ · · · ⊗ ψp.

Obviously ‖C(ψ)‖ = ‖ψ‖. When all ψ, ψ1, . . . , ψp ∈ H are unit vectors (i.e. they cor-
respond to pure states on H) the operator C(ψ) is interpreted as the creation of an
additional particle in state ψ. The adjoint operator C(ψ)∗ : H⊗p → H⊗(p−1) is imme-
diately determined: C(ψ)∗H0 = 0 and

C(ψ)∗ψ1 ⊗ · · · ⊗ ψp := 〈ψ |ψ1 〉ψ2 ⊗ · · · ⊗ ψp, p ≥ 1.

The operator C(ψ)∗ is interpreted as the annihilation of a particle from the p-tuple. The
operators C(ψ) and C(ψ)∗ can be extended on the whole space Fock(H) by

C(ψ)Ψ = ∑
p∈N

C(ψ)ψ(p)

C(ψ)∗Ψ = ∑
p∈N

C(ψ)∗ψ(p).

Let now

D0 = {Ψ ∈ Fock B : ψ(p) = 0 but for a finite number of p} ⊂ Dom(N) ⊂ Fock(H)

and for ψ ∈H and Ψ ∈ D0, define

a(ψ)Ψ = ∑
p≥1

√
pSp−1

(
C(ψ)∗ψ(p)

)
a(ψ)∗Ψ = ∑

p≥0

√
p + 1Sp+1

(
C(ψ)ψ(p)

)
.

These operators verify (please check!) the commutation relations:

[a(ψ), a(ψ′)] = [a∗(ψ), a∗(ψ′)] = 0 and [a(ψ), a∗(ψ′)] = 〈ψ′ |ψ 〉I.

It is then straightforward to show that the vectors (Ψp)p, where p stands for the num-
ber representation, are obtained by

Ψp =
(

∏
b∈B

(pb!)
)−1/2

⊗b∈B a∗(εβb)ψ
(0)

are orthonormal and since D0 is dense in Fock(H), we conclude that this set is an
orthonormal basis. We see that the whole space Fock B(H) is spanned by vectors ob-
tained by action of appropriate a∗ operators acting on a single vector ψ(0); the latter
is called the vacuum vector, the operator a∗ a creation operator and the operator a an
annihilation operator.
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3.9 Dirac’s bra and ket notation

Dirac’s notation transforms an astonishingly simple idea into a remarkably power-
ful and convenient shorthand notation for dealing with all standard objects in Hilbert
spaces: scalar products, tensor products, operators, projections, and forms occurring
in quantum mechanics. The idea behind this notation is to consider the scalar prod-
uct 〈 φ |ψ 〉 of two vectors of a Hilbert space as the application of the linear form
Fφ ∈H′ = H — defined by Fφ(h) = 〈 φ | h 〉 through the Fréchet-Riesz theorem 3.3.8 —
on the vector ψ. Since Fφ is uniquely determined by φ, Dirac had the idea of splitting
the bracket 〈 φ |ψ 〉 into the linear form — called bra — 〈 φ | and the vector — called ket
— |ψ 〉. The action of the bra on the ket 〈 φ ||ψ 〉 is simplified into the scalar product
bra(c)ket 〈 φ |ψ 〉. The box on page 97 summarises the main features of Dirac’s notation.

Usual notation Dirac’s notation
Orthonormal basis, linear combinations, scalar product

(e1, . . . , en) (|e1 〉, . . . |en 〉)
ψ = ∑i ψiei |ψ 〉 = ∑i ψi|ei 〉
〈 φ|ψ 〉 = ∑ φiψi 〈 φ|ψ 〉 = ∑ φiψi

Duality
H∗ = { f : H→ C, linear} H∗ = { f : H→ C, linear}

† : H→H∗ † : H→H∗

† : φ 7→ fφ(·) = 〈 φ|· 〉 † : |φ 〉 7→ 〈 φ|
〈 φ|ψ 〉 = fφ(ψ) 〈 φ|ψ 〉 = 〈 φ||ψ 〉 = 〈 φ |ψ 〉

Self-adjoint operators
X = X∗ X = X∗

〈 φ|Xψ 〉 = 〈X∗φ|ψ 〉 = 〈Xφ|ψ 〉 〈 φ |Xψ 〉 = 〈X∗φ|ψ 〉 = 〈Xφ|ψ 〉
Spectral decomposition

Xζ[x] = xζ[x] X|ζ[x] 〉 = x|ζ[x] 〉
E[x] projection on Cζ[x] E[x] = | ζ[x] 〉〈 ζ[x] |

X = ∑x xE[x] X = ∑x x| ζ[x] 〉〈 ζ[x] |
Tensor products

φ⊗ ψ | φ 〉 ⊗ |ψ 〉 = | φψ 〉
φ⊗ ψ∗ | φ 〉 ⊗ 〈ψ | = | φ 〉〈ψ |

Usual vs. Dirac’s notation

Remark 3.9.1. Very often, in the Physics literature, only the indexing set is considered.
In that case, the basis is denoted | 1 〉, . . . | n 〉. This simplified notation will be occa-
sionally used in the later sections, especially in those devoted to quantum computing.
Mind however that within this simplified notation, the right hand side of | 0 〉+ | 1 〉,
namely | 0 + 1 〉 becomes ambiguous because | 0 + 1 〉 6= | 1 〉. To avoid this pitfall, a
slightly more extended notation where vectors are used as indexing set; in that case
| ε0 〉+ | ε1 〉 = | ε0 + ε1 〉 is perfectly legal and unambiguous.

Exercise 3.9.2. Let (en)n∈N be an orthonormal basis of a Hilbert space H.

1. What is the interpretation of | en 〉〈 en | for some n?
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2. If φ and ψ are unit vectors of H, what is the interpretation of | φ 〉〈ψ |? What is
the significance of | em 〉〈 en |?

3. What is the interpretation of the identity ∑n∈N | en 〉〈 en |
s
= I (where s

= denotes
the strong limit of the partial sums)?

4. Let H = L2(T) and (en) the basis of trigonometric polynomials en(t) = exp(int).
Derive the Parseval formula using the Dirac formalism.

3.10 Bipartite entanglement

Entanglement 14 constitutes a distinctive property of quantum mechanics, without
classical analogue, undoubtably the most counter-intuitive one. It fuelled the most
passionate discussions among physicists in the early years of quantum physics. The
most critical opponent to the the mere philosophical possibility of entanglement was
Einstein who wrote (with Podolsky and Rosen) an influential paper (see comment and
footnote on page 44). Entanglement is the crux quantum property for most of the infor-
mational applications of quantum mechanics (quantum computing, quantum cryptog-
raphy, quantum communication, etc.). Students are urged to work completely exercise
3.12.20 (if they haven’t yet done so) before continuing to read.

Definition 3.10.1. A vector Ψ ∈H1 ⊗H2 is called
1. factored if there exist vectors φ(1) ∈H1 and φ(2) ∈H2 such that Ψ = φ(1)⊗ φ(2),
2. entangled if the vector Ψ cannot be factored into a tensor product of vectors as

above.

Example 3.10.2. Let n = 2 and H1 = H2 = C2. If we denote by (ε0, ε1) a basis of
H1 and by (ζ0, ζ1) a basis of H2. A basis of H1 ⊗H2 is given by (ε0 ⊗ ζ0, ε0 ⊗ ζ1, ε1 ⊗
ζ0, ε1 ⊗ ζ1). An arbitrary vector Ψ ∈H1 ⊗H2 is decomposed as

Ψ = ψ0ε0 ⊗ ζ0 + ψ1ε0 ⊗ ζ1 + ψ2ε1 ⊗ ζ0 + ψ3ε1 ⊗ ζ1.

If ψ2 = ψ3 = 0 while ψ1ψ1 6= 0, then ψ = ψ0ε0 ⊗ ζ0 + ψ1ε0 ⊗ ζ1 = ε0 ⊗ (ψ0ζ0 + ψ1ζ1)
and the state can still be written as a tensor product. If ψ1 = ψ2 = 0 while ψ0ψ3 6= 0
then the state cannot be written as a tensor product.

In the previous example, the space has small dimensionality and it is easy to check
manually whether a given vector is entangled or not. In more complicated situations,
it is useful to have more an algorithmic tool to decide of entanlement. This tool is
provided by the Schmidt decomposition (see definition ?? below).

Theorem 3.10.3. Let Ψ ∈H1 ⊗H2 and di = dim Hi, for i = 1, 2. There exist orthonormal
bases (εi)i=1,...,d1 and (ζ j)j=1,...,d2 respectively of H1 and H2 such that

Ψ =
d

∑
k=1

skεk ⊗ ζk,

14. The notion has been introduced by Erwin Schrödinger who named this property Verschränkung in
German in 1935. The term has been translated into English (by Schrödinger himself in 1936) as entangle-
ment. Although the author of these lines advocates the term enchevêtrement as the French translation of
this term, the French community of physicists have adopted the translation intrication.
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where d = min{d1, d2}, and s1 ≥ s2 . . . ≥ sd ≥ 0.

Definition 3.10.4. The decomposition — whose existence is guaranteed by theorem
3.10.3 — is called Schmidt decomposition; the real d-dimensional vector s = (s1, s2, . . . , sd)
is called Schmidt vector; rank(s) = max{k : sk > 0} is called the Schmidt rank of the
decomposition.

Note that only d = min(d1, d2) elements of the largest (i.e. of size max(d1, d2)) basis
are used in Schmidt decomposition. When ‖Ψ‖2 = 1, then ∑d

k=1 s2
k = 1.

Lemma 3.10.5. Let W ∈ Md1,d2(C) be a matrix and d = min{d1, d2}. Then there exist
unitary matrices U ∈Md1(C) and V ∈Md2(C) and a diagonal matrix S = diag(s1, . . . , sd),
with s1 ≥ . . . ≥ sr > sr−1 = . . . = sd = 0, such that

W = USV∗.

The index r equals the rank of W.

Proof. The decomposition is called singular value decomposition of M. The proof is a
standard result in linear algebra (see for instance [133, Theorem 11.4, p. 276]).

Remark 3.10.6. Although the diagonal matrix S is uniquely determined, the matrices
U and V are not.

Proof of theorem 3.10.3. Let (ε′i) and (ζ ′j) be orthonormal bases of H1 and H2. For Ψ ∈
H1 ⊗H2, denote by W = (Wij) ∈ Md1,d2(C) the matrix of its Fourier coefficients,
i.e. Ψ = ∑i,j Wijε

′
i ⊗ ζ ′j, with Wij = 〈 ε′i ⊗ ζ ′j |Ψ 〉. Now wirte the singular value de-

composition of W = USV∗ with matrices U, S, V as in the lemma 3.10.5. Then Wij =

(USV∗)ij = ∑d
k=1 UikskV jk. Denote by ε l = ∑d1

i=1 Uilε
′
i for l = 1, . . . , d1 and ∑d2

j=1 V jmζ ′j =

ζm, for m = 1, . . . , d2, new orthonormal bases of H1 and H2, obtained from the previ-
ous ones in terms of the unitary passage matrices U and V∗. Replacing in the expansion
of Ψ, we get

Ψ =
d

∑
k=1

sk

(
d1

∑
i=1

Uikε′i

)
⊗
(

d2

∑
j=1

V jkζ ′j

)
=

d

∑
k=1

skεk ⊗ ζk.

Proposition 3.10.7. Let H = H1 ⊗H2 and Ψ ∈ H, a unit norm vector, and ρ = |Ψ 〉〈Ψ |
the pure state corresponding to Ψ. Let (εk)k and (ζk)k be the orthonormal vectors of H1 and
H2 entering in the Schmidt decomposition of Ψ. Then the quantum marginals read

ρ1 = trH2 ρ =
d

∑
k=1

s2
k| εk 〉〈 εk |

ρ2 = trH1 ρ =
d

∑
k=1

s2
k| ζk 〉〈 ζk |,

i.e. the density matrices ρ1 and ρ2 have the same eigenvalues, possibly with different multiplic-
ity.
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Proof. Write ρ = |Ψ 〉〈Ψ | = ∑d
k,l=1 sksl| εkζk 〉〈 ε lζl |. Then, for every φ, φ′ ∈H1, we get

〈 φ | trH2(ρ)φ
′ 〉 =

d

∑
k,l=1

sksl

d2

∑
m=1
〈 φζm | εkζk 〉〈 ε lζl | φ′ζm 〉

=
d

∑
k,l=1

sksl

d2

∑
m=1
〈 φ | εk 〉δmk〈 ε l | φ′ 〉δlm

=
d

∑
k=1

s2
k〈 φ | εk 〉〈 εk | φ′ 〉,

hence we get the claimed form. The second marginal is obtained similarly

Definition 3.10.8. Let ρ ∈ D(H1 ⊗H2).
1. The state ρ is called uncorrelated or factored if there exist states ρ1 ∈ D(H1)

and ρ2 ∈ D(H2) such that ρ = ρ1 ⊗ ρ2.
2. A state ρ is called classically correlated if it can be written as a convex combi-

nation of factored states, i.e. there exist a family, indexed by α ∈ A, of pairs of
states ρ

(α)
i , i = 1, 2 and a family of non-negative numbers pα, α ∈ A, such that

ρ = ∑
α∈A

pαρ
(α)
1 ⊗ ρ

(α)
2 .

3. If the state ρ is not classically correlated, then it is called entangled.

The components of the Schmidt vector of a given unit vector Ψ are obtained as
square roots of the eigenvalues of the quantum marginals of the state ρ = |Ψ 〉〈Ψ |.
The marginal ρ1 (hence also the marginal ρ2) will be pure, i.e. tr(ρ2

1) = tr(ρ1) = 1, if,
and only if, s1 = 1 and all other components of s are zero. But thanks to the Schmidt
decomposition of Ψ this occurs if and only if Ψ is factored. Therefore, a pure state will
be uncorrelated if and only if its marginals are pure. For mixed composite states, the
situation is much more complicated. In general the notion of entanglement witness
and a precise analysis of the properties of the convex cone of states are needed. The
notion of entanglement can be extended to multipartite systems. However, the math-
ematical analysis is much more involved. Full classification of multipartite entangled
states is still an open problem.

Remark 3.10.9. If ρ = ρ1 ⊗ ρ2 (uncorrelated) then the quantum marginals verify
trH1(ρ) = ρ2 and trH2(ρ) = ρ1, i.e. ρ conveys the notion of uncorrelated joint prob-
ability. In fact, if X1 and X2 are self-adjoint operators on H1 and H2, then

E(X1X2) = tr(ρX1 ⊗ X2) = tr(ρ1X1) tr(ρ2X2) = E(X1)E(X2).

3.11 Positive operators

Definition 3.11.1. An operator X ∈ B(H) is called positive, denoted X ≥ 0, if ∀h ∈H,
we have 〈 h |Xh 〉 ≥ 0. Positivity induces a partial order on B(H): we say that X ≤ Y
if Y− X ≥ 0.
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Remark 3.11.2. Self-adjointness is a necessary but not sufficient condition for positiv-
ity.

Example 3.11.3. Let V be a vector subspace of H and P be the orthoprojection on V.
Then P is positive.

In fact, decompose H into the orthogonal direct sum: H = V⊕V⊥ and for h =
v + v⊥, define P by Ph = v. Obviously P2 = P because P is a projection and P∗ = P
because P is an orthoprojection. We get then

〈 h | Ph 〉 = 〈 h | P2h 〉 = 〈 h | P∗Ph 〉 = 〈 Ph | Ph 〉 ≥ 0.

Proposition 3.11.4. Let X ∈ B(H). The following are equivalent:
1. X is positive.
2. spec X ⊂ R+.
3. There exists a Y ∈ B(H) such that X = Y∗Y.

Lemma 3.11.5. Let X ∈ B(H) be positive. Then there exists Y ∈ B(H) positive such that
X = Y2. Moreover, Y commutes with every bounded operator commuting with X.

Definition 3.11.6. For X ∈ B(H), we call absolute value of X, the operator |X| :=√
X∗X.

Remark 3.11.7. Beware of the symbol | · | used for the absolute value of the operator.
Although it is true that for every λ ∈ C, we have |λX| = |λ||X| as is the case for
scalars, other fundamental properties of scalar absolute values are not valid in the
non-commutative case. Namely,

1. |XY| = |X||Y| does not hold in general,
2. |X| = |X∗| does not hold in general,
3. |X + Y| ≤ |X|+ |Y| does not hold in general.

Exercise 3.11.8. Give counter-examples for items 1 and 2 of remark 3.11.7.

Example 3.11.9. (Item 3 of remark 3.11.7) Let

X =

(
2 0
0 0

)
and Y =

(
−1 1
1 −1

)
.

It is an elementary computation to show that, since X is positive,

|X| =
(

2 0
0 0

)
.

As for |Y|, first remark that Y is normal, hence diagonalisable. The eigenvalues of Y
are 0 and −2 with corresponding normalised eigenvectors

| ε[0] 〉 = 1√
2

(
1
1

)
and | ε[−2] 〉 = 1√

2

(
1
−1

)
.

Normality of Y implies orthogonality of the eigenvectors. The corresponding spectral
orthoprojectors are the (self-adjoint) operators

E[0] = | ε[0] 〉〈 ε[0] | = 1
2

(
1 1
1 1

)
and E[−2] = | ε[−2] 〉〈 ε[−2] | = 1

2

(
1 −1
−1 1

)
.
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3.12. Compact, Hilbert-Schmidt and trace class operators; partial trace

The spectral decomposition Y = ∑λ∈specY λE[λ] implies that

Y∗ = ∑
λ∈specY

λE[λ]∗ = ∑
λ∈specY

λE[λ].

Hence Y∗Y = Y2 = ∑λ∈specY λ2E[λ] = 4E[−2] and consequently

|Y| = 2E[−2] =
(

1 −1
−1 1

)
.

Similarly, we compute Z = X + Y. Be cautious however, that although the spectral
decompositions of X and Y are already established, they cannot be used to obtain
the spectral decomposition of Z because the eigenspaces of X are different from those
of Y. The computation of the spectral decomposition of Z requires computation of
eigenspaces afresh! Doing so, we compute

|Z| =
(√

2 0
0
√

2

)
.

But now the operator W = |X|+ |Y| − |X + Y| has specW = {2(1−
√

2), 2} and since
there is a strictly negative eigenvalue, the operator W is not positive, therefore the
triangular inequality fails.

3.12 Compact, Hilbert-Schmidt and trace class operators;
partial trace

We denote by B the set indexing the elements of an arbitrary orthonormal basis of
H. More precisely, let K = cardH. If K < ∞, then B = {0, . . . , K − 1} while in case
K = ℵ0, the indexing set reads B = N. This notation allows to treat similarly finite
and infinite dimensional cases.

Definition 3.12.1. Let V be a Banach space.
— The set of finite rank operators is

B00(V) = {X ∈ B(V) : dim X(V) < ∞}.

— The set of compact operators is

B0(V) = {X ∈ B(V) : {Xh : ‖h‖ ≤ 1} is compact}.

Needless to stress that in finite dimension, all operators are of finite rank and com-
pact.

Theorem 3.12.2. Let V be a Banach space. If X ∈ B00(V) and (vj)j∈B is a basis for the
vector space X(V), there exist uniquely determined linear forms (φj)j∈B, φj ∈ V′, such that

X = ∑
j∈B

vj ⊗ φj.
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In the case of a Hilbert space H and using Dirac’s notation, the previous formula
reads X = ∑j∈B | vj 〉〈 φj | where | vj 〉, | φj 〉 ∈H (hence 〈 φj | = (| φj 〉)†).

Definition 3.12.3. Let I be a vector subspace of B(V) and X ∈ I, Y ∈ B(H).

1. If XY ∈ I, the set I is a left ideal of B(H).
2. If YX ∈ I, the set I is a right ideal of B(H).
3. If X∗ ∈ I, the set I is a ∗-ideal of B(H).

If I is a left ∗-ideal, then since XY and X∗ belong to I, it follows that also YX =
(X∗Y∗)∗) belong to I.

Theorem 3.12.4. The sets B00(V) and B0(V) are bilateral ∗-ideals of B(V).

Theorem 3.12.5. Let H be a Hilbert space and X ∈ B(H). The following statements are
equivalent:

1. X ∈ B0(H),

2. for any sequence (hn)n∈N in H, with ‖hn‖ ≤ 1 for all n ∈N, the sequence (Xhn)n∈N

has a convergent subsequence,

3. for any sequence (hn)n∈N in H with ‖hn‖ < ∞ for all n ∈N, the sequence (Xhn)n∈N

has a convergent subsequence,

4. for any bounded subset B ⊂H, the set X(B) is compact.

Definition 3.12.6. Let (εn)n∈B be an arbitrary orthonormal basis in a Hilbert space
H and X a bounded operator on H. We define the Hilbert-Schmidt norm of X the
quantity

‖X‖2 = ∑
n∈N

‖Xεn‖2 ∈ R+ ∪ {+∞}.

An operator X is called Hilbert-Schmidt operator if ‖X‖2 < ∞. The family of Hilbert-
Schmidt operators is denoted by B2(H).

Proposition 3.12.7. Let H be a Hilbert space.

1. B2(H) is a bilateral ∗-ideal of B(H).

2. If X ∈ B2(H) then ‖X‖ ≤ ‖X‖2.

3. B00(H) is a dense subset of the normed space B2(H) for the Hilbert-Schmidt norm.

Definition 3.12.8. Let (εn)n∈B be an arbitrary orthonormal basis in a Hilbert space H

and X a positive operator. We define the trace of X the quantity

tr X = ∑
n∈B

〈 εn |Xεn 〉 ∈ R+ ∪ {+∞}.

An operator X is called of trace class if tr |X| < ∞. The family of trace class operators
is denoted by B1(H).

Remark 3.12.9. In finite dimension, all operators are Hilbert-Schmidt and trace class.

Proposition 3.12.10. Let X, Y ≥ 0. The trace is independent of the basis used to compute it.
Additionally,

1. tr(X + Y) = tr(X) + tr(Y).
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2. For all λ ≥ 0, tr(λX) = λ tr(X).
3. For every unitary operator U, tr(UXU∗) = tr(X).
4. If 0 ≤ X ≤ Y, then 0 ≤ tr(X) ≤ tr(Y).

Theorem 3.12.11. The space of trace class operators B1(H) is
1. a two-sided ∗-ideal in B(H),
2. the pre-dual of B(H).

Theorem 3.12.12. Let X ∈ B(H). The following assertions are equivalent.
1. X ∈ B1(H).
2. |X|1/2 ∈ B2(H),
3. X = YZ, where Y, Z ∈ B2(H).
4. |X| = VW, where V, W ∈ B2(H).

Theorem 3.12.13. On defining ‖X‖1 = tr(|X|), the vector space B1(H) becomes a Banach
space. Additionally ‖X‖ ≤ ‖X‖1. The class B00(H) is dense in B1(H) for the ‖ · ‖1 norm.

Theorem 3.12.14. Define 〈X, Y〉 = tr(X∗Y) for X, Y ∈ B2(H). Then 〈·, ·〉 is a scalar
product on B2(H), for which the Hilbert-Schmidt class of operators becomes a Hilbert space
on its own. Hilbert-Schmidt norm of the space stems from the scalar product 〈X, Y〉.

Proposition 3.12.15. Let (εn)n∈B be an orthonormal basis in H and denote, for every n ∈ B,
by E[n] = | en 〉〈 en | the orthoprojection onto the one-dimensional subspace Cεn. If ψ ∈ H

is an arbitrary unit vector, then the family (pn)n∈B, where pn := 〈ψ | E[n]ψ 〉, constitute a
probability vector and ρ = ∑n pnE[n] is a positive operator of trace 1. Conversely, if ρ is a
positive operator such that tr(ρ) = 1, then its spectral decomposition reads ρ = ∑n∈B pnE[n],
where (pn)n∈B is a probability vector.

Definition 3.12.16. A positive operator of trace 1 is called a density operator. The
family of density operators on H is denoted by D(H).

A classical probability P on (X,X ), for X a denumerable set, is equivalent to a
probability vector (px)x∈X, with px ≥ 0 and ∑x∈X px = 1, through the bijection P =
∑x pxεx, where εx is the Dirac mass at x. Recall that for any A ∈ X , Dirac masses
verify εx(A) = 1A(y) hence ε2

x = εx, i.e. εx is a projector; Dirac masses are extremal
points of the convex set M1(X ) of probability measures on X. All other probability
measures P ∈ M1(X ), obtained as non-trivial convex combinations of Dirac masses,
verify P2 < P (component-wise).

The proposition 3.12.15 shows that density operators are non-commutative gen-
eralisations of probability measures in the following sense. First observe that D(H)
is a convex set. If ψ ∈ H is a unit vector, then ρ = |ψ 〉〈ψ | ∈ D(H) and verifies
ρ2 = ρ, while all other elements of D(H), expressed as non-trivial convex combina-
tions ρ = ∑n pnE[n] of one-dimensional projections, verify ρ2 < ρ.

These remarks allow to generalise the postulate 2.6.2 into the following form:

Postulate 3.12.17 (Generalisation of the states postulate 2.6.2). Density operators D(H)
constitute the (convex) set of quantum states S. The set of one dimensional projectors in D(H)
are isomorphic to unit vectors of H and constitute extremal elements of S corresponding to
pure states Sp.
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Since density operators are the generalisations of states (probability measures) in
the quantum case and since composite systems are described by tensor products, a
density operator on a tensor product will be interpreted as a joint probability on the
composite system. It is therefore natural to ask which are the marginals of the joint
probability on the Hilbert spaces of the constituent systems (see postulate 2.6.1). The
notion of marginal is naturally implemented by the operation of partial trace.

Definition 3.12.18. Let X ∈ B1(H1 ⊗H2) and suppose that (εn)n∈B1 and (ζn)n∈B2
are orthonormal bases of H1 and H2 respectively. We call partial traces with respect
to the second (respectively first) system the operators Z1 := trH2(X) ∈ B1(H1) and
Z2 := trH1(X) ∈ B1(H2) defined for all φ, φ′ ∈H1 and all ψ, ψ′ ∈H2 by

〈 φ | Z1φ′ 〉 := ∑
k∈B2

〈 φ⊗ ζk |X(φ′ ⊗ ζk) 〉 and 〈ψ | Z2ψ′ 〉 := ∑
k∈B1

〈 εk ⊗ ψ |X(εk ⊗ ψ′) 〉.

Definition 3.12.19. If ρ ∈ S(H1⊗H2) the partial traces ρ1 = trH2(ρ) and ρ2 = trH1(ρ)
are called (quantum) marginals.

Exercise 3.12.20. A very important one!

1. Show that if X ∈ B1(H1⊗H2) then trH2(X) ∈ B1(H1) and trH1(X) ∈ B1(H2).
Additionally, if X ∈ D(H1 ⊗H2) so are its partial traces.

2. Let Ψ ∈H1⊗H2 be a unit vector and ρ = |Ψ 〉〈Ψ | ∈ Sp(H1⊗H2). Determine
its quantum marginals in terms of the components of the vector Ψ. Hint: It
is enough to consider the example H1 ≡ H2 ≡ C2 and the two cases (with
|a|2 + |b|2 = 1)

Ψ = aε0 ⊗ ε0 + bε0 ⊗ ε1 and Ψ = aε0 ⊗ ε0 + bε1 ⊗ ε1.

3. What do you conclude?

Exercise 3.12.21. (Tedious but very useful one!) This exercise aims at establishing
useful parametrisations for self-adjoint and unitary operators in the special case of
H = C2. The results obtained here shed new light on the parametrisation of rays in
H used on pages 57–59. They will be also instrumental in §ssec:bell-hidden-variable-
model and §16.4.2.

Notation: In this exercise, H = C2. The set of (trivially bounded) operators B(H) is
isomorphic to M2×2(C) ' C4. The space B(H) is a complex vector space in its own
and, equipped with the Hilbert-Schmidt scalar product 〈X, Y〉 = tr(X∗Y), becomes a
Hilbert space. Greek indices α, β are running over the set {0, 1, 2, 3}while Latin indices
k, l, m run over {1, 2, 3}. Vectors in C4 are denoted in sanserif font, e.g. a, b, u, v, x, y, z
while vectors in C3 in bold font a, b, u, v, x, y, z; we have, for instance, the equality
a = (a0, a). The Pauli matrices (σα)α∈{0,...,3} are given by

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We denote by σ := (σ1, σ2, σ3).

1. Show that
— for all α = 0, . . . , 3, we have σ2

α = σ0,
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— σkσl = δklσ0 + i ∑m∈{1,2,3} εklmσm, where εklm is the totally antisymmetric ten-
sor.

2. Conclude that the family (σα)α∈{0,...,3} is an orthogonal basis of B(H).
3. In view of the previous result, any X ∈ B(H) can be written as a linear combi-

nation of Pauli matrices: X = ∑3
α=0 xασα. Which constraints are imposed on the

4-vector x for X to be
— self-adjoint X∗ = X,
— positive X ≥ 0,
— normalised tr(X) = 1.

4. Establish the identity: (a · σ)(b · σ) = (a · b)σ0 + i(a∧ b) · σ.
5. Let U be a unitary operator on H. Show that unitarity imposes that U = u0σ0 +

iu · σ, with u ∈ R4, verifying u2
0 + ‖u‖2 = 1. Conclude that the unitary operator

can also be written as
U = exp(iχn · σ),

with n ∈ S2 and χ ∈ [0, 2π].
6. For arbitrary vectors a, b ∈ R3 and an arbitrary unitary operator U, let A = a ·σ,

A′ = UAU∗, and B = b · σ.
— Show that tr(A) = tr(A′) = 0, and conclude that A′ = a · σ, for some a′ ∈

R3.
— Show that U(a · σ)(b · σ)U∗ = (a′ · σ)(b′ · σ) for some a, b ∈ R3 such that

a · b = a′ · b′, i.e. U induces some transformation RU on R3 that preserves
Euclidean scalar product.

— Show that RU is linear.
— Choose a unit vector m perpendicular to n. A rotation around the axis n by

an angle θ will bring m into m′ = RUm, with m′ ·m = cos θ. Show that
cos θ = m′ ·m = 1

2 tr[(m
′ · σ)(m · σ)] and conclude that U = exp(i θ

2 n · σ).
— Use the homomorphism between U and RU to determine the axis c of rota-

tion and the rotation angle γ when two rotations of axes and angles respec-
tively (a, α) and (b, β) are performed sequentially.
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Classical Quantum
Phase space

(Ω,F ) measurable space H separable complex Hilbert space
Composite system

(Ω1 ×Ω2,F1 ⊗F2) H1 ⊗H2
Real (discrete, i.e. X discrete) observables

X : Ω→ X ⊆ R X ∈ B(H) self-adjoint; X = spec(X)
States

General
ρ ∈ M1(Ω,F ) ρ ∈ D(H)

Extremal
ρ = δω , ω ∈ Ω ρ = |ψ 〉〈ψ |, ψ ∈H, ‖ψ‖ = 1

Time evolution of isolated system
U : Ω→ Ω measurable invertible U unitary operator on H

Physical measurement
One outcome x ∈ X One eigenvalue x ∈ X

P(X = x) = 〈ρ, E[x]〉 P(X = x) = 〈ρ, E[x]〉
State conditioned at having observed x

ρx(·) = E[x]ρE[x]
〈ρ,E[x]〉 ρx(·) = E[x]ρE[x]

〈ρ,E[x]〉
Unconditional state after observation: ρ′ = ∑x∈X P(X = x)ρx

Always: ρ′ = ρ In general: ρ′ 6= ρ

Summary of classical vs. quantum postulates
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4
First consequences of quantum

formalism

It would seem that the theory is exclusively concerned about “results of mea-
surement”, and has nothing to say about anything else. What exactly qualifies
some physical systems to play the role of “measurer”? Was the wavefunction of
the world waiting to jump for thousands of millions of years until a single-celled
living creature appeared? Or did it have to wait a little longer, for some better
qualified system . . . with a Ph.D.? If the theory is to apply to anything but highly
idealised laboratory operations, are we not obliged to admit that more or less
“measurement-like” processes are going on more or less all the time, more or less
everywhere? Do we not have jumping then all the time?

John BELL: Against measurement [16, p. 34].

We start this chapter by showing first, in §4.1, how the quantum formalism can be
used to re-interpret results already explicable within classical physics.

We recall that the measurement postulate 2.6.5 of quantum theory is very counter-
intuitive. It states that when we let a system — prepared in some state ρ — interact with
a measuring apparatus designed to measure a given observable X, the outcome x of the
measurement can be any eigenvalue x ∈ spec(X), these outcomes occurring randomly
according to the probability ν

ρ
X(x). In other words, if we prepare an ensemble of N

copies of the system in state ρ and measure X on every one of them, we get Nx times
every outcome x ∈ spec(X). When N → ∞, the only assertion of quantum theory is
that the empirical frequency Nx/N of occurrence of the value x ∈ spec(X) tends ν

ρ
X(x)

as N → ∞. There are actually two predictions of quantum theory:
— every possible outcome x of X is constrained to lie in spec(X), independently of

the state in which the measurement is performed, and
— the probability of occurrence of a given outcome x, for a measurement per-
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formed within state ρ, is given by ν
ρ
X(x).

The second result that will be shown in §4.2 of this chapter — as a consequence
of the formalism — is the so-called uncertainty principle stating that there do not ex-
ist states in which all dynamical variables have determinate sharp (i.e. of 0 variance)
values; quantum mechanics appears as an intrinsically and irreducibly stochastic the-
ory. This intrinsic randomness is exploited to construct at pre-industrial level working
devices producing sequences of true random numbers. The principle of functioning
of these devices is explained in §4.3.

In §3.10, we have introduced the the purely quantum notion of entanglement and
in §??, we describe how the bi-partite entanglement can be used to explain the Or-
say experiment — already described in §2.5.2 — which does not possess any classical
explanation.

The conventional wisdom, known as the Copenhagen interpretation of quantum
theory (incarnated in the tutelary figure of Niels Bohr), is that a “measurement does
not, in general, reveal a pre-existing value of the measured property. On the contrary,
the outcome of the measurement is brought into being by the act of measuring itself, a
joint manifestation of the state of the probed system and the probing apparatus” 1. This
statement is not a consequence of the intrinsic stochasticity of quantum theory implied
by the uncertainty principle. As a matter of fact, it is conceivable that a measurement
disturbs the measured system, preventing thus the 0-variance determination of all its
properties. But the question remains whether the properties of the system possess,
prior to the measurement, determinate values that are revealed by the measurement
process. In §??, we provide with another paradox, even sharper than the EPR para-
dox, known as Greenberg-Horne-Zeilinger (GHZ) paradox while in §??, we establish
another “no-go” theorem excluding the possibility of existence of hidden variables.

We finish this chapter by establishing, in §4.8, another purely quantum notion
known as complete positivity that governs general temporal evolution of a quantum
system and conclude by §4.9 that illustrates the phenomenon of decohrence, i.e. the
passage of the time evolution of a system from quantum into classical behaviour.

4.1 Light polarisers are not classical filters

As recalled in appendix, polarisation of light is the direction of variation of the elec-
tric field associated with it. There exist in Nature active anisotropic optical materials
(like calcite) that are birefringent, i.e. their light diffraction properties depend on the
polarisation of incident light. This birefringence phenomenon is exploited to construct
linear polarisers. Linear polarisers are caracterised by the direction of polarisation of
the emergent light. When two polarisers are sequentially traversed by light with their
directions at 90 degrees, the light beam is totally absorbed. The figure 4.1 depicts a pair
of commercially available polarisers with their directions crossed. The experiment we
intend to analyse in this subsesction is depicted in the following figure 4.2. When nat-

1. Quoted from [108].
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Figure 4.1 – Photograph of two commercially available polarisers, placed on a white surface, with
their principal directions almost at 90 degrees. In the region where the two polarisers are superposed,
the image appears black because all light energy is absorbed. In the regions where each polariser acts
alone, the image appears grey because half of the light energy is absorbed.

ural light passes through a horizontally oriented polariser, half of the initial intensity
is transmitted. When a vertical polariser is then placed in the beam, the light is totally
absorbed (left part of the figure 4.2). On the contrary when three polarisers with re-
spective orientations turned by 45 degrees each time are placed perpendicularly to the
light beam, the eighth of the intensity is transmitted (right part of the figure 4.2).

φ

PA

φ + π
2

PB

φ

PA

φ + π
4

PI

φ + π
2

PB

Figure 4.2 – The experimental setting with two or three polarisers and a source of non polarised light.
In the left setting, after polariser PA, oriented at an arbitrary angle φ, half of the intensity passes;
after polariser PB, crossed at right angle with respect to PA, no light passes. In the right setting,
after polariser PA, oriented at angle φ, half of the intensity passes; after polariser PI , oriented at 45
degrees with respect to P1, the fourth of the initial intensity passes, and after polariser PB, oriented
at 90 degrees with respect to PA, the eighth of the initial intensity passes.

4.1.1 Classical explanation

If we consider polarisers not as filters, the experiment has a classical explanation,
we give here in a simplified form. A solution of the Maxwell equations (see appendix
A) in vacuum (where charge and current densities vanish) can be given by the electric,
E, and magnetic vector, B, fields reading respectively for r = (x, y, z) ∈ R3,

E(r, t) = Emaxa(α) sin(2π(z− ct)/λ)); B(r, t) =
1
c

ez × E(r, t),
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where a(α) =

cos α
sin α

0

 denotes the direction of polarisation, c the speed of light, λ the

wavelength, and µ0 is a physical constant. The light intensity associated with such an

electromagnetic wave is I = ‖Emaxa(α)‖2

2µ0c = CE2
max‖a(α)‖2.

Since polarisation has not a component on the direction of propagation of the wave,
we can limit ourselves in the two dimensional plane perpendicular to the propagation
axis. We can use Dirac’s notation 2 to denote vectors in this plane; the unit vector in
this two-dimensional plane reads | uα 〉 = cos α| e 〉x + sin α| ey 〉. Since 〈 uα | uα 〉 = 1,
the intensity of natural light (in which all polarisations arise with the same probability)
is equal to I0 = CE2

max.

Now, a polariser PA placed perpendicularly to the beam oriented according to an-
gle β acts as a projection operator to the one dimensional subspace of R2 spanned by
| uβ 〉 = cos β| ex 〉+ sin β| ey 〉. Hence, after crossing such a polariser, for every initial
polarisation, α, the intensity will read

I1 = CE2
max‖(| uβ 〉〈 uβ |)| uα 〉‖2 = |〈 uβ | uα 〉|2〈 uβ | uβ 〉 = CE2

max cos2(α− β),

and averaging over all initial polarisations, the intensity of the beam crossing the first
polariser reads I1 = CE2

max
´ 2π

0 cos2(α− β) dα
2π = 1

2CE2
max.

If a second polariser PB at angle γ is placed perpendicularly to the beam after the
first polariser, the emerging intensity reads

I2 = CE2
max cos2(β− γ)

ˆ 2π

0
cos2(α− β)

dα

2π
=

1
2

CE2
max cos2(β− γ).

When γ = β + π/2, nothing emerges. Thus classical physics correctly explains the left
part of the experiment described in figure 4.2.

If a third polariser PI is placed between PA and PB at angle δ, the final intensity will
read

I2 = CE2
max cos2(β− δ) cos2(δ−γ)

ˆ 2π

0
cos2(α− β)

dα

2π
=

1
2

CE2
max cos2(β− δ) cos2(δ−γ).

If δ = β + π/4 and γ = δ + π/4, the intensity emerging from PB is the eight of the
initial intensity, in accordance with the experiment described in the right part of the
figure 4.2.

4.1.2 Simplified quantum explanation

The correct quantum description of a light beam is possible only within the sec-
ond quantisation formalism (that will be introduced in §16.1.2 and applied to light in
appendix A). It is nevertheless instructive to provide with a simplified quantum expla-
nation of the experiment to demonstrate the consistency of the quantum formalism.

2. Yes, Dirac’s notation is useful even in standard linear algebra on Euclidean spaces!
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As explained in appendix A, in its quantum mechanical description, light is com-
posed of a tremendous number of elementary light quanta per second, called photons,
that propagate at a constant speed reading, in the vacuum, c = 2.99792458× 108 m/s.
For instance, the laser beam emitted by a commercial AlGaInP laser diode 3 has a
power of P = 5 mW at a wavelength of λ = 635 nm= 6.35× 10−7 m (correspond-
ing to a colour in the orange-yellow region of the spectrum, as seen in figure A.1) has
its power vehicled 4 by the flow of ca. 3.2× 1015 photons per second. Any single pho-
ton of natural light has been produced by the decay of a different excited atom of the
sun (or of a terrestrial incadescent lamp); it is natural then to suppose that every pho-
ton is described by a different pure state determined by the unit vector ψ ∈ H ∼= C2

parametrised 5 by ψ = cos αε0 + exp(iβ) sin αε1, with α, β random variables, uniformly
distributed on [0, 2π].

The action of polarisers PA, PI and PB is equivalent to projective measurements of
respectively EA := | ε0 〉〈 ε0 |, EI =

1
2 | ε0 + ε1 〉〈 ε0 + ε1 |, and EB = | ε1 〉〈 ε1 |. Therefore,

every polariser acts as a sharp effect on the state of every individual photon and the
answer (the measurement of the effect in the state) will be either yes or no with some
probability depending on the relative angle of photon and polariser’s polarisations. In
other words, an individual photon either passes with some probability or is absorbed
with the complementary probability. The light intensity measured at the exit of the
experimental setup has thus only a statistical meaning. It corresponds to the average
number of photons that have been transmitted mulitplied by their power. It is then
an easy matter to explain the results of the left setting. In the following table, we
summarise the results concerning the right setting.

Polariser Input ray P(photon passes)
PA |ψ0 〉 = cos(α)| ε0 〉+ exp(iβ) sin(α)| ε1 〉 〈ψ0 | EAψ0 〉 = cos2(α)
PI |ψA 〉 = | ε0 〉 〈ψA | EAψA 〉 = 1

2
PB |ψI 〉 = 1√

2
| ε0 + ε1 〉 〈ψI | EBψI 〉 = 1

2

The overall transmission probability is 1
4

´ 2π
0 cos2(α) dα

2π = 1
8 , explaining the experi-

mental observation.

4.2 Heisenberg’s uncertainty principle

The first and more spectacular direct consequence of the quantum mechanical for-
malism is the so called Heisenberg’s uncertainty principle establishing the conceptual

3. This is small optoelectronic device that can be purchased for some 20 e. The principle of its func-
tioning was described as early as 1953, in an unpublished manuscript of John von Neumann titled Notes
on the photon-desequilibrium-amplification scheme that has been reproduced in Volume 5 of his collected
works [151, p. 420].

4. The power of the beam is Pbeam = 5× 10−3 J/s. The energy Ephoton carried by every individual
photon at wavelength λ is Ephoton = 2πh̄ c

λ where c is the speed of light and h̄ = 1.05457× 10−34 Js the
Planck’s constant. The number of photons per second crossing any plane perpendicular to the beam is
then n = Pbeam

Ephoton
. Substituting numerical values we get n ≈ 3.2× 1015 photons/s.

5. Recall figure 2.12.

/Users/dp/a/ens/iq-quphe.tex
2019-08-06 • 20:55:57.

113



4.2. Heisenberg’s uncertainty principle

and practical impossibility of considering systems with arbitrarily small joint random-
ness for certain pairs of observables. Spectral decomposition allows computation of
the expectation of an operator X, in a pure state, ψ, by

EψX = tr(ρψX) = 〈ψ |Xψ 〉 = ∑
λ∈spec(X)

λ|ψλ|2

and when the operator X is self-adjoint, the spectrum is real and the expectation is then
a real number. Following the probabilistic interpretation, denote by

Varψ(X) = Eψ(X2)− (Eψ(X))2.

What makes quantum probability different from classical one, is (among other things)
the impossibility of simultaneous diagonalisation of two non-commuting operators.

Theorem 4.2.1 (Heisenberg’s uncertainty). Let X, Y be two bounded self-adjoint operators
on a Hilbert space H and suppose a fixed pure state ψ is given. Then√

Varψ(X)Varψ(Y) ≥
|〈ψ | [X, Y]ψ 〉|

2
.

Proof. First notice that (i[X, Y])∗ = i[X, Y] thus the commutator is skew-adjoint. With-
out loss of generality, we can assume that EψX = EψY = 0 (otherwise consider
X − EψX and similarly for Y.) Now, since XY is not self-adjoint when X and Y do
not commute, 〈ψ |XYψ 〉 = α + iβ, with α, β ∈ R. Hence, 〈ψ | [X, Y]ψ 〉 = 2iβ and
obviously

0 ≤ 4β2 = |〈ψ | [X, Y]ψ 〉|2

≤ 4|〈ψ |XYψ 〉|2

≤ 4〈ψ |X2ψ 〉〈ψ |Y2ψ 〉,

the last inequality being Cauchy-Schwarz. �

Exercise 4.2.2. Let ρ ∈ D(H) be a state and X = (Xk)k=1,...,N a family of centred
observables (othwerwise replace Xk by Xk − E(Xk)I). On defining the covariance
and the commutation matrices, respectively denoted C = (Ckl)k,l=1,...,N and D =
(Dkl)k,l=1,...,N, where

Ckl = tr(ρ
1
2
{Xk, Xl}), Dkl = tr(ρ

1
2
[Xk, Xl]),

where [·, ·] denotes the commutator and {·, ·} the anticommutator, show that the ma-
trix M := C± iD is positive.

This is a typically quantum phenomenon without classical counterpart. In fact,
given two arbitrary classical random variables X, Y on a measurable space (Ω,F ),
there exists always states (i.e. probability measures) on (Ω,F ) such that Var(X)Var(Y) =
0 (for instance chose P(dω) = δω0(dω)).
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Remark 4.2.3. A comment is due at this point. According the quantum formalism,
when an observable is measured on an individual system, it takes one of the possi-
ble values in the set of possible outcomes. The meaning of the uncertainty principle
formula is a statistical one, i.e. we suppose that we dispose of a sequence of quantum
systems prepared independently at a given pure state ψ. On half of those systems, we
act with X2 and on the other half, we act with Y2 and register the experimental out-
comes. When the size of the sequence tends to infinity, taking the empirical average
of the outcomes of X2 we estimate Varψ(X) and from the empirical average of the out-
comes of Y2 we estimate Varψ(Y) (recall that we have assumed that X and Y have zero
mean).

Heisenberg’s uncertainty relation is historically the first manifestation of the irre-
ducibility of quantum randomness.

4.3 True random numbers generator

Every modern quantum cryptographic device relies on the possibility of producing
sequences of truly random numbers. It can be shown that neither a classical device
nor a classical algorithm (Turing machine) exist to produce true random numbers (see
chapter devoted to Kolmogorov complexity in [121]), it is straightforward to produce
efficiently sequences of random bits in an inexpensive way, by exploiting quantum
physics. Here we present the principle of such devices.

The natural way to produce sequences of random bits is by using a polarising beam
splitter (PBS). PBSs are commercially available in the form of small cubes or small
plates (see figure 4.3 top left) and are made by gluing together two prisms in oppo-
sition of a transparent birefringent material (typically calcite CaCO3). Birefringence
means that light has different speeds inside the material depending on its polarisation.
When a polarised photon enters the cube perpendicular to a face that is the vertical or
the horizontal projection of the interface it is either reflected on the interface or passes
through and the probability of each event depends on the polarisation. When the po-
larisation is at 45 degrees, theses probabilities are 1/2.

The proper quantum mechanical treatment of the functioning of polarising beam
splitter will be provided in appendix A after having developed the necessary second
quantisation formalism in §16.1.2. For the time being, we give (the explanation is post-
poned to A) an elementary “black-box” form of the action of a PBS.

The PBS is considered as a system having two input channels (IC1 and IC2) and two
output channels (OC1 and OC2) (see figure 4.3 top right). A single photon has also a
polarisation that can be decomposed in its horizontal and vertical components. Thus a
single photon with polarisation p ∈ {h, v} is sent through the input channel c ∈ {1, 2},
the input state |Ψin 〉 ∈ C2 ⊗C2 reads

|Ψin 〉 = | pc 〉, p ∈ {h, v}, c ∈ {1, 2}.

The action of the PBS (in the geometry of the figure 4.3 top right) results in a vector
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|Ψout 〉 ∈ C2 ⊗C2, reading

|Ψout 〉 = | p′c′ 〉, p′ ∈ {h, v}, c′ ∈ {1, 2},

where p, c, p′, c′ are related by a unitary transformation |Ψout 〉 = U|Ψin 〉 determined
by its matrix elements

|Ψin 〉 |Ψout 〉
| h1 〉 −| h2 〉
| h2 〉 −| h1 〉
| v1 〉 −| v1 〉
| v2 〉 −| v2 〉.

When the input is in a general polarisation state sent in channel 1, the input vector
reads

|Ψin 〉 =
(
cos(θ)| h 〉+ exp(iφ) sin(θ)| v 〉

)
⊗ | 1 〉

the output reads
|Ψout 〉 = cos(θ)| h2 〉+ exp(iφ) sin(θ)| v1 〉.

The transmission probability is sin2(θ) and the reflection probability cos2(θ).

IC1

IC2

OC1

OC2

PBS( | ε0 〉+| ε1 〉√
2

)
⊗ | 1 〉 | ε1 〉 ⊗ | 1 〉 (50%)

| ε0 〉 ⊗ | 2 〉 (50%)

Figure 4.3 – Top left picture: photographs of commercially available polarising beam splitters of
different sizes. The gluing of the two prisms in opposition is visible. Top right picture: schematic
drawing of the optical circuit with the definition of input and output channels. Bottom picture:
summary of the net effect of the PBS when the input photon is polarised at π/4. Notice that each
individual photon triggers only one detector, i.e. it is either transmitted (uses the output channel
1) or reflected (uses the output channel 2) with respective probabilities |〈 ε0+ε1√

2
| ε1 〉|2 = 1

2 and

|〈 ε0+ε1√
2
| ε0 〉|2 = 1

2 .

Each individual photon incident with polarisation at 45 degrees, either is transmit-
ted with probability 1/2 or is reflected with probability 1/2.

A light source is capable of producing single polarised, at 45 degrees say, photons
at a constant pace. The beam is then directed on a PBS. According to the analysis made
in the previous subsection, the photon passes with probability 1/2 and is reflected
with probability 1/2. Placing photomultipliers at the output channels of the PBS, the
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photons having been transmitted give 0, those having been reflected give 1. Quantum
theory can only determine the probabilities of 0 and 1; there is absolutely no mean to
determine a priori whether a single photon will effectively give 0 or 1.

This is the principle of functioning of commercial quantum random generators
(like, for instance, the USB stick presented in figure 1.4).

4.4 The EPR paradox

As already mentioned, classical Physics relies on two properties shared by all known
classical systems — and consequently —anchored in our classical intuition in perceiv-
ing and comprehending Nature, namely

locality, meaning that phenomena occurring within some finite region of space-
time can be influenced by causes in some vicinity of that region (it is a conse-
quence of finite speed of propagation of interactions), and

realism, meaning that observables of a given system have precise values, even if
the system is not observed 6.

The EPR paradox was coined by Einstein, Podolsky, and Rosen to demonstrate that
quantum formalism fails to be simultaneously realist and local; therefore — they ar-
gued — it must be incomplete.

In order to explain the EPR paradox, recall first the situation of exercise 3.12.20,
where a pure state ρ = |Ψ 〉〈Ψ | ∈ D(H1 ⊗H2) is considered. Both Hilbert spaces are
of dimension 2 and they are equipped respectively with orthonormal bases (εi)i=0,1
and (ζi)i=0,1.

1. If |Ψ 〉 = a| ε0ζ0 〉 + b| ε1ζ0 〉 = | φζ0 〉, where | φ 〉 = a| ε0 〉 + b| ε1 〉 and |a|2 +
|b|2 = 1, then the vector |Ψ 〉 is obviously factored and so is the pure state ρ =
|Ψ 〉〈Ψ | = | φ 〉〈 φ | ⊗ | ζ0 〉〈 ζ0 |. The quantum marginals read then trH1(ρ) =
| ζ0 〉〈 ζ0 | and trH2(ρ) = | φ 〉〈 φ |.

2. If |Ψ 〉 = a| ε0ζ0 〉+ b| ε1ζ1 〉 with |a|2 + |b|2 = 1, then, if a 6∈ {0, 1}, the vector
|Ψ 〉 is obviously entangled. The pure state ρ = |Ψ 〉〈Ψ | reads

ρ = |a|2| ε0 〉〈 ε0 | ⊗ | ζ0 〉〈 ζ0 |+ |b|2| ε1 〉〈 ε1 | ⊗ | ζ1 〉〈 ζ1 |
+ ab| ε0 〉〈 ε1 | ⊗ | ζ0 〉〈 ζ1 |+ ab| ε1 〉〈 ε0 | ⊗ | ζ1 〉〈 ζ0 |

=


|a|2 0 0 ab

0 0 0 0
0 0 0 0
ab 0 0 |b|2

 .

When a 6∈ {0, 1}, the state ρ is not a convex combination of factored states; it
corresponds to an entangled state. Moreover, spec(ρ) = {0, 1}, the eigenvalue 1
having multiplicity 1 and the eigenvalue 0 having multiplicity 3, and since the
function t 7→ −t log t — with the convention 0 log 0 — is well defined on the
spectrum, we compute by a straightforward application of the spectral theorem

6. To mention another celebrated aphorism [107]: “Is the Moon there when nobody looks?”
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that S(ρ) = tr(−ρ log ρ) = 0. The function S is the quantum analog of the en-

tropy. The quantum marginals read ρ1 = ρ2 =

(
|a|2 0

0 |b|2
)

and correspond

to mixed classical states and their quantum entropies read S(ρ1) = S(ρ2) =
H(|a|2, 1− |a|2), where H is the classical entropy of the classical probability vec-
tor (|a|2, 1− |a|2). When a = b = 1/

√
2 the classical entropy equals 1 (is max-

imal). Thus, the joint pure quantum state has marginals which are maximally
disordered.

We are now in position to formulate the EPR paradox. Let H1, H2 be as above and
ρ = |Ψ 〉〈Ψ |, with |Ψ 〉 = 1√

2
(| ε0ζ0 〉+ | ε1ζ1 〉). We can think of the two components

of the composite system as the two photons emerging in opposite directions in the
Orsay experiment. Suppose that each photon of the pair is sent to one of two satellites
very distant from one another. In each satellite an experimenter, say Alice in the first
(A) and Bob in the second (B), decides either to measure the polarisation of the received
photon or to do nothing. Of course, each experimenter has access only to his/her
photon. So, for x ∈ {0, 1},

P(photon of A has polarisation εx) = tr(ρE [x])
P(photon of B has polarisation ζx) = tr(ρZ [x])

where E [x] = E[x] ⊗ I2 with E[x] = | εx 〉〈 εx | and Z [x] = I1 ⊗ Z[x] with Z[x] =
| ζx 〉〈 ζx |. Now suppose that when the photon 2 reaches B, Bob decides to do nothing,
while at the moment the photon 1 reaches A, Alice asks whether its polarisation is ε0.
Obviously,

P(photon of A has polarisation ε0) = tr(ρE[0]⊗ I2) = 1/2.

Symmetrically, if when the photon 1 reaches A she decides to do nothing while when
the photon 2 reaches B, he asks whether its polarisation is ζ0, the answer is

P(photon of B has polarisation ζ0) = tr(ρI1 ⊗ Z[0]) = 1/2.

And these results are valid with a sequence of photons. As long as only one of the
experimenters asks a question, the answer will be yes with probability 1/2.

Suppose now that the photon 1 reached A before photon 2 reaching B and Alice
decided to ask whether the polarisation is ε0 and got the answer yes. According to the
postulate of measurement, the pair of photons is now in the new state

ρ0 =
E [0]ρE [0]
tr(ρE [0]) = | ε0 〉〈 ε0 | ⊗ | ζ0 〉〈 ζ0 |.

When now the photon 2 reaches B and Bob asks whether its polarisation is ζ0, the
answer is yes with certainty! If Alice is the first to ask the question, whatever answer
she gets, she knows that when Bob will ask the same question he will get the same
answer! This is the Einstein, Podolsky, and Rosen paradox (EPR); it is due to the fact
that quantum correlations do not behave as classical ones.

We cannot refrain from reproducing here the vivid explanations (see figure 4.4)
given by John Stewart Bell [19] himself on the occasion of a conference 7 he gave in
1980.

7. We got aware of this text thanks to the excellent commentary on the EPR paper made by Franck
Laloë in [98].
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“The philosopher in the street, who has not suffered a course in quantum
mechanics, is quite unimpressed by Einstein-Podolsky-Rosen correlations.
He can point to many examples of similar correlations in everyday life. The
case of Bertlman’s socks is often cited. Dr. Bertlmann likes to wear two
socks of different colours. Which colour he will have on a given foot on a
given day is quite unpredictable. But when you see (Fig. 4.4) that the first
sock is pink you can already be sure that the second sock will not be pink.
Observation of the first, and experience of Bertlmann, gives immediate
information about the second. There is no accounting for tastes, but apart
form that there is no mystery here. And is not the EPR business just the
same?”

The answer to the pholosopher’s-in-the-street question is “no”. The “EPR business” is
definitely a different notion than that conveyed by the Dr. Bertlmann’s socks paradigm
(see box on page 135).

Figure 4.4 – Facsimilé from the last page of the conference of John Bell at the Fondation Hugot.

4.5 Hidden variables

The EPR paradox, violating simultaneous realism and locality of quantum theory,
led Einstein, Podolsy, and Rosen to the conclusion that the theory was incomplete. An
equivalent formulation of the lack of realism is in terms of intrinsic and irreducible
randomness of quantum predictions. To understand this issue, consider a coin tossed
in the air and let (nt)t∈[0,T] denote the (instantaneous) unit normal vector out from the
“head” face. Given the initial conditions, the coin follows a trajectory described by the
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equations of motion until it reaches a totally plastic surface, at instant T, where it stops.
If nT · e3 > 0, the outcome is head, if nT · e3 < 0, it is tail. Due to the extreme sensitivity
of the motion on the initial conditions, the outcome is known only at the moment it is
observed. But nobody believes that the scalar product nt · e3 has not a definite value
at every instant t ∈ [0, T]. Coming to the quantum situation, a photon arriving on the
optically active interface of a polarising beam splitter, is either transmitted or reflected
but the formalism is “speech impaired” in predicting what an individual photon will
do. The outcome is intrinsically and irreducibly random and has not a determinate
value before it has been observed.

Efforts have been deployed during the second half of the 20th century to get rid of
this randomness by advocating the existence of hidden variables supposedly assigning
determinate values to the physical observables prior to their measurement.

4.5.1 What is a hidden-variables theory?

Let a system (classical or quantum) be described by the set O of observables and
the set S of states. An observable X ∈ O can have several outcomes (in some set X

depending on X); the probability of any individual outcome x ∈ X, when the system
is state ρ ∈ S, is ν

ρ
X(x) = 〈ρ, EX[x]〉, where EX[x] is the sharp effect corresponding to

the event “X takes the value x”.

Suppose that there exists some additional space H and a H-valued unobserved vari-
able Λ, defined on some abstract space, and having distribution µ := µΛ, i.e. P(Λ ∈
dλ) = µΛ(dλ), such that, when the information λ is used, the observable X (let it be
classical or quantum) takes a determinate value x. The unobserved variable Λ is called
a hidden variable.

Definition 4.5.1. Let O denote the set of observables of a physical system and H an
additional space of hidden variables. For λ ∈ H, hidden-variable induced valuation is
a map V := VλO→ R. A valuation is

— dispersion-free if ∀X ∈ O, V(X2) = V(X)2,
— nomalised if V(I) = 1,
— quasi-linear if ∀X, Y ∈ O such that [X, Y] = 0 and ∀a, b ∈ R, we have V(aX +

bY) = aV(X) + bV(Y),
— linear if ∀X, Y ∈ O, ∀a, b ∈ R : V(aX + bY) = aV(X) + bV(Y),

When H does not involve the state space S or other observables of the system, the
valuation is called non contextual, otherwise it is contextual.

By abuse of language, a hidden-variable induced dispersion-free, (non-contextual)
valuation is often simply termed hidden-variable. With this abuse, it is then meaning-
ful to speak about a quasi-linear or a linear hidden variable.

Lemma 4.5.2. Let V be a non contextual, dispersion-free, normalised, quasi-linear hidden-
variable induced valuation on a system with set of observables O. Then

1. ∀X ∈ O, V(X) ∈ spec(X), and
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2. for arbitrary, pairwise commuting observables X1, . . . , Xn and an arbitrary polynomial
of n variables p ∈ R[t1, . . . , tn], we have

V(p(X1, . . . , Xn)) = p(V(X1), . . . , V(Xn)).

Proof. 1. — Let Y ∈ O be an observable commuting with X. We have then

V((X±Y)2) = (V(X±Y))2 by dispersion-freeness

= (V(X)±V(Y))2 by quasi-linearity

= V(X)2 + V(Y)2 ± 2V(X)V(Y).

On the other hand,

V((X±Y)2) = (V(X2 + Y2 ± 2XY))

= V(X2) + V(Y2)± 2V(XY) by quasi-linearity

= V(X)2 + V(Y)2 ± 2V(XY) by dispersion-freeness.

Equating the r.h.s. of the above expressions, we get V(XY) = V(X)V(Y).
— Next, we show by induction, that ∀` ∈ N, V(X`) = V(X)`. Obviously, the

equality holds for ` = 0, 1, 2. Assume that it holds for some ` > 2. Then

V(X`+1) = V(X`X) = V(X`)V(X) by the previous step

= V(X)`V(X) by the induction hypothesis

= V(X)`+1.

— For q ∈ R[t] and arbitrary polynomial; then, V(q(X)) = q(V(X)) by the
previous induction and quasilinearity. Denote by X = spec(X) and assume
now that q(t) := ∏x∈X(t− x). Consider the equation q(X) = 0. It follows
that

0 = V(q(X)) = q(V(X)).

Hence V(X) ∈ X.
2. The claim follows from quasi-linearity.

4.5.2 Triviality of hidden variables for classical systems

Let O be the set of observables for a classical system, i.e. the set of real random vari-
ables over some probability space (Ω,F , ρ). To introduce a hidden variable induced
valuation on O, it is enough to identify H = Ω and define ∀λ ∈ H, Vλ(X) = X(λ) =
X(ω). Obviously, V is a non contextual, dispersion-free, linear valuation. On choosing
the H-valued random variable Λ distributed according to the law µΛ = ρ, we getˆ

H
Vλ(X)µΛ(dλ) =

ˆ
Ω

X(ω)ρ(dω) = EX,

i.e. the hidden variable for a classical random variable, reproducing the statistical prop-
erties of the system, is nothing else than the choice according to the state ρ ∈ S of its
realisations.
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4.5.3 Quasi-linear hidden variables do exist in dimension d = 2

In his 1932 Mathematische Grundlagen der Quantemechanik, von Neumann proves that
there do not exist dispersion-free states. The long lasted myth that he had also ex-
cluded the possibility of existence of determinate values for the observables prior to
measurement acted as a hindrance to the quest of proving or disproving hidden vari-
ables hypothesis. But his proof 8 imposes too strong a requirement, as pointed out by
Bell in [18]. As a matter of fact, von Neumann shows the following

Proposition 4.5.3. Linear hidden variable models do not exist in dimension d ≥ 2.

Proof. It is enough to show the result for d = 2. Define

X = σ1 =

(
1

1

)
and Y = σ2 =

(
−i

i

)
.

Then spec(X) = spec(Y) = {−1, 1}, while spec(X + Y) = {−
√

2,
√

2}. Therefore, for
an arbitrary valuation V, by lemma 4.5.2, we shall have V(X) + V(Y) ∈ {−2, 0, 2},
therefore it is impossible for linearity to hold, since V(X + Y) ∈ {−

√
2,
√

2}.

But, imposing linearity of the valuation, i.e. V(X + Y) = V(X) + V(Y) to hold
even for non-commuting observables is very strong a requirement — as von Neumann
understood himself — and cannot be imposed on physical grounds. Relaxing this
statement to quasi-linear valuations, Bell [18] showed that on H = C2, it is possible
to construct a quasi-linear hidden variable model, assigning determinate values to the
observables and reproducing in average the predictions of quantum theory.

Obviously, B(H) is a complex vector space of dimension 4 on its own and the set
of Pauli matrices (σ0, σ1, σ2, σ3) (recall exercise 3.12.21) constitutes a basis of B(H), i.e.
any element X ∈ B(H) is decomposed as

X := X(b0, b) = b0σ0 +
3

∑
i=1

biσi = b0σ0 + b · σ, b0 ∈ C, b ∈ C3.

If X ∈ O (i.e. X is self-adjoint), then b0 ∈ R and b ∈ R3. Therefore, the space of
self-adjoint observables is parametrised by b = (b0, b) ∈ R×R3.

The task of a hidden variable model is to show that there exists a random vari-
able Λ on some (unspecified space) taking values in some space H (we can chose
for H real interval for instance) and a valuation map V := Vλ : O → R, assign-
ing definite values to observables, prior to their measurement, that reproduce the
results of quantum formalism. We know from lemma 4.5.2, that for every λ ∈ H,
Vλ ∈ spec X = {b0 + ‖b‖, b0− ‖bb‖} and, if the system is in the state ρ = | ε0 〉〈 ε0 |, the
quantum formalism establishes that

P(X = x) = 〈ρ, E[x]〉 = tr(ρE[x]) = 〈 ε0 | E[x]ε0 〉, for x ∈ spec(X).

8. In [149, pp. 157–166] of the German edition, or [152, pp. 204–215] of the French edition, or [150,
pp. 157–166] of the English edition of the Grundlagen.
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Proposition 4.5.4. Let Λ be a random variable uniformely distributed in H = [−1/2, 1/2]
and define, for every λ ∈ H, the valuation

V(X) := Vλ(X) = b0 + ‖b‖sign
(

λ‖b‖+ 1
2
|b3|
)

sign(z(b)),

where

z(b) =


b3 if b3 6= 0
b1 if b3 = 0, b1 6= 0
b2 if b3 = 0, b1 = 0,

and sign(t) =

{
1 t ≥ 0
−1 t < 0.

Then V is a hidden variable quasi-linear valuation reproducing

the statistical predictions of quantum theory, i.e.

E(VΛ(X)) :=
ˆ

H
Vλ(X)PΛ(dλ) = 〈 ε0 |Xε0 〉.

Proof. Obviously Vλ(X) ∈ spec X. It is an easy exercise to check that the claimed form
of the valuation is dispersion-free and normalised. Quasi-linearity follows from the
observation that X := X(b0, b) and Y := X(c0, c) commute if, and only if, b ∧ c = 0,
i.e. when b and c are collinear. Finally, due to the uniformity of distribution of Λ in H,
we compute immediately

E(VΛ(X)) =

ˆ
H

Vλ(X)PΛ(dλ) = b0 + |b3|sign(z(b)) = b0 + b3 = 〈 ε0 |Xε0 〉.

4.5.4 (Bell)-Kochen-Specker theorem and contextuality

The construction carried out in §4.5.3 does not extend in dimension higher than
2. This result is known as (Bell)-Kochen-Specker theorem; it establishes that quantum
theory cannot be completed by non-contextual hidden variables allowing to assign
definite values to physical observables independently of which other compatible ob-
servables are jointly measured.

The original proof [95] in dimension 3 (or more) is quite involved. We present below
an easy proof valid in dimension 4, given by Mermin [108]. In that case, it is easy to
construct a counterexample where quasi-linearity fails. Consider the 4-dimensional
system as composite system with H = C2 ⊗ C2. Let A = {0, 1, 2, 3} and denote
A(ab) = σa ⊗ σb for a, b ∈ A. Arrange some relevant operators A(ab) in the 3 × 3
array

A(10) A(01) A(11)
A(02) A(20) A(22)
A(12) A(21) A(33).

Exercise 4.5.5. 1. Show that the operators in every row are mutually commuting.
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2. Show that the operators in every column are mutually commuting.
3. Show that the product of the operators appearing in the last column reads A(11)A(22)A(33) =
−I.

4. Show that the product of the operators appearing in the first or middle column
is I.

5. Show that the product of the operators appearing in each row is I.
6. If a valuation V existed, since triples of row (column) operators are mutually

commuting we should have

1 = V(A(10)A(02)A(11)) = V(A(02)A(20)A(22)) = V(A(12)A(21)A(33)
= V(A(10)A(02)A(12)) = V(A(01)A(20)A(21))
= −V(A(11)A(22)A(33)).

Show that this valuation is contradictory.

During the 20th century, Bell-Kochen-Specker theorem was supposed to be only
of theoretical interest. In [86] however, an experimental test of the Kochen-Specker
theorem with single photons has been performed, based on a proposal of experimental
feasibility made in [138].

4.6 Experimental refutation of hidden variables

Bell has established in [17] the so called Bell’s inequalities 9, already presented in
proposition 2.5.2. These inequalities have been generalised into the so-called Clauser-
Horne-Shimony-Holt (CHSH) inequalities [40], given in proposition 4.6.1 below.

Proposition 4.6.1 (The Clauser-Horne-Shimony-Holt inequality). Let X = [−1, 1] and
X1, X2, Y1, Y2 four X-valued random variables defined on a common probability space (Ω,F , ρ)
and having an arbitrary joint distribution. Then

E(X1Y1) + E(X1Y2) + E(X2Y1)−E(X2Y2)| ≤ 2.

The proof of this proposition is quite elementary and left as an exercise. Hint: In-
troducing the random variable Z = X1(Y1 +Y2) + X2(Y1−Y2), remark that the sought
inequality is equivalent in showing |E(Z)| ≤ 2. One can also immediately show also
that supposing that the joint distribution of the four variables is reduced into an atomic
one charging only the quadruples (±1,±1,±1,±1) for the values of (X1, X2, Y1, Y2) we
recover the four variables Bell’s inequality.

The main interest of the paper [40] is not however the above, rather trivial, general-
isation of the Bell’s four variables inequality but rather that — based on ideas exposed
in [96] — it describes an experimental protocol that could be used to experimentally
definitely settle the question whether quantum mechanics admits a Kolmogorovian

9. Due to some mishandling by the editorial board of the manuscript [18], its publication occurred
after [17], although it was submitted prior to the latter.

/Users/dp/a/ens/iq-quphe.tex
2019-08-06 • 20:55:57.

124



First consequences of quantum formalism

description (in terms of hidden variables) or it violates simultaneous locality and real-
ism.

The Orsay experiment made use of these inequalities coupled with an experimental
setting of unprecedented ingenuousness (see §2.5.2 and [7] for more technical details)
to show that quantum theory does not admit a Kolmogorovian description; therefore,
EPR is not a paradox but a genuine physical phenomenon. Nature cannot be simulta-
neously realistic and local!

After triggering the Calcium atom by a laser beam (recall figure 2.10), its de-excitation
produces a pair of entangled photons in the state

|Ψ 〉s = e−iφ/2 cos θ| ε0ζ1 〉+ eiφ/2 sin θ| ε1ζ0 〉 = ∑
m∈{0,1}

Ψmm| εmζm 〉 ∈H1 ⊗H2,

where m = 1 − m. Orienting the left polariser in some angle is equivalent to per-
forming the projective measurement | L 〉〈 L | ⊗ I2, where | L 〉 = e−iγ/2 cos α| ε0 〉 +
eiγ/2 sin α| ε1 〉 and I2 is the unit operator on H2. Simillarly, orienting the right polariser
in some angle is equivalent to performing the projective measurement I1 ⊗ | R 〉〈 R |,
where | R 〉 = e−iδ/2 cos β| ζ0 〉+ eiδ/2 sin β| ζ1 〉 and I2 is the unit operator on H2. We
can now compute the probabilities appearing in the Bell’s inequality by observing that
for an individual pair of photons

Pθ,φ(Xα = Yβ) = P(Xα = Yβ = 1) + P(Xα = Yβ = 0)

= tr((| L 〉〈 L | ⊗ I2)|Ψ 〉〈Ψ |(I1 ⊗ | R 〉〈 R |))
+ tr(((I1 − | L 〉〈 L |)⊗ I2)|Ψ 〉〈Ψ |(I1 ⊗ (I2 − | R 〉〈 R |)))

= |〈Ψ | LR 〉]2 + [1−∑
j=0
|Lj|2|Ψjj|

2 −∑
j=0
|Rj|2|Ψjj|

2 + |〈Ψ | LR 〉]2]

= 2[cos2 θ cos2 α sin2 β + sin2 θ sin2 α cos2 β

+ 2 cos(φ + γ− δ) cos θ sin θ cos α sin α cos β sin β]

+ 1− (cos2 θ cos2 α + sin2 θ sin2 α)− (cos2 θ cos2 β + sin2 θ sin2 β).

Now, pairs of photons are produced in a large number and since each pair are pro-
duced by the de-excitation of different Calcium atoms, there is no way to fix the angle
θ in the above formula. Different pairs arrive with different angles and the only reason-
able assumption is that pairs of photons are emitted with random angles θ distributed
in [0, Π] according to the uniform measure dθ/π. Computing the average over possi-
ble polarisations of the emitted photons, we get

Prob(Xα = Yβ) =

ˆ
[0,π]

Pθ,φ(Xα = Yβ)
dθ

π

= cos2 α sin2 β + sin2 α cos2 β + 1− 1
2
(cos2 α + sin2 α)− 1

2
(cos2 β + sin2 β)

= cos2 α sin2 β + sin2 α cos2 β.

The Orsay experiment consisted in measuring precisely the probabilities Prob(Xα =
Yβ) for different angles α1, α2, β1, β2 ∈ [0, π] for the orientations of the analysing po-
larisers in an ingeneous experimental setting where the choice of the angle has been

/Users/dp/a/ens/iq-quphe.tex
2019-08-06 • 20:55:57.

125



4.7. The Greenberg, Horne, and Zeilinger (GHZ) paradox

made after the pair of photons were emitted from the Calcium atom. The observed
results were in complete accordance with the above formula.

If the variables Xα and Yβ were Kolmogorovian random variables, they should ful-
fill the four-variables Bell’s inequality

Prob(Xα1 = Yβ1) ≤ Prob(Xα1 = Yβ2) + Prob(Xα2 = Yβ1) + Prob(Xα2 = Yβ2),

for every choice of angles α1, α2, β1, β2 ∈ [0, π]. Choosing four different angles α1 =
0, α2 = π/3, β1 = π/6 and β2 = π/6, they should verify the impossible inequality

1 ≤ 1
4
+

1
4
+

1
8

.

The Orsay experiment has been confirmed by a similar experiment made in in Delft
with entangled electrons [82]. This realisation closed a possible loophole left by the use
of photons in the Orsay setting; as a matter of fact, the use of photons cannot totally
exclude the possibility that multiple photon states act as input states. This possibility
is excluded when we use electrons. (Mind that photons are bosons while electrons are
fermions). Therefore, EPR is not any longer a paradox but a physical phenomenon.
The Nature behaves really as predicted by the quantum formalism.

It is worth stressing that the EPR phenomenon is still triggering several profound
quests on the foundational aspects of quantum mechanics. If we insist on interpret-
ing the state as containing all elements of reality about the quantum system, quantum
mechanics appear as non local. If on the contrary we interpret the state as a statis-
tical ensemble of identical systems described by a given density matrix and give to
the possible outcomes only a statistical meaning, i.e. we are interested solely in the
probabilities of their occurrence, there is absolutely no paradox. Similarly, the EPR
phenomenon is often referred as violating the principle of relativistic causality. How-
ever, if we interpret the (entangled) density matrix of the compound system as a global
property of the pair, not the juxtaposition of properties pertaining to the two (isolated)
components, again, there is no violated relativistic principle since in the EPR experi-
ment there is no super-luminal transmission of useful information between space-like
separated points.

These days, most of the protocols of quantum cryptography, somewhere in their
make, use entanglement. Information transmission protocols and teleportation rely
also upon entanglement. Finally, entanglement is an important resource for quantum
computing. Beyond its usefulness in applications, entanglement is important for the
theoretical foundations of quantum mechanics.

4.7 The Greenberg, Horne, and Zeilinger (GHZ) paradox

This paradox, introduced in [72], is intending to provide with an impossibility re-
sult sharper than Bell’s inequalities. As a matter of fact, contrary to Bell’s inequality
where the probability of occurrence of an event is bounded from other probabilities,
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here, the probability of a certain event is shown to be 1, leading to a maximal violation
of classical prediction.

This statement and the proof of this paradox is quite straightforward; for this rea-
son, we state it as an exercise.

Exercise 4.7.1. 1. Let Xa, Xb, Xc, Ya, Yb, Yc be six classical {−1, 1}-valued random
variables, defined on the same probability space (Ω,F , P). Their law P is arbi-
trary, i.e. the variables can be independent or not, symmetric or not, degenerate
or not. Denote by W0, W1, W2, W3 the random variables

W0 := XaXbXc; W1 := XaYbYc; W2 := YaXbYc and W3 := YaYbXc,

also definided on (Ω,F , P) and taking values also in {−1, 1}. Show that

P(W0 = 1, W1 = −1, W2 = −1, W3 = −1) = 0.

2. Henceforth,H = C2 and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices in the canonical basis

((
1
0

)
,
(

0
1

))
. Show that spec(σ1) =

spec(σ2) = spec(σ3) = {−1, 1}.
3. Denote by |+ 〉 et | − 〉 the eigenvectors of σ3 associated respectively with the

eigenvalues +1 and −1. We have thus σ3| s 〉 = s| s 〉 for s ∈ S := {+,−};

otherwise stated: |+ 〉 =
(

1
0

)
et | − 〉 =

(
0
1

)
. Compute, σ1| s 〉 and σ2| s 〉 for

s ∈ S.
4. Let |Ψ 〉 = 1√

2
(| +++ 〉+ | − −− 〉) ∈ H := H⊗3. Show that |Ψ 〉 is an eigen-

vector for the operators Wi, i = 0, . . . , 3, acting on H, where

W0 := σ1 ⊗ σ1 ⊗ σ1

W1 := σ1 ⊗ σ2 ⊗ σ2

W2 := σ2 ⊗ σ1 ⊗ σ2

W3 := σ2 ⊗ σ2 ⊗ σ1.

5. What we can conclude on the probabilities PΨ(Wi = 1), for i = 0, . . . , 3, and for
the state of the system after each question has been asked?

6. Show that σ1σ2 = −σ2σ1.
7. For A, B, C, and D operators acting onH, show that (A⊗ B)(C⊗D) = (AC)⊗

(BD).
8. Comment why the results obtained so far can be characterised as paradoxical if

they are interpreted classically. (Recall that σ2
1 = σ2

2 = I).

4.8 Complete positivity, Stinespring theorem, Kraus op-
erators

It has been postulated in §2.6 that isolated quantum systems evolve unitarily, i.e.
quantum states evolve as ρ 7→ ρ′ := UρU∗, where U is a unitary operator while unfil-
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tered measurement acts as a transformation on quantum states of the form ρ 7→ ρ′ :=
∑x∈X E[x]ρE[x], where (E[x])x is a partition of unity on a space X. In other words, an
arbitary transformation of a quantum systems is encoded into an affine map

D(H) 3 ρ 7→ ρ′ := Φ(ρ) ∈ D(H).

The map Φ can be extended by linearity to the whole space Φ : B(H) → B(H); the
map is reversible for unitary evolution but not for measurements.

There are several questions that can be asked about transformations acting on states
of quantum systems to be physically acceptable.

1. States are trace class operators of unit trace, hence a state transformation must
be trace preserving. However, this requirement can be relaxed by requiring
merely preservation of the trace class property, not imposing the normalisation
of the state. Such more general transformations are called quantum operations
and constitute a convex set whose extremal elements are the aforementioned
state transformations.

2. States are represented by positive operators. To be mathematically consistent,
any map Φ : B(H) → B(H) must — at least — preserve positivity, i.e. Φ(ρ)
must remain positive for any ρ ∈ D(H). However, this requirement proves
insufficient to prevent inconsistencies on composite systems because of the phe-
nomenon of entanglement. In case the quantum operation is unitary — the state
transformation is then a unitary evolution — or the initial state is separable, this
requirement is enough and leads to physically acceptable operations (see exer-
cise 4.8.2 below). But this requirement of positivity must be strengthened into
complete positivity (see defintion 4.8.1 below) in case of non unitary operations
on entangled states.

Definition 4.8.1. Let H be an arbitrary Hilbert space and n ∈ N. Consider the quan-
tum system described by the finite-dimensional extension of the Hilbert space into
H⊗Cn, where the Hilbert space Cn carries the degrees of freedom of an inert ancillary
system. A linear transformation Φ : D(H)→ D(H) is n-positive if the transformation

Φ⊗ idn : D(H⊗Cn)→ D(H⊗Cn),

where idn is the identity map on Cn. The transformation is completely positive if it is
n-positive for every n ∈N.

Exercise 4.8.2. Let Φ : Cn → Cn be a linear map. Show that if Φ

1. stems from a unitary evolution, i.e. Φ(X) = UXU∗, or
2. is (the extension to Mp = B(Cp) of) a positive evolution of a separable state

ρ ∈ D(Cp ⊗Cp),

then Φ is completely positive.

Complete positivity is a purely quantum phenomenon, i.e. occurs solely in the case
of non-commutative algebras 10 and stems from entanglement. Although its mathe-
matical description is quite well established, its profound physical significance is still

10. It is shown in [142, theorem 4] that positive transformations on commutative algebras, i.e. on
Markov operators acting on classical random variables, are always completely positive.

/Users/dp/a/ens/iq-quphe.tex
2019-08-06 • 20:55:57.

128



First consequences of quantum formalism

paritally understood. Its mathematical description enters the more general framework
of dilations. Loosely speaking a dilation is the fact that a complicated transformation
acting on a state space can be equivalently described by an embedding of the space
into a larger one followed by a simpler transformation acting on the larger state space,
followed by a restriction to the initial space. The archetypical example of dilation is
given by the Stinespring’s theorem. In finite dimension 11 it takes the following form
given in theorem 4.8.3.

For arbitrary q ∈N, denote by Mq = B(Cq).

Theorem 4.8.3. [Stinespring’s theorem in finite dimension]. A linear map Φ : Mm →Mn is
completely positive if there exist an integer p ∈ N, a unital ∗-homomorphism α : Mm →Mp
and a linear map V : Mn →Mp such that

Φ(X) = V∗α(X)V, for all X ∈Mm.

Corollary 4.8.4. A linear map Φ : B1(H) → B1(H) is completely positive if, and only if,
there exist a (finite or infinite) sequence of bounded operators (Vi)i∈I satisfying ∑i∈I V∗i Vi =
IH such that

Φ(X) = ∑
i

V∗i XVi, for all X ∈ B1(H).

The operators (Vi) are called Kraus operators. In finite dimension, the family I can
be chosen so that cardI ≤ (dim H)2.

For the finite dimensional case, complete positivity is totally characterised (see [89]
and [38]) by elementary means. See also [81] for a more recent text.

Theorem 4.8.5. Choi [38, theorems 1 and 2]: Let Mm = B(Cm) and Mn = B(Cn), for
m, n ∈N. For a linear map Φ : Mm → An the following statements are equivalent:

1. Φ is completely positive.
2. Φ is m-positive.
3. The Choi’s matrix of Φ, defined by

MΦ :=

Φ(E11) . . . Φ(E1m)
... . . .

...
Φ(Em1) . . . Φ(Emm)

 =
m

∑
j,k=1

Φ(Ejk)⊗ Ejk,

where Ejk = | ε j 〉〈 εk | for an arbitrary orthonormal basis (ε j)j=1,...,m of Cm, is positive.
4. Φ has the form Φ(X) = ∑i∈I V∗i XVi for all X ∈Mm, where (Vi)i∈I are m× n matri-

ces.

11. Stinespring’s theorem can be formulated in the much more general framework of (infinite dimen-
sional) C∗-algebras [142]. In this general framework, the theorem reads:
Theorem: Let A be a unital C∗-algebra, H a Hilbert space, and Φ a linear function from A to B(H). The
following statements are equivalent:

— Φ is completely positive.
— There is a Hilbert space F, a bounded linear transformation V : H → F, and a ∗-representation α of A

into B(F), such that
Φ(X) = V∗α(X)V, for all X ∈ A.
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Proof. See exercise 4.8.6 below.

Exercise 4.8.6 (Proof of the theorem 4.8.5). Let (εk)k=1,...,m be an arbitrary orthonormal
basis of Cm.

1. Let Y = ∑m
j,k=1 | ε jε j 〉〈 εkεk | ∈Mm ⊗Mm. Show that Y is positive.

2. Show that (Φ⊗ idm)(Y) = MΦ. If Φ is m-positive conclude that from statement
2 of the theorem follows statement 3.

3. Assume that MΦ is positive and let (ψl)l=1,...,p, with ψl ∈ Cn ⊗ Cm and 1 ≤
p ≤ nm be the family of eigenvectors of MΦ corresponding to its non-vanishing
eigenvalues. Argue that they form an orthogonal (not necessarily normalised)
system allowing to write MΦ = ∑

p
l=1 |ψl 〉〈ψl |.

4. Remark that Cn ⊗ Cm can be considered as a direct sum Cn ⊗ Cm = ⊕m
k=1Hk,

where Hk ' Cn for all k = 1, . . . , m, and denote by Pk the orthoprojection Pk :
Cn ⊗Cm →Hk. Show that Φ(Ejk) = PjMΦPk.

5. For every l = 1, . . . , p and j = 1, . . . , m, define the operator Vl : Cm → Cn by its
action on basis vectors:

Vl| ε j 〉 := Pj|ψl 〉.

6. Show that Φ(Ejk) = ∑
p
l=1 VlEjkV∗l and conclude that Φ(X) = ∑

p
l=1 VlXV∗l , for

all X ∈Mm.
7. Use Stinespring’s theorem to complete the proof of the theorem 4.8.5.

A natural question that can be asked is whether the above definition of complete
positivity encompasses non-trivial cases, i.e. whether there are positive transforma-
tions that fail to be completely positive. The answer is of course yes as is shown in the
following exercice.

Exercise 4.8.7 (A positive transformation that fails to be 2-positive). Suppose that
H ' C2 and X a positive operator acting on M2 = B1(C

2). Let Φ(X) = Xt be transpo-
sition. Show that Φ is positive without being 2-positive (hence failing to be completely
positive).

One can construct several other simple examples of positive transformations that
fail to be 2-positive (see [142] or [5] for instance). The question arises subsequently
whether this is always the case. The answer is no: for every n ≥ 2, there are (n− 1)-
positive transformations Φ : Mn → Mn that fail to be n-positive (see [38, theorem
1]).

Exercise 4.8.8 (Choi-Jamiołkowksi isomorphism). Let Φ : Mm → Mn as in theorem
4.8.5 and Y = ∑m

j,k=1 | ε jε j 〉〈 εkεk | ∈ Mm ⊗Mm, for an orthonormal basis (ε j)j=1,...,m of
Cm as in exercise 4.8.6.

1. Compute tr(Y) and conclude that ρ = 1
m ∑m

j,k=1 | ε jε j 〉〈 εkεk | is a state in D(Cm⊗
Cm).

2. Show that the state ρ is pure.
3. Define J[Φ] := Φ ⊗ idm. Show that Φ is completely positive if, and only if,

J[Φ](ρ) is positive.
4. Argue that J[Φ](ρ) is an isomorphism (the Choi-Jamiołkowski isomorphism)

between the space of completely positive linear maps from Mm → Mn and the
space of positive maps on Mm ⊗Mn.
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Note that the previous isomorphism allows to check complete positivity of Φ solely by
checking whether the map J[Φ] applied on a given pure state ρ is positive.

4.9 Decoherence and quantum to classical transition

4.9.1 Measurement and effects revisited

Recall briefly the measurement postulate in the finite dimensional case, i.e. sup-
pose for simplicity that the system is described by finite-dimensional Hilbert space.
We are given a sharp observable X ∈ Os(H), admitting a non-degenerated spectral
decomposition X = ∑x∈X xE[x], where X = spec X, E[x] = | ζ[x] 〉〈 ζ[ |, and ζ[x] is the
normalised eigenvector of X associated with the eigenvalue x. The set of eigenvectors
forms an orthonormal basis of H and (E[x])x∈X is a decomposition of unity into a sum
of orthogonal orthoprojections. This kind of decomposition is termed in the literature
projection-valued measure (also known by its acronym PVM).

When the system is prepared in state ρ ∈ D(H) and we measure once the observable
X, the experimental outcome is one of the possible eigenvalues x ∈ X. The quantum
formalism is unable to predict which eigenvalue will occur. It can on the contrary predict
that when we repeat the experiment on an ensemble of equally prepared systems in
state ρ, the probability of each outcome x is given by the — so called Born rule —

px = ν
ρ
X(x) = tr(ρE[x]) = tr(E[x]ρE[x]) = tr(ρE[x]2).

The formalism predicts also that once the outcome x has been observed, the conditional
a posteriori state of the system becomes

ρx =
1
px

E[x]ρE[x].

In particular, the projective measurement transforms pure states into pure states.

In case we don’t filter the results but mix the output systems with the corresponding
probabilities, the so obtained statistical ensemble will correspond to the state ρ′ =
∑x∈X E[x]ρE[x].

What is important in the expression for px above is that (px)x∈X is a probabiity vec-
tor, i.e. px ≥ 0 and ∑x∈X px = 1. Focusing on the rightmost form of the expression
of px, we see that this imposes that E[x]2 ≥ 0 and ∑x∈X E[x]2 = I. Therefore, we can
relax the orthoprojective orthogonality of the effects E[x], and consider a family of pos-
itive operators (F[x])x∈X — indexed by some finite set X — verifying ∑x∈X F[x] = I,
i.e. a positive-operator valued measure or unsharp effect. The measure corresponding
to F is termed in the literature positive operator-valued measure (also known by its
acronym POVM).

Since F[x] ≥ 0, the operator F[x]1/2 is well defined. Using polar decomposition, we
can define the detection operators M[x] = U[x]

√
F[x] and write

px = tr(ρF[x]) = tr(M∗[x]ρM[x]).
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In the same vein, we can define the conditional state after the unsharp outcome x has
been observed by

ρx =
1
px

M∗[x]ρM[x],

and the unfiltered one by

ρ′ = Φ(ρ) := ∑
x∈X

M∗[x]ρM[x],

with ∑x∈X M∗[x]M[x] = I.

Using the Stinespring theorem 4.8.3, we have shown in the previous section, that
any map of the form Φ(ρ) = ∑x∈X M∗[x]ρM[x], with ∑x∈X M∗[x]M[x] = I, is com-
pletely positive. We have justified there the necessity of considering complete positiv-
ity as a requirement to preserve positivity of states in case the system is coupled to an
unobserved environment. We have also established, in §2.7.1, the necessity to consider
unsharp effects. A natural question to ask is whether an unsharp effect (POVM) can be
sharpened by considering it as a PVM on a larger space. The answer is yes as shown in
the following

Theorem 4.9.1 (Naimark theorem). Let F be a finite POVM on F, i.e. there exists a set X,
with card(X) < ∞, and F : X→ B+(F), such that ∑x∈X F(x) = 1. Then, there exist

— a Hilbert space G,
— a unit vector ψ ∈ G (and, correspondingly, the pure state ρ = |ψ 〉〈ψ |),
— a unitary operator U := F⊗G→ F⊗G,
— a PVM E on G indexed by X,

such that we can express the unsharp effect F as

F[x] = trG
(
(IF ⊗ ρ)U∗(IF ⊗ E[x])U

)
.

Proof. Let G be a Hilbert space with dim G = cardX and (ζ[x])x∈X an arbitrary or-
thonormal basis of G. Denote by M[x] the detection operator associated with the un-
sharp effect F[X], i.e. M[x]∗M[x] = F[x]. Fix ψ an arbitrary unit vector of G and define
for every φ ∈ F:

U| φψ 〉 := ∑
x∈X

(M[x]⊗ IG)| φζ[x] 〉.

The above form for U, defines the operator on the subspace F⊗Cψ and, in any case,
U depends on the choice of the arbitrary vector ψ, although we do not write explicitly
Uψ. Computing

〈 φ′ψ |U∗Uφψ 〉 = ∑
x,x′∈X

〈 φ′ζ[x′] | (M[x′]∗ ⊗ IG)(M[x]⊗ IG)φζ[x] 〉

= ∑
x∈X

〈 φ′ |M[x]∗M[x]φ 〉 = 〈 φ′ | φ 〉 = 〈 φ′ψ | φψ 〉,

establishes the unitarity of U on F⊗Cψ. The operator U can be extended to a unitary
on the whole space, by letting U to be the identity operator on F⊗ (Cψ)⊥.
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Now, since U| φψ 〉 := ∑x′∈X(M[x′]| φ 〉)⊗ | ζ[x′] 〉, we have that 〈 φ′ζ[x] |Uφψ 〉 =
〈 φ′ |M[x]φ 〉. Hence

|Mxφ 〉 ⊗ | ζ[x] 〉 = ∑
x′∈X

(IF ⊗ E[x])|M[x′]φ 〉 ⊗ | ζ[x′] 〉

= (IF ⊗ E[x])U| φψ 〉.

It remains to show that F[x] can be expressed as a partial trace. Compute

〈 φ′ | F[x]φ 〉 = 〈 φ′ |M[x]∗M[x]φ 〉 = 〈M[x]φ′ |M[x]φ 〉
= 〈 (M[x]φ′)ψ | (IF ⊗ E[x])Uφψ 〉
= 〈Uφ′ψ | (IF ⊗ E[x])Uφψ 〉
= 〈 φ′ψ |U∗(IF ⊗ E[x])Uφψ 〉
= 〈 φ′ | trG

(
(IF ⊗ ρ)U∗(IF ⊗ E[x])U

)
φ 〉.

4.9.2 A first look on decoherence

Let H be a finite dimensional Hilbert space and H a self-adjoint operator on H.
It is immediate that U(t) = exp(itH) is unitary for all t ∈ R. Moreover, U(0) = I,
U(t + s) = U(t)U(s) = U(s)U(t), and U(t)∗ = U(−t). Therefore, (U(t))t∈R is an
Abelian group. Conversely, if (U(t))t∈R is a unitary Abelian group, there exists a self-
adjoint operator H, such that U(t) = exp(itH). The operator H is the generator of
the group, called the Hamiltonian of the system, and physically is interpreted as the
total energy of the system. The unitarity of the time evolution is equivalent to the
conservation of energy.

We have seen that an isolated system evolves according to a unitary operator U, i.e.
its time evolution is implemented by a family (U(t))t∈R of unitaries, so that if at time 0
the system is in the pure state defined by the unit vector ψ, at time t it will be in a pure
state defined by the unit vector ψ(t) = exp(itH)ψ. Nevertheless, we cannot expect
that a realistic physical system can remain isolated in the long run; an interaction —
may be small — with the environment must be taken into account.

We consider a very simple model, introduced in [158] and studied again in [129],
to illustrate how this interaction spoils the quantum character of the system by turn-
ing its state from a full-fledged quantum density operator into a diagonal operator
interpreted as a classical probability. The system is a two-dimensional toy-model —
described by the phase space F = C2 — coupled with a 2N-dimensional environment,
for some large N — described by the phase space G = (C2)⊗N. It is only the compos-
ite 2(N + 1)-dimensional system, described by F⊗G, that is assumed to be isolated,
while the small system interacts with the environment through a toy Hamiltonian H.
To be more specific, assume that every copy of C2 is endowed with an orthonormal
basis (ζk

0, ζk
1)k=0,...,N. The Hamiltonian H ∈ B(F⊗ G) is assumed to be of the form

H = ∑N
k=1 Rk where

Rk = ck
(
| ζ0

0 〉〈 ζ0
0 |− | ζ0

1 〉〈 ζ0
1 |
)
⊗ I1⊗· · ·⊗ Ik−1⊗

(
| ζk

0 〉〈 ζk
0 |− | ζk

1 〉〈 ζk
1 |
)
⊗ Ik+1⊗· · ·⊗ IN ,
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where ck is a real parameter, the strength of the interaction. Remark that the family
of operators (Rk)k=1,...,N are mutually commuting, so that they can be diagonalised
simultaneously and give rise to a unitary evolution group totally factored U(t) =
exp(itH) = ∏N

k=1 exp(itRk). Notice moreover that (| ζ0
k0

, ζ1
k1
· · · ζN

kN
〉)k0,k1,...,kN∈{0,1} is

an eigenbasis of Rk for all k, of H and of U(t). Therefore, starting at time 0 from the
pure state described by the vector

|Ψ 〉 = (a| ζ0
0 〉+ b| ζ0

1 〉)⊗N
k=1 (ak| ζk

0 〉+ bk| ζk
1 〉),

the total evolution transforms it into the entangled vector

|Ψ(t) 〉 := U(t)|Ψ 〉 = a| z0
0 〉|Φ0(t) 〉+ b| z0

1 〉|Φ1(t) 〉,
where

|Φ0(t) 〉 = |Φ1(−t) 〉 = ⊗N
k=1(ak exp(itck)| ζk

0 〉+ bk exp(−itck)| ζk
1 〉).

Due to the entanglement of the time evolved vector, the quantum marginal at time
t reads

ρ(t) := ρN(t) = trG(|Ψ(t) 〉〈Ψ(t) |)

=

(
|a|2 z(t)ab∗

z(t)∗a∗b |b|2
)

where

z(t) := zN(t) = |Φ0(t) 〉〈Φ1(t) | =
N

∏
k=1

(|ak|2 exp(ickt) + |bk|2 exp(−ickt)).

From the last expression follows that

|z(t)|2 =
N

∏
k=1

(
1− 4|ak|2|bk|2 sin2(ckt)

)
;

(mind that the constraint |ak|2 + |bk|2 = 1 guarantees that 4|ak|2|bk|2 ≤ 1). At time 0,
we have zN(t) = 1 and we conclude that the density operator is a full fledged quantum
pure state. If for each k either ak or bk is equal to 1, then |z(t)|2 remains equal to 1 and
the coherence is preserved. However, if 0 < |ak| < 1 for infinitely many indices when
N → ∞, then limN→∞ z(t) = 0 and the quantum marginal ρ(t), for t 6= 0 and N → ∞,
tends to

ρc(t) =
(
|a|2 0

0 |b|2
)

which is isomorphic to a classical probability on the set {0, 1}. And this will inexorably
occur because it is not expected to be able to control perfectly the state of the environ-
ment with the precision required to keep the coherence. This phenomenon is termed
decoherence. It causes the gradual disappearance of quantum phenomena leading to
a transition from quantum behaviour to classical. It is the main impediment for the
implementation of large quantum computers.

Quite remarkably, while the phenomenon of decoherence was known since the
early days of quantum mechanics, in 1996, in an ingeneous experiment [31], the install-
ment of a progressive decoherence phenomenon was observed for a two-dimensional
system corresponding to a two-level atom.
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The example of “Berltmann’s socks” is intended to constantly remind us that
the EPR paradox cannot be described classically, as one naïvely could think.
Of course, we can create classical correlations between Alice’s and Bob’s
states. But compare the following situations.

Classical: An experimenter on earth, say Eve, tosses a coin and pre-
pares two envelops both of them containing a postal card with 0 if
the coin showed heads or both containing a postal card with 1 if the
coin showed tails. Eve sends one envelope to Alice and one envelop
to Bob. Whatever value Alice obtains, she knows that Bob will obtain
the same. The outcome A and B obtain has been pre-determined by
Eve who tossed a coin on earth to decide which digit to inscribe on the
cards sent to A and B. The joint probability vector of Alice’s and Bob’s

cards is given by κ =

(
1/2 0

0 1/2

)
with marginals κA = (1/2, 1/2)

and κB = (1/2, 1/2) and κ induces non trivial correlations because

κ 6= κA ⊗ κB =

(
1/4 1/4
1/4 1/4

)
, i.e. is not a product state. But EPR para-

dox is not describing that setting!
Quantum: Eve prepares on earth an entangled unit vector Ψ = 1

2(ε0 ⊗
ζ0 + ε1 ⊗ ζ1) and a system in the pure entangled state ρ = |Ψ 〉〈Ψ |
(think, for instance, of a pair of photons in the entangled pure state).
She sends one photon to Alice and the other to Bob. The quantum

marginals are ρA = trH2 ρ =

(
1/2 0

0 1/2

)
= trH1 ρ = ρB, i.e. quan-

tum marginals are isomorphic to the classical probability measures κA
and κB defined above. But before Alice or Bob measure the polarisation,
the vector Ψ (determining the state) is still in a superposition. It is only
after the one of them measures 0 that the state will be collapsed onto the
eigenspace associated with the eigenvalue 0. If Alice measures first and
then Bob, whatever Alice gets she is certain that Bob will get the same.
The situation is as if Alice and Bob each received a coin of an entan-
gled pair of “quantum coins”. If one of them tosses the coin, whatever
she/he gets, the other will obtain the same. But before measuring, both
Alice and Bob have still the potentiality of getting heads or tails, i.e. the
outcome of their experiment has not been decided by the outcome of a
coin previously tossed on earth. This is precisely the reason for which
the quantum mechanical prediction sounds like a paradox.

Entanglement is different from classical correlations
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5
Information

In present days, one of the major applications of quantum mechanics concerns stor-
age, retrieval, protection, processing, and transmission of information encoded in dig-
ital form. In this chapter, we start defining the notion of classical information — in-
troduced by Shannon in [135] — and present shortly its connection with the notion
of thermodynamic entropy, introduced by Boltzmann in [28] to explain irreversibil-
ity; the Landauer’s principle is then stated on a very simple system illustrating the
connection of information retrieval with thermodynamic irreversibility. We introduce
then the notion of classical and quantum register as a general mathematical model of
physical systems allowing the storage of information. We then generalise the defini-
tion of information to the quantum case following 1 [149]. We proceed finally with the
general notion of channel as a versatile model for the transmission or the processing
of information.

5.1 Classical information and entropy

Let X be a random variable defined on (Ω,F ) and taking values in the finite set
X, with n = cardX. Let PVn = {p ∈ RX

+ : ∑x∈X px = 1}. To each element p ∈ PVn
corresponds a probability measure ν

p
X defined by ν

p
X(x) = px, for x ∈ X. Suppose first

that suppp = X, i.e. all elements of X can occur with positive probability. Therefore,
before the outcome of X is observed, we are perplex about the possible outcome. After
having observed the outcome however, the a posteriori probability, conditioned on the
observed value, becomes a Dirac mass on that value and there is not any residual
perplexity. For instance, suppose that X = {0, 1} and X models a fair coin. Before

1. Also available in its English translation as a poor quality typewritten and mimeographed text
[150], or in its French translation in the nicely printed book [152].
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the coin is tossed, our perplexity on the outcome is maximal (100%). After the coin is
tossed and its upper face revealed to us, our perplexity is reduced to 0. The main result
of Shannon can be viewed as

— a quantifying of the perplexity associated with a given probability vector, and
— defining the information as the reduction of perplexity when the outcome is

revealed.
Some reasonable requirements on the perplexity of X taking values in some finite

set X, with cardinality n (or more precisely its law ν
p
X) are given below:

— Suppose that all px, x ∈ X but one are 0 and py = 1, for some y. Then ν
p
X(y) = 1

and there is no perplexity about the possible outcome of X;
— Suppose on the contrary that px = 1/n, x ∈ X. Our perplexity is maximal and

this perplexity increases with n.
— If S is to be interpreted as a perplexity associated with a probability vector p ∈

PVn, on denoting PV = ∪n∈NPVn, the first statement implies that S(1, 0, 0, . . . , 0) =
0 while S(1/n, . . . , 1/n) is an increasing function of n.

— The function S must be invariant under permutations of its arguments i.e.

S(pσ(1), . . . , pσ(n)) = S(p1, . . . , pn)

for all the permutations σ ∈ Sn.
— If we split the possible outcome values into two sets, the function S must verify

the grouping property, i.e.

S(p1, . . . , pn; pn+1, . . . , pN) = S(qA, qB)

+qAS(
p1

qA
, . . . ,

pn

qA
)

+qBS(
pn+1

qB
, . . . ,

pN

qB
),

where qA = p1 + . . . + pn and qB = pn+1 + . . . + pN.
— Finally, we require S(p1, . . . , pn; 0, . . . , 0) = S(p1, . . . , pn).

Theorem 5.1.1. The only function S : PV → R+ satisfying the above requirements and the
technical condition that S((p, 1− p)) is a continuous function of p ∈ [0, 1] is the function
defined by

PV 3 (p1, . . . , pn) 7→ S(p1, . . . , pn) = −k
n

∑
i=1

pi log pi,

where k is an arbitrary non-negative constant and the convention 0 log 0 = 0 is used. The
function S is called the (classical) entropy of the probability vector p.

Proof: See [120]. �

Remark 5.1.2. The basis chosen for the logarithm in the expression of S is irrelevant as
it can be absorbed into the constant k. When k = 1 and the logarithm is in basis 2, the
units of S are bits, when k = 1.380649× 10−23 J/K and the natural logarithm is used,
the entropy is measured in J/K. In the former case, we speak about Shannon’s entropy;
in the latter, about Boltzmann’s entropy.

Example 5.1.3. Let X = {0, 1} and p = (1/2, 1/2). Then S(p) = 1 bit. In other words,
the perplexity (≡ entropy) associated with a fair coin is Sinitial = 1 bit. If the value
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of the outcome x ∈ X is revealed, the probability conditional on the event that the
coin showed face x becomes a Dirac mass on x, corresponding to an entropy Sfinal =
0 bit. Therefore, the information obtained from the “measurement” of the outcome is
Sinitial − Sfinal = 1 bit.

We summarise below what we learn from the previous example:
— The physical system “fair coin” can store 1 bit of information.
— An unfair coin with p = (λ, 1−λ), with λ ∈ [0, 1] \ {1/2}, can store−λ log2(λ)−

(1− λ) log2(1− λ) < 1 bit of information.
— As an extreme case, when λ ∈ {0, 1}, i.e. the coin is totally biased (or what is

equivalent cardX = 1), the system cannot serve as an information storage since
it can hold 0 bits of information.

— As a consequence only a system with outcomes in some finite set X with cardX >
1 (more precisely with a set of outcomes X sufficiently large so that probability
vectors satisfying card suppp > 1 can hold on it) can serve as a storage device.
Moreover, the information content of the system is S(p) bits; it is precisely the
amount of information we get when the outcome is revealed to us.

5.2 Entropy, irreversibility, and the Landauer’s principle

Entropy has been introduced by Clausius [41] (see [42] for a more easily acces-
sible source) to study the Carnot’s cycle. Later on, Boltzmann in [28] introduced a
microscopic version of the entropy to explain the observed macroscopic irreversibil-
ity of physical systems described by microscopically reversible transformations. It is
remarkable that Boltzmann had obtained the formula of theorem 5.1.1 half a century
before Shannon (see figure 5.1).

Entropy is closely related to irreversibility since the second principle of thermody-
namics, in the microscopic version formulated by Carathéodory [34], states that en-
tropy

— of an isolated system is a non decreasing function of time; for such systems
energy is preserved and they spontaneously evolve towards thermodynamic
equilibrium, i.e. maximum entropy states;

— remains constant only for reversible isolated evolutions.
The remark 5.2.1 and the exercise 5.2.2 below clarify this statement.

We have postulated that the evolution of isolated systems (both classical and quan-
tum) is reversible. This postulate intuitively means that there is not a physically realis-
able experiment allowing to distinguish between a movie showing a system evolving
forwards in time or the system evolving backwards.

Remark 5.2.1. An evolution of a classical physical system with set of states S is a
stochastic kernel acting (to the left) on states (≡ probabilities) and transforming them
into new probabilities. Let S be the entropy function defined on the finite setting (i.e. in
the situation cardX < ∞) in theorem 5.1.1 In this setting, stochastic kernels are stochas-
tic matrices; they correspond to reversible evolutions if the kernel is a deterministic
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[Gleich. 35j J; 6. Math. Bedeutung der Grösse H. 41

andere Permutation möglich. Viel wahrscheinlicher schon wäre

der Fall, dass die Hälfte der Moleküle eine bestimmte, be-

stimmt gerichtete, die andere Hälfte eine andere, wieder für

alle gleiche und gleichgerichtete Geschwindigkeit hätten. Dann
wäre die Hälfte der Geschwindigkeitspunkte in einer, die andere

Hälfte in einer zweiten Zelle: es wäre also:

Z = / «
\

, / w \ , u. s. w.

2/ \2

Da nun die Anzahl der Moleküle eine überaus grosse ist,

so sind n^oo, n^w u. s. w. ebenfalls als sehr grosse Zahlen zu

betrachten.

Wir wollen die Annäherungsformel:

p\ = ]/2p;r(
P Y
e

benützen, wobei e die Basis der natürlichen Logarithmen und

p eine beliebige grosse Zahl ist.^)

Bezeichnen wir daher wieder mit l den natürlichen Loga-

rithmus, so folgt:

l [(Wj cö) !] = [n^(o + -1) Z Wj + n-^co{lco — 1 ) + -|- (/ w + / 2 tt) .

Vernachlässigt man hier -i- gegen die sehr grosse Zahl n^ co

und bildet den analogen Ausdruck für {n^(o)l, (wg«)! u. s. f.,

so ergibt sich:

lZ = — (ji[n-^ln^ + n^ln^" .) + C

,

wobei

C= l{n\)-n{l(ü- l)-4(^w -\-l27i)

für alle Geschwindigkeitsvertheilungen denselben Wertli hat,

also als Constante zu betrachten ist. Denn wir fragen ja bloss

nach der relativen Wahrscheinlichkeit der Eintheilung der ver-

schiedenen Geschwindigkeitspunkte unserer Moleküle in unsere

Zellen (o, wobei selbstverständlich die Zelleneintheilung, daher

auch die Grösse einer Zelle co, die Anzahl der Zellen t, und

die Gesammtzahl n der Moleküle und deren gesammte leben-

dige Kraft als unveränderhch gegeben betrachtet werden

müssen. Die wahrscheinlichste Eintheilung der Geschwindig-

^) Siehe Schlömilch, Comp, der höh. Analysis. Bd. 1. S. 437.

3. Aufl.

Figure 5.1 – Facsimilé of the page 41 of Boltzmann’s book Vorlesungen über Gastheorie [28], where
the mathematical definition of the entropy function, identical to the definition of theorem 5.1.1 has
been obtained. In the original book of Boltzmann, the natural logarithm is denoted by l. This book
has been translated into French in [29].
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invertible matrix, i.e. corresponds to a permutation on X. The invariance of S on per-
mutations is built-in in its definition.

Exercise 5.2.2. Let K be a bistochastic matrix on X, i.e. K has non-negative elements
whose every row and every column sum up to one.

1. Show that if K is irreducible, then the Markov evolution determined by K admits
a uniform invariant probability.

2. Show that S(pK) ≥ S(p).
3. Examine under which circumstances the above inequality is an equality.

For a system undergoing an irreversible transformation the entropy increases; how-
ever the system can be considered as part of a larger isolated composite system (A and
environment), undergoing globally a reversible transformation. In that case the total
entropy (of the system A and of the environment) remains constant but since the en-
tropy of A must increase, the entropy of the environment must decrease 2 hence the
missing information decreases. In other words, when the system A undergoes an irre-
versible transformation, the environment gains information.

This leads to the Landauer’s principle: When a computer erases a single bit of informa-
tion, the environment gains at least k ln 2 units of information, where k > 0 is a constant.

5.3 Registers

5.4 Channels

2. Notice that this assertion is not in contradiction with the second principle of thermodynamics
because the environment is not isolated.
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6
Cryptology

Cryptology, grouping cryptography and cryptanalysis, is an old preoccupation of
mankind because information is, as a matter of fact, a valuable resource. Nowadays
classical technology allows secure ciphering of information that cannot be deciphered
in real time. However, the cryptologic protocols used nowadays are all based on the
unproven conjecture that factoring large integers is a hard computational task. Should
this conjecture be proved false, and an efficient polynomial factorisation algorithm be
discovered, the security of our communication networks could become vulnerable.
But even without any technological breakthrough, the ciphered messages we exchange
over public channels (internet, commutated telephone network, SMS, etc.) can be deci-
phered by spending 8–10 months of computing time; hence our information exchange
is already vulnerable for transporting information that remains important 10 months
after its transmission.

Quantum information acquired an unprecedented impetus when Peter Shor [136]
proved that on a quantum computer, factoring can be solved in polynomial (in the
number of its digits) time. Nowadays, the initial dust — created by the enthusiasm of
the feasibility of a universal quantum computer — has somehow settled down; as a
counterpart, we have now a much more realistic approach to the subject.

Quantum communication can use the existing technology to securely cipher infor-
mation. It is therefore economically and strategically important to master the issues of
advanced cryptography and to invent new cryptologic methods.
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6.1 An old idea: the Vernam’s code

In 1917, Gilbert Vernam proposed [147] the following ciphering scheme. 1 Let A be
a finite alphabet, identified with the set {0, . . . , |A| − 1} and m a message of length N
over the alphabet A, i.e. a word m ∈ AN. The Vernam’s ciphering algorithm uses a
ciphering key of same length as m, i.e. a word k ∈ AN and performs character-wise
addition as explained in the following

Algorithm 6.1.1. VernamsCiphering
Require: Original message m ∈ AN and UNIFRANDOMGENERATOR(AN).
Ensure: Ciphered message c ∈ AN.

choose randomly ciphering key k ∈ AN;
i← 1;
repeat

add character-wise ci = mi + ki mod |A|;
i← i + 1;

until i > N.

The recipient of the ciphered message c, knowing the ciphering key k, performs the
following

Algorithm 6.1.2. VernamsDeciphering
Require: Ciphered message c ∈ AN and ciphering key k ∈ AN.
Ensure: Original message m ∈ AN.

i← 1;
repeat

subtract character-wise mi = ci − ki mod |A|;
i← i + 1;

until i > N.

As far as the ciphering key is used only once, the key word has the same length
as the message (i.e. N), and N is sufficiently large, the Vernam’s algorithm is proved
[134] to be perfectly secure. The main problem of the algorithm is how to securely
communicate the key k?

6.2 The classical cryptologic scheme RSA

Theorem 6.2.1. (Fermat’s little theorem) Let p be a prime. Then

1. any integer a satisfies ap = a mod p,
2. any integer a, not divisible by p, satisfies ap−1 = 1 mod p.

Definition 6.2.2. The Euler’s function φ : N→N is defined by

φ(n) = card{0 < a < n : gcd(a, n) = 1}, n ∈N.

1. Appeared as a first patent US Patent 1310719 issued on 22 July 1919, and further improved in a
series of patents: US Patent 1416765, US Patent 1584749, and US Patent 1613686.
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In particular, if p is prime, then φ(p) = p− 1.

Theorem 6.2.3. (Euler’s) If gcd(a, m) = 1, then aφ(m) = 1 mod m.

Proposition 6.2.4. Let m be an integer, strictly bigger than 1, without square factors, and r a
multiple of φ(m). Then

— ar = 1 mod m, for all integers a relatively prime with respect to m, and
— ar+1 = a mod m for all integers.

The proofs of all the previous results are straightforward but outside the scope of
the present course; they can be found in [46, pp. 50–60].

The RSA protocols, named after its inventors Rivest, Shamir, and Adleman [125],
involves two legal parties: Alice and Bob, and an eavesdropper, Eve. Bob produces by
the classical key distribution algorithm a private key d and a public key π. Alice uses
the public key of Bob to cipher the message and Bob uses his private key to decipher
it. Eve, even if she intercepts the ciphered message, cannot decipher it in real time.

Algorithm 6.2.5. ClassicalKeyDistribution
Require: Two primes p and q.
Ensure: Public, π, and private, d, keys of Bob.

n← pq (hence φ(n) = (p− 1)(q− 1));
choose any e < n, such that gcd(e, φ(n)) = 1;
d← e−1 mod φ(n);
π ← (e, n).

Bob publishes his public key π on his internet page. Alice uses π to cipher the
message m using the following

Algorithm 6.2.6. Ciphering
Require: Public key π = (e, n) and message m ∈N, with m < n.
Ensure: Ciphered text c ∈N.

c← me mod n.

Alice transmits the ciphered text c through a vulnerable public channel to Bob. He
uses his private key to decipher by using the following

Algorithm 6.2.7. Deciphering
Require: Private key d and ciphered message c ∈N.
Ensure: Deciphered text µ ∈N.

µ← cd mod n.

Theorem 6.2.8. µ = m

Proof:

cd = med mod n
ed = 1 + kφ(n), for some k ∈N

med = m1+kφ(n),
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and since n = pq has no square factors, by using proposition 6.2.4, we get m1+kφ(n)

mod n = m mod n. �

If Eve intercepts the message, to compute d she must know φ(n), hence the factoring
of n into primes. Security of the protocol is based on the conjecture that it is algorithmi-
cally hard to factor n. If we denote by N = log n, then it is worth noticing that when the
RSA protocol has been introduced, the best known algorithm of factor n run in exp(N)
time. The best 2 known algorithm nowadays [100] runs in exp(N1/3(log N)2/3) time.
This algorithmic improvement, combined with the increasing in the computational ca-
pabilities of computers, allows the factoring of a 1000 digits number in ca. 8 months
instead of a time exceeding the age of the universe at the moment the algorithm has
been proposed. Until May 2007, the RSA company ran an international contest offering
several hundreds thousand dollars to whoever could factor multi-digit numbers they
provided on line. When the contest stopped the company gave the official reasons
explained in RSA factoring challenge.

6.3 Quantum key distribution

6.3.1 The non cloning theorem

We start by stating a basic fact in quantum mechanics that guarantees the inviola-
bility of most cryptologic protocols.

Theorem 6.3.1 (Non-cloning theorem). Let | φ 〉 and |ψ 〉 be two rays in H such that
〈 φ |ψ 〉 6= 0 and | φ 〉 6= exp(iθ)|ψ 〉. Then there does not exist any quantum device allowing
duplication of φ and ψ.

Proof: Suppose that such a device exists. Then, for some n ≥ 1, there exists a unitary
U : H⊗(n+1) →H⊗(n+1) and some ancillary ray | α1 · · · αn 〉 ∈H⊗n such that we get

| φφβ1 · · · βn−1 〉 = U| φα1 · · · αn 〉
|ψψγ1 · · · γn−1 〉 = U|ψα1 · · · αn 〉.

Then

〈ψ | φ 〉 = 〈ψα1 · · · αn |U∗U| φα1 · · · αn 〉

= 〈ψ | φ 〉2
n−1

∏
i=1
〈 γi | βi 〉.

Since 〈 φ |ψ 〉 6= 0 we get 〈ψ | φ 〉∏n−1
i=1 〈 γi | βi 〉 = 1 and since | φ 〉 6= exp(iθ)|ψ 〉, it

follows that 0 < |〈ψ | φ 〉| < 1. Subsequently, ∏n−1
i=1 |〈 γi | βi 〉| > 1 but this is impossible

since for every i, |〈 γi | βi 〉| ≤ 1. �

2. See also [102] for an updated state of the art.
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6.3.2 The BB84 protocol

This protocol, due to Bennett and Brassard [20], relies on the random use of of two
non-orthogonal bases for encoding a secret quantum key. Its security stems from the
impossibility — thanks to the theorem 6.3.1 — for an unauthorised intruder to tap the
communication line in order to copy the quantum code without being detected.

Alice and Bob communicate through a quantum and a classical public channels;
they agree publicly to use two different orthonormal bases of H = C2 (describing the
photon polarisation):

B+ = {ε+0 = | 0 〉, ε+1 = | 1 〉}

B× = {ε×0 =
| 0 〉 − | 1 〉√

2
, ε×1 =

| 0 〉+ | 1 〉√
2

}.

The first element of each basis is associated with the bit 0, the second with the bit 1.
Moreover Alice and Bob agree on some integer n = (4 + δ)N with some δ > 0, where
N is the length of the key they wish to exchange securely; N will be also the length of
their key. Alice finally needs an apparatus implementing the function T : {0, 1}2 →H

defined by

T(x, y) =


ε+0 if (x, y) = (0, 0)
ε+1 if (x, y) = (0, 1)
ε×0 if (x, y) = (1, 0)
ε×1 if (x, y) = (1, 1).

Therefore, the bit x determines which bit to encode into the qubit; the bit y which basis
to use in order to do so.

Algorithm 6.3.2. AlicesKeyGeneration
Require: UNIFRANDOMGENERATOR({0, 1}), T, n.
Ensure: Two strings of n random bits a, b ∈ {0, 1}n and a sequence of n qubits (|ψi 〉)i=1,...,n.

generate randomly a1, . . . , an;
a← (a1, . . . , an) ∈ {0, 1}n;
generate randomly b1, . . . , bn;
b← (b1, . . . , bn) ∈ {0, 1}n;
i← 1;
repeat
|ψi 〉 ← T(ai, bi);
transmit photon in pure state ρi = |ψi 〉〈ψi | to Bob via public quantum channel;
i← i + 1;

until i > n.

On reception of the ith qubit, Bob performs a measurement of the projection oper-
ator B]

1 = | ε]1 〉〈 ε]1 |, where ] ∈ {+,×}, i.e. asks whether the encoded bit is 1 by acting
with the projector B]

1 on |ψ1 〉; he gets an answer 0 or 1 and the probability of getting 1
is 〈ψi | B1ψ 〉.
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Algorithm 6.3.3. BobsKeyGeneration
Require: UNIFRANDOMGENERATOR({0, 1}), n, sequence |ψi 〉 for i = 1, . . . , n, P] for
] ∈ {+,×}.

Ensure: Two strings of n bits a′, b′ ∈ {0, 1}n.
generate randomly b′1, . . . , b′n;
b′ ← (b′1, . . . , b′n) ∈ {0, 1}n:
i← 1;
repeat

if b′i = 0 then
ask whether B+

1 takes value 1;
else

ask whether B×1 takes value 1;
end if
if photomultiplier (PM) is triggered then

a′i ← 1;
else

a′i ← 0;
end if
i← i + 1;

until i > n.
a′ ← (a′1, . . . , a′n) ∈ {0, 1}n;
transmit string b′ ∈ {0, 1}n to Alice via public classical channel.

B+
1

| ε+1 〉PM1

β = 0

B×1
| ε+1 〉PM0 or 1

β = π/4

Figure 6.1 – Schematic experimental setting of Bob’s generation algorithm instantiated with input
| ε+1 〉. When b′ = 0 is tossed, Bob decides to ask the question B+

1 in state | ε+1 〉 (left picture); if
b′ = 1, he asks the question B×1 in state | ε+1 〉 (right picture). The answer in the first case is “yes”
with probability 1, it is “yes” with probability 1/2 and “no” with probability 1/2 in the second case.

When Alice receives the string b′, she performs the conciliation algorithm described
below.
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Algorithm 6.3.4. Conciliation
Require: Strings b, b′ ∈ {0, 1}.
Ensure: Sequence (k1, . . . , kL) with some L ≤ n of positions of coinciding bits.

c← b⊕ b′;
i← 1;
k← 1;
repeat

k← min{j : k ≤ j ≤ n such that cj = 0};
if k ≤ n then

ki ← k;
i← i + 1;

end if
until k > n.
L← i− 1;
transmit (k1, . . . , kL) to Bob via public classical channel.

Theorem 6.3.5. If there is no eavesdropping on the quantum channel then

P((a′k1
, . . . , a′kL

) = (ak1 , . . . , akL)) = 1.

Proof: Since [B]
0, B]

1] = 0, the two operators are simultaneously diagonalised in base
B]. Compute 〈ψi | B+

x ψi 〉 and 〈ψi | B×x ψi 〉 for all different possible choices of |ψi 〉 ∈
B+ ∪B× and for x = 0, 1.

ai bi ψi b′i 〈ψi | B+
1 ψi 〉 〈ψi | B∗0 ψi 〉 a′i b′i 〈ψi | B×1 ψi 〉 〈ψi | B×0 ψi 〉 a′i

0 0 ε+0 0 0 1 0 1 1/2 1/2 0 or 1
1 0 ε+1 0 1 0 1 1 1/2 1/2 0 or 1
0 1 ε×0 0 1/2 1/2 0 or 1 1 0 1 0
1 1 ε×1 0 1/2 1/2 0 or 1 1 1 0 1

We observe that for those i’s such that b′i = bi we have P(a′i = ai) = 1. Hence on
deciding to consider only the substrings of a and a′ defined on the locations where b
and b′ coincide, we have the certainty of sharing the same substrings, although a and
a′ have never been exchanged. �

Lemma 6.3.6. If there is no eavesdropping, for N large enough, L is of the order 2N.

Proof: Elementary use of the law of large numbers. �

If Eve is eavesdropping, since she cannot copy quantum states (no-cloning theo-
rem), she can measure with the same procedure as Bob and in order for the leakage not
to be apparent, she re-emits a sequence of qubits | ψ̃i 〉 to Bob. Now again L is of the
order 2N but since Eve’s choice of the b’s is independent of the choices of Alice and
Bob, the string a′ computed by Bob will coincide with Alice’s string a at only L/2 ' N
positions.

Hence to securely communicate, Alice and Bob have to go through the eavesdrop-
ping detection procedure and conciliation.

Bob randomly chooses half of the bits of the substring (a′k1
, . . . , a′kL

), i.e. (a′r1
, . . . , a′rL/2

)

with ri ∈ {k1, . . . , kL} and ri 6= rj for i 6= j, and sends the randomly chosen positions
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(r1, . . . , rL/2) and the corresponding bit values (a′r1
, . . . , a′rL/2

) to Alice. If (a′k1
, . . . , a′kL/2

) =

(ak1 , . . . , akL/2
) (conciliation) then Alice announces this fact to Bob and they use the

complementary substring of (a′k1
, . . . , a′kL

) (of length L/2 ' N) as their key to cipher
with Vernam’s algorithm. Else, they restart BB84 protocol.

Notice that Alice and Bob never exchanged the ultimate substring of N bits they
use as key.

6.4 Other cryptologic protocols

6.4.1 Six-state protocol

6.4.2 B92

[21]

6.4.3 Ekert protocol

Ekert, A. K. Quantum cryptography based on Bell’s theorem [56]

6.5 Eavesdropping strategy for individual attacks

In §6.3.2, the detection of intrusion is made in quite a rudimentary way. In particu-
lar, we have supposed that Eve is sufficiently greedy to be uncovered quite easily. Here
we present some subtler intrusion methods.

Start by fixing (or recalling) the notation.

Notation 6.5.1. There are three parties: Alice, Bob (the legal partners) and Eve (the
eavesdropper).

— Pure states of each party are associated with different Hilbert spaces, HA, HB,
and HE respectively.

— If x ∈ {0, 1} designs a bit, then x = 1− x is the conjugate bit of x.
— If ] ∈ {+,×} designs the index of the used basis, then [ denotes the conjugate

of ] basis, i.e. if ] = + then [ = × and vice versa.
— (B]

x)x∈{0,1} is the sharp resolution of the identity in HB

∑
x∈{0,1}

B]
x = IHB

into orthogonal orthoprojectors B]
0 = | ε]0 〉〈 ε]0 | and B]

1 = | ε]1 〉〈 ε]1 |.
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— For Γ a finite indexing set, (E[γ])γ∈Γ denotes fuzzy (non-projective) resolution
of IHE into unsharp effects E[γ] ≥ 0, i.e. ∑γ∈Γ E[γ] = IHE .

— Alice sends qubits |ψ 〉 ∈ {| ε+0 〉, | ε
+
1 〉, | ε

×
0 〉, | ε

×
1 〉} = B+ ∪B× according to its

key generation algorithm. Any element of B] can be decomposed into elements
of B[ by

| ε]x 〉 =
| ε[0 〉+ (−)x| ε[1 〉√

2
, x ∈ {0, 1}, ] ∈ {+,×}, [ conjugate of ].

We summarise below the possible actions that can be taken by the intruder:
— The pure states produced initially by Alice are unit vectors |ψ 〉 = | ε]t 〉 ∈ HA.

Once they are sent over the quantum channel, Alice has no access on them any
longer. When these vectors are received by their (legal or illegal) recipient, he
or she can on them in various manners. For instance, if Bob receives such a
vector, he can act on it by operators of his own space HB, although we still write
|ψ 〉 ∈HA.

— Eve cannot copy |ψ 〉 ∈HA but can
— couple every | ε]x 〉 ∈ HA with a state | φ 〉 ∈ HE of her own to produce
| ε]x 〉 ⊗ | φ 〉 ∈HA ⊗HE,

— let the vector | ε]x 〉 ∈ HA evolve unitarily for a while to get |Φ]
x 〉 = U| ε]x 〉,

where U is an appropriate unitary operator acting on HA ⊗HE,
— perform partial unsharp measurements IHA ⊗ E[γ] on |Φ]

x 〉 and send first
part to Bob. (Notice that unsharp measurements can be thought as sharp
measurements on some bigger Hilbert space).

To grasp the rationale of the estimate we are doing just now, suppose for the moment
being that the unitary evolution U — that always preserves pure states — preserves
also the tensor product structure, i.e. the evolved states remain tensor product states:

U| ε]xφ 〉 = | ζ]xφ]
x 〉,

U| ε[xφ 〉 = | ζ[xφ[
x 〉.

Now
1
2
= 〈 ε[x | ε

]
x 〉 = 〈 ζ]x | ζ[x 〉〈 φ]

x | φ[
x 〉

and if 〈 ε[x | ε
]
x 〉 = 〈 ζ]x | ζ[x 〉, i.e. the Alice’s (Bob’s) parts of the state are not altered,

then 〈 φ]
x | φ[

x 〉 = 1. The last equality means that | φ]
x 〉 and | φ[

x 〉 cannot be discrim-
inated and Eve can get no information from her observations. To well discriminate
these states, the quantity |〈 φ]

x | φ[
x 〉| must be minimised, hence |〈 ζ]x | ζ[x 〉| maximised,

i.e. maximally disturbed. This Idea survives even when U does not preserve tensor
products as explained in the sequel.

Let now proceed with the general case. Suppose that Alice has sent a bit x encoded
in the basis ], i.e. has sent a photon in state | ε]x 〉〈 ε]x |. Eve entangles the unit vector
| ε]x 〉 with | φ 〉 and let the product state unitarily evolve for a while; after that she gets
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the pure state |Φ]
x 〉〈Φ]

x |, where |Φ]
x 〉 = U| ε]xφ 〉, and measures I ⊗ E[γ] to get

Q]
xγ = P(Eve unsharply observes γ|Alice has sent x encoded in basis ])

= tr(|Φ]
x 〉〈Φ]

x |I ⊗ E[γ])

= 〈Φ]
x | (IA ⊗ E[γ])Φ]

x 〉
= 〈 ε]xφ |U∗(IA ⊗ E[γ])Uε]xφ 〉.

Henceforth, to alleviate notation, we write Qxγ instead of Q]
xγ. Notice that Qxγ is a

Markovian kernel that can be thought as a classical communication channel (see [120])
between the classical state spaces {0, 1} and Γ. Hence, if we know

px = P(Alice sends bit x)

we can compute the joint probability

κ(x, γ) = P(Alice sends bit x and Eve measures γ) = pxQxγ,

and the marginal on the output states

qγ = ∑
x∈{0,1}

pxQxγ = P(Eve measures γ).

Now, we are in position to compute the reversed Markov kernel

Q̂γx =
κ(x, γ)

qγ
=

pxQxγ

qγ
= P(Eve guesses that Alice has emitted x|Eve measures γ),

from the output states Γ, i.e. Eve’s measurements, to input bits {0, 1}, i.e. Alice’s sig-
nals. This quantity has a very important meaning; it gives the probability that Eve
assigns to input values x given that she has measured γ. It follows that

Gγ = |Q̂γx − Q̂γx|

is a quantifier of Eve’s information gain incurred by her indirect measurement E[γ];
its expectation EG = ∑γ∈Γ qγ|Q̂γx − Q̂γx| is her average information gain.

Lemma 6.5.2. If Alice encodes in ] basis and p0 = p1 = 1/2, the following bound holds:

qγGγ = qγ|Q̂γx − Q̂γx| ≤ ‖Z[γ
00‖‖Z

[γ
10‖+ ‖Z

[γ
01‖‖Z

[γ
11‖,

where Z[γ
xy := B[[y]⊗

√
E[γ]Φ[

x, x, y ∈ {0, 1}.

Proof. Compute under the hypotheses of the lemma:

qγGγ = qγ|Q̂γx − Q̂γx| = |pxQxγ − pxQxγ|
p=( 1

2 , 1
2 )=

1
2
|Qxγ −Qxγ|

=
1
2

∣∣∣〈Φ]
0 | (I ⊗ E[γ])Φ]

0 〉 − 〈Φ]
1 | (I ⊗ E[γ])Φ]

1 〉
∣∣∣

=
1
4

∣∣∣〈Φ[
0 + Φ[

1 | (I ⊗ E[γ])(Φ[
0 + Φ[

1) 〉 − 〈Φ[
0 −Φ[

1 | (I ⊗ E[γ])(Φ[
0 −Φ[

1 〉)
∣∣∣

=
∣∣∣Re 〈Φ[

0 | I ⊗ E[γ]Φ[
1 〉
∣∣∣ .
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Recall now that B[[0] + B[[1] is a resolution of IB into sharps effects. We can pursue the
previous computations to get:

qγGγ = |Re(〈Φ[
0 | (B[[0]⊗ E[γ])|Φ[

1 〉 〉+ Re(〈Φ[
0 | (B[[1]⊗ E[γ])|Φ[

1 〉 〉|

= |Re 〈 Z[γ
00 | Z

[γ
10 〉+ Re 〈 Z[γ

01 | Z
[γ
11 〉|

≤ |〈 Z[γ
00 | Z

[γ
10 〉|+ |〈 Z[γ

01 | Z
[γ
11 〉|

≤ ‖Z[γ
00‖‖Z

[γ
10‖+ ‖Z

[γ
01‖‖Z

[γ
11‖.

Now,

‖Z[γ
xy‖2 = 〈Φ[

x | B[y][ ⊗ E[γ]Φ[
x 〉

= P(Bob measures y, Eve measures γ|Alice sends x)
= P(Bob measures y|Eve measures γ, Alice sends x)Qxγ.

Introduce the quantity

D[
xγ = P(Bob measure erroneous value x|Eve measures γ and Alice has sent x),

interpreted as the distortion occurring in Bob’s measure in the conjugate basis of the
basis of Alice (erroneous determination of the bit) given that Alice has sent x and Eve
has measured γ.

Lemma 6.5.3. Assuming that Alice encodes in ] basis, that p = (1/2, 1/2), and with D[
xγ

as above,
qγGγ ≤

√
Q[

0γQ[
1γ

(√
D[

0γ(1− D[
1γ) +

√
D[

1γ(1− D[
0γ)
)

.

Proof. Write

‖Z[γ
xy‖2 = 〈Φ[

x | (B[[y]⊗ E[γ])Φ[
x 〉

= P(Bob measures y, Eve measures γ|Alice sent x)
= P(Bob measures y|Eve measures γ, Alice sent x)P(Eve measures γ|Alice sent x).

Since B[[0] + B[[1] = I, it follows that

‖Z[γ
00 |‖

2 = Q0γ(1− D[
0γ)

‖Z[γ
10 |‖

2 = Q1γD[
1γ

‖Z[γ
01 |‖

2 = Q0γD[
0γ

‖Z[γ
11 |‖

2 = Q1γ(1− D[
1γ).

Theorem 6.5.4. Assuming that Alice encodes in ] basis, p = (1/2, 1/2), and D[
0γ = D[

0γ =

dγ, then EG ≤ 2
√

Ed(1−Ed).
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Proof. Recalling that
√

ab ≤ 1
2(a + b), for a and b non negative numbers, we get√

Q0γQ1γ ≤
1
2
(Q0γ + Q1γ)

p=(1/2,1/2)
= qγ.

Replacing in the inequality established in lemma 6.5.3, we get

Gγ ≤
√

D[
0γ(1− D[

1γ) +
√

D[
1γ(1− D[

0γ)
D[

0γ=D[
0γ=dγ

= 2
√

dγ(1− dγ).

Using the concavity of the function f (t) =
√

t(1− t) for t ∈ [0, 1] and Jensen’s inequal-
ity, we get

EG = ∑
γ∈Γ

qγGγ ≤ 2 ∑
γ∈Γ

qγ f (dγ) ≤ 2 f

(
∑
γ∈Γ

qγdγ

)
= 2 f (Ed).

Remark 6.5.5. The figure 6.2 depicts, for every value of mean distortion, the upper
bound of the average information gain. Since the function φ has infinite slope at 0, the
obtained bound does not prevent Eve from getting a significant information gain (10%
say) inducing only a negligible distortion into Bob’s conjugate basis measurements.
The following theorem 6.5.6 shows that this is only due to the fact that the bound in
theorem 6.5.4 is not very sharp and can be substantially improved.

Ed

EG

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Figure 6.2 – Naive bound EG ≤ 2
√

Ed(1−Ed).

Recall that the entropy of a probability vector r on a finite set X is defined by

H(r) = − ∑
x∈X

rx log rx

and that the mutual information between the probability vectors r and s on the finite
sets X and Y obtained as marginal probabilities of a joint probability described by the
probability vector w on X×Y is defined by

I(r : s) = H(r) + H(s)− H(w).
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Instead of computing a bound on the raw gain of information, it is more natural
to seek a bound on the joint information I(q : p) between Eve’s outcomes γ ∈ Γ
occurring with probability determined by the probability vector q = (qγ)γ∈Γ, under
the condition that Alice has used the p = (1/2, 1/2) probability vector to decide which
bit to send. This approach yields an improved bound as established in theorem ?? and
depicted in figure ??.

Theorem 6.5.6. Assuming that Alice encodes in ] basis, p = (1/2, 1/2), and D[
0γ = D[

0γ =
dγ, then

I(q : p) ≤ 1
2

g
(

2
√

Ed(1−Ed)
)

where g(z) := (1 + z) log(1 + z) + (1− z) log(1− z), for z ∈ [−1, 1].

Proof. Since κtγ = ptQtγ = qγQ̂γt denotes the joint probability on {0, 1} × Γ, we com-
pute

H(κ) = −∑
t,γ

κtγ log κtγ

= −∑
t,γ

qγQ̂γt(log qγ + log Q̂γt)

= H(q)−∑
γ

qγ ∑
t

Q̂γt log Q̂γt.

Since Q̂γ0 + Q̂γ1 = 1, on introducing the parametre rγ = Q̂γ1 − Q̂γ1 = ±Gγ ∈ [−1, 1],
we can re-express

Q̂γ0 =
1 + rγ

2
; Q̂γ1 =

1− rγ

2
.

Expressing now

I(q : p) = H(q) + H(p)− H(κ)

= H(p) + H(q)− H(q) + ∑
γ

qγ ∑
t

Q̂γt log Q̂γt

p=( 1
2 , 1

2 )= log 2 +
1
2 ∑

γ

qγ

[
(1 + rγ) log

1 + rγ

2
+ (1− rγ) log

1− rγ

2

]
=

1
2 ∑

γ

qγg(rγ).

Observe that g is an even function on [−1, 1], satisfying g′(z) = log 1+z
1−z > 0 on [0, 1[.

Hence g is increasing on [0, 1[. Using the bound Gγ ≤ 2
√

dγ(1− dγ) — established in
the course of the proof of theorem 6.5.4, — we conclude that I(q : p) = 1

2 ∑γ qγg(Gg)
and because rγ = ±Gγ,

I(q : p) ≤ 1
2 ∑

γ∈Γ
qγg(2

√
dγ(1− dγ)).

Now the function h : t 7→ h(t) := g(2 f (t)) is concave on [0, 1]. Jensen’s inequality is
then used to bound

I(q : p) =
1
2 ∑

γ

qγg(Gg) ≤
1
2

h(Ed).
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6.5. Eavesdropping strategy for individual attacks

Figure 6.3 – The horizontal axis represents Ed; the vertical axis for green curve represents EG and
for the red curve I(q : p). The curve representing the mutual information I(q : p) has a finite slope
2 at 0. Therefore, it is impossible to have a substantial gain in the mutual information without a
proportional average distortion on Bob’s bits.

6.5.1 Other issues

Random numbers

True random number generation.À compléter.À compléter.

Authentication

Must be treated after quantum computing.[14, 10, 113][14, 10, 113]
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7
Turing machines, algorithms, computing,

and complexity classes

All computers, from Babbage’s analytical machine (1833) to the latest model of su-
percomputer, are based on the same principles. A universal computer uses some in-
put (a sequence of bits) and a programme (a sequence of instructions) to produce an
output (another sequence of bits.) Universal computers are modelled by Turing ma-
chines. Never forget however that, in spite of the term “machine” entering its name,
a Turing machine is an abstract theoretical scheme that can be laid on paper and help
us understanding the flow of elementary logical operations we must carry in order to
compute something, but left alone can never compute anything.

Their technological interest is concentrated in the observation made by Turing that a
function is effectively calculable if its values can be found by some purely mechanical
process. We may take “purely mechanical process” literally to mean one which could
be carried out by a machine. But we had to wait until the first ENIAC was physically
constructed to obtain the first output of numbers.

Their theoretical interest is summarised into the Church-Turing thesis, tating that
every effectively calculable function is a computable function (see defintion 7.2.1 be-
low).

7.1 Deterministic Turing machines

There are several variants of deterministic Turing machines; all of them are equiv-
alent in the sense that a problem solvable by one variant is also solvable by any other
variant within essentially the same amount of time (see below, definition ?? and section
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7.1. Deterministic Turing machines

7.3.) A Turing machine is a model of computation; it is to be thought as a finite state
machine disposing of an infinite scratch space (an external tape 1.) The tape consists of
a semi-infinite or infinite sequence of squares, each of which can hold a single symbol.
A tape-head can read a symbol from the tape, write a symbol on the tape, and move
one square in either direction (for semi-infinite tape, the head cannot cross the origin.)
More precisely, a Turing machine is defined as follows.

Definition 7.1.1. A deterministic Turing machine is a quadruple (A, S, u, s0) where
1. A is a finite set, the alphabet, containing a particular symbol called the blank

symbol and denoted by ]; the alphabet deprived from its blank symbol, denoted
Ab = A \ {]}, is assumed non-empty,

2. S is a finite non-empty set, the states of the machine, partitioned into the set Si
of intermediate states and the set S f of final states,

3. D = {L, R} ≡ {−1, 1} is the displacement set,
4. u : A× S→ A× S× D is the transition function, and
5. s0 ∈ Si the initial state of the machine.

The set of deterministic Turing machines is denoted by DTM.

The machine is presented an input, i.e. a finite sequence of contiguous non-blank
symbols, and either it stops by producing an output, i.e. another finite sequence of
symbols, else the programme does never halt.

Example 7.1.2. (A very simple Turing machine) Let M ∈ DTM with A = {0, 1, ]},
S = Si ∪ S f where Si = {go}, S f = {halt}, and transition function u(a, s) = (a′, s′, d)
defined by the following table:

a s a′ s′ d
0 go 0 go L
1 go 1 go L
] go ] halt R

If the programme, described by this Turing machine, starts with the head over any
non-blank symbol of the input string, it ends with the head over the leftmost non-
blank symbol while the string of symbols remains unchanged.

Other equivalent variants of the deterministic Turing machine may have displace-
ment sets with a 0 (do not move) displacement, have their alphabet A partitioned into
external and internal alphabet, etc. The distinction into internal and external alphabet
is particularly useful in the case of semi-infinite tape, an internal character ∗, identified
as “first symbol”, can be used to prevent the head from going outside the tape. It is
enough to define u(∗, go) = (∗, go, R).

Notation 7.1.3. If W is a finite set, we denote by W∗ = ∪n∈Z+Wn and W∞ = ∂W =

WZ+ . Notice that Z+ = {0, 1, 2, . . .} 6= N = {1, 2, . . .} and that W0 = {∅}. Elements
of W∗ are called words of finite length over the alphabet W. For every w ∈ W∗, there
exists n ∈ Z+ such that w ∈Wn; we denote then by |W| = n the length of the word w.

1. Mind that during Turing’s times no computer was physically available. The external tape was
invented by Alan Turing — who was fascinated by typewriters — as an external storage device.
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Turing machines, algorithms, computing, and complexity classes

For every α ∈ A∗b , we denote by α ∈ A∞ the completion of the word α by blanks,
namely α = (α1, . . . , α|α|, ], ], ], . . .).

Considering the example 7.1.2, we can, without loss of generality, always assume
that the machine starts at the first symbol of the input string α = α ∈ A∗b . Starting from
(α, s0, h0 = 1), successive applications of the transition function U induce a dynamical
system on X = A∗ × S×Z. A configuration is an instantaneous description of the
word written on the tape, the internal state of the machine, and the position of the
head, i.e. an element of X.

Let τα = inf{n ≥ 1 : sn ∈ S f }. The programme starting from initial configuration
(α, s0, h0 = 1) stops running if τα < ∞, it never halts when τα = ∞. While 1 ≤ n < τα,
the sequence (α(n), sn, hn)n≤τα is defined by updates of single characters; if, for 0 ≤ n <

τα, we have u(α(n)hn
, sn) = (a′, s′, d), then (α(n+1), sn+1, hn+1), is defined by

sn+1 = s′

hn+1 = hn + d

α(n+1) = (α
(n)
1 , . . . , α

(n)
hn−1, a′, α

(n)
hn+1, . . . , α

(n)
|α(n)|).

If the machine halts at some finite instant, the output is obtained by reading the tape
from left to right until the first blank character. The sequence of words (α(n))n is called
a computational path or computational history starting from α.

7.2 Computable functions and decidable predicates

Every M ∈ DTM computes a particular partial function φM : A∗b → A∗b . Since
the value of φM(α) remains undetermined when the programme M does not halt, the
function φM is termed partial because in general Dom(φM) ⊂ A∗b .

Definition 7.2.1. A partial function f : A∗b → A∗b is called computable if there exists a
M ∈ DTM such that φM = f . In that case, f is said to be computed by the programme
M.

Exercise 7.2.2. Show that there exist non-computable functions.

Definition 7.2.3. A predicate, P, is a function taking Boolean values 0 or 1. A lan-
guage, L, over an alphabet A is a subset of A∗b .

Thus, for predicates P with Dom(P) = A∗b , the set {α ∈ A∗b : P(α)} is a language.
Hence predicates are in bijection with languages.

Definition 7.2.4. A predicate P : A∗b → {0, 1} is decidable, if the function P is com-
putable.

Let P be a predicate and L the corresponding language. The predicate is decidable
if there exists a M ∈ DTM such that for every word α, the programme halts after a
finite number of steps and
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7.3. Complexity classes

— if α ∈ L, then the machine halts returning 1, and
— if α 6∈ L, then the machine halts returning 0.

Definition 7.2.5. Let M ∈ DTM and sM, tM : Z+ → R+ be given functions. If for
every α ∈ A∗b , the machine stops after having visited at most sM(|α|) cells, we say that
it works in computational space sM. We say that it works in computational time tM if
τα ≤ tM(|α|).

7.3 Complexity classes

Computability of a function does not mean effective computability since the com-
puting algorithm can require too much time or space. We say that r : N → R+ is of
polynomial growth if there exist constants c, C > 0 such that r(n) ≤ Cnc, for large n.
We write symbolically r(n) = poly(n).

Definition 7.3.1. The complexity class P consists of all languages L whose predicates
P are decidable in polynomial time, i.e. for every L in the class, there exists a machine
M ∈ DTM such that φM = P and tM(|α|) = poly(|α|) for all α ∈ A∗.

Similarly, we can define the class PSPACE of languages whose predicates are decid-
able in polynomial space. functions computable in polynomial space.

Other complexity classes will be determined in the subsequent sections. Obviously
P ⊆ PSPACE.

Conjecture 7.3.2. P 6= PSPACE.

7.4 Non-deterministic Turing machines and the NP class

Definition 7.4.1. A non-deterministic Turing machine is a quadruplet (A, S, u, s0)
where A, S and s0 are as in definition 7.1.1; u is now a multivalued function, i.e.
there are r different branches ui, i = 1, . . . , r and ui : A× S → A× S× D. For ev-
ery pair (a, s) ∈ A× S there are different possible outputs (a′i , σ′i , di)i=1,...,r, the choice
of a particular branch can be done in a non-deterministic way at each moment. All such
choices are legal actions. The set of non-deterministic Turing machines is denoted by
NTM.

A computational path for a M ∈ NTM is determined by a choice of one legal transi-
tion at every step. Different steps are possible for the same input. Notice that NTM do
not serve as models of practical devices but rather as logical tools for the formulation
of problems rather than their solution.

Definition 7.4.2. A language L (or its predicate P) belongs to the NP class if there exists
a M ∈ NTM such that

— if α ∈ L (i.e. P(α) = 1) for some α ∈ A∗, then there exists a computational path
with τα ≤ poly(|α|) returning 1,

/Users/dp/a/ens/iq-turin.tex
2017-11-12 • 14:00:44.

162



Turing machines, algorithms, computing, and complexity classes

— if α 6∈ L (i.e. P(α) = 0) for some α ∈ A∗, then there exists no computational path
with this property.

It is elementary to show that P ⊆ NP. Clay Institute offers you 2 USD 1 000 000 if
you solve the following

Exercise 7.4.3. Is it true that P = NP?

7.5 Probabilistic Turing machine and the BPP class

Definition 7.5.1. Let R̃ be the set of real numbers computable by a deterministic Turing
machine within accuracy 2−n in poly(n) time. A probabilistic Turing machine is a
quintuple (A, S, u, p, s0) where A, S, u, and s0 are as in definition 7.4.1 while p =
(p1, . . . , pr) ∈ R̃+, with ∑r

i=1 pi = 1 is a probability vector on the set of branches
of u. All branches correspond to legal actions; at each step, the branch i is chosen
with probability pi, independently of previous choices. The set of probabilistic Turing
machine is denoted by PTM.

Each α ∈ A∗ generates a family of computational paths. The local probability struc-
ture on the transition functions induces a natural probability structure on the compu-
tational path space. The evolution of the machine is a Markov process with the state
space A∗b × S×Z and stochastic evolution kernel determined by the local probability
vector p. Hence, any input gives a set of possible outputs each of them being assigned
a probability of occurrence. A machine in PTM is also called a Monte Carlo algorithm.

Definition 7.5.2. Let ε ∈]0, 1/2[. A predicate P (hence a language L) belongs to the
BPP class if there exists a M ∈ BPP such that for any α ∈ A∗, τα ≤ poly(|α|) and

— if α ∈ L, then P(P(α) = 1) ≥ 1− ε, and
— if α 6∈ L, then P(P(α) = 1) ≤ ε.

Exercise 7.5.3. Show that the definition of the class does not depend on the choice of ε
provided it lies in ]0, 1/2[.

7.6 Boolean functions and circuits

On the basis of the Church-Turing thesis, a classical computer or classical algorithm
is a Turing machine. If we forget the internal functioning of the machine and its internal
states, a classical computer can be thought as a “black-box” transforming some input
from Am into outputs from An, for appropriate integers m and n.

To compute a function on a computer, a real-valued function on reals for the sake
of definiteness, means to

— model this function by some discretised approximation,

2. http://www.claymath.org/millennium/
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7.6. Boolean functions and circuits

— express the computation as a sequence of computable functions,
— physically implement the elementary Turing machines corresponding to the

aforementioned computable functions.

Notation 7.6.1. For d ∈ N and Zd = {0, . . . , d− 1}, we denote by x = 〈 xn1 · · · x0 〉d
the mapping defined by

Zn
d 3 (x0, . . . , xn) 7→ x = 〈 xn · · · x0 〉d =

n−1

∑
k=0

xkdk ∈ Zdn .

Since conversely for every x ∈ Zdn the sequence (x0, . . . , xn) ∈ Zn
d is uniquely de-

termined, we identify x with the sequence of its digits. For d = 2 we omit the basis
subscript and we write simply 〈 · 〉

If rest of this subsection, the symbol A will stand for A = Z2 = {0, 1}.

Definition 7.6.2. Let f : Am → An be a Boolean function of m entries and n outputs.
Let B be a fixed set of Boolean functions of different arities. We call Boolean circuit of
f in terms of the basis B a representation of f in terms of functions from B.

Example 7.6.3. The list of all possible unary (d = 1) and binary (d = 2) Boolean
functions with one output f : Ad → A.

1. For d = 1 there are 4 different functions:

x 0 1 NOT 1
0 0 0 1 1
1 0 1 0 1

2. For d = 2 there are 16 different functions:

x1 x0 0 AND x1 x0 XOR OR NOR NXOR x0 x1 NAND 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Example 7.6.4. (Addition with carry of 2 binary 2-digit numbers.) Let x = 〈 x1x0 〉 and
y = 〈 y1y0 〉. We wish to express z = x + y = 〈 z2z1z0 〉 in terms of Boolean functions in
B = {XOR, AND} = {⊕,∧}. The truth table is given in table 7.1. We verify immediately
that:

z0 = x0 ⊕ y0

z1 = (x0 ∧ y0)⊕ (x1 ⊕ y1)

z2 = (x1 ∧ y1)⊕ [(x1 ⊕ y1) ∧ (x0 ∧ y0)]

Consequently, the Boolean circuit is depicted in figure ??.

A basis B is complete if any Boolean function f can be constructed as a circuit with
Boolean functions from B.
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Turing machines, algorithms, computing, and complexity classes

x1 x0 y1 y0 z2 z1 z0

0 0 0 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 1 0
1 1 0 0 0 1 1
0 0 0 1 0 0 1
0 1 0 1 0 1 0
1 0 0 1 0 1 1
1 1 0 1 1 0 0
0 0 1 0 0 1 0
0 1 1 0 0 1 1
1 0 1 0 1 0 0
1 1 1 0 1 0 1
0 0 1 1 0 1 1
0 1 1 1 1 0 0
1 0 1 1 1 0 1
1 1 1 1 1 1 0

Table 7.1 – The truth table of the Boolean function A4 → A3 implementing the addition with carry
of two binary 2-digit numbers.

Every physically realised computer uses a particular complete basis B. The
corresponding set of realised Boolean functions in B are called logical gates.
In other terms, logical gates are the physical electronic circuits having the ap-
propriate number of input electrodes and one output electrode. Bit values 0
or 1 correspond to physical voltages staying below a certain threshold voltage
or exceeding it. Arbitrary Boolean functions are computed by physically con-
necting inputs and outputs so that the resulting circuit implements the sought
Boolean function.

The “miracle” of nowadays classical computer technology is that we can to-
tally forget the physical substratum of logical gates and think of them as ab-
stract Boolean functions.

Basis of Boolean functions vs. logical gates

Example 7.6.5. {NOT, OR, AND} is a complete but redundant basis; {NOT, OR}, {NOT, AND},
and {AND, XOR} are complete minimal bases.

Definition 7.6.6. The minimal number of gates from B needed to compute f , denoted
by cB( f ), is circuit complexity of f in B.

The function implementing the addition with carry of table 7.1 over the basis B =
{AND, XOR}, has circuit complexity 7.

Any DTM can be implemented by circuits.
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7.7. Quantum Turing machines

Classical computers are based on gates {XOR, AND} for example. It is easily shown
that these gates are irreversible. Therefore it is intuitively clear why classical com-
puters can produce information. What is much less intuitively clear is how quantum
processes can produce information since they are reversible (unitary).

In 1973, BENNETT predicted that it is possible to construct reversible universal
gates. In 1982, FREDKIN exemplifies such a reversible gate. Fredkin’s gate is a 3 in-
puts - 3 outputs gate, whose truth tableau is given in table ??. This gate produces

Input Output
a b c a′ b′ c′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 1
1 0 0 1 0 0
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 1 1

Table 7.2 – The truth table of Fredkin’s gate. We remark that c′ = c and if c = 0 then (a′ = a and
b′ = b) else (a′ = b and b′ = a.)

both AND (since inputs 0, x, y return outputs x ∧ y, x ∧ y, x) and NOT gates (since in-
puts 1, 0, x return outputs x, x, x.) The gates AND and NOT forming a complete basis
for Boolean circuits, the universality of Freidkin’s gate is established.

In 1980, BENIOFF describes how to use quantum mechanics to implement a Turing
machine, in 1982, FEYNMAN proves that there does not exist a Turing machine (ei-
ther deterministic or probabilistic) on which quantum phenomena can be efficiently
simulated; only a quantum Turing machine could do so. Finally, in 1985, DEUTSCH
constructs (on paper) a universal quantum Turing machine.

7.7 Quantum Turing machines

Definition 7.7.1. et C̃ be the set of complex numbers whose real and imaginary part
can be computed by a deterministic algorithm with precision 2−n within poly(n) time.
A pre-quantum Turing machine is a quadruple (A, S, c, s0), where A, S, s0 are as for a
deterministic machine and c : (A× S)2 × D → C̃, where D is the displacement set.

Any configuration x of the machine is represented by a triple x = (α, s, h) ∈ A∗ ×
S×Z = X. The quantum configuration space H is decomposed into HT ⊗HS ⊗HH,
where the indices T, S, H stand respectively for tape, internal states, and head. The
space H is spanned by the orthonormal system (|ψ 〉)ψ∈X = (| αsh 〉)α∈A∗ ,s∈S,h∈Z.

Define now onservables having (| α 〉)α∈A∗ , (| s 〉)s∈S, and (| h 〉)h∈Z as respective
eigenvectors. To do so, identify the sets A with {0, . . . , |A|− 1} and S with {0, . . . , |S|−
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1}. Denoty by T̂, Ŝ, and Ĥ the self-adjoint operators describing these observables, i.e.

Ŝ =
|S|−1

∑
s=0

s| s 〉〈 s |

Ĥ = ∑
h∈Z

h| h 〉〈 h |

T̂ = ⊗i∈ZT̂i where T̂i =
|A|−1

∑
a=0

a| a 〉〈 a |.

Due to the linearity of quantum flows, it is enough to describe the flow on the
basis vectors ψ = | α, s, h 〉; a ∈ AZ, s ∈ S, h ∈ Z. The machine is prepared at some
initial pure state ψ = | α, s, h 〉, with α a string of contiguous non blank symbols and we
assume that the time is discretised:

|ψn 〉 = Un|ψ 〉.

Suppose that the displacement set D reads {−1, 0, 1}. Then for ψ = | α, s, h 〉 and ψ′ =
| α′, s′, h′ 〉

Uψ,ψ′ = 〈 α′, s′, h′ |Uα, s, h 〉
= [δh′ ,h+1c(αh, s, α′h, s′, 1)

+δh′ ,hc(αh, s, α′h, s′, 0)
+δh′ ,h−1c(αh, s, α′h, s′,−1)] ∏

j∈Z\{h}
δαj ,α′j

.

Definition 7.7.2. pre-quantum Turing machine is called a quantum Turing machine
if the function c is such that the operator U is unitary.

Exercise 7.7.3. Find the necessary and sufficient conditions on the function c so that U
is unitary.

To halt the machine, we can not perform intermediate measurements of the com-
posite state because quantum mechanical measurement perturbs the system. To pro-
ceed, suppose that S f = {halt} ≡ {0} and introduce a halting flag operator F̂ =
| 0 〉〈 0 |. Once the state s is set to 0, the function c is such that U does not any longer
change either the state s or the result of the computation.

A predicate is a projection operator Pα = | α 〉〈 α |. Let the machine evolve for some
time n: it is at the state |ψn 〉 = Un|ψ 〉. Perform the measurement 〈ψn | Pα ⊗ F̂⊗ Iψn 〉 =
p ∈ [0, 1].

Definition 7.7.4. A language L belongs to the BQP complexity class if there is a machine
M ∈ QTM such that

— if α ∈ L, then the machine accepts with probability p > 2/3,
— if α 6∈ L, then the machine rejects with probability p > 2/3,

within a running time poly(|α|).
Theorem 7.7.5. P ⊆ BPP ⊆ BQP ⊆ PSPACE.
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8
Elements of quantum computing

We arrived at the point where an answer must be given to the question “what
is a quantum computer?” One could possibly say that a quantum computer is one
whose operation governed by quantum mechanics. But classical law is subsumed un-
der quantum law. Hence classical computers operate already under quantum mechan-
ical laws. Nevertheless, your laptop is not a quantum computer.

If we admit that the Church-Turing thesis extends to quantum system, a univer-
sal quantum computer should be a quantum Turing machine. Recalling the defini-
tions 7.7.1 and 7.7.2 given in the last chapter, a quantum computer is a physical sys-
tem whose operation exploits certain very special transformations — quantum unitary
transformations — of internal states to perform all intermediate computations more
efficiently than a classical computer. At the final stage, some irreversible operation —
measurement — is performed on the system. It should be stressed however that this
definition, although largely advocated by computer scientists, is quite restrictive. The
present 1 technology allows to solve rather elementary instances of potentially diffi-
cult problems. For example, a quantum computer can factor 21 (see [106]), not very
an algorithmically outstanding achievement indeed. The hope is that technology will
evolve quite rapidly to allow factoring much larger composite integers, a problem that
could be solved in polynomial time on a general quantum computer, should there exist
a sufficiently powerful enough one.

A looser definition of a quantum computer/algorithm departs from the category
of universal quantum computers to encompass special purpose machines. These ma-
chines exploit quantum phenomena (without classical counterpart, like quantum tun-
neling) to propose much faster simulation algorithms for solving optimisation prob-
lems. The commercially available computer bearing the brand name D-WAVE falls into
this category.

1. End of 2017.
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8.1. Data representation on quantum computer

In this chapter, we stick however to the notion of universal quantum computer
and examine the possible quantum logical gates that must be composed to produce
algorithmically sensible results.

8.1 Data representation on quantum computer

In the sequel, B denotes the set {0, 1} with cardinality 2; elements of B will be
denoted a, b, x ∈ B and called bits. Elements of Bn are n-bit strings; they are meant
to denote b1 · · · bn or b0 · · · bn−1 or written in reverse order bn · · · b1 or bn−1 · · · b0, with
bi ∈ B. The indexing set and the order will be specified on each occurrence.

The quantum analog of the two-element set B is the Hilbert space H = C2 of di-
mension 2. Rays |ψ 〉 ∈ H, with ‖ψ‖ = 1, are called qubits and are associated with
pure states ρ = |ψ 〉〈ψ |. Similarly, arrays of n bits are denoted by b = (b1, . . . , bn) ∈
Bn; arrays of n qubits by |ψ 〉 = |ψ1 · · ·ψn 〉 ∈H⊗n. The canonical basis 2 of H is writ-

ten in Dirac’s notation (| ε0 〉, | ε1 〉), where | ε0 〉 =
(

1
0

)
and | ε1 〉 =

(
0
1

)
. Therefore

| ε0 〉 and | ε1 〉 correspond to qubits. Since an arbitrary unit vector |ψ 〉 ∈ H can be de-
composed in the canonical basis, any qubit can be written as the linear superposition
of basis qubits: |ψ 〉 = ∑1

i=0 ψi| εi 〉.

The quantum analog of n-bit strings are tensor products of n qubits, denoted as
|Ψ 〉 = |ψ1 〉 ⊗ · · · ⊗ |ψn 〉 = |ψ1 · · ·ψn 〉. All types of conventions regarding the index-
ing set or the order of the indices in force for classical n-bit strings explained above, will
be in force here, i.e. |Ψ 〉 is meant to denote |ψ1 · · ·ψn 〉 or |ψ0 · · ·ψn−1 〉 or |ψn · · ·ψ1 〉
or |ψn−1 · · ·ψ0 〉. The indexing set and the order will be specified on each occurrence.

Some care must be paid to the notational issues since a systematic notation can
greatly simplify expressions.

Notation 8.1.1. Digits and strings: If D is a finite alphabet of cardinality D, then
D will be identified with D = {0, . . . , D − 1}; elements of D are called digits
(in base D). For n ∈ N>, the set Dn denotes the set of strings of length n out
of the alphabet D. D0 contains the empty string (of zero length) and we denote
D∗ = ∪n∈NDn and D+ = ∪n∈N>Dn. The special case of the set of cardinality
D = 2 is denoted B and its elements are called bits.

Numerical values and binary representations: Various conventions can be used
to display an n-bit string:

b = bn−1 · · · b0, b = bn · · · b1, b = b0 · · · bn1 , b = b1 · · · bn.

For every n ∈N> there are two natural mappings

Bn 3 b 7→ num(b) ∈ {0, . . . , 2n − 1} and {0, . . . , 2n − 1} 3 k 7→ rep(k) ∈Nn,

2. Note that in the quantum computer science community, the canonical basis is often called the
computational basis; we don’t find necessary to depart from the term canonical basis used by mathe-
maticians.
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defined by

b = bn−1 · · · b0 7→ num(b) =
n−1

∑
k=0

bk2k

l 7→ rep(l) = ln−1 · · · l0, s.t.
n−1

∑
k=0

lk2k = l.

Often, num(bn−1 · · · b0) will be denoted 〈bn−1 · · · b0〉. When the reverse order
b = b1 · · · bn is used to represent the string, then L = num(b) = ∑n

k=1 bk2n−k

and L
2n = 〈0.b1 . . . bn〉.

Tensor products of qubits: It will prove convenient to simplify further Dirac’s no-
tation by writing | 0 〉 and | 1 〉 instead of | ε0 〉 and | ε1 〉, i.e. use the indices of the
basis to label the unit vectors 3. Accordingly, the notation of the standard basis
(| εbn−1 · · · εb0 〉)b∈Bn of H⊗n will be simplified into (| bn−1 · · · b0 〉)b∈Bn . Letting
x = 〈bn−1 · · · b0〉 = ∑n−1

m=0 bm2m ∈ {0, . . . , 2n − 1}; we can now index the stan-
dard basis of H⊗n by (| x 〉)x∈{0,...,2n−1}. Hence, we can decompose

H⊗n 3 |Ψ 〉 =
2n−1

∑
x=0

Ψx| x 〉.

8.2 Classical and quantum gates and circuits

A classical circuit implements a Boolean mapping f : Bn → Bn by using ele-
mentary gates of small arities 4, chosen from a family G of gates. A quantum circuit
implements a unitary mapping U : H⊗n → H⊗n by using unitary elementary gates of
small arities 5, chosen from a family G.

Definition 8.2.1. et U : H⊗n → H⊗n for some n and G be a fixed family of unitary
operators of different arities. A quantum circuit over G is a product of operators from
G acting on appropriate qubit entries.

It is usually assumed that G is closed under inversion.

Definition 8.2.2. Let V : H⊗n → H⊗n be a unitary operator. This operator is said to
be realised by a unitary operator W : H⊗N → H⊗N, with N ≥ n entries, acting on n
qubits and N − n ancillary qubits, if for all | ξ 〉 ∈H⊗n,

W(| ξ 〉 ⊗ | 0N−n 〉) = (V| ξ 〉)⊗ | 0N−n 〉.

Ancillary qubits correspond to some memory in a fixed initial state we borrow for
intermediate computations that is returned into the same state. Returning ancillary

3. Beware of the fact that although | ε0 + ε1 〉 represents a perfectly legal — although not normalised
—vector of H, the notation | 0 + 1 〉 is meaningless!

4. usually acting on O(1) bits.
5. usually acting on O(1) qubits.
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qubits into the same state can be relaxed. What cannot be relaxed is that ancilla must
not be entangled with the n qubits (it must remain in tensor form); otherwise the ani-
cllary subsystem could not be forgotten.

Quantum circuits are supposed to be more general than classical circuits. However,
arbitrary Boolean circuits cannot be considered as classical counterparts of quantum
ones because the classical analogue of a unitary operator on H⊗n is an invertible map
on Bn, i.e. a permutation π ∈ S2n . Since to any n-bit array ξ = (ξ1 · · · ξn) ∈ Bn

corresponds a basis vector | ξ 〉 = | ξ1 · · · ξn 〉 ∈ H⊗n, to every permutation π ∈ S2n

naturally corresponds a unitary operator π̂, defined by

π̂| ξ 〉 = |π(ξ) 〉,

with π̂∗ = π̂−1 = π̂−1. Hence we can define:

Definition 8.2.3. Let G ⊆ S2n . A reversible circuit over G is a sequence of permuta-
tions from G.

An arbitrary Boolean function F : Bm → Bn can be extended to a function F⊕ :
Bm+n → Bm+n, defined by

F⊕(x, y) = (x, y⊕ F(x)),

where the symbol ⊕ in the right hand side stands for the bit-wise addition modulo 2.
It is easily checked that F⊕ is a permutation. Moreover F⊕(x, 0) = (x, F(x)).

Notice that 2-bit permutation gates do not suffice the realise all functions of the
form F⊕. On the contrary G = {NOT, Λ} with Λ : B3 → B3 the Toffoli gate, defined
by Λ(x, y, z) = (x, y, z⊕ (x ∧ y)), is a basis.

8.3 Approximate realisation

There are uncountably many unitary operators U : H⊗n → H⊗n. Hence if a quan-
tum computer is to be constructed, the notion of exact realisation of a unitary operator
must be weakened to an approximate realisation. The same rationale prevails also in
classical computing, instead of all real functions (uncountably many), only Boolean
functions are implemented.

Lemma 8.3.1. An arbitrary unitary operator U : Cm → Cm can be represented as a product
V = ∏

m(m−1)/2
i=1 V(i) of matrices of the form

1
. . .

1 (
a b
c d

)
1

. . .
1


,
(

a b
c d

)
∈ U(2).

/Users/dp/a/ens/iq-qcomp.tex
2017-11-17 • 15:53:38.

172



Elements of quantum computing

Moreover, the sequence of matrices appearing in the product can be explicitly constructed in a
running time O(m3)poly(log(1/δ)) where δ = ‖U −V‖.

Proof: An exercise if one recalls that for all c1, c2 ∈ C, there exists a unitary operator
W ∈ U(2) such that

W
(

c1
c2

)
=

(√
|c1|2 + |c2|2

0

)
.

�

Basic properties of the operator norm are recalled below:

‖XY‖ ≤ ‖X‖‖Y‖
‖X‖ = ‖X‖
‖U‖ = 1

‖X⊗Y‖ = ‖X‖‖Y‖,

where X and Y are arbitrary operators and U is a unitary.

Definition 8.3.2. A unitary operator U′ approximates a unitary operator U within δ if
‖U −U′‖ ≤ δ.

Lemma 8.3.3. If a unitary U′ approximates a unitary U within δ, then U′−1 approximates
U−1 within δ.

Proof: Since U′−1(U′ −U)U−1 = U−1 −U′−1, it follows that ‖U−1 −U′−1‖ ≤ ‖U′ −
U‖ ≤ δ. �

Lemma 8.3.4. If unitary operators (U′k)k=1,...,L approximate unitary operators (Uk)k=1,...,L
within δk, then U′ = U′L · · ·U′1 approximates U = UL · · ·U1 within ∑L

k=1 δk.

Proof: ‖U′2U′1 −U2U1‖ ≤ ‖U′2(U′1 −U1) + (U′2 −U2)U1‖ ≤ δ1 + δ2. �

Definition 8.3.5. A unitary operator U : H⊗n → H⊗n is approximated by a unitary
operator U : H⊗N →H⊗N, with N ≥ n, within δ if for all | ξ 〉 ∈H⊗n

‖U′(| ξ 〉 ⊗ | 0N−n 〉)−U| ξ 〉 ⊗ | 0N−n 〉‖ ≤ δ‖ξ‖.

Definition 8.3.6. For every unitary operator U : H⊗n → H⊗n there exists a unitary
operator C(U) : H⊗H⊗n → H⊗H⊗n, called the controlled-U operator, defined for
all | ξ 〉 ∈H⊗n by

C(U)| ε 〉 ⊗ | ξ 〉 =
{
| ε 〉 ⊗ | ξ 〉 if ε = 0
| ε 〉 ⊗U| ξ 〉 if ε = 1

Similarly, multiply controlled-U Ck(U) : H⊗k ⊗H⊗n →H⊗n ⊗H⊗n, is defined by

Ck(U)| ε1 · · · εk 〉 ⊗ | ξ 〉 =
{
| ε1 · · · εk 〉 ⊗ | ξ 〉 if ε1 · · · εk = 0
| ε1 · · · εk 〉 ⊗U| ξ 〉 if ε1 · · · εk = 1

Example 8.3.7. Let σ1 =

(
0 1
1 0

)
be the unitary operator corresponding to the classical

NOT gate. Then C2(σ1) = Λ̂, where Λ is the Toffoli gate.
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Definition 8.3.8. The set

G = {H, K, K−1, C(σ1), C2(σ1)},

with H = 1√
2

(
1 1
1 −1

)
(Hadamard gate) and K =

(
1 0
0 i

)
, is the (complete) basis of

standard gates.

Theorem 8.3.9. Any unitary operator U : H⊗n → H⊗n can be approximated within δ by a
poly(log(1/δ))-size circuit over the basis of standard gates using ancillary qubits. There is a
poly(n)-time algorithm describing the construction of the approximating circuit.

Proof: A simple fact, once you have solved the exercise 8.3.10 �

Exercise 8.3.10. Let σ0,...,3 be the 3 Pauli matrices augmented by the identity matrix, H

the Hadamard gate, and Φ(φ) =

(
1 0
0 exp(2iφ)

)
.

1. Show that if A ∈ M2(C) with A2 = 1 and φ ∈ R, then

exp(iφA) = cos φσ0 + i sin φA.

2. Let Rj(θ) = exp(−i θ
2 σj), for j = 1, 2, 3 and Rn̂(θ) = exp(−i θ

2 n̂ ·~σ), where n̂ =

(N1, n2, n3) with n2
1 + n2

2 + n2
3 = 1 and~σ = (σ1, σ2, σ3). Express Rj(θ) and Rn̂(θ)

on the basis σ0, . . . , σ3.
3. Show that H = exp(iφ)R1(α)R3(β), for some φ, α, β to be determined.
4. If | ξ 〉 ∈ C2 is a ray represented by a vector of the Bloch sphere S2 = {x ∈ R3 :
‖x‖2 = 1}, show that

Rn̂(θ)| ξ 〉 = | Tn̂(θ)x 〉
where Tn̂(θ)x is the rotation of x around n̂ by an angle θ.

5. Show that every U ∈ U(2) can be written as

U = exp(iα)Rn̂(θ)

for some α, θ ∈ R.
6. Show that every U ∈ U(2) can be written as

U = exp(iα)R3(β)R2(γ)R3(δ)

for some α, β, γ, δ ∈ R.
7. Suppose that m̂ and n̂ are two not parallel vectors of S2. Show that every U ∈

U(2) can be written as

U = exp(iα)Rn̂(β1)Rm̂(γ1)Rn̂(β2)Rm̂(γ2) · · · .

8. Establish identities

Hσ1H = σ3

Hσ2H = −σ2

Hσ3H = σ1

HΦ(
π

8
)H = exp(iα)R1(

π

4
)

for some α.
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8.4 Examples of quantum gates

8.4.1 The Hadamard gate

H =
1√
2

(
1 1
1 −1

)
.

H| b 〉 = 1√
2
((−1)b| b 〉+ | 1− b 〉), b ∈ B.

H⊗3| 000 〉 = 1√
8

7

∑
x=0
| x 〉.

More generally, if x = 〈xn−1 · · · x0〉, with xi ∈ B, we have

H⊗n| x 〉 =
2n−1

∑
y=0

(−1)x·y| y 〉,

where x · y = ∑n−1
i=0 xiyi.

8.4.2 The phase gate

Φ(φ) =

(
1 0
0 exp(2iφ)

)
.

Φ(φ)| b 〉 = exp(2ibφ)| b 〉

Φ(
π

4
+

φ

2
)HΦ(θ)H| 0 〉 = cos θ| 0 〉+ exp(iφ) sin θ| 1 〉.

Note that the gate K appearing in the basis of standard gates reads K = Φ(π/4).

8.4.3 Controlled-NOT gate

C(σ1) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

For any x ∈ B, C(σ1)| x0 〉 = | xx 〉, but for arbitrary |ψ 〉 = α| 0 〉+ β| 1 〉,

C(σ1)|ψ0 〉 = α| 00 〉+ β| 11 〉 6= |ψψ 〉.
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8.4.4 Controlled-phase gate

C(Φ(φ)) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(2iφ)

 .

For x, y ∈ B,
C(Φ(φ))| xy 〉 = exp(2iφxy)| xy 〉.

8.4.5 The quantum Toffoli gate

For all x, y, z ∈ B,
C2(σ3)| xyz 〉 = | x, y, (x ∧ y)⊕ z 〉.

Suppose that f : Bm → Bn is a Boolean function, implemented by the unitary
operator U f : H⊗(n+m) →H⊗(n+m). If |ψ 〉 = 1

2m/2 ∑b1,...,bm∈B | b1, . . . , bm 〉 then

U f |ψ 〉 ⊗ | 0n 〉 = 1
2m/2

2m−1

∑
x=0
| x, f (x) 〉.

Hence computing simultaneously all values of f over its domain of definition requires
the same computational effort as computing the value over a singleton of the domain.
This remark is a manifestation of the massive parallelism of quantum computers and
explains the tremendous gain in their computational power compared to classical ones.
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10
The Shor’s factoring algorithm

The factoring algorithm, presented by Peter Shor at the International Congress of
Mathematicians held in Zürich in 1994 — nowadays known as Shor’s algorithm — is
an algorithm allowing the solve the integer factorisation problem of a large integer n
into prime components in a polynomial time in the number of digits N = log n.

The algorithm can be split into 4 subroutines that present an interest per se:
— quantum Fourier transform,
— phase estimation,
— order determination,
— factoring.

10.1 Quantum Fourier transform (QFT)

The quantum Fourier transform can be seen as a generalisation of the discrete
Fourier transform (DFT).

Definition 10.1.1. (DFT and QFT.) Let N be given integer (interpreted as time instants)
and suppose that x : R → C is a signal. Sample this signal at instants {0, . . . , N − 1}
i.e. consider the vector x = (x0, . . . , xN−1) ∈ CN.

— We define the discrete Fourier transform to be the mapping

CN 3 x = (x0, . . . , xN−1) 7→ F (x) := x̃ = (x̃0, . . . , x̃N−1) ∈ CN ,

where x̃j =
1√
N ∑N−1

k=0 exp(2πik j
N )xk, for j ∈ {0, . . . , N − 1}.

— By analogy, the quantum Fourier transform is the mapping on HN = CN de-
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fined by

HN = CN 3 | j 〉 7→ F| j 〉 := |̃ j 〉 = 1√
N

N−1

∑
k=0

exp(2πik
j

N
)| k 〉 ∈HN.

We use the simplified Dirac’s notation | i 〉 to denote the unit vector | ei 〉 of the
canonical basis (| ei 〉)i=0,...,N−1 ∈HN.

Lemma 10.1.2. The operator F defined in 10.1.1 is unitary

Proof. We compute straightforwardly

〈 j′ | F ∗F j 〉 = 1
N

N−1

∑
k,l=0

exp(−2πil
j′

N
) exp(2πik

j
N
)〈 l | k 〉

=
1
N

N−1

∑
k

exp(−2πik
j− j′

N
) = δj,j′ .

Denote by z := zN = exp(2πi
N ). The Fourier operator F acts linearly on vectors of

HN, hence it is totally determined through its matrix elements

Fkl := 〈 k | F l 〉 = 1√
N

zkl.

Now,

F ∗kl := 〈 k | F ∗l 〉 = 〈 Fk | l 〉

= 〈 l | Fk 〉 = Flk =
1√
N

zkl.

It is instructive to determine the action of F on the canonical basis in the case N = 2.
In this situation, |̃ l 〉 = F| l 〉 = 1√

2 ∑1
k=0 zkl| k 〉. Hence

|̃ 0 〉 = | 0 〉+ | 1 〉√
2

; |̃ 1 〉 = | 0 〉 − | 1 〉√
2

,

since z2 = exp(πi) = −1. Therefore, the Fourier transform in this case corresponds to
the passage from the canonical basis to the conjugate one.

Suppose now that, for some real parameter t, we form the unit norm vector |ψt 〉 =
1
N ∑N−1

k=0 exp(ikt)| k 〉 depending on t. Now this vector can also be decomposed into any
other basis, for instance the conjugate basis (|̃ l 〉)l=0,...,N−1. The squared moduli of the
corresponding Fourier coefficients, namely |〈̃ l |ψt〉|2, are interpreted as the probability,
πt, that the pure state corresponding to the vector |ψt 〉 is in the pure state correspond-
ing to the vector |̃ l 〉. The usefulness of the quantum Fourier transforms stems from the
fact that this probability is sharply peaked around very few values of l; these values
depend on t. Therefore, we have an efficient algorithm to determine the phase t.
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Notation 10.1.3. In the sequel N = 2n, H = C2, and H = ⊗n−1
k=0H. Basis vectors

| j 〉 ∈H are indexed by integers j = 0, . . . , 2n − 1 and we identify

{0, . . . , 2n − 1} 3 j 7→ j = seq(j) = j1 · · · jn ∈ Bn.

With this notation

j = j12n−1 + . . . + jn20 = 2n(
j1
21 + . . . +

jn
2n ) = 2n〈0.j1 · · · jn〉2 = 〈j1 · · · jn〉2 = 〈j〉2.

Consequently,

| j 〉 = | j1 · · · jn 〉
F7→ 1

2n/2

2n−1

∑
k=0

exp(2πij
k

2n )| k 〉

=
1

2n/2 ∑
(k1···kn)∈Bn

exp(2πij〈0.k1 · · · kn〉2)| k1 · · · kn 〉

=
1

2n/2 [| 0 〉+ exp(2πij/2)| 1 〉]⊗ · · · ⊗ [| 0 〉+ exp(2πij/2n)| 1 〉]

=
1

2n/2 [| 0 〉+ exp(2πi〈0.jn〉)| 1 〉]⊗ · · · ⊗ [| 0 〉+ exp(2πi〈0.j1 · · · jn〉)| 1 〉] .

| j1 〉

| j2 〉

| j3 〉

...

| jn−2 〉

| jn−1 〉

| jn 〉

H•

•
Φ2

•

•

Φ3

. . .

•

•

Φn−2

•

•

Φn−1

•

•

Φn

H•

•
Φ2

. . .

•

•

Φn−3

•

•

Φn−2

•

•

Φn−1

. . .

H•

•
Φ2

|ψj 〉

Figure 10.1 – Circuit implementing the quantum Fourier transform. The input is on the right and
the output on the left.

Exercise 10.1.4. Denote, for k = 1, . . . , n, by Φk = C(Φ(π/2k)) the controlled phase
gates and by H the Hadamard gates (see 8.4.4 and 8.4.1).

1. Show that the circuit depicted in figure 10.1 implements the quantum Fourier
transform defined in 10.1.1, i.e. |ψj 〉 = F| j 〉.

2. Determine the circuit implementing the adjoint of F .
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10.2 Phase estimation

Definition 10.2.1. Let U : H⊗n → H⊗n be a unitary operator and suppose that | u 〉 ∈
H⊗n is a known (i.e. determined elsewhere) eigenvector of U. The phase estimation
problem consists in determining φu ∈ [0, 1] such that the corresponding eigenvalue of
U is exp(2πiφu), i.e. determine φu ∈ [0, 1] verifying

U| u 〉 = exp(2πiφu)| u 〉.

The purpose of this section is to give an algorithm allowing to estimate φu with an
arbitrary precision. The resources needed for this algorithm are “black-box” gates im-
plementing powers of the form U2j

for j = 0, . . . , t− 1, and t some positive integer and
of a quantum register containing the eigenvector | u 〉. Once, the circuits for the gates
U2j

are available, it is immediate to construct circuits implementing their controlled
version C(U2j

).

F ∗

| 0 〉H

| 0 〉H

| 0 〉H

| 0 〉H•

•

•

| u 〉

| φ̂u 〉 ...

U20
U21

U2t−1

. . .

...

. . .

| u 〉...
...

ABCD

Figure 10.2 – Circuit allowing to determine a vector | φ̂u 〉 ∈ H⊗t encoding a good rational approx-
imation of the phase φu. The input of the circuit is composed from two registers, a t-qubit register
| 0 · · · 0 〉 ∈ H⊗t tensored with a n-qubit register | u 〉 ∈ H⊗n. The red block marked F ∗ is the
reverse — i.e. read from left to right — of the circuit depicted in figure 10.1. The green blocks are
controlled gates C(U2j

) (the bullets denoting the corresponding control qubits) and the blue bolcks
depict Hadamard gates.

Theorem 10.2.2. Consider the circuit depicted in figure 10.3. For every ε ∈ (0, 1), there
exists an integer p := p(ε) > 0 such that, for t = n + p, and ∆ = {m ∈ {0, . . . , 2t − 1} :
|m2t − φu| ≤ 1

2n }, then
PF ∗ψD(∆) ≥ 1− ε.
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Proof. We read the figure from right to left; consider the vector |Ψ 〉 ∈ H⊗t ⊗H⊗n at
the four instants materialised by the vertical dotted lines denoted A – D. It turns out
that at all these moments, the vector |Ψ 〉 can be split into two mutually unentangled
registers |ψ 〉 ⊗ | u 〉 ∈H⊗t ⊗H⊗n. Thus

|ΨA 〉 = |ψA 〉 ⊗ | u 〉 = | 0 · · · 0︸ ︷︷ ︸
t times

〉 ⊗ | u 〉

|ΨB 〉 = |ψB 〉 ⊗ | u 〉 =
1

2t/2 ∑
(k1,...,kn)∈Bn

| k1 · · · kn 〉 ⊗ | u 〉

|ΨC 〉 = |ψC 〉 ⊗ | u 〉 =
1

2t/2

[
| 0 〉+ exp(2πi2t−1φu| 1 〉

]
⊗ · · · ⊗

[
| 0 〉+ exp(2πi20φu| 1 〉

]
⊗ | u 〉

=
1

2t/2 ∑
k0,...,kt−1∈B

exp (2πiφu〈kt−1 · · · k0〉) | kt−1 · · · k0 〉 ⊗ | u 〉

=
1

2t/2

2t−1

∑
k=0

exp(2πiφuk)| k 〉 ⊗ | u 〉.

Since the vector |ΨC 〉 = |ψC 〉 ⊗ | u 〉 is disentangled between its H⊗t and H⊗n com-
ponents, we can examine the action of the inverse quantum Fourier transform on its
first component. Define | φ̂u 〉 := |ψD 〉 = F ∗|ψC 〉 and let L := L(φu, t) = b2tφuc and
0 ≤ δ := δ(φu, t) = φu − L

2t < 1. We have then

| φ̂u 〉 =
1

2t/2

2t−1

∑
k=0

exp(2πiφuk)F ∗| k 〉

=
1
2t

2t−1

∑
k=0

exp(2πiφuk)
2t−1

∑
l=0

exp(−2πik
l

2t )| l 〉

=
1
2t

2t−1

∑
k,l=0

exp(2πiφuk) exp(−2πik
l + L

2t )| L + l mod 2t 〉

=
2t−1−1

∑
l=−2t−1

2t−1

∑
k=0

[
1
2t exp

(
−2πi(δ− l

2t )

)k
]

︸ ︷︷ ︸
αl

| L + l mod 2t 〉.

Now, for l ∈ {0, . . . , 2t − 1}, we can compute explicitely

αl =


1{0}(l) if δ = 0,
1
2t

exp(−πi(2tδ−l))
exp

(
−πi(δ− l

2t )
) sin(π(2tδ−l))

sin
(

π(δ− l
2t )
) if 0 < δ < 1.

If φu is exactly expressible as the dyadic rational L
2t , i.e. δ = 0, then obviously | φ̂u 〉 =

| L 〉 and the theorem holds with ε = 0 and ∆ = {L}. In the other cases, it turns out
that |αl|2 is sharply peaked around 0 (see figure 10.3 for an example). The end of the
proof consists in finding the smallest ∆ so that Pφ̃u

(∆c) < ε. First remark that for

−π
2 < θ < π

2 we have | sin(θ)| ≥ 2|θ|
π . Therefore, by writing

|αl| =
1
2t

∣∣sin
(
π(2tδ− l)

)∣∣∣∣∣sin
(

π(δ− l
2t )
)∣∣∣ ≤ 1

2t
1∣∣∣sin

(
π(δ− l

2t )
)∣∣∣ ,
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we conclude that |αl|2 ≤ 1
4|l|2 . Suppose now that ∆M = {L − M mod 2t, . . . , L + M

mod 2t} for some integer M ≤ 2t−1 and consider the effect E[∆M] = ∑m∈∆M
|m 〉〈m |.

Then

Pφ̃u
(∆M) = ∑

m∈∆M

〈 φ̃u |m 〉〈m | φ̃u 〉

= ∑
m∈∆M

2t−1−1

∑
l,l′=−2t−1

αlαl′〈 L + l mod 2t |m 〉〈m | L + l′ mod 2t 〉

= ∑
m∈∆M

|αm−L mod 2t |2 =
M

∑
m=−M

|αm|2.

We must now optimise M so that M
2t = O( 1

2n ) and Pφ̃u
(∆c

M) < ε. We estimate

Pφ̃u
(∆c

M) ≤ 2
2t−1−1

∑
m=M

|αl|2 ≤
2t−1−1

∑
m=M

1
2m2 ≤

1
2M
≤ ε,

and

max{|m + L mod 2t

2t − φu|, m ∈ ∆M} =
M
2t ≤

1
2n .

The choice p = d− log2 εe+ 1 and t = n + p establishes the conclusion of the theorem.

Figure 10.3 – Example values of |αl |2 for l ∈ {−16, . . . , 15} for the case t = 10 and δ = 0.2. Only
the values near 0 are depicted since the values in the range {−512, . . . , 511} \ {L− 16, . . . , 15} are
so small that are represented by points lying beneath the threshold of graphical discrimination from
0.

We can summarise the results obtained so far, in the algorithm 10.2.3.

Algorithm 10.2.3. Phase estimation

Require: Black boxes C(U2j
),

eigenvector | u 〉 of U,
precision threshold ε,
t = n + dlog(2 + 1

2εe qubits initialised at | 0 〉.
Ensure: Estimation of φu precise up to t bits.
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Initialise | 0 〉⊗t ⊗ | u 〉.
Apply operators as in regions A− C of figure 10.3 .
Apply F ∗ on the t first qubits register to get | φ̃u 〉.
Mesure the t-qubit register to obtain estimation of φ̃u

10.3 Order finding

10.3.1 The order finding problem

Definition 10.3.1. Let x, N be fixed integers strictly larger than 1 with pgcd(x, N) = 1.
We define the order of x in N by

ord(x, N) = inf{r > 0 : xr = 1 mod N}.

It is conjectured that the problem of order finding is an algorithmically hard prob-
lem. As a matter of fact, if L = dlog Ne, we don’t know any classical algorithm solving
this problem in polynomial (in L) time. For an L-bit string y = y1 . . . yL ∈ BL, denote
by y = 〈y〉 ∈ {0, . . . , 2L − 1}. These integers serve as an indexing set for the canonical
basis and | y 〉 = | y1 . . . yL 〉 ∈H⊗L, with H = C2.

Definition 10.3.2. For x and N as in definition 10.3.1, L = dlog Ne, and | y 〉 ∈ H⊗L,
define the unitary operator

U| y 〉 =
{
| xy mod N 〉 if 0 ≤ y ≤ N − 1,
| y 〉 if N ≤ y ≤ 2L − 1.

Lemma 10.3.3. Let r := ord(x, N) ≤ N. For s = 0, . . . , r− 1, and

| us 〉 =
1√
r

r−1

∑
k=0

exp(−2πik
s
r
)| xk mod N 〉,

we have

1. that the vector | us 〉 is an eigenvector of U:

U| us 〉 = exp(2πi
s
r
)| us 〉;

2. that the vector | 1 〉 is a linear combination of eigenvectors:

1√
r

r−1

∑
s=0
| us 〉 = | 1 〉.
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Proof. 1. We compute plainly

U| us 〉 =
1√
r

r−1

∑
k=0

exp(−2πiks/r)| xk+1 mod N 〉

=
1√
r

r

∑
k=1

exp(−2πi(k− 1)s/r)| xk mod N 〉

=
1
r

exp(2πis/r)

(
r−1

∑
k=1

exp(−2πiks/r)| xk mod N 〉+ | xr mod N 〉
)

= exp(2πis/r)| us 〉.

2. Since ∑r−1
s=0 exp(−2πisk/r) = rδk,0, we compute

1√
r

r−1

∑
s=0
| us 〉 =

1
r

exp(−2πisk/r)| xk mod N 〉 = | 1 〉.

Remark 10.3.4. The lemma 10.3.3 establishes that for every s, the construction of the
vector | us 〉 supposes previous knowledge of r. Item 2 of this lemma is of the utmost
importance for the feasibility of the algorithm because it suggests that instead of ini-
tialising the algorithm with | us 〉 it is enough to initialise with | 1 〉 and the result will
be a linear combination of actions of U.

10.3.2 Classical continued fraction expansion

If we are able to determine the ratio s/r for different values of s, we shall be able
to estimate r and the problem of order finding will be solved. This estimation problem
is solved by the classical algorithm of continued fraction expansion. Let recall briefly
what is the continued fraction expansion.

We associate with every α ∈ R+ a (finite or infinite) sequence of (a0; a1, a2, · · · ) such
that α can be decomposed into the continued fraction expansion (CFE)

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1
...

.

The terms a1, a2, . . . appearing in this expansion are in N>, the term a0 — correspond-
ing to bαc — can take also the value 0. We write α = [a0; a1, a2, a3, . . .] to denote the
previous expansion.

— If α ∈ Q+, there exists a M > 0 such that the sequence defining the CFE of α is
finite, i.e. α = [a0; a1 . . . , aM].

— If α ∈ (R+ \Q), its CFE is given by an infinite sequence α = [a0; a1, a2, a3, . . .],
with ai > 0 for all i ≥ 1.
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If α is represented by an infinite expansion α = [a0; a1, a2, . . .], then its truncated (at
order m) expansion [a0; a1 . . . , am] is a rational approximation of α. As a matter of fact,

[a0; a1 . . . , am] =
pm(α)

qm(α)
,

where pm := pm(α) and qm := qm(α) are integers defined by the recursive relations:

pm = am pm−1 + pm−2 and qm = amqm−1 + qm−2, m ≥ 1,

and p0 = a0, q0 = 1, p−1 = 1, and q−1 = 0. The sequence of ratios pm(α)
qm(α)

are called
principal convergent of α.

Lemma 10.3.5. (See [99, chapter 1]). Denote by αm = [a0; a1 . . . , am] = pm/qm the sequence
of principal convergents.

1. α0 ≤ α2m ≤ α2m+2 ≤ . . . α ≤ . . . ≤ α2m+1 ≤ α2m−1 ≤ . . . α1 and limm→∞ :=
limm→∞

pm(α)
qm(α)

= α.

2. Let p
q be an irreducible fraction with q > 0. If

|α− p
q
| ≤ 1

2q2

then there exists an M such that p
q = αM, i.e. the sequence of principal convergents

verifies |α− pm
qm
| ≤ 1

2q2
m

for all m ∈N>.

The classical algorithm 10.3.6 summarises the construction of the (truncated) CFE.

Algorithm 10.3.6. Continued fraction expansion (CFE)
Require: real α > 0, integer M > 0.
Ensure: a0, . . . , aM with ai > 0 pour 1 ≤ i ≤ M.

Initialise m← 0.
repeat

am ← bαc.
β← {α} (It is recalled that {α} := α− bαc).
m← m + 1.
if β 6= 0 then

α← 1
β

else
α← 0

end if
until m > M.
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10.3.3 Order finding algorithm

The order finding algorithm — summarised in 10.3.8 below — is in fine a phase
estimation algorithm for a particular unitary operator U = Ux,N, for x and N fixed
positive coprime integers (i.e. gcd(x, N) = 1). Denote by L = log2 Ne the number of
bits required to represent N and set t = 2L + 1.

Proposition 10.3.7. Let x, N, and L as above.
1. Consider the circuit depicted in figure 10.3 instanciated with U := Ux,N and initialised

with | 0 〉 ⊗ | us 〉 ∈ H⊗t ⊗H⊗n. Measuring in the state of the first register |ψD 〉 =
| s̃/r 〉 provides with an approximation θ of the phase s/r.

2. Applying the CFE algorithm on this approximation determines the order r with large
probability.

3. If the second register of the initialisation vector is set at | 1 〉 ∈ H⊗n, the vector |ΨD 〉
reads 1√

r ∑r−1
s=0 | s̃/r 〉 ⊗ | us 〉.

Proof. 1. When the circuit is initialised with | 0 〉⊗ | us 〉 ∈H⊗t⊗H⊗n, the registers
at position C read

|ΨC 〉 =
1

2t/2

2t−1

∑
k=0

exp
(

2πi
s
r

k
)
| k 〉 ⊗ | us 〉.

We conclude by theorem 10.2.2 that

|ΨD 〉 = (F ∗ ⊗ I)|ΨC 〉 = | s̃/r 〉 ⊗ | us 〉

and measuring in that vector yields s/r with large probability.
2. Since θ is an 2L+ 1-bit approximation of s/r, it follows that |θ− r/s| ≤ 2−2L−1 ≤

1/2r2 because r ≤ N 2L. Hence, by lemma ??, the approximation φ is the con-
tinued fraction expansion of s/r. Therefore, the continued fraction expansion
yields numbers r′ and s′ without common factors verifying s′/r′ = s/r. The
number r′ is a good candidate for ord(x, N). It is effectively the order if xr′ = 1
mod N. And this happens with high probability.

3. The result follows by linearity since | 1 〉 = 1√
r ∑r−1

s=0 | us 〉.

The proposition 10.3.7 guarantees that the algorithm 10.3.8 solves the order finding
problem.

Algorithm 10.3.8. Order finding algorithm (OFA)
Require: Integer N with L bits,

x comprime with N,
precision threshold ε,
t = L + d− log2 εe qubits initialised at | 0 〉,
L qubits initialised at | 1 〉,
implementation of unitary UN,x : H⊗t ⊗H⊗L →H⊗t ⊗H⊗L,
CFE algorithm.
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Ensure: ord(x, N) with probability 1− ε within O(L3) steps.

Act as in figure 10.3 to get state |ψD 〉.
Measure in state |ψD 〉 to get L-bit approximation θ of the phase.
a := [a0; a1, . . . , an]← CFE(θ).
s
r ←

pn(a)
qn(a)

.
if xr mod N = 1 then

return r
else

The algorithm fails.
end if

Let us examine when the algorithm can fail:
— A first possibility is that the algorithm produces an false estimate of the phase

s/r. This can occur with probability less than ε at the expense of a size d− log2 εe
of the circuit.

— A second possibility is that s and r have a common factor. In that case, the ratio
returned by the OFA is an irreducible fraction s′/r′ equal to s/r. In that case, the
value r′ determined by the algorithm is not the true order but only a factor of it.

Suppose that we run the algorithm 10.3.8 twice and let s′1, r′1 and s′2, r′2 be the values
determined by each run. Provided that s′1 and s′2 have no common factor, the true
value r can be determined by taking r = lcm(r′1, r′2). Proposition 10.3.9 minorises the
probability to obtain the correct answer r.

Proposition 10.3.9.

P(r is the correct order ) ≥ 1
4

.

Proof. For two positive integers x and y denote by x|y the fact that x divides y. The
probability that s′ and s′ have no common factor is given by

P(s′ and s′′ have a common factor ) = 1− ∑
p∈ primes

P(p|s′1)P(p|s′2).

Now, if p divides s′1 then it must also divide the value s. To majorise P(p|s′1) it is
enough to majorise P(p|s1) where s1 is chosen uniformly at random in {0, . . . , r −
1}. In that case P(p|s1) = P(s ∈ {p, 2p, . . . , kp}) with kp < r; therefore P(s ∈
{p, 2p, . . . , kp}) ≤ 1

p . Hence

1− ∑
p∈ primes

P(p|s′1)P(p|s′2) ≥ 1− ∑
p∈ primes

1
p2 ≥ 1− ∑

p≥2

1
p2 ≥

1
4

.

Exercise 10.3.10. Show that the lower bound 1/4 in the above proposition can be ar-
bitrarily improved at the expense of several independent repetitions of the procedure.
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10.4 Shor’s factoring algorithm

Shor’s algorithm exploits the algorithmic efficacy of the quantum order finding al-
gorithm to solve the factoring problem within polynomial time.

The algorithm relies on lemmata 10.4.1 and 10.4.2.

Lemma 10.4.1. Let N be a composite number representable within L bits. Suppose that x is
a non-trivial solution to x2 = 1 mod N for x ∈ {1, . . . , N} (i.e. neither x = 1 mod N
nor x = N − 1 mod N = −1 mod N hold). Then at least one of gcd(x − 1, N) and
gcd(x + 1, N) is a non-trivial factor of N (computable within O(L3) steps).

Proof. Since x2 = 1 mod N it follows that N divides x2 − 1 = (x − 1)(x + 1); hence
N must have a common factor with one of the terms x − 1 or x + 1. However, 1 <
x < N − 1 by assumption. Therefore, N cannot be a common factor of either x− 1 or
x + 1. Then at least one of gcd(x− 1, N) and gcd(x + 1, N) is a non-trivial factor of N.
Euclid’s algorithm determines the gcd in O(L3) operations.

Lemma 10.4.2. Let N = pn1
1 . . . pnm

m be the prime factoring of an odd composite integer N and
x a random integer, uniformely chosen in {1, . . . , N− 1} under the condition of being coprime
with N, and r = ord(x, N). Then

P(r is even and xr/2 6= −1 mod N) ≥ 1− 1
2m .

Proof. See [110, §A4.3] for instance.

Shor’s factoring algorithm is summarised in 10.4.3. Its efficiency is estimated by
the number of gates required for modular exponentiation and order finding. Those
tasks can be achieved by using a total of O(L3) gates and this resource requirement
determines also the time complexity of the algorithm.

Algorithm 10.4.3. Shor’s factoring algorithm
Require: Composite integer N with L bits,

OFA.
Ensure: A non-trivial factor of N with probability O(1) within O(L3) steps.

if N is even then
return 2. End.

end if
if N = ab for integers a ≥ 1 and b ≥ 2 then

return a. End.
end if
Randomly choose x ∈ {1, . . . , N − 1}
if f = gcd(x, N) > 1 then

return f . End.
end if
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Use OFA to find r = ord(x, N)
if r is even and xr/2 6= −1 mod N then

f1 = gcd(xr/2 − 1, N) and f2 = gcd(xr/2 + 1, N)
end if
if f1 is a factor then

return f1. End.
end if
if f2 is a factor then

return f2. End.
else

the algorithm fails. End.
end if

10.5 Scalability requirements to implement Shor’s algo-
rithm

Section to be re-written

The naïve resource scaling O(L3) quoted in the previous section presupposes a
flawless functioning of quantum gates. However, this is only an idealisation of the
physical process. Error correction codes are needed in all steps to control the analog
quantum gates.

To factor an L-bit integer N with full fledged — i.e. including error corrections —
Shor’s algorithm, we need (see [15]):

— 5L + 1 qubits,
— 72L3 quantum gates.
A simple numerical application:

L = 4: 21 qubits, 4608 gates,

L = 100: 501 qubits, 7.2× 107 gates,

L = 4096: 20481 qubits, 4.95× 1012 gates.

Shor’s algorithm: — 15 = 3× 5 (k = 4). Factored by using 7 qubits.
— 21 = 3× 7 (k = 5). Factored by using 10 qubits [106].

Optimisation: — 143 = 11 × 13 (with 4 qubits) and 56153 = 233 × 241 (with 4
qubits) [156].

— Foreseen — not yet implemented — factoring of 291311 = 523× 557 with 6
qubits [44].
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11
Algebras of operators

11.1 Introduction and motivation

Let V = Cn, with n ∈N. Elementary linear algebra establishes that the set of linear
mappings L(V) = {T : V→ V : T linear } is a C-vector space of (complex) dimension
n2, isomorphic to Mn(C), the space of n× n matrices with complex coefficients. More-
over, if S, T ∈ L(V), the maps S and T can be composed, their composition T ◦ S being
represented by the corresponding matrix product. Thus, on the vector space L(V), is
defined an internal multiplication

L(V)× L(V) 3 (T, S) 7→ T ◦ S ∈ L(V)

turning this vector space into an algebra.

When the underlying vector space V is of infinite dimension, caution must be paid
on defining linear maps. In general, linear mappings T : V → V, called (linear)
operators, are defined only on some proper subset of V denoted Dom(T) and called
the domain 1 of T. When V is a normed space, there is a natural way to define a norm
on L(V). We denote by B(V) the vector space of bounded linear operators on V, i.e.
linear maps T : V → V such that ‖T‖ < ∞ (equivalently, verifying Dom(T) = V.)
When H is a Hilbert space, bounded linear operators on H, whose set is denoted by
B(H), with operator norm ‖T‖ = sup{‖Tx‖, x ∈ H, ‖x‖ ≤ 1}, share the properties
of linear operators defined on more algebraic setting. Sometimes it is more efficient to
work with explicit representations of operators in B(H) (that play the rôle of matrices
in the infinite dimensional setting) and some others with abstract algebraic setting.

Since all operators encountered in quantum mechanics are linear, we drop hence-
forth the adjective linear.

1. The set Dom(T) is generally a vector subspace of V which is not necessarily topologically closed.
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11.2 Algebra of operators

Definition 11.2.1. An algebra is a set A endowed with three operations:

1. a scalar multiplication C×A 3 (λ, a) 7→ λa ∈ A,

2. a vector addition A×A 3 (a, b) 7→ a + b ∈ A, and

3. a vector multiplication A×A 3 (a, b) 7→ ab ∈ A,

such that A is a vector space with respect to scalar multiplication and vector addition
and a ring (not necessarily commutative) with respect to vector addition and vector
multiplication. Moreover, λ(ab) = (λa)b = a(λb) for all λ ∈ C and all a, b ∈ A. The
algebra is called commutative if ab = ba, for all a, b ∈ A; it is called unital if there exists
(a necessarily unique) element e ∈ A (often also written 1 or 1A) such that ae = ea = a
for all a ∈ A;

A linear map from an algebra A1 to an algebra A2 is a homomorphism if it is a
ring homomorphism for the underlying rings, it is an isomorphism if it is a bijective
homomorphism.

Definition 11.2.2. An involution on an algebra A is a map A 3 a 7→ a∗ ∈ A that
verifies

1. (λa + µb)∗ = λa∗ + µb∗,

2. (ab)∗ = b∗a∗, and

3. (a∗)∗ = a.

Involution is also called adjoint operation and a∗ the adjoint of a. An involutive alge-
bra is termed a ∗-algebra.

An element a ∈ A is said normal if aa∗ = a∗a, an isometry if a∗a = 1, unitary if both
a and a∗ are isometries, self-adjoint or Hermitean if a = a∗. On denoting h : A1 → A2 a
homomorphism between two ∗-algebras, we call it a ∗-homomorphism if it preserves
adjoints, i.e. h(a∗) = h(a)∗.

A normed (respectively Banach) algebra A is an algebra equipped with a norm map
‖ · ‖ : A → R+ that is a normed (respectively Banach) vector space for the norm and
verifies ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. A is normed (respectively Banach) ∗-algebra if
it has an involution verifying ‖a∗‖ = ‖a‖ for all a ∈ A.

Theorem 11.2.3. Let T : H1 →H2 be a linear map between two Hilbert spaces H1 and H2.
Then the following are equivalent:

1. ‖T‖ = sup{‖T f ‖H2 , f ∈H1, ‖ f ‖H1 ≤ 1} < ∞,

2. T is continuous,

3. T is continuous at one point of H1.

Proof: Analogous to the proof of the theorem ?? for linear functional. (Please complete
the proof!) �

/Users/dp/a/ens/iq-algop.tex
2018-07-31 • 13:08:03.

196



Algebras of operators

Notation 11.2.4. We denote by B(H1, H2) the algebra of bounded operators with
respect to the aforementioned norm:

B(H1, H2) = {T ∈ L(H1, H2) : ‖T‖ < ∞}.

When H1 = H2 = H, we write simply B(H).

Proposition 11.2.5. Let H1 and H2 be two Hilbert spaces and T ∈ B(H1, H2). Then, there
exists a unique bounded operator T∗ : H2 →H1 such that

〈 T∗g | f 〉 = 〈 g | T f 〉 for all f ∈H1, g ∈H2.

Proof: For each g ∈ H2, the map H1 3 f 7→ 〈 g | T f 〉H2
∈ C is a continuous (why?)

linear form. By Riesz-Fréchet theorem ??, there exists a unique h ∈ H1 such that
〈 h | f 〉H1

= 〈 g | T f 〉H2
, for all f ∈ H1. Let T∗ : H2 → H1 be defined by the as-

signment T∗g = h; it is obviously linear and easily checked to be bounded (exercise!)
�

Proposition 11.2.6. For all T ∈ B(H1, H2),

1. ‖T∗‖ = ‖T‖,
2. ‖T∗T‖ = ‖T‖2.

Proof:

1. By Cauchy-Schwarz inequality, for all f ∈H2, g ∈H1,

|〈 f | Tg 〉H2
| ≤ ‖ f ‖H2‖Tg‖H2

≤ ‖T‖B(H1,H2)‖g‖H1‖ f ‖H2

so that
‖T‖ ≥ sup{|〈 f | Tg 〉| : ‖g‖ ≤ 1, ‖ f ‖ ≤ 1}.

Conversely, we may assume that ‖T‖ 6= 0, and therefore choose some ε ∈
]0, ‖T‖/2[. Choose now g ∈ H1 with ‖g‖ ≤ 1, such that ‖Tg‖ ≥ ‖T‖ − ε

and f = Tg
‖Tg‖ ∈H2, ‖ f ‖ = 1. For this particular choice of f and g:

|〈 f | Tg 〉H2
| ≥ ‖Tg‖ ≥ ‖T‖ − ε.

Hence,
sup{|〈 f | Tg 〉| : ‖g‖ ≤ 1, ‖ f ‖ ≤ 1} ≥ ‖T‖ − ε.

Since ε is arbitrary, we get ‖T‖ = sup{|〈 f | Tg 〉H2
| : g ∈ H1, f ∈ H2, ‖g‖ ≤

1, ‖ f ‖ ≤ 1}. As 〈 f | Tg 〉 = 〈 T∗ f | g 〉 for all f and g, we get ‖T∗‖ = ‖T‖
2. B(H1, H2) being a normed algebra, ‖T∗T‖ ≤ ‖T∗‖‖T‖ = ‖T‖2. Conversely,

‖T‖2 ≤ sup{|T f ‖ : f ∈H1, ‖ f ‖ ≤ 1}
= sup{|〈 T f | T f 〉| : f ∈H1, ‖ f ‖ ≤ 1}
= sup{|〈 f | T∗T f 〉| : f ∈H1, ‖ f ‖ ≤ 1}
≤ ‖T∗T‖.

�
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11.3. Convergence of sequences of operators

Definition 11.2.7. A C∗-algebra A is an involutive Banach algebra verifying addition-
ally

‖a∗a‖ = ‖a‖2, for all a ∈ A.

Example 11.2.8. Let X be a compact Hausdorff 2 space and

A = { f : X→ C | f continuous} ≡ C(X).

Define

1. C×A 3 (λ, f ) 7→ λ f ∈ A by (λ f )(x) = λ f (x), ∀x ∈ X,

2. A×A 3 ( f , g) 7→ f + g ∈ A by ( f + g)(x) = f (x) + g(x), ∀x ∈ X,

3. A×A 3 ( f , g) 7→ f g ∈ A by ( f g)(x) = f (x)g(x), ∀x ∈ X,

4. A 3 f 7→ f ∗ ∈ A by f ∗(x) = f (x), ∀x ∈ X,

Then A is a unital (specify the unit!) C∗-algebra for the norm ‖ f ‖ = supx∈X | f (x)|.
(Prove it!) The algebra A is moreover commutative.

Example 11.2.9. Let H1 and H2 be two Hilbert spaces. Then B(H1, H2) is a unital
C∗-algebra. In general, this algebra is not commutative.

This example has also a converse, given in theorem 11.5.2, below.

Example 11.2.10. Let X be a compact Hausdorff space. Then

A = C(X) := { f : X→ C, continuous}

equipped with the uniform norm and pointwise multiplication is a unital Banach com-
mutative algebra; further equipped with an involution defined by complex conjuga-
tion, becomes a B∗-algebra.

Example 11.2.11. A = `1(Z), with à compléter.

Example 11.2.12. A = L1(R), with à compléter.

The previous example must not induce the reader to erroneously conclude that
non-unital algebras have natural approximate identities since à compléter.

11.3 Convergence of sequences of operators

11.4 Classes of operators in B(H)

We shall see that any C∗-algebra can be faithfully represented on some Hilbert space
H; the different classes of abstract elements of the algebra, introduced in the previ-
ous section, have a counterpart in the context of this representation. But additionally,
B(H) is a very special C∗-algebra because is closed for the weak operator topology

2. Recall that a topological space is called Hausdorff when every two distinct of its points possess
disjoint neighbourhoods.
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Algebras of operators

(defined in §11.3). This fact endows B(H) with a very rich family of projections allow-
ing to generate 3 back the unital C∗-algebra B(H).

11.4.1 Self-adjoint and positive operators

Definition 11.4.1. An operator T ∈ B(H) is called self-adjoint or Hermitean 4 if
T = T∗. The set of Hermitean operators on H is denoted by Bh(H).

Exercise 11.4.2. The operator T ∈ B(H) is self-adjoint if and only if 〈 f | T f 〉 ∈ R for
all f ∈H. (Hint: use the polarisation equality ??.)

Exercise 11.4.3. If T ∈ B(H) is self-adjoint then ‖T‖ = sup{〈 f | T f 〉, f ∈ H, ‖ f ‖ ≤
1}.

Definition 11.4.4. An operator T ∈ B(H) is called positive if 〈 f | T f 〉 ≥ 0 for all
f ∈ H. Such an operator is necessarily self-adjoint. We denote by B+(H) the set of
positive operators.

Exercise 11.4.5. Show that T ∈ B+(H) if and only if there exists S ∈ B(H) such that
T = S∗S.

11.4.2 Projections

Definition 11.4.6. Let P, P1, P2 ∈ B(H).

1. P is a projection if P2 = P.
2. P is an orthoprojection if is a projection satisfying further P∗ = P.
3. Two orthoprojections P1, P2 ∈ B(H) are orthogonal, denoted P1 ⊥ P2 of their

images are orthogonal subspaces of H (equivalently P1P2 = 0).

Projections are necessarily positive (why?). The set of orhoprojections is denoted
by P(H). All projections considered henceforth will be orthoprojections.

Exercise 11.4.7. (A very important one!) Let (Pn) be a sequence of orthoprojections.
We have already shown that there is a bijection between P(H) and the set of closed
subspaces of H and orthoprojections, given by P(H) 3 P 7→ P(H) ⊂ H, with P(H)
closed.

1. Show that that P(H) is partially ordered, i.e. P1 ≤ P2 if P1(H) subspace of
P2(H) (equivalently P1P2 = P1.)

2. For general orthoprojections P1 and P2, is P1P2 an orthoprojection?
3. Show that P1 and P2 have a least upper bound.
4. Is Q = P1 + . . . + Pn an orthoprojection?
5. Is Q = P2 − P1 an orthoprojection?

3. In some general unital C∗-algebras there are only two trivial projections 0 and 1. Therefore the
situation arising in B(H) is far from being a general property of C∗-algebras.

4. Strictly speaking, the term Hermitean is more general; it applies also to unbounded operators and
it means self-adjoint on a dense domain. The two terms coincide for bounded operators.
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11.4. Classes of operators in B(H)

6. Show that a monotone sequence of orthoprojections converges strongly towards
an orthoprojection.

11.4.3 Unitary operators

Definition 11.4.8. An operator U ∈ B(H) is unitary if U∗U = UU∗ = 1. The set of
unitary operators is denoted by U(H) = {U ∈ B(H) : U∗U = UU∗ = 1} (it is in fact
a group; for H = Cn it is the Lie group denoted by U(n).)

11.4.4 Isometries and partial isometries

Definition 11.4.9. An operator T ∈ B(H1, H2) is an isometry if T∗T = 1 (or equiva-
lently ‖T f ‖ = ‖ f ‖, for all f ∈H1.)

Exercise 11.4.10. Let H = `2(N) and for x = (x1, x2, x3, . . .) ∈ H, define the left and
right shifts by

Lx = (x2, x3, . . .) ∈H,

and
Rx = (0, x1, x2, x3, . . .) ∈H.

1. Show that R∗ = L.

2. Show that R is an isometry.

3. Determine RanR.

This exercise demonstrates that, in infinite dimensional spaces, isometries are not
necessarily surjective.

Theorem 11.4.11. For T ∈ B(H1, H2), the five following conditions are equivalent:

1. (T∗T)2 = T∗T,

2. (TT∗)2 = TT∗,

3. TT∗T = T,

4. T∗TT∗ = T∗,

5. there exist closed subspaces E1 ⊆ H1 and E2 ⊆ H2 such that T = I ◦ S ◦ P where
P : H1 → E1 is a projection, S : E1 → E2 an isometry, and I : E2 →H2 the inclusion
map.

If one (hence all) condition holds then T∗T is the projection H1 → E1 and TT∗ is the projection
H2 → E2. In this situation T is called a partial isometry with initial space E1, initial
projection T∗T, final space E2, and final projection TT∗.

Proof. Exercise! (See [4] or [128].) �

Exercise 11.4.12. Let (Ω,F , P) be a probability space and T : Ω → Ω a measure
preserving transformation i.e. P(T−1B) = P(B) for all B ∈ F . On the Hilbert space
H = L2(Ω,F , P) define U : H→H by U f (ω) = f (T−1ω).
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Algebras of operators

1. Show that U is a partial isometry.

2. Under which condition is U surjective (hence unitary)?

11.4.5 Normal operators

Definition 11.4.13. An operator T ∈ B(H) is normal if T∗T = TT∗ (or equivalently if
‖T∗ f ‖ = ‖T f ‖ for all f ∈H.)

Exercise 11.4.14. A vector f ∈ H \ {0} is called an eigenvector corresponding to an
eigenvalue λ of an operator T ∈ B(H) if T f = λ f for some λ ∈ C. Show that if T is
normal and f1, f2 are eigenvectors corresponding to different eigenvalues then f1 ⊥ f2.
(The proof goes as for the finite dimensional case.)

Exercise 11.4.15. Let M be the multiplication operator on L2[0, 1] defined by M f (t) =
t f (t), t ∈ [0, 1]. Show that

1. M is self-adjoint (hence normal),

2. M has no eigenvectors.

Exercise 11.4.16. Choose some z ∈ C with |z| < 1 and consider ζ ∈ `2(N) given by
ζ = (1, z, z2, z3, . . .). Let L and R be the left and right shifts defined in exercise 11.4.10.

1. Show that R is not normal,

2. compute R∗ζ,

3. conclude that R∗ has uncountably many eigenvalues.

11.5 States on algebras, GNS construction, representations

Paragraphe incomplet.

Definition 11.5.1. Let A be an involutive Banach algebra. A representation on a
Hilbert space H of A is a ∗-homomorphism of A into B(H), i.e. a linear map π :
A→ B(H) such that

1. π(ab) = π(a)π(b), ∀a, b ∈ A,

2. π(a∗) = π(a)∗, ∀a ∈ A,

The space H is called the representation space. We write (π, H), or Hπ if necessary.
Two representations (π1, H1) and (π2, H2) are said to be unitarily equivalent if there
exists an isometry U : H1 → H2 such that for all a ∈ A, it holds Uπ1(a)U∗ = π2(a). If
moreover for every non zero element of A, π(a) 6= 0, then the representation is called
faithful.

Theorem 11.5.2 (Gel’fand-Naïmark). If A is an arbitrary C∗-algebra, there exists a Hilbert
space H and a linear mapping π : A→ B(H) that is a faithful representation of A.

Proof: It can be found in [92, theorem 4.5.6, page 281]. �
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12
Spectral theory in Banach algebras

12.1 Motivation

In linear algebra one often encounters systems of linear equations of the type

T f = g (12.1)

with f , g ∈ Cn and T = (ti,j)i,j=1,...,n a n× n matrix with complex coefficients. Elemen-
tary linear algebra establishes that this system of equations has solutions provided that
the map f 7→ T f is surjective and the solution is unique provided that this map is in-
jective. Thus the system has a unique solution for each g ∈ Cn provided that the map
is bijective, or equivalently the matrix T is invertible. This happens precisely when
det T 6= 0. However, this criterion of invertibility is of limited practical use even for
the elementary (finite-dimensional) case because det is too complicated an object to be
efficiently computed for large n. For infinite dimensional cases, this criterion becomes
totally useless since there is no infinite dimensional analogue of det that discriminates
between invertible and non-invertible operators T (see exercise 12.1.1 below!)

Another general issue connected with the system (12.1) is that of eigenvalues. For
every λ ∈ C, denote by Vλ = { f ∈ Cn : T f = λ f }. For most choices of λ, the subspace
Vλ is the trivial subspace {0}; this subspace is not trivial only when T − λ1 is not
injective (i.e. ker(T − λ1) 6= {0}.) On defining the spectrum of T by

spec(T) = {λ ∈ C : T − λ1 is not invertible },
one easily shows that spec(T) 6= ∅ and card spec(T) ≤ n (why?) Not always the family
(Vλ)λ∈spec(T) spans the whole space Cn. When it does, on decomposing g = g(1) +
. . . + g(k) where g(j) ∈ Vλj and spec(T) = {λ1, . . . , λk}, the solution of (12.1) is given by

f =
g(1)

λ1
+ . . . +

g(k)

λk
.
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12.2. The spectrum of an operator acting on a Banach space

(Notice that λi 6= 0, for all i = 1, . . . , k; why?) When the family (Vλ)λ∈spec(T) does not
span Cn, the problem is more involved but the rôle of the spectrum remains funda-
mental.

A final issue involving the spectrum of T is the functional calculus associated with
T. If p ∈ R[t], this polynomial can be naturally extended on B(H). In fact, if p(t) =
antn + . . . a0 is the expression of the polynomial p; the expression p(T) = anTn + . . . a01

is well defined for all T ∈ B(H). Moreover, if T ∈ Bh(H) then p(T) ∈ Bh(H).
Suppose now that T ∈ Bh(H), m = inf‖ f ‖=1 〈 f | T f 〉, M = sup‖ f ‖=1 〈 f | T f 〉, and
p(t) ≥ 0 for all t ∈ [m, M]; then p(T) ∈ B+(H). Now every f ∈ C[m, M] can be
uniformly approximated by polynomials, i.e. there is a sequence (pl)l∈N, with pl ∈
R[t] such that for all ε > 0, there exists n0 ∈ N such that for l ≥ n0, maxt∈[m,M] | f (t)−
pl(t)| < ε. It is natural then to define f (T) = liml pl(T). However, the computations
involved in the right hand side of this equation can be very complicated. Suppose
henceforth that H = Cn and T is a Hermitean n × n matrix that is diagonalisable,

i.e. T = UDU∗ with D =

λ1
. . .

λn

 and U unitary. Then pl(T) = Upl(D)U∗ and

letting l → ∞ we get f (T) = U f (D)U∗. Thus, if T is diagonalisable, the computation of
f (T) is equivalent to the knowledge of f (t) for t ∈ spec(T). For the infinite dimensional
case, the problem is more involved but again the spectrum remains fundamental.

The rest of this chapter, based on [4], is devoted to the appropriate generalisation
of the spectrum for infinite dimensional operators.

Exercise 12.1.1. (Infinite-dimensional determinant) Let H = `2(N) and (tn)n∈N be
a fixed numerical sequence. Suppose that there exist constants K1, K2 > 0 such that
0 < K1 ≤ tn ≤ K2 < ∞ for all n ∈N. For every x ∈ `2(N) define (Tx)n = tnxn, n ∈N.

1. Show that T ∈ B(H).
2. Exhibit a bounded operator S on H such that ST = TS = 1.
3. Assume henceforth that (tn)n∈N is a monotone sequence. Let ∆n(T) = t1 · · · tn.

Show that ∆n(T) converges to a non-zero limit ∆(T) if and only if ∑n(1− tn) <
∞.

4. Any plausible generalisation, δ, of det in the infinite dimensional setting should
verify δ(1) = 1, δ(AB) = δ(A)δ(B), and if T is diagonal δ(T) = ∆(T). Choos-
ing tn = n

n+1 , for n ∈ N, conclude that although T is diagonal and invertible,
nevetheless has δ(T) = 0.

12.2 The spectrum of an operator acting on a Banach space

Let V be a C-Banach space. Denote by B(V) the set of bounded operators T : V→
V. This space is itself a unital Banach algebra for the induced operator norm.

Exercise 12.2.1. If X and Y are metric spaces and dX and dY denote their respective
metrics
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1. verify that

dp((x1, y1), (x2, y2)) = (dX(x1, x2)
p + dY(y1, y2)

p)1/p,

with p ∈ [1, ∞[ and

d∞((x1, y1), (x2, y2)) = max(dX(x1, x2), dY(y1, y2))

are metrics on X×Y; (the corresponding metric space (X×Y, dp), p ∈ [1, ∞] is
denoted 1 X⊕Y)

2. show that the sequence (xn, yn)n in X×Y converges to a point (ξ , ψ) ∈ X×Y

with respect to any of the metrics dp if and only if dX(xn, ξ)→ 0 and dY(yn, ψ)→
0.

Exercise 12.2.2. Let X and Y be metric spaces and f : X → Y be a continuous map.
We denote by

Γ( f ) = {(x, f (x)) : x ∈ X}

the graph of f . Show that Γ( f ) is closed (i.e. if (xn)n is a sequence in X and if there
exists (x, y) ∈ X×Y such that xn → x and f (xn)→ y, then necessarily y = f (x).)

Exercise 12.2.3. (The closed graph theorem) Suppose X and Y are Banach spaces and
T : X→ Y a linear map having closed graph. Show that T is continuous.

Theorem 12.2.4. For every T ∈ B(V), the following are equivalent:

1. for every y ∈ V there is a unique x ∈ V such that Tx = y,

2. there is an operator S ∈ B(V) such that ST = TS = 1.

Proof: Only the part 1⇒ 2 is not trivial to show. Condition 1 implies that T is invertible;
call S its inverse. The only thing to show is the boundedness of S. As a subset of V⊕V,
the graph of S is related to the graph of T. In fact

Γ(S) = {(y, Sy) : y ∈ V} = {(Tx, x), x ∈ V}.

Now T is bounded, hence continuous, so that that the set {(Tx, x), x ∈ V} is closed
(see exercise 12.2.2.) Thus the graph of S is closed, and by the closed graph theorem
(see exercise 12.2.3), S is continuous hence bounded. �

Definition 12.2.5. Let T ∈ B(V) where V is a Banach space.

1. T is called invertible if there exists an operator S ∈ B(V) such that ST = TS =
1.

2. The spectrum of T, denoted by spec(T), is defined by

spec(T) = {λ ∈ C : T − λ1 is not invertible}.

3. The resolvent set of T, denoted by Res(T), is defined by

Res(T) = C \ spec(T).
1. more precisely X⊕`p Y.

/Users/dp/a/ens/iq-sptba.tex
2017-10-16 • 11:23:53.

205



12.3. The spectrum of an element of a Banach algebra

Notice that in finite dimension, invertibility of an operator R reduces essentially to
injectivity of R since surjectivity of R can be trivially verified if we reduce the space V
into Ran(R). In infinite dimension, several things can go wrong: of course injectivity
may fail as in finite dimension; but a new phenomenon can appear when Ran(R) is not
closed: in this latter case, Ran(R) can further be dense in V or fail to be dense in V. All
these situations may occur and correspond to different types of sub-spectra.

Definition 12.2.6. Let T ∈ B(V) where V is a Banach space.

1. The point spectrum of T is defined by

specp(T) = {λ ∈ C : T − λ1 is not injective}.

Every λ ∈ specp(T) is called an eigenvalue of T.

2. The continuous spectrum, specc(T), of T is defined as the set of complex values
λ such that T− λ1 is injective but not surjective and Ran(T− λ1) is dense in V.

3. The residual spectrum, specr(T), of T is defined as the complex values λ such
that T − λ1 is injective but not surjective and Ran(T − λ1) is not dense in V.

Example 12.2.7. Let V be a finite dimensional Banach space and T : V → V a lin-
ear transformation (hence bounded.) Since dim ker(T − λ1) + dimRan(T − λ1) =
dim V, it follows that T − λ1 is injective if and only if Ran(T − λ1) = V. There-
fore specr(T) = ∅. Further, if T − λ1 is injective, then it has an inverse on V. Since
any linear transformation of a finite dimensional space is continuous, it follows that
(T − λ1)−1 is continuous, hence specc(T) = ∅. Therefore, in finite dimension we al-
ways have spec(T) = specp(T).

Exercise 12.2.8. Let V = `2(N) and consider the right shift, R, on V.

1. Show that R− λ1 is injective for all λ ∈ C. Conclude that specp(R) = ∅.
2. Show that for |λ| > 1, Ran(R− λ1) = V. Conclude that all λ ∈ C with |λ| > 1

belong to Res(R).
3. For |λ| < 1, show that Ran(R−λ1) is orthogonal to the vector Λ = (1, λ, λ2, . . .).

Show that for |λ| < 1, Ran(R− λ1) = {y ∈ V : y ⊥ Λ}. Conclude that all λ ∈ C

with |λ| < 1 belong to specr(R).
4. The case |λ| = 1 is the most difficult. Try to show that Ran(R− λ1) is dense in

V so that the unit circle coincides with specc(R).

12.3 The spectrum of an element of a Banach algebra

In the previous section we studied spectra of bounded operators acting on Banach
spaces. They form a Banach algebra with unit. Spectral theory can be established also
abstractly on Banach algebras. Before stating spectral properties, it is instructive to
give some more examples.

Example 12.3.1. Let Cc(R) be the set of continuous functions on R which vanish out-
side a bounded interval; it is a normed vector space (with respect to the L1 norm for
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instance; its completion is the Banach space L1(R, λ), where λ stands for the Lebesgue
measure.) A product can be defined by the convolution

f ? g(x) =
ˆ

R

f (y)g(x− y)λ(dy)

turning this space into a commutative Banach algebra. This algebra is not unital (this
can be seen by solving the equation f ? f = f in L1), but it has an approximate unit (i.e.
a sequence ( fn)n of integrable functions with ‖ fn‖ = 1 for all n and such that for all
g ∈ L1(R), ‖g ? fn − g‖ → 0. (Give an explicit example of such an approximate unit!)

Example 12.3.2. The algebra Mn(C) is a unital non-commutative algebra. There are
many norms that turn it into a finite-dimensional Banach algebra, for instance:

1. ‖A‖ = ∑n
i,j=1 |ai,j|

2. ‖A‖ = sup‖x‖≤1
‖Ax‖
‖x‖ .

Definition 12.3.3. Let A be a unital Banach algebra. (We can always assume that
‖1‖ = 1, may be after re-norming the elements of A.) An element a ∈ A is called
invertible if there is an element b ∈ A such that ab = ba = 1. The set of all invertible
elements of A is denoted by GL(A) and called the general linear group of invertible
elements of A.

Theorem 12.3.4. Let A be a unital Banach algebra. If a ∈ A and ‖a‖ < 1 then 1− a is
invertible and

(1− a)−1 =
∞

∑
n=0

an.

Moreover,

‖(1− a)−1‖ ≤ 1
1− ‖a‖

and
‖1− (1− a)−1‖ ≤ ‖a‖

1− ‖a‖ .

Proof: Since ‖an‖ ≤ ‖a‖n for all n, we can define b ∈ A as the sum of the absolutely
convergent series b = ∑∞

n=0 an. Moreover, b(1− a) = (1− a)b = limN→∞ ∑N
n=0 bn =

limN→∞(1− bN+1) = 1. Hence 1− a is invertible and (1− a)−1 = b. The first ma-
jorisation holds because ‖b‖ ≤ ∑∞

n=0 ‖a‖n = 1
1−‖a‖ . The second one follows from

remarking that 1− b = −∑∞
n=1 an = −ab, hence ‖1− b‖ ≤ ‖a‖‖b‖. �

Exercise 12.3.5. 1. Prove that GL(A) is an open set in A and that the mapping a 7→
a−1 is continuous on GL(A).

2. Justify the term “general linear group” of invertible elements, i.e. show that
GL(A) is a topological group in the relative norm topology.

Definition 12.3.6. Let A be a unital Banach algebra. For every a ∈ A, the spectrum of
a is the set

spec(a) = {λ ∈ C : a− λ1 6∈ GL(A)}.

In the rest of this section, A will be a unital algebra and we shall write a− λ instead
of a− λ1.
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Proposition 12.3.7. For every a ∈ A, the set spec(a) is a closed subset of the disk {λ ∈ C :
|λ| ≤ ‖a‖}.

Proof: Consider the resolvent set

Res(a) = {λ ∈ C : a− λ ∈ GL(A)} = C \ spec(a).

Since the set GL(A) is open (see exercise 12.3.5) and the map C 3 λ 7→ a − λ ∈ A
continuous, the set Res(a) is open hence the set spec(a) is closed. Moreover, if |λ| >
‖a‖, on writing a− λ = (−λ)[1− a/λ] and remarking that ‖a/λ‖ < 1, we conclude
that a− λ ∈ GL(A). �

Theorem 12.3.8. For every a ∈ A, the set spec(a) is non-empty.

Proof: Fix some λ0 ∈ Res(a). Since Res(a) is open, there is a small neighbourhood V≥
of λ0 contained in Res(a). The A-valued function λ 7→ (a− λ)−1 is well defined for all
λ ∈ V≥′ . Moreover, for λ, λ0 ∈ Res(a),

(a− λ)−1 − (a− λ0)
−1 = (a− λ)−1[(a− λ0)− (a− λ)](a− λ0)

−1

= (λ− λ0)(a− λ)−1(a− λ0)
−1.

Thus

lim
λ→λ0

1
λ− λ0

[(a− λ)− (a− λ0)] = (a− λ0)
−2.

Assume now that spec(a) = ∅ and choose an arbitrary bounded linear functional
φ : A→ C. Then, the scalar function f : C→ C defined by λ 7→ f (λ) = φ((a−λ)−1) is
defined on the whole C. By linearity, the function f has everywhere a complex deriva-
tive, satisfying f ′(λ) = φ((a− λ)−2). Thus f is an entire function. Notice moreover
that f is bounded and for |λ| > ‖a‖, by theorem 12.3.4,

‖(a− λ)−1‖ =
‖(1− a/λ)−1‖

|λ|

≤ 1
|λ|(1− ‖a‖/|λ|)

=
1

|λ| − ‖a‖ .

Thus limλ→∞ f (λ) = 0 and since this function is bounded and entire, by Liouville’s
theorem (see [? ] for instance), it is constant, hence f (λ) = 0 for all λ ∈ C and every
linear functional φ. The Hahn-Banach theorem implies then that (a− λ)−1 = 0 for all
λ ∈ C. But this is absurd because (a− λ) is invertible and 1 6= 0 in A. �

Definition 12.3.9. For every a ∈ A, the spectral radius of a is defined by r(a) =
sup{|λ| : λ ∈ spec(a)}.

Exercise 12.3.10. 1. Let p ∈ R[t] and a ∈ A. Show that p(spec(a)) ⊆ spec(p(a)).
(Hint: if λ ∈ spec(a), the map λ′ 7→ p(λ′)− p(λ) is a polynomial vanishing at
λ′ = λ. Conclude that p(a)− p(λ) cannot be invertible.)

2. For every a ∈ A show that r(a) = limn→∞ ‖an‖1/n.
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12.4 Relation between diagonalisability and the spectrum

Motivated again by elementary linear algebra, we recall that a self-adjoint n× n ma-

trix T can be diagonalised, i.e. it is possible to find a diagonal matrix D =

d1
. . .

dn


and a unitary matrix U such that T = UDU∗; we have then spec(T) = {d1, . . . , dn}. We
shall generalise this result to infinite dimensional spaces.

An orthonormal basis for H is a sequence E = (e1, e2, . . .) of mutually orthogonal
unit vectors of H such that 2 spanE = H. On fixing such a basis, we define a unitary
operator U : `2(N)→H by

U f = ∑
i∈N

fiei

for f = ( f1, f2, . . .). Specifying a particular orthonormal basis in H is equivalent to
specifying a particular unitary operator U. Suppose now that T ∈ B(H) is a normal
operator and admits the basis vectors of E as eigenvectors, i.e. Tek = tkrk, tk ∈ C, k ∈N.
Then t = (tk)k ∈ `∞(N) and U∗TU = M where M is the multiplication operator
defined by (M f )k = (U∗TU f )k = (U−1TU f )k = (U−1T ∑i fiei)k = fktk. Thus an
operator T on H is diagonalisable in a given basis E if the unitary operator associated
with E implements an equivalence between T and a multiplication operator M acting
on `2(N). This notion is still inadequate since it involves only normal operators with
pure point spectrum; it can nevertheless be appropriately generalised.

Definition 12.4.1. An operator T acting on a Hilbert space H is said diagonalisable
if there exist a (necessarily separable) σ-finite measure space (Ω,F , µ), a function m ∈
L∞(Ω,F , µ), and a unitary operator U : L2(Ω,F , µ)→H such that

UMm = TU

where Mm denotes the multiplication operator by m, defined by Mm f (ω) = m(ω) f (ω),
for all ω ∈ Ω and all f ∈ L2(Ω,F , µ)

Example 12.4.2. Let H = L2([0, 1]) and T : H → H defined by T f (t) = t f (t), for
t ∈ [0, 1] and f ∈H. This operator is diagonalisable since it is already a multiplication
operator.

Notice that a diagonalisable operator is always normal because the multiplication
operator is normal. The following theorem asserts the converse.

Theorem 12.4.3. Every normal operator acting on a Hilbert space is diagonalisable.

Proof: Long but without any particular difficulty; it can be found in [4], pp. 52–55. �

Le reste du chapitre doit être re-écrit.

2. Recall that H is always considered separable.
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12.5. Spectral measures and functional calculus

12.5 Spectral measures and functional calculus

Recall the example 2.3.3. In the non-commutative setting, the analogue of a bounded,
real-valued, measurable function is a bounded Hermitean operator on H. Idempo-
tence, characterising indicators in the commutative case, is verified by projections be-
longing to P(H). Hence, we are seeking approximations of bounded Hermitean op-
erators by complex finite combinations of projections. Now we can turn into precise
definitions.

Definition 12.5.1. Let (X,F ) be a measurable space and H a Hilbert space. A function
P : F → P(H) is called a spectral measure on (X,F ) if

1. P(X) = 1,
2. if (Fn)n∈N is a sequence of disjoint elements in F , then

P(tn∈NFn) = ∑
n∈N

P(Fn).

Example 12.5.2. Let (X,F , µ) be a probability space and H = L2(X,F , µ). Then the
mapping F 3 F 7→ P(F) ∈ P(H), defined by P(F) f = 1F f for all f ∈ H, is a spectral
measure.

Exercise 12.5.3. If P is a spectral measure on (X,F ), then P(∅) = 0 and P is finitely
disjointly additive.

Theorem 12.5.4. Let (X,F ) be a measurable space and H a Hilbert space. If P is a finitely
disjointly additive function F → P(H) such that P(X) = 1 then (for F, G ∈ F )

1. P is monotone: F ⊆ G ⇒ P(F) ≤ P(G),
2. P is subtractive: F ⊆ G ⇒ P(G \ F) = P(G)− P(F),
3. P is modular: P(F ∪ G) + P(F ∩ G) = P(F) + P(G),
4. P is multiplicative: P(F ∩ G) = P(F)P(G).

Proof. 1. The statement is immediate by noticing that F ⊆ G ⇒ G = F t (G \ F).
2. The same remark holds.
3. Since F ∪ G = (F \ G) t (F ∩ G) t (G \ F) we have:

P(F ∪ G) + P(F ∩ G) = [P(F \ G) + P(F ∩ G)] + [P(G \ F) + P(G ∩ F)]
= P(F) + P(G).

4. By 1.
P(F ∩ G) ≤ P(F) ≤ P(F ∪ G). (∗)

Multiplying the first inequality of (*) by P(F∩G), we get P(F∩G) ≤ P(F)P(F∩
G) and since P(F) ≤ 1, the right hand side of the latter inequality is bounded
further by P(F ∩ G). Hence P(F)P(F ∩ G) = P(F ∩ G). Similarly, multiply-
ing the second inequality of (*) by P(F) and since again P(F ∪ G) ≤ 1, we get
P(F)P(F ∪ G) = P(F). Adding the thus obtained equalities, we get:

P(F)[P(F ∪ G) + P(F ∩ G)] = P(F ∩ G) + P(F)

and we conclude by modularity.
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Exercise 12.5.5. Show that for all F, G ∈ F ,

1. P(F) is an orthoprojection, and
2. we have [P(F), P(G)] = 0.

Theorem 12.5.6. Let (X,X ) be a measurable space and H a Hilbert space. A map P : F →
P(H) is a spectral measure if and only if

1. P(X) = 1, and
2. for all f , g ∈H, the set function µ f ,g : F → C, defined by

µ f ,g(F) = 〈 f | P(F)g 〉, F ∈ F ,

is countably additive.

Proof. (⇒): If P is a spectral measure, then statements 1 and 2 hold trivially.
(⇐): Suppose, conversely, that 1 and 2 hold. If F ∩ G = ∅ then 〈 f | P(F ∪ G)g 〉 =
〈 f | P(F)g 〉+ 〈 f | P(G)g 〉 = 〈 f | [P(F) + P(G)]g 〉, hence P is finitely additive
(hence multiplicative). Let now (Fn)n be a sequence of disjoint sets in F . Mul-
tiplicativity of P implies (P(Fn))n is a sequence of orthogonal projections and
hence (P(Fn)g)n a sequence of orthogonal vectors for any g ∈H. Let F = ∪nFn.
Hence, for all f , g ∈ H, we have: 〈 f | P(F)g 〉 = 〈 f | ∑n P(Fn)g 〉, due to the
countable additivity property of µ f ,g. We are tempted to conclude that P(F) =
∑n P(Fn). Yet, it may happen that ∑n P(Fn) does not make any sense because
weak convergence does not imply convergence in the operator norm. However,
∑n ‖P(Fn)g‖2 = ∑n 〈 g | P(Fn)g 〉 = 〈 g | P(F)g 〉 = ‖P(F)g‖2. It follows that
the sequence (P( fn)g)n is summable. If we write ∑n P( fn)g = Tg, it defines a
bounded operator T coinciding with P(F).

Notation 12.5.7. Let (X,F ) be a measurable space and F : X → C. We denote by
‖F‖ ≡ sup{|F(x)| : x ∈ X}, and B(X) = {F : X→ C |measurable, ‖F‖ < ∞}.

Henceforth, the Hilbert space H will be fixed and B(H) (respectively P(H)) will
denote as usual the set of bounded operators (respectively projections) on H.

Theorem 12.5.8. Let (X,F ) be a measurable space and H a Hilbert space. If P is a spectral
measure on (X,F ) and F ∈ B(X), then there exists a unique operator TF ∈ B(H) such that

〈 f | TFg 〉 =
ˆ

X

F(x)〈 f | P(dx)g 〉,

for all f , g ∈H. We write TF =
´

X
F(x)P(dx).

Proof: The boundedness of F implies that the right hand side of the integral gives rise
to a well-defined sesquilinear functional φ( f , g) =

´
X

F(x)〈 f | P(dx)g 〉, for f , g ∈
H. Moreover, |φ( f , f )| ≤

´
X
|F(x)|‖P(dx) f ‖2 ≤ ‖F‖‖ f ‖2, hence the functional φ is

bounded. Existence and uniqueness of TF follows from the Riesz-Fréchet theorem. �
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Theorem 12.5.9 (Spectral decomposition theorem). If T ∈ Bh(H) then there exists a
spectral measure on (C,B(C)), supported by spec(T) ⊆ R, such that

T =

ˆ
spec(T)

λP(dλ).

Proof. Let p ∈ R[t] and f , g ∈ H be two arbitrary vectors. Denote by L f ,g(p) =
〈 f | p(T)g 〉. Then |L f ,g(p)| ≤ ‖p(T)‖‖ f ‖‖g‖ and since p(T) ∈ B(H) we have also
‖p(T)‖ = sup{|p(λ)| : λ ∈ spec(T)} (exercise!). Since spec(T) is a bounded set,
‖p(T)‖ < ∞ for all p ∈ R[t]. Hence the linear functional L f ,g is a bounded linear
functional on R[t]. By Riesz-Fréchet theorem, there exists consequently a unique com-
plex measure µ f ,g, supported by spec(T), such that

L f ,g(p) ≡ 〈 f | p(T)g 〉 =
ˆ
spec(T)

p(λ)µ f ,g(dλ),

for all p ∈ R[t], verifying |µ f ,g(B)| ≤ ‖ f ‖‖g‖, for all B ∈ B(C). Using the unique-
ness of µ f ,g, it is immediate to show that for every B ∈ B(C), SB( f , g) = µ f ,g(B)
is a sesquilinear form. Now, |SB( f , g)| = |µ f ,g(B)| ≤ ‖ f ‖‖g‖, for all B. Hence
the sesquilinear form is bounded; therefore, there exists an operator P(B) ∈ Bh(H)
such that SB( f , g) = 〈 f | P(B)g 〉 for all f , g ∈ H. Recall that neither µ f ,g, nor SB,
nor P depend on the initially chosen polynomial p. Choosing p0(λ) = 1, we get´
spec(T) 〈 f | P(dλ)g 〉 = 〈 f | P(spec(T))g 〉 = 〈 f | g 〉 and choosing p1(λ) = λ, we get´
spec(T) 〈 f | λP(dλ)g 〉 = 〈 f | Tg 〉, for all f , g ∈ H. To complete the proof, it remains to

show that P is a projection-valued measure. It is enough to show the multiplicativity
property. For any fixed pair f , g ∈ H and any fixed real polynomial q, introduce the
auxiliary complex measure ν(B) =

´
B q(λ)〈 f | P(dλ)g 〉, with B ∈ B(C). For every real

polynomial p, we haveˆ
p(λ)ν(dλ) =

ˆ
p(λ)q(λ)〈 f | P(dλ)g 〉

= 〈 f | p(T)q(T)g 〉
= 〈 q(T) f | p(T)g 〉 (recall that [p(T), q(T)] = 0)

=

ˆ
p(λ)〈 q(T) f | P(dλ)g 〉.

Therefore,

ν(B) =

ˆ
q(λ)1B(λ)〈 f | P(dλ)g 〉

= 〈 q(T) f | P(B)g 〉
= 〈 f | q(T)P(B)g 〉

=

ˆ
q(λ)〈 f | P(dλ)P(B)g 〉.

Since q is arbitrary,

〈 f | P(B ∩ C)g 〉 =

ˆ
C
〈 f | P(dλ)P(B)g 〉

= 〈 f | P(B)P(C)g 〉,

and since f , g ∈H are arbitrary, we get P(B ∩ C) = P(B)P(C).
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Theorem 12.5.10. If T is a normal operator in B(H), then there exists a necessarily unique
complex spectral measure on (C,B(C)), supported by spec(T), such that

T =

ˆ
spec(T)

λP(dλ).

Proof: Exercise! (Hint: T = T1 + iT2 with T1, T2 ∈ Bh(H).) �

12.6 Some basic notions on unbounded operators

The operators arising in quantum mechanics are very often unbounded.

Definition 12.6.1. Let H be a Hilbert space. An operator on H, possibly unbounded,
is a pair (Dom(T), T) where Dom(T) ⊆ H is a linear manifold and T : Dom(T)→ H is
a linear map. The set of operators on H is denoted L(H).

The graph of an operator T ∈ L(H) is the linear sub-manifold of H⊕H of the form

Γ(T) = {(( f , T f ) ∈H×H : f ∈ Dom(T)}.

The operator T is closed if Γ(T) is closed. The operator T is closable if there exists
T̂ ∈ L(H) such that Γ(T̂) = Γ(T) in H⊕H. Such an operator is unique and is called
the closure of T. An operator T is said densely defined if Dom(T) = H.

If T1, T2 ∈ L(H) with Dom(T1) ⊆ Dom(T2) and T1 f = T2 f for all f ∈ Dom(T1),
then T2 is called an extension of T1 and T1 the restriction of T2 on Dom(T1); we write
T1 ⊆ T2. If T is bounded on its domain and Dom(T) = H, then T can be extended by
continuity on the whole space.

The definitions of null space and range are also modified for unbounded operators:

ker(T) = { f ∈ Dom(T) : T f = 0}
Ran(T) = {T f ∈H : f ∈ Dom(T)}.

The operator T is invertible if ker(T) = {0} and its inverse, T−1 is the operator defined
on Dom(T−1) = Ran(T) by T−1(T f ) = f for all f ∈ Dom(T).

If T1, T2 ∈ L(H), then T1 + T2 is defined on Dom(T1 + T2) = Dom(T1)∩Dom(T2) by
(T1 + T2) f = T1 f + T2 f . Similarly, the product T1T2 is defined on Dom(T1T2) = { f ∈
Dom(T2) : T2 ∈ Dom(T1)} by (T1T2) f = T2(T1 f ).

Definition 12.6.2. Suppose that T is densely defined. Then T is the adjoint operator
with Dom(T∗) = {g ∈H : sup |〈 g | T f 〉| < ∞, f ∈ Dom(T), ‖ f ‖ = 1}; since Dom(T) =
H, by Riesz theorem, there exists a unique g∗ ∈H such that 〈 g∗ | f 〉 = 〈 g | T f 〉 for all
f ∈ Dom(T). We define then T∗g = g∗.

Example 12.6.3. (The position operator) Let (Ω,F , µ) be any separable, σ-finite mea-
sure space, H = L2(Ω,F , µ; C), and f ∈H measurable. Let T ∈ L(H) be the operator

/Users/dp/a/ens/iq-sptba.tex
2017-10-16 • 11:23:53.

213



12.6. Some basic notions on unbounded operators

defined by Dom(T) = {g ∈ H :
´
(1 + | f |2)|g|2dµ < ∞} and Tg(ω) = f (ω)g(ω) for

g ∈ Dom(T) and ω ∈ Ω. Then T is closed, densely defined, with Dom(T∗) = Dom(T)
and T∗g(ω) = f (ω)g(ω). When Ω = R, F = B(R), and µ is the Lebesque mea-
sure, we say that T is the position operator (usually denoted by q); it is obviously
self-adjoint.

Example 12.6.4. (The momentum operator) Let H = L2(R). A function u : R → R is
called absolutely continuous, (a.c.) if there exists a function v : R→ R such that

u(b)− u(a) =
ˆ b

a
v(x)dx, for all a < b.

In such a case, we write u′ = v, u′ is called the derivative of u. The function v is
determined almost everywhere. Define now T ∈ L(H) on

Dom(T) = { f ∈H : f a.c.,
ˆ
(| f |2 + | f ′|2)dx < ∞}

by T f = f ′. Then T is a closed, densely defined operator with T∗ = −iT. The operator
−iT (usually denoted by p) is called the momentum operator.

Exercise 12.6.5. Let q be the position operator, p the momentum operator. Show that
[q, p] ⊆ i1.

Exercise 12.6.6. (Heisenberg’s uncertainty principle) Denote by S(R) the so called
Schwartz 3 space of indefinitely differentiable functions of rapid decrease 4 If f ∈ S(R),
denote by f̂ its Fourier transform f̂ (ξ) =

´
R

f (x) exp(−iξx)dx. Let p : S(R) → S(R)
be defined by p f = −i f ′ and q : S(R)→ S(R) by q f (x) = x f (x), for all x ∈ R.

1. Show that [q, p] = i1.
2. If 〈 · | · 〉 denotes the L2 scalar product on S(R), show that

|〈 f | f 〉| ≤ 2‖p f ‖2‖q f ‖2.

3. Conclude that for any f ∈ S(R),

‖ f ‖2 ≤ 4π‖x f ‖L2(R)‖ξ f̂ ‖L2(R̂).

4. Below are depicted the graphs of pairs | f (x)|2 and | f̂ (ξ)|2, chosen among a class
of Gaussian functions, for different values of some parameter. How do you
interpret these results?

3. Named after Laurent Schwartz 1915–2004, French mathematician; has been awarded the Fields
Medal in 1950 for his work on the theory of distributions conceived to give a precise meaning to the
Dirac’s “delta function” and its derivatives. The (class of tempered) distributions are constructed as
topological duals of S(R).

4. S(R) = { f ∈ C∞(R) : ∀n ∈ N, ∀α ≥ 0, ∃Kα,n < ∞, s.t. supx∈R |xα f (n)(x)| ≤ Kα,n}. Typical
examples of such functions are functions of the form f (x) = xβ exp(−x2), for some β > 0.
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13
Propositional calculus and quantum

formalism based on quantum logic

Phenomenology is an essential step in constructing physical theories. Phenomeno-
logical results are of the following type: if a physical system is subject to conditions
A, B, C, . . ., then the effects X, Y, Z, . . . are observed. We further introduced yes-no ex-
periments consisting in measuring questions in given states. However, there may exist
questions that depend on other questions and hold independently of the state in which
they are measured. More precisely, suppose for instance that QA denotes the question:
“does the physical particle lie in A, for some A ∈ B(R3)?” Let now B ⊇ A be another
Borel set in R3. Whenever QA is true (i.e. for every state for which QA is true) QB is
necessarily true. This remark defines a natural order relation in the set of questions.
Considering questions on given physical system more abstractly, as a logical proposi-
tions, it is interesting to study first the abstract properties of a partially ordered set of
propositions. This abstract setting allows the statement of the basic axioms for classical
or quantum systems on an equal footing.

13.1 Lattice of propositions

Let Λ be a set of propositions and for any two propositions a and b, denote by a ≤ b
the implication “whenever a is true, it follows that b is true”

Definition 13.1.1. The pair (Λ,≤) is a partially ordered set (poset) if the relation ≤
is a partial order (i.e. a reflexive, transitive, and antisymmetric binary operation). For
a, b ∈ Λ, we say that u is a least upper bound if

1. a ≤ u and b ≤ u,
2. if a ≤ v and b ≤ v for some v ∈ Λ, then u ≤ v.
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If a least upper bound of two elements a and b exists, then it is unique and denoted by
sup(a, b) ∈ Λ,

Definition 13.1.2. A lattice is a set Λ with two binary operations, denoted respectively
by ∨ (’join’) and ∧ (’meet’), and two constants 0 ∈ Λ and 1 ∈ Λ, satisfying, for all
a, b, c ∈ Λ the following properties:

1. idempotence: a ∧ a = a = a ∨ a,

2. commutativity: a ∧ b = b ∧ a and a ∨ b = v ∨ a,

3. associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c,

4. identity: a ∧ 1 = a and a ∨ 0 = a,

5. absorption: a ∧ (a ∨ b) = a = a ∨ (a ∧ b).

Theorem 13.1.3. Let (Λ,≤) be a poset. Suppose that

1. Λ has a least element 0 and a greatest element 1, i.e. for all a ∈ Λ, we have 0 ≤ a ≤ 1,

2. any two elements a, b ∈ Λ have a least upper bound in Λ, denoted by a ∨ b, and a
greatest lower bound in Λ, denoted by a ∧ b. Then (Λ,∧,∨, 0, 1) is a lattice.

Conversely, if (Λ,∧,∨, 0, 1) is a lattice, then, on defining a ≤ b whenever a ∧ b = a, the pair
(Λ,≤) is a poset verifying properties 1 and 2 of definition 13.1.1

Proof: : Exercise! �

Definition 13.1.4. A lattice (Λ,∧,∨, 0, 1) is called distributive if it verifies, for all
a, b, c ∈ Λ,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

and
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Remark 13.1.5. A finite lattice (or finite poset) can be represented by its Hasse diagram
in the plane. The points of the lattice are represented by points in the plane arranged so
that if a ≤ b then the representative of b lies higher in the plane than the representative
of a. We join the representatives of a and b by a segment when b covers a, i.e. when
a ≤ b but there is no c ∈ Λ such that a < c < b.

Example 13.1.6. Let S be a finite set and P(S) the collection of its subsets. Then
(P(S),⊆) is a poset, equivalent to the lattice (P(S),∩,∪, ∅, S), called the lattice of
subsets of S. This lattice is distributive. For the particular choice S = {1, 2, 3} its
Hasse diagram is depicted in figure 13.1.

Exercise 13.1.7. Let V = R2 (viewed as a R-vector space) and E1, E2, E3 be three dis-
tinct one-dimensional subspaces of V. Denote by ≤ the order relation “be a vector
subspace of”. Show that there is a finite set S of vector subspaces of V containing
E1, E2, and E3 such that (S,≤) is a lattice. Is this lattice distributive?

In any lattice Λ, a complement of a ∈ Λ is an element a′ ∈ Λ such that a ∧ a′ = 0
and a ∨ a′ = 1. Complements may fail to exist and they may be not unique. However,
in a distributive lattice, any element has at most one complement.

Definition 13.1.8. A Boolean algebra is a complemented distributive lattice (i.e. a
distributive lattice in which any element has a — necessarily unique — complement.)
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{ }

{1}
{2}

{3}

{1, 2}
{1, 3}

{2, 3}

{1, 2, 3}

Figure 13.1 – The Hasse diagram of the lattice of subsets of the set {1, 2, 3}.

When the lattice Λ is infinite, one can consider infinite subsets F ⊆ Λ. When both
∧a∈Fa and ∨a∈Fa exist (in Λ) for any countable subset F, the lattice is called σ-complete.
A Boolean σ-algebra is a Boolean algebra that is σ-complete.

Definition 13.1.9. A lattice Λ is called modular if it satisfies the modularity condition:

a ≤ c⇒ ∀b ∈ Λ, a ∨ (b ∧ c) = (a ∨ b) ∧ c.

If Λ is a modular and complemented lattice then, for every complement a′ of a, the
modularity condition reads

a ≤ b⇒ b = a ∨ (a′ ∧ b).

If the complement of a is an orthocomplement, then the complemented modular lattice
is called orthomodular.

Example 13.1.10. The Dilworth lattice, whose Hasse diagram is depicted in figure
13.2, is a complemented modular but not distributive.

Exercise 13.1.11. Show that a Boolean algebra is always modular.

Definition 13.1.12. An atom in a lattice is a minimal non-zero element, i.e. a ∈ Λ is an
atom if a 6= 0 and if x < a for some x ∈ Λ then x = 0. A lattice is atomic if every point
is the join of a finite number of atoms.

Definition 13.1.13. A homomorphism from a complemented lattice Λ1 into a comple-
mented lattice Λ2 is a map h : Λ1 → Λ2 such that

1. h(01) = 02 and h(11) = 12,

2. h(a′) = h(a)′ for all a ∈ Λ1,

3. h(a ∨ b) = h(a) ∨ h(b) and h(a ∧ b) = h(a) ∧ h(b), for all a, b ∈ Λ1
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0

a b c d e f g

a’ b’ c’ d’ e’ f’ g’

1

Figure 13.2 – The Hasse diagram of the Dilworth lattice.

An isomorphism is a lattice homomorphism that is bijective. If the condition 3 above
holds also for countable joins and meets, h is called a σ-homomorphism. If Λ1 = Λ2 a
lattice isomorphism is called lattice automorphism.

Theorem 13.1.14. Let Λ be a Boolean σ-algebra. Then there exist an abstract set X, a σ-
algebra, X , of subsets of X and a σ-homomorphism h : X → Λ.

Proof: It is first given in [103] and later reproduced in [146]. �

This theorem serves to extend the notion of measurability, defined for maps be-
tween measurable spaces, to maps defined on abstract Boolean σ-algebras. Recall that
if X is an arbitrary set of points equipped with a Boolean σ-algebra of subsets X , and
Y a complete separable metric space equipped with its Borel σ-algebra B(Y), a map
f : X→ Y is called measurable if for all B ∈ B(Y), f−1(B) ∈ X .

Definition 13.1.15. Let Λ be an abstract Boolean σ-algebra and (Y,B(Y)) a complete
separable metric space equipped with its Borel σ-algebra. A Y-valued classical ob-
servable associated with Λ is a σ-homomorphism h : B(Y) → Λ. If Y = R, the
observable is called real-valued.

The careful reader will have certainly remarked that the previous definition is com-
patible with axiom 2.3.20. As a matter of fact, with every real random variable X on an
abstract measurable space (Ω,F ) is associated a family of propositions QX

B = 1{X∈B},
for B ∈ B(R). The aforementioned σ-homomorphism h : B(R) → F , stemming from
X(·) through the spectral measure KX(·, B), is given by

h(B) = {ω ∈ Ω : QX
B (ω) = 1} = X−1(B) ∈ F .
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Notice that this does not hold for quantum systems where some more general notion
is needed.

13.2 Classical, fuzzy, and quantum logics; observables
and states on logics

13.2.1 Logics

Definition 13.2.1. Let (Λ,≤) be a poset (hence a lattice). By an orthocomplementation
on Λ is meant a mapping ⊥: Λ 3 a 7→ a⊥ ∈ Λ, satisfying for a, b ∈ Λ:

1. ⊥ is injective,

2. a ≤ b⇒ b⊥ ≤ a⊥,

3. (a⊥)⊥ = a,

4. a ∧ a⊥ = 0.

A lattice with an orthocomplementation operation is called orthocomplemented.

We remark that from condition 2 it follows that 0⊥ = 1 and 1⊥ = 0. From condition
3 it follows that⊥ is also surjective. Finally, conditions 1, 2, and 3 imply that a∨ a⊥ = 1.

Definition 13.2.2. An orthocomplemented σ-complete lattice, Λ, is said to be a logic.

Remark 13.2.3. Let a1 ≤ a2 be arbitrary propositions. Modularity condition reads
∀c : a1 ∨ (c ∧ a2) = (a1 ∨ c) ∧ a2; applying this condition for c = a⊥1 , we get a1 ∨ (a⊥1 ∧
a2) = (a1 ∨ a⊥1 ) ∧ a2 = a2. Therefore, we have shown that if a1 ≤ a2, then there exists a
b := a⊥1 ∧ a2 ≤ a⊥1 such that a1 ∨ b = a2.

The element a⊥ is called the orthogonal complement of a in Λ. If a ≤ b⊥ and
b ≤ a⊥, then a and b are said orthogonal and we write a ⊥ b.

Exercise 13.2.4. Assume that (Λ,≤) is a poset (hence a lattice) that is orthocomple-
mented. Let a, b ∈ Λ be such that a < b. Denote by

Λ[a, b] = {c ∈ Λ : a ≤ c ≤ b}.

Show that

1. Λ[0, b] becomes a lattice in which countable joins and meets exist and whose
zero element is 0 and unit element is b,

2. if we define, for x ∈ Λ[0, b], x′ = x⊥ ∧ b, then the operation ′ : Λ[0, b] → Λ[0, b]
is an orthocomplementation,

3. conclude that Λ[0, b] is a logic.

Example 13.2.5. Any Boolean σ-algebra is a logic provided we define, for any element
a, its orthocomplement to be its complement a′. Boolean σ-algebras are called classical
logics.
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Example 13.2.6. Let H be a C-Hilbert space. Let Λ be the collection of all Hilbert
subspaces of H. If ≤ is meant to denote “be a Hilbert subspace of” and ⊥ the orthog-
onal complementation in the Hilbert space sense, then Λ is a logic, called standard
quantum logic.

Postulate 13.2.7. In any physical system (classical or quantum), the set of all experimentally
verifiable propositions is a logic (classical or standard quantum).

13.2.2 Observables associated with a logic

Suppose that Λ is the logic of verifiable propositions of a physical system and let
X be any real physical quantity relative to this system. Denoting x(B) the proposition
“the numerical results of the observation of X lie in B”, it is natural and harmless to
consider that B ∈ B(R); obviously then, x is a mapping x : B(R) → Λ. We regard
to physical quantities X and X′ as identical whenever the corresponding maps x, x′ :
B(R) → Λ are the same. If f : R → R is a Borel function, we mean by X′ = f ◦ X a
physical quantity taking value f (r) whenever X takes value r. The corresponding map
is given by B(R) 3 B : x′ 7→ x′(B) = x( f−1(B)) ∈ Λ. Hence we are led naturally to
the following

Definition 13.2.8. Let Λ be a logic. A real observable associated with Λ is a mapping
x : B(R)→ Λ verifying:

1. x(∅) = 0 and x(R) = 1,

2. if B1, B2 ∈ B(R) with B1 ∩ B2 = ∅ then x(B1) ⊥ x(B2),

3. if (Bn)n∈N is a sequence of mutually disjoint Borel sets, then x(∪n∈NBn) =
∨n∈Nx(Bn).

We write O(Λ) for the set of all real observables associated with Λ.

Exercise 13.2.9. Let Λ be a logic and x ∈ O(Λ). Show that for any sequence of Borel
sets (Bn)n∈N we have

x(∪n∈NBn) = ∨n∈Nx(Bn)

and
x(∩n∈NBn) = ∧n∈Nx(Bn).

Definition 13.2.10. Let Λ be a logic and O(Λ) the set of its associated observables. A
real number λ is called a strict value of an observable x ∈ O(Λ), if x({λ}) 6= 0. The
observable x ∈ O(Λ) is called discrete if there exists a countable set C = {c1, c2, . . .}
such that x(C) = 1; it is called constant if there exists c ∈ R such that x({c}) = 1. It is
called bounded if there exists a compact Borel set K such that x(K) = 1.

Definition 13.2.11. We call spectrum of x ∈ O(Λ) the closed set defined by

spec(x) = ∩C closed :x(C)=1C.

The numbers λ ∈ spec(x) are called spectral values of x.

Any strict value is a spectral value; the converse is not necessarily true.
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Exercise 13.2.12. Show that λ ∈ spec(x) if and only if any open set U containing λ
verifies x(U) 6= 0.

If (an)n∈N is a partition of unity, i.e. a family of mutually orthogonal propositions in
Λ such that ∨n∈Nan = 1, there exists a unique discrete observable admitting as spectral
values a given discrete subset {c1, c2, . . .} of the reals. In fact, it is enough to define for
all n ∈N, x({cn}) = an and for any B ∈ B(R), x(B) = ∨n:cn∈Ban. Notice however that
discrete observables do not exhaust all the physics of quantum mechanics; important
physical phenomena involve continuous observables.

13.2.3 States on a logic

We have seen that to every classical system is attached a measurable space (Ω,F )
(its phase space); observables are random variables and states are probability mea-
sures that may degenerate to Dirac masses on particular points of the phase space.
This description is incompatible with the experimental observation for quantum sys-
tems. For the latter, the Heisenberg’s uncertainty principle stipulates that no matter
how carefully the system is prepared, there always exist observables whose values are
distributed according to some non-trivial probability distribution.

Definition 13.2.13. Let Λ be a logic andO(Λ) its set of associated observables. A state
function is a mapping ρ : O(Λ) 3 x 7→ ρx ∈ M+

1 (R,B(R)).

For every Borel function f : R → R, for every observable x, and every Borel set B
on the line, we have:

ρ f ◦x(B) = ρx( f−1(B)).

Denoting by o the zero observable and 0 the zero of R, we have that ρo = δ0. In fact,
suppose that f : R→ R is the identically zero map. Then f ◦ o = o and

f−1(B) =
{

R if 0 ∈ B
∅ otherwise.

Hence, if 0 ∈ B, then ρo(B) = ρ f ◦o(B) = ρo( f−1(B)) = 1, because ρo is a probability on
R; if 0 6∈ B then similarly ρo(B) = 0. Therefore, in all circumstances, ρo(B) = δ0(B).

If x ∈ O(Λ) is any observable and B ∈ B(R) is such that x(B) = 0 ∈ Λ, then
ρx(B) = 0. In fact, for this B, we have 1B ◦ x = o and ρx(B) = ρo({1}) = δ0({1}) = 0.
This implies that if x is discrete, the measure ρx is supported by the set of the strict
values of x.

Definition 13.2.14. An observable q ∈ O(Λ) is a question if q({0, 1}) = 1. A question
is the necessarily discrete. If q({1}) = a ∈ Λ, then q is the only question such that
q({1}) = a; we call it question associated with the proposition a and denote by qa if
necessary.

Definition 13.2.15. Let Λ be a logic. A function p : Λ→ [0, 1] satisfying

1. p(0) = 0 and p(1) = 1,
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2. if (an)n∈N is a sequence of mutually orthogonal propositions of Λ, and a =
∨n∈Nan, then p(a) = ∑n∈N p(an)

is called state (or probability measure) on the logic Λ. The set of states on Λ is
denoted by S(Λ).

The concept of probability measure on a logic coincides with a classical probabil-
ity measure when the logic is a Boolean σ-algebra. For non distributive logics how-
ever, the associated probability measures are genuine generalisations of the classical
probabilities. For standard quantum logics, the associated states are called quantum
probabilities.

Theorem 13.2.16. Let p ∈ S(Λ), where Λ is a logic.

1. On defining a map ρp : O(Λ)→M+
1 (R,B(R)), by the formula: for every x ∈ O(Λ)

and for every B ∈ B(R), ρ
p
x(B) = p(x(B)), then ρp is a state function.

2. Conversely, if ρ is an arbitrary state function, then there exists a unique probability
measure p ∈ S(Λ) such that for every x ∈ O(Λ) and for every B ∈ B(R), ρx(B) =
p(x(B)).

Proof. 1. The map ρ
p
x : B(R) → [0, 1] is certainly a σ-additive, non-negative map.

Moreover, ρ
p
x(R) = p(1) = 1, hence it is a probability. If f : R → R is a Borel

function,

ρ
p
f ◦x(B) = p( f ◦ x(B)) = p(x( f−1(B))) = ρ

p
x(( f−1(B)).

Hence ρp is a state function.
2. Let ρ be a state function. If a ∈ Λ and qa ∈ O(Λ) the question associated with

proposition a, then ρqa is a probability measure on B(R). Since qa is a question,
ρqa({0, 1}) = 1. Define p(a) = ρqa({1}). Obviously, for all a ∈ Λ, p(a) is well
defined and is taking values in [0, 1]. It remains to show that p is a probability
measure on Λ, that is to say verify σ-additivity and normalisation. For 0 ∈ Λ,
q0({1}) = 0. Hence ρq0({1}) = 0 = p(0). Similarly, we show that = p(1) = 1.
This shows normalisation.
Let (an)n∈N be a sequence of mutually orthogonal elements of Λ, and denote
by a = ∨n∈Nan. Let x ∈ O(Λ) be the discrete observable defined by x({0}) =
a⊥ and x({n}) = an, for n = 1, 2, . . .. Then, 1{n} ◦ x({1}) = x({n}) = an.
Hence qan = 1{n} ◦ x and p(an) = ρx({n}). Since ρx is a probability measure,
∑n p(an) = ρx({1, 2, 3, . . .}) = ρx(N). Similarly, 1N ◦ x = qa because 1N ◦
x({1}) = x(N) = ∨n∈Nx({n}) = ∨n∈Nan = a. Hence, finally, p(a) = ∑n p(an)
establishing thus σ-additivity of p. Finally, for x ∈ O(Λ) and B ∈ B(R),

ρx(B) = ρ1B◦x({1}) = ρqx(B)({1}) = p(x(B)).

If p ∈ S(Λ) and x ∈ O(Λ), the map B(R) 3 B 7→ p(x(B)) ∈ [0, 1] defines a
probability measure on B(R). It is called the probability distribution induced on the
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space of its values by the observable x when the system is in state p and is denoted ρ
p
x .

The expected value of x in state p is

Ep(x) =
ˆ

R

tρp
x(dt)

and for a Borel function f : R→ R, we have

Ep( f ◦ x) =
ˆ

R

f (t)ρp
x(dt)

(provided the above integrals exist.) If Ep(x2) < ∞, the variance of x in p is Varp(x) =
Ep(x2)− (Ep(x))2.

Postulate 13.2.17. The phase space of a physical system described by the logic Λ. States of the
system are given by S(Λ).

Postulate 13.2.18. Observables of a physical system described by the logic Λ are O(Λ).

Postulate 13.2.19. Measuring whether the values of a physical observable x ∈ O(Λ) lie in
B ∈ B(R) when the system is prepared in state p ∈ S(Λ) means determining ρ

p
x(B).

13.3 Pure states, superposition principle, convex decom-
position

Proposition 13.3.1. Let S(Λ) be the set of states on the logic Λ. Let (pn)n∈N be a sequence
in S(Λ) and (cn)n∈N a sequence in R+ such that ∑n∈N cn = 1. Then p = ∑n∈N cn pn,
defined by p(a) = ∑n∈N cn pn(a) for all a ∈ Λ, is a state.

Proof: Exercise! �

Corollary 13.3.2. For any logic Λ, the set S(Λ) is convex.

Remark 13.3.3. Notice that if p = ∑n∈N cn pn as above, for every x ∈ O(Λ), we have
that ρ

p
x = ∑n∈N cnρ

pn
x . In fact, for all B ∈ B(R),

ρ
p
x(B) = p(x(B)) = ∑

n∈N

cn pn(x(B)) = ∑
n∈N

cnρ
pn
x (B).

This decomposition has the following interpretation: the sequence (cn)n∈N defines a
classical probability on N meaning that in the sum defining p, each pn is chosen with
probability cn. Therefore, for each integrable observable x ∈ O(Λ), the expectation
Ep(x) = ∑n∈N cnEpn(x) consists in two averages: a classical average on the choice of
pn and a (may be) quantum average Epn(x).

Exercise 13.3.4. Give a plausible definition of the notion of integrable observable used
in the previous remark and then prove the claimed equality: Ep(x) = ∑n∈N cnEpn(x)

Definition 13.3.5. A state p ∈ S(Λ) is said to be pure if the equation p = cp1 + (1−
c)p2, for p1, p2 ∈ S(Λ) and c ∈ [0, 1] implies p = p1 = p2. We write Sp(Λ) for the set
of pure states of Λ. Obviously Sp(Λ) = Extr S(Λ).
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Definition 13.3.6. Let D ⊆ S(Λ) and p0 ∈ S(Λ). We say that p0 is a superposition of
states in D if for a ∈ Λ,

∀p ∈ D, p(a) = 0⇒ p0(a) = 0.

It is an exercise to show that the state p = ∑n∈N cn pn defined in the proposition ??
is a superposition of states inD = {p1, p2, . . .}. In the case Λ is a Boolean σ-algebra, the
next theorem 13.3.7 shows that this is in fact the only kind of possible superposition.
This implies, in particular, the unicity of the decomposition of a classical state into
extremal (pure) states. If Λ is a standard quantum logic, unicity of the decomposition
does not hold any longer!

Theorem 13.3.7. Let Λ be a Boolean σ-algebra of subsets of a space X. Suppose that

1. Λ is separable 1,

2. for all a ∈ X, {a} ∈ Λ.

For any a ∈ X and any A ⊆ X, let δa be the state defined by

δa(A) =

{
1 if a ∈ A
0 otherwise.

Then, (δa)a∈X is precisely the set of all pure states in Λ. If D ⊆ Sp(Λ) and p0 ∈ Sp(Λ), then
p0 is a superposition of states in D if and only if p0 ∈ D.

Proof: Denote {A1, A2, . . .} a denumerable collection of subsets of X generating Λ. Pu-
rity of δa is trivially verified. Suppose that p is a pure state. If for some A0 ∈ Λ we
have 0 < p0(A) < 1, then, on putting for A ∈ Λ

p1(A) =
1

p(A0)
p(A ∪ A0) (∗)

and

p2(A) =
1

1− p(A0)
p(A ∩ Ac

0), (∗∗)

we get p(A) = p(A0)p1(A) + (1− p(A0))p2(A). Yet, applying (*) and (**) to A0, we
get p1(A0) = 1 and p2(A0) = 0, hence p1 6= p2. This is in contradiction with the
assumed purity of p. Therefore, we conclude that for all A ∈ Λ, we have p(A) ∈
{0, 1}. Replacing An by Ac

n if necessary, we can assume without loss of generality that
p(An) = 1 for all the sets of the collection generating Λ. Let B = ∩n An. Then p(B) = 1
and consequently B cannot be empty. Now B cannot contain more than one point
either. In fact, the collection of all sets C ∈ Λ such that either B ⊆ C or B ∩ C = ∅ is a
σ-algebra containing all the sets An, n ∈ N. Hence, it coincides with Λ. As singletons
are members of Λ, the set B must be a singleton, i.e. B = {a} for some a ∈ X. Put
then p = δa. Finally, let p0 be a superposition of states in D (all its elements are pure
states). If p0 = δa0 but p0 6∈ D, then p({a0}) = 0 for all p ∈ D but p0({a0}) 6= 0, a
contradiction. �

1. i.e. there is a countable collection of subsets An ⊆ X, n ∈ N, generating Λ by complementation,
intersections, and unions.
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13.4 Simultaneous observability

In quantum systems, the Heisenberg’s uncertainty principle, already shown in chap-
ter 2, there are observables that cannot be simultaneously observed with arbitrary pre-
cision.

Definition 13.4.1. Let a, b ∈ Λ. Propositions a and b are said to be simultaneously
verifiable, denoted by a↔ b, if there exists elements a1, b1, c ∈ Λ such that

1. a1, b1, c are mutually orthogonal and,

2. a = a1 ∨ c and b = b1 ∨ c hold.

Observables x, y ∈ O(Λ) are simultaneously observable if for all B ∈ B(R), x(B) ↔
y(B). For A, B ⊆ Λ, we write A↔ B if for all a ∈ A and all b ∈ B we have a↔ b.

Lemma 13.4.2. Let a, b ∈ Λ. The following are equivalent:
1. a↔ b,
2. a ∧ (a ∧ b)⊥ ⊥ b,
3. b ∧ (a ∧ b)⊥ ⊥ a,
4. there exist x ∈ O(Λ) and A, B ∈ B(R) such that x(A) = a and x(B) = b,
5. there exists a Boolean sub-algebra of Λ containing a and b.

Proof:
1⇒ 2:

a↔ b ⇔ a = a1 ∨ c and b = b1 ∨ c
⇒ c ≤ a and c ≤ b
⇒ c ≤ a ∧ b.

From the definition 13.2.2 (logic), it follows that there exists d ∈ Λ such that
c ⊥ d and c ∨ d = a ∧ b.
Now d ≤ c ∨ d = a ∧ b ≤ a and d ≤ c⊥ (since d ⊥ d.) Hence, d ≤ a ∧ c⊥ = a1
(see remark immediately following the definition 13.2.2.) Similarly, d ≤ b1 ⇒
d ≤ b1 ∧ q1 = 0. Therefore d = 0 and consequently c = a ∧ b. It follows a1 =
a ∧ (a ∧ b)⊥. Yet, a1 ⊥ c and a1 ⊥ b1 so that a1 ⊥ (b1 ⊥ c) = b. Summarising,
a ∧ (a ∧ b)⊥ ⊥ b.

1⇒ 3: By symmetry.
2⇒ 1: Since a ∧ (a ∧ b)⊥ ⊥ b, on writing a1 = a ∧ (a ∧ b)⊥, b1 = b ∧ (a ∧ b)⊥, and

c = a ∧ b, we find a = a1 ∨ c and b = b1 ∨ c. Since a1 ⊥ b, it follows that a1 ⊥ b1
and a1 ⊥ c, while, by definition, c ⊥ b1 which proves the implication.
Henceforth, the equivalence 1⇔ 2⇔ 3 is established.

1⇒ 4: If a = a1 ∨ c, b = b1 ∨ c and a1, b1, c mutually orthogonal, write d = a1 ∨ b1 ∨
c and define x to be the discrete observable such that x({0}) = a1, x({1}) = b1,
x({2}) = c, and x({3}) = d. Then x({0, 2}) = a and x({1, 2}) = b.

4⇒ 5: x(A ∩ (A ∩ B)c) = a ∧ (a ∧ b)⊥ and x(B ∩ (A ∩ B)c) = b ∧ (a ∧ b)⊥. On
writing a1 = a ∧ (a ∧ b)⊥, a2 = a ∧ b, a3 = b ∧ (a ∧ b)⊥, and a4 = (a ∨ b)⊥, we
see that (ai)i=1,...,4 are mutually orthogonal and a1 ∨ a2 ∨ a3 ∨ a4 = 1. If

A = {ai1 ∨ . . . ∨ aik : k ≤ 4; 1 ≤ i1 ≤ . . . ≤ ik ≤ 4},

/Users/dp/a/ens/iq-proca.tex
2015-11-11 • 11:19:45.

227



13.5. Automorphisms and symmetries

it is easily verified thatA is Boolean sub-algebra of Λ. Since a, b ∈ A, this proves
the implication.

5⇒ 2: Let A be a Boolean sub-algebra of Λ containing a and b. Now, [a ∧ (a ∧
b)⊥] ∧ b = 0. As a, b, a ∧ (a ∧ b)⊥, b⊥ ∈ A, it follows that

a ∧ (a ∧ b)⊥ = [(a ∧ (a ∧ b)⊥) ∧ b]
∨[(a ∧ (a ∧ b)⊥) ∧ b⊥]

= [(a ∧ (a ∧ b)⊥) ∧ b⊥]
≤ b⊥.

Therefore a ∧ (a ∧ b)⊥ ⊥ b.
�

The significance of this lemma is that if two propositions are simultaneously verifi-
able, we can operate on them as if they were classical.

Theorem 13.4.3. Let Λ be any logic and (xλ)λ∈D a family of observables. Suppose that
xλ ↔ xλ′ for all λ, λ′ ∈ D. Then there exist a space X, a σ-algebra X of subsets of X, a family
of measurable functions gλ : X → R, λ ∈ D, and a σ-homomorphism τ : X → Λ such
that τ(g−1

l (B)) = xλ(B) for all λ ∈ D and all b ∈ B(R). Suppose further that either Λ is
separable or D is countable. Then, for all λ ∈ D, there exist a x ∈ O(Λ) and a measurable
function fλ : R→ R such that xλ = fλ ◦ x.

The proof of this theorem is omitted. Notice that it allows to construct functions of
several observables that are simultaneously observable. This latter result is also stated
without proof.

Theorem 13.4.4. Let Λ be any logic and (x1, . . . , xn) a family of observables that are simul-
taneously observable. Then there exists a σ-homomorphism τ : B(Rn) → Λ such that for all
B ∈ B(R) and all i = 1, . . . , n,

xi(B) = τ(π−1
i (B)), (∗)

where πi : Rn → R is the projection π(t1, . . . , tn) = ti, i = 1, . . . , n. If g is a Borel function
on Rn, then g ◦ (x1, . . . , xn)(B) = τ(g−1(B)) is an observable. If g1, . . . , gk are real valued
Borel functions on Rn and yi = gi ◦ (x1, . . . , xn), then y1, . . . , yk are simultaneously observ-
able and for any real valued Borel function h on Rk, we have h ◦ (y1, . . . , yk) = h(g1, . . . , gk) ◦
(x1, . . . , xn) where, for t = (t1, . . . , tn), h(g1, . . . , gk)(t) = h(g1(t), . . . , gk(t)).

An immediate consequence of this theorem is that if p is a probability measure on
Λ, then ρ

p
x1,...,xn(B) = p(τ(B)), for B ∈ B(Rn), is the joint probability distribution of

(x1, . . . , xn) in state p.

13.5 Automorphisms and symmetries

Let Λ be a logic. The set Aut(Λ), of automorphisms of Λ, acquires as usual a
group structure; they induce naturally automorphisms on S(Λ), called convex au-
tomorphisms.
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Let, in fact, α ∈ Aut(Λ) and p ∈ S(Λ). If we define α̃ to be the induced action of α
on p, by α̃(p)(a) = p(α−1(a)), for all a ∈ Λ, then α̃ is a convex automorphism of S(Λ).

Definition 13.5.1. A map β : S(Λ)→ S(Λ) is a convex automorphisms if

1. β is bijective and

2. if (cn)n∈N is a sequence of non-negative reals such that ∑n∈N cn = 1 and (pn)n∈N

is a sequence of states in S(Λ), then

β( ∑
n∈N

cn pn) = ∑
n∈N

cnβ(pn).

The set of convex automorphisms of S(Λ) is denoted Aut(S(Λ)).

Lemma 13.5.2. Let α ∈ Aut(Λ). Then the induced automorphism α̃ on S(Λ) is convex.

Proof: Bijectivity of α̃ follows immediately from the bijectivity of α. If p = ∑n∈N cn pn ∈
S(Λ) (with the notation of definition 13.5.1), then α̃(p)(a) = p(α−1(a)) = ∑n∈N cn pn(α−1(a)) =
∑n∈N cnα̃(pn)(a) for all a ∈ Λ. �

Remark 13.5.3. It is obvious that convex automorphisms map pure states of Sp(Λ)
into pure states.

Dynamics, i.e. time evolution of a system described by a logic Λ can be defined in
the following manner. For each t ∈ R, there exists a unique map D(t) : S(Λ)→ S(Λ)
having the following interpretation: if p ∈ S(Λ) is the state of the system at time t0,
then D(t)(p) will represent the state of the system at time t + t0.

Definition 13.5.4. Let G be a locally compact topological group. By a representation
of G into Aut(S(Λ)), we mean a map π : G → Aut(S(Λ)) such that

1. π(g1g2) = π(g1)π(g2) for all g1, g2 ∈ G,

2. for each a ∈ Λ and each p ∈ S(Λ), the mapping g 7→ π(g)(p)(a) is B(G)-
measurable.

Postulate 13.5.5. Time evolution of an isolated physical system described by a logic Λ, is
implemented by a map R 3 t 7→ D(t) ∈ Aut(S(Λ)). This map provides a representation
of the Abelian group (R,+) into Aut(S(Λ)). More generally, any physical symmetry, imple-
mented by the action of a locally compact topological group G, induces a representation into
Aut(S(Λ)).

Here is an interpretation and/or justification of this axiom. If p = ∑n∈N cn pn rep-
resents the initial state of the system, we can realise this state as follows. First chose
an integer n ∈ N with probability cn and prepare the system at state pn. Let the
system evolve under the dynamics. Then at time t it will be at state p′n = D(t)(pn)
with probability cn. Assuming now that D(t) is a convex automorphism means that
D(t)(p) = ∑n∈N cnD(t)(pn), i.e. at time t, the system is in state p′n = D(t)(pn) with
probability cn, exactly the result we obtained with the first procedure.

To further exploit the notions of logic, states, observables, and convex automor-
phisms, we must specialise the physical system.
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14
Standard quantum logics

We recall that a standard quantum logic Λ was defined in chapter 12 to be the
set of Hilbert subspaces of C-Hilbert space H. For every Hilbert subspace M ∈ Λ,
we denote by PM the orthogonal projection to M. If x ∈ O(Λ), then B 7→ Px(B), for
B ∈ B(R), is a projection-valued measure on B(R). Conversely, for every projection-
valued measure P on B(R), there exists an observable x ∈ O(Λ) such that P(B) =
Px(B), for all B ∈ B(R). We identify henceforth Hilbert subspaces with the orthogonal
projectors mapping the whole space on them (recall exercise 11.4.7.)

14.1 Observables

Lemma 14.1.1. Let M1, M2 ∈ Λ. Then propositions associated with M1 and M2 are simul-
taneously verifiable if and only if [PM1 , PM2 ] = 0.

Proof:
— (⇒): Propositions M1 and M2 are simultaneously verifiable if there exist mu-

tually orthogonal elements N1, N2, N ∈ Λ such that Mi = Ni ∨ N, for i = 1, 2.
Then PMi = PNi + PN and the commutativity of the projectors follows immedi-
ately.

— (⇐): If [PM1 , PM2 ] = 0, let P = PM1 PM2 . Then P is a projection. Define Qi =
PMi − P, for i = 1, 2; it is easily verified that Qi are projections and PQi = QiP =
0. Therefore Q1Q2 = Q2Q1 = 0. If we define Ni = Qi(H), for i = 1, 2 and
N = P(H), then N1, N2, N are mutually orthogonal and Mi = Ni ∨ N which
proves that M1 ↔ M2.

�

Theorem 14.1.2. Let Λ be a standard logic with associated Hilbert space H. For any x ∈
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O(Λ), denote X the self-adjoint (not necessarily bounded) operator on H with spectral measure
given by the mapping B(R) 3 B 7→ Px(B) ∈ Λ. Then

1. the map x 7→ X is a bijection between O(Λ) and self-adjoint operators on H,

2. the observable x is bounded if and only if X ∈ Bh(H),

3. two bounded observables x1 and x2 are simultaneously observable if and only if the
corresponding bounded operators X1 and X2 commute,

4. if x is a bounded observable and Q ∈ R[t], then the operator associated with Q ◦ x is
Q(X),

5. more generally, if x1, . . . , xr are bounded observables any two of them being simulta-
neously observable, and Q ∈ R[t1, . . . , t2], then the observable Q ◦ (x1, . . . , xr) has
associated operator Q(X1, . . . , Xr).

Proof: Assertions 1–4 are simple exercises based on the spectral theorem for self-adjoint
operators. Assertion 5 is a direct consequence of theorem 13.4.4. �

14.2 States

In chapter 2, we defined (pure) quantum states to be unit vectors of H. In chapter
13, states have been defined as probability measures on a logic. We first show that in
fact rays correspond to states viewed as probability measures on Λ.

Unit vectors of H are called rays. Let ξ ∈ H, with ‖ξ‖ = 1 be a ray and denote by
pξ : Λ→ [0, 1] the map defined by

Λ 3 M 7→ pξ(M) = 〈 ξ | PMξ 〉 = ‖PMξ‖2.

We have: pξ(1) ≡ pξ(H) = 1, pξ(0) ≡ pξ({0}) = 0, and if (Mn)n∈N is a sequence of
mutually orthogonal Hilbert subspaces of H and M = ∨n∈NMn, then

pξ(M) = ‖PMξ‖2 = ∑
n∈N

〈 ξ | PMn ξ 〉 = ∑
n∈N

pξ(Mn).

Hence pξ ∈ S(Λ). If c ∈ C, with |c| = 1, then pcξ = pξ .

Theorem 14.2.1. Let H be a Hilbert space, (εn)n∈N an orthonormal basis in it an T ∈
B+(H). We define the trace of T by

tr(T) = ∑
n∈N

〈 εn | Tεn 〉 ∈ [0,+∞].

Then for all T, T1, T2 ∈ B+(H) the trace has the following properties

1. is independent of the chosen basis,

2. tr(T1 + T2) = tr(T1) + tr(T2),

3. tr(λT) = λ tr(T) for all λ ≥ 0,

4. tr(UTU∗) = tr(T), for all U ∈ U(H).
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Proof: (To be filled in a later version.) �

Definition 14.2.2. Let T ∈ B(H). The operator T is called trace-class operator if tr(|T|) <
∞. The family of trace-class operators is denoted by T1(H).

Lemma 14.2.3. The space T1(H) is a two-sided ideal of B(H) and tr(TB) = tr(BT) for all
B ∈ B(H).

Proof: This will be shown in several steps.

1. Every B ∈ B(H) can be decomposed as a linear combination of four unitary
operators. In fact, writing B = 1

2(B + B∗)− i
2 [i(B− B∗)], the operator B is de-

composed into a sum of two self-adjoint operators. Now, if A ∈ Bh(H), we can
w.l.o.g. assume that ‖A‖ ≤ 1 and thence A±

√
I − A2 are unitary. We conclude

that B = c1U1 + . . . + c4U4 with Ui ∈ U(H) and c ∈ C.

2. We show then that T1(H) is a vector space. In fact, for every λ ∈ C, due to the
fact that |λA| = |λ||T|, it follows that if A ∈ T1(H) then λA ∈ T1(H) as well.
For T1, T2 ∈ T1(H), denote by U, V, W the partial isometries arising into the
polar decompositions T1 + T2 = U|T1 + T2|, T1 = C|T1|, and T2 = W|T2|. Then,

∑
n
〈 en | |T1 + T2|en 〉 = ∑

n
〈 en |U∗(T1 + T2)en 〉

= ∑
n
〈 en |U∗V|T1|en 〉+ ∑

n
〈 en |U∗W|T2|en 〉

≤ ∑
n
|〈 en |U∗V|T1|en 〉|+ ∑

n
|〈 en |U∗W|T2|en 〉|.

Now,

∑
n
〈 en |U∗V|T1|en 〉 = ∑

n
〈 |T1|

1
2 V∗Uen | |T1|

1
2 en 〉

≤ ∑
n
‖|T1|

1
2 V∗Uen‖‖|T1|

1
2 en‖ Cauchy-Scwharz on H

≤ (∑
n
‖|T1|

1
2 V∗Uen‖2)1/2(∑

n
‖|T1|

1
2 en‖2)1/2 Cauchy-Scwharz on `2(N).

We conclude that

∑
n
‖|T1|

1
2 V∗Uen‖2 = ∑

n
〈 |T1|

1
2 V∗Uen | |T1|

1
2 V∗Uen 〉

= ∑
n
〈 en |U∗V|T1|V∗Uen 〉

≤ ∑
n
〈 en |V|T1|V∗en 〉

≤ ∑
n
〈 en | |T1|en 〉

= tr(|T1|),

because U, V are partial isometries. The second term is majorised similarly so
that tr(|T1 + T2|) ≤ tr(|T1|) + tr(|T2|) < ∞, showing that T1 + T2 ∈ T1(H).

/Users/dp/a/ens/iq-stqlo.tex
2015-11-11 • 11:18:00.

233



14.2. States

3. Using the decomposition of every B ∈ B(H) into the combination of four uni-
tary operators B = ∑4

i=1 ciUi, we get tr(TB) = ∑4
i=1 ci tr(TUi) so that it be-

comes sufficient to prove that T ∈ T1(H) and U ∈ U(H) implies that TU, UT ∈
T1(H). But |UT| =

√
(UT)∗UT =

√
T∗T = |T| and |TU| =

√
(TU)∗TU =√

U∗|T|2U = U∗|T|U; furthemore U∗|T|U ≥ 0. Hence tr(|TU|) = tr |T| =
tr(|UT|).

�

Exercise 14.2.4. Show the T ∈ T1(H) implies that T∗ ∈ T1(H) (hence T1(H) is a
bilateral ∗-ideal of T1(H).

Exercise 14.2.5. Show that T ∈ T1(H) is not necessarily closed with respect to the
operator norm stemming from the Hilbert norm. Nevertheless, T1(H) is a Banach
space for the ‖ · ‖1 norm defined by ‖T‖1 = tr |T|.
Definition 14.2.6. If D is a bounded, self-adjoint, non-negative, trace-class operator on
H, then D is called a von Neumann operator. If further tr(D) = 1, then D is said to be a
density matrix (operator). The set of density matrices on H is denoted by D(H).

The states pξ , for ξ a ray of H, can also be described in another way. Let Dξ be the
projection operator on the one-dimensional subspace 1 Cξ. Then Dξ is trace-class and
for every X ∈ B(H), it follows that Dξ X is also trace-class. Let (εn)n∈N be an arbitrary
orthonormal basis of H; without loss of generality, we can then assume that ε1 = ξ.
We have

tr(Dξ X) = tr(XDξ)

= ∑
n∈N

〈 εn |XDξεn 〉

= 〈 ξ |Xξ 〉
= Eξ(X).

In particular, if X = PM for M ∈ Λ,

pξ(M) = 〈 ξ | PMξ 〉 = tr(Dξ PM).

Lemma 14.2.7. Let (ξn)n∈N be an arbitrary sequence of rays in H and (cn)n∈N an arbitrary
sequence of non-negative reals such that ∑n∈N cn = 1. Denote by Dn the projection operator
on the one-dimensional subspace Cξn, for n ∈N. Then

D = ∑
n∈N

cnDn

is a well defined density matrix.

Proof: Exercise. �

Exercise 14.2.8. Show that D(H) is convex.

Lemma 14.2.9. Let D be a density matrix defined as in lemma 14.2.7 and p : Λ → R the
mapping defined by Λ 3 M 7→ p(M) = tr(PMD). Then p ∈ S(Λ) and moreover it can be
decomposed into p = ∑n∈N cn pξn .

1. We recall that the term subspace always means closed subspace.
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Proof: First the superposition property follows from the linearity of the trace: for all
M ∈ Λ, we have p(M) = tr(PMD) = ∑n∈N cn tr(PMDn) = ∑n∈N cn pξn(M). It is now
obvious that p is a state: in fact, p(0) = p({0}) = 0 and p(1) = p(H) = 1. �

Conversely, if D is any density matrix, then the map Λ 3 M 7→ p(M) = tr(DPM)
is a state in S(Λ). States of this type are called tracial states. The natural question is
whether every state in S(Λ) arises as a tracial state. The answer to this question is one
of the most profound results in the mathematical foundations of quantum mechanics,
the celebrated Gleason’s theorem:

Theorem 14.2.10 (Gleason). Let H be a complex separable Hilbert space with 3 ≤ dim H ≤
ℵ0, D(H) the convex set of density matrices on H, and Λ the logic of subspaces of H. Then

1. the map D(H) 3 D 7→ ρD ∈ S(Λ), defined by ρD(M) = tr(DPM) for all M ∈ Λ, is
a convex isomorphism of D(H) on S(Λ),

2. a state p ∈ S(Λ) is pure if and only if p = pξ for some ray ξ inH,

3. two pure states pξ and pζ are equal if and only if there exists a complex number c with
|c| = 1 such that the rays ξ and ζ verify ξ = cζ.

The proof, lengthy and tricky, is omitted. It can be found, extending over 13 pages
(!), in [146].

14.3 Symmetries

Definition 14.3.1. A linear map S : H→H is a symmetry if

1. S is bijective, and

2. for all f , g ∈H, the scalar product is preserved: 〈 S f | Sg 〉 = 〈 f | g 〉.
Exercise 14.3.2. Let α ∈ Aut(Λ) where Λ is the standard quantum logic associated
with a given Hilbert space H. Show that

1. there exists a symmetry S ∈ B(H) such that for all M ∈ Λ, α(M) = SM,

2. if S′ is another symmetry corresponding to the same automorphism α, then there
exists a complex number c, with |c| = 1 such that S′ = cS,

3. if S is any symmetry of H, the map Λ 3 M 7→ SM ∈ Λ is an automorphism of
Λ.

Notice that unitaries are obviously symmetries. It turns out that they are the only
symmetries encountered in elementary quantum systems 2.

2. In general, anti-unitaries may also occur as symmetries. They are not considered in this course.
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15
States, effects, and the corresponding

quantum formalism

15.1 States and effects

15.2 Operations

15.3 General quantum transformations, complete posi-
tivity, Kraus theorem
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15.3. General quantum transformations, complete positivity, Kraus theorem
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16
Some illustrating examples

16.1 The harmonic oscillator

In chapter 13, a general formalism, covering both classical and quantum logics, has
been introduced. Here we present a simple physical example, the harmonic oscillator,
in its classical and quantum descriptions. Beyond providing a concrete illustration of
the formalism developed so far, this example has the advantage of being completely
solvable and illustrating the main similarities and differences between classical and
quantum physics.

16.1.1 The classical harmonic oscillator

Exercise 16.1.1. À re-écrire. Determine the phase space for a point mass in dimension
1 subject to the force exerted by a spring of elastic constant k.

Solution: Recall that a point mass m in dimension 1 obeys Newton’s equation:

m
d2x
dt2 (t) = F(x(t)),

subject to the initial conditions x(0) = x0 and ẋ(0) = v0, where x(t) denotes the po-
sition of the mass at instant t and F(y) denotes the force exerted by the spring on the
particle when it is at position y. It reads F(y) = k(y− y0) where y0 is the equilibrium
elongation of the spring. The kinetic energy, K, of the particle is a quadratic form in the
velocity

K(ẋ) =
m
2

ẋ2
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and the potential energy, U, is given by

U(x) = −
ˆ x

x0

F(y)dy.

In order to conclude, we need the following

Theorem 16.1.2. The total energy H(x, ẋ) = K(ẋ) + U(x) is a constant of motion, i.e. does
not depend on t.

Proof.

d
dt
(K(ẋ) + U(x)) = mẋẍ +

∂U
∂x

(x)ẋ

= ẋ(mẍ− F(x))
= 0.

�

Hence the Newton’s equation is equivalent to the system of first order differential
equations, known as Hamilton’s equations:

dp
dt

= −∂H
∂q

dq
dt

=
∂H
∂p

,

subject to the initial condition (
q(0)
p(0)

)
=

(
q0
p0

)
,

where p = mẋ, q = x, and H = p2

2m + U(q). Therefore, the phase space for the point
mass in dimension one is R2 (one dimension for the position, q, and one for the mo-
mentum p.) Moreover, this space is stratified according to constant energy surfaces
that are ellipses for the case of elastic spring, because potential energy is quadratic in q
(see figure 16.1.)

If ω(t) =

(
q(t)
p(t)

)
∈ R2 represents the coordinate and momentum of the system

at time t, the time evolution induced by the system of Hamilton’s equations can be
thought as the flow on R2, described by ω(t) = Ttω(0), with initial condition ω(0) =(

q0
p0

)
.

The system is described by a mass m attached to a spring of elastic constant k.
The motion is assumed frictionless on the horizontal direction and the mass originally
equilibrates at point 0. The spring is originally elongated to position q0 and the system
evolves then freely under the equations of motion. The setting is described in figure
16.2. The system was already studied in chapter 2. The equation of motion, giving the
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p

q

H′

H

Figure 16.1 – The phase space for a point mass in dimension one.

0 q0

Figure 16.2 – The experimental setting of the one-dimensional harmonic oscillator.

elongation q(t) as a function of time t, is

mq̈(t) = f (q(t)) = −kq(t)
q(0) = q0

q̇(0) = v0 = 0.

Introducing the new variable p = mq̇ and transforming the second order differential
equation into a system of first order equations, we get the vector equation

dω

dt
(t) = Aω(t), (∗)

where

ω(t) =
(

q(t)
p(t)

)
, with initial condition ω(0) =

(
q0
p0

)
and

A =

(
0 1

m
−k 0

)
.

The solution to equation (∗) is given by a flow on the phase space Ω = R2 given by

ω(t) = Ttω(0),

where

Tt = exp(tA) =

(
cos(µt) sin(µt)

mµ

− k
µ sin(µt) cos(µt)

)
,
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and µ =
√

k/m. Since det Tt = 1, it follows that the evolution is invertible and

(Tt)−1 = T−t. The orbit of the initial condition ω(0) =

(
q0
0

)
under the flow reads

(Ttω)t∈R, where ω(t) = Ttω =

(
q0 cos(µt)
−q0

k
µ sin(µt)

)
.

The system is classical, hence its logic Λ is a Boolean σ-algebra; the natural choice
is Λ = B(R2). Now observables in O(Λ) are mappings x : B(R) → Λ ≡ B(R2).
Identify henceforth indicator functions with Borel sets in B(R2) (i.e. for any Borel set
B ∈ B(R), instead of considering x(B) = F ∈ B(R2) we shall identify x(B) = 1F.)

Let now X : Ω → R be any measurable bounded mapping and chose as x(B) =
1X−1(B) for all B ∈ B(R). Then, on defining X =

´
λx(dλ), a bijection is established

between x and X. Now since (Ttω)t∈R = (exp(tA)ω)t∈R is the orbit of the initial
condition ω0 in Ω, the value X(Ttω) is well defined for all t ∈ R; we denote by
Xt(ω) ≡ X(Ttω). Then

dXt

dt
(ω) = ∂1X(Ttω)

d(Ttω)1

dt
+ ∂2X(Ttω)

d(Ttω)2

dt

= ∂1X(Ttω)
dq
dt

(t) + ∂2X(Ttω)
dp
dt

(t),

provides the evolution of X under the flow (Tt)t.

The Hamiltonian is a very particular measurable bounded map on the phase space
(hence an observable) H : Ω → R, having the formula H(ω) = kω2

1/2 + ω2
2/2m. It

evolves also under the flow (Tt)t: Then

dHt

dt
(ω) = kq(t)q̇(t) +

p(t)
m

ṗ(t)

= kq(t)q̇(t) + q̇(t)(−kq̇(t))
= 0.

Thus, the Hamiltonian is a constant of motion. Physically it represents the energy of

the system. Initially, H(q0, p0) =
kq2

0
2 = E and during the flow, the energy always

remains E, so that the energy takes arbitrary (but constant with respect to the flow) values
E ∈ R+. Moreover, ∂1H(Ttω) = kq(t) = − ṗ(t) and ∂2H(Ttω) = p(t)

m = q̇(t). Hence
we recover the Hamilton equations

dq
dt

(t) =
∂H
∂p

= ∂2H

dp
dt

(t) = −∂H
∂q

= −∂1H.

Denote for every two functions f , g ∈ C1(Ω) by { f , g} := ∂1 f ∂2g− ∂2 f ∂1g their Pois-
son’s bracket. The Poisson bracket { f , g} is also often denoted by L f (g) in the lit-
erature. Remark that the time derivative of the observable can now be expressed as
dXt
dt = ∂1X∂2H + ∂2X(−∂1H) = LHX where LH = −(∂1H∂2 − ∂2H∂1). Assuming in-

tegrability of the evolution equation, the flow now becomes Xt = exp(tLH)X. This
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means that the flow (Ttω)t) on Ω induces a flow (exp(tLH)X)t on observables. Notice
also that Xt = exp(tLH)X is a shorthand notation for

Xt =
∞

∑
n=0

(−t)n

n!
{H, {H, . . . {H, X} . . .}}.

Theorem 16.1.3 (Liouville’s theorem). Let µ be the Lebesgue measure on Ω, i.e. µ(dω1dω2) =
dω1dω2. Then

1. the measure µ is invariant under Tt, i.e. µ(TtB) = µ(B) for all B ∈ B(R2) and all
t ∈ R,

2. the operator LH is formally skew-adjoint on L2(Ω,F , µ).

Proof:
1. µ(TtB) =

´
TtB dω1dω2. Now, if ω ∈ TtB ⇒ T−tω ∈ B. Hence, denoting

(x1, x2) = T−t(ω1, ω2), we haveˆ
TtB

dω1dω2 =

ˆ
B

∂(ω1, ω2)

∂(x1, x2)
dx1dx2

=

ˆ
B

dx1dx2 = µ(B),

because the Jacobian verifies

∂(ω1, ω2)

∂(x1, x2)
= det exp(tA) = 1.

2. LH is not bounded on L2(Ω,F , µ). It can be defined on dense subset of L2(Ω,F , µ),
for instance the Schwartz space S(R2). For f , g ∈ S(R2), we have

〈 f | LHg 〉 =

ˆ
f (ω)LHg(ω)µ(dω)

= −
ˆ

LH f (ω)g(ω)µ(dω) + bdry terms.

Now the boundary terms vanish because f and g vanish at infinity. Hence, on
S(R2), the operator is skew-adjoint L∗H = −LH and hence formally skew-adjoint
on L2(Ω,F , µ).

�

Notice that, as a consequence of the previous theorem, exp(tLH) is formally unitary
on L2(Ω,F , µ).

Any probability measure p on Λ is a state. We have for all B ∈ B(R), ρx(B) =
p(x(B)) = p(X−1(B)) while ρxt = p(xt(B)) = p(X−1

t (T−tB)) = p(x(T−tB)). Hence
the flow Tt on Ω induces a convex automorphism α̃(p)(x(B)) = p(x((T−tB)) on states.

16.1.2 Quantum harmonic oscillator

Standard quantum logic Λ coincides with the family of subspaces of an infinite-
dimensional Hilbert space H. Since all separable Hilbert spaces are isomorphic, we
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16.1. The harmonic oscillator

can chose any of them. The Schrödinger’s choice for the one-dimensional harmonic
oscillator is H = L2(R). States are probability measures p : Λ → [0, 1] and thanks to
Gleason’s theorem, we can limit ourselves to tracial states, i.e.

Λ 3 M 7→ p(M) = tr(PMD) = pD(M),

for some D ∈ D(H). Symmetries are implemented by unitary operators on H (auto-
morphisms on Λ.) Let U ∈ U(H). Then α : M 7→ α(M) = UM induces a projection
PUM = U∗PMU. Subsequently, the automorphism α induces a convex automorphism
on S(Λ), given by

α̃(p)(M) = pD(α(M))

= tr(PUMD)

= tr(U∗PMUD)

= tr(PMD(U)),

with D(U) = UDU∗. Physics remains invariant under time translations. Hence time
translation (evolution) must be a symmetry implemented by a unitary operator U(t)
acting on H. Define U(t) = exp(−itH/h̄) (this a definition of H.) Then H is formally
self-adjoint, hence an observable (a very particular one!) generating the Lie group of
time translations. It will be shown below that H is time invariant. Now U(t) acts on
rays of H to give a flow. Denoting ψ(t) = U(t)ψ, we have the Schrödinger’s evolution
equation in the Schrödinger’s picture:

ih̄
dψ

dt
(t) = Hψ(t).

Thanks to the spectral theorem (and, identifying for x ∈ O(Λ) and B ∈ B(R), x(B)
with the projection-valued measure corresponding to the subspace x(B)), there is a
bijection between x ∈ O(Λ) and self-adjoint operators on H through X =

´
λx(dλ).

For every tracial states pD, we have EpD(X) =
´

λ tr(x(dλ)D) and

Eα̃(pD)(X) =

ˆ
λ tr(x(dλ)DU(t))

=

ˆ
λ tr(U∗(t)x(dλ)U(t)D)

= EpD(Xt),

where we defined Xt = U∗(t)XU(t). Hence the flow U(t)ψ on H induces a flow on
observables satisfying

dXt

dt
=

i
h̄
[H, X] = LHX

with LH(·) = i
h̄ [H, ·]. Notice incidentally that dHt/dt = 0 proving the claim that H is

a constant of motion. Moreover, H has dimensions M · L2/T2 (energy), therefore H is
interpreted as the quantum Hamiltonian. If the flow is integrable, we have

Xt = exp(tLH)X

=
∞

∑
n=0

(it)n

h̄nn!
[H, [H, . . . , [H, X] . . .]].
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Physics remains invariant also by space translations. Hence they must correspond
to a symmetry implemented by a unitary transformation.

Lemma 16.1.4. The operator ∇x is formally skew-adjoint on L2(R).

Proof: For all f , g ∈ S(R) (dense in L2(R)), we have, 〈 f | ∇xg 〉 =
´

f (x) d
dx g(x)dx =

−
´ d

dx f (x)g(x)dx + f g|∞−∞. �

Consequently, the operator exp(x ·∇x) is formally unitary and since exp(x ·∇x)ψ(y) =
ψ(y + x), ∇x is the generator of space translations. If we write p = h̄

i∇x then p is for-
mally self-adjoint, has dimensions L ·M · (L/T2) · (1/L) = M · L/T (momentum), and
exp(ix · p/h̄) is unitary and implements space translations.

Define Hosc = p2/2m + kq2 as the formally self-adjoint operator on L2(R), with
p = h̄

i∇x and qψ(x) = xψ(x), the multiplication operator. Introduce µ =
√

k/m,
Q =

√
mµ/h̄q, P = (1/

√
mµh̄)p, and H = (1/h̄µ)Hosc. Then H = (1/2)(P2 + Q2)

where P = −i∇ and Q is the multiplication operator; these two latter operators are
formally self-adjoint and verify the commutation relation [P, Q] = −i1.

Definition 16.1.5. (Creation and annihilation operators) Define the creation operator
A∗ = 1√

2
(P + iQ) and the annihilation operator A = 1√

2
(P− iQ).

Exercise 16.1.6. For the creation and annihilation operators, show

1. [A, A∗] = 1,
2. H = A∗A + 1/2,
3. [H, A] = −A,
4. [H, A∗] = A∗,
5. for n ∈N, [H, (A∗)n] = n(A∗)n.

Lemma 16.1.7. If ψ0 ∈ S(R) is a ray (in the L2 sense) satisfying Aψ0 = 0 then

1. ψ0(x) = π−1/4 exp(−x2/2),
2. Hψ0 = ψ0/2, and
3. H(A∗)nψ0 = (1/2 + n)A∗nψ0, for all n ∈N.

Proof:

Aψ0 = 0 ⇒ 1√
2
(P− iQ)ψ0

⇒ −i
d

dx
ψ0(x)− ixψ0(x) = 0

⇒ ψ0(x) = c exp(−x2/2),

and by normalisation, c = π−1/4. �

Lemma 16.1.8. Denote, for n ∈N, ψn = 1√
n!

A∗nψ0. Then

1. (ψn)n∈N is an orthonormal sequence,
2. A∗ψn =

√
n + 1ψn+1, for n ≥ 0,

3. Aψn =
√

nψn−1, for n ≥ 1, and
4. A∗Aψn = nψn, for n ≥ 0.
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16.1. The harmonic oscillator

Proof: All the assertions can be shown by similar arguments. It is enough to show the
arguments leading to orthonormality:

〈ψ0 | An A∗nψ0 〉 = 〈ψ0 | An−1AA∗A∗n−1ψ0 〉
= 〈ψ0 | An−1(1+ A∗A)A∗n−1ψ0 〉

...

= n〈ψ0 | An−1A∗n−1ψ0 〉
...
= n!〈ψ0 |ψ0 〉.

�

Theorem 16.1.9. The sequence (ψn)n∈N is a complete orthonormal sequence in H.

The proof is based on an analogous result for Hermite polynomials that can be
shown using the two following lemmata.

Lemma 16.1.10. Let cn,j =
n!

(n−2j)!2j j! , for n ∈N, and j ∈N such that 0 ≤ j ≤ n/2. Then

cn,j = (1− 2j
n + 1

)cn+1,j =
2(j + 1)

(n + 1)(n− 2j)
)cn+1,j+1

and if

ηn(x) =
[n/2]

∑
j=0

(−1)jcn,jxn−2j,

then
(x− d

dx
)ηn(x) = ηn+1(x)

while xn = ∑
[n/2]
j=0 cn,jηn−2j(x).

Proof: Substitute and make induction. �

Lemma 16.1.11. (A∗nψ0)(x) = ηn(
√

2x)ψ0(x).

Proof: True for n = 0. Conclude by induction. �

Corollary 16.1.12. spec(H) = 1/2 + N.

Therefore the energy is quantised in quantum mechanics i.e. it can take only discrete values.
It is this surprising phenomenon that gave its adjective quantum to the term quantum
mechanics.

Exercise 16.1.13. Using Dirac’s notation | n 〉 ≡ ψn, for n ∈N,

1. H| n 〉 = (1/2 + n)| n 〉,
2. A∗| n 〉 =

√
n + 1| n + 1 〉,

3. A| n 〉 =
√

n| n− 1 〉, and
4. A∗A| n 〉 = n| n 〉.
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16.1.3 Comparison of classical and quantum harmonic oscillators

Figure 16.3 – Comparison of probability densities. In blue is depicted the probability density of the
classical oscillator. In red the corresponding density for the quantum oscillator for n = 10 (left) and
n = 60 (right).

16.2 Schrödinger’s equation in the general case, rigged
Hilbert spaces

16.3 Potential barriers, tunnel effect

16.4 Rotations in the classical and quantum settings

16.4.1 Rotations for classical particles

Classical rotations in R2

It is instructive to consider first the motion of a particle of mass m evolving in R2

subject to central potential V. The state of the particle is completely described if we
know its position x ∈ R2 and its momentum p ∈ R2 hence its phase space is R4.

The angular momentum of the particle reads L = x1p2 − x2p1 ∈ R. Since the
potential V is assumed central (i.e. invariant under rotations of SO(2, R)) it follows
that the angular momentum is conserved (i.e. is a constant of motion). This result
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16.4. Rotations in the classical and quantum settings

Figure 16.4 – Comparison of distribution functions. In blue is depicted the distribution of the classical
oscillator. In red the corresponding distribution for the quantum oscillator for n = 1 (left), n = 10
(middle), and n = 30 (right). Already for n = 30, the classical and quantum distributions are almost
indistinguishable.

can be obtained as a corollary of the celebrated Noether’s theorem [111]. Instead of
appealing to this general result, we provide with an elementary proof of this statement
here. Namely

Theorem 16.4.1. Consider the 2-dimensional system described by equations of motion

ẋ(t)− =
p(t)

m
, ṗ(t) = −∇V(x) =

(
− ∂V

∂x1

− ∂V
∂x2

)
.

We have
[V invariant under rotations] ⇔ [L̇ = 0].

Proof. Let R be a rotation of SO(2, R), the special orthogonal group. Since the rotation
is orthogonal, it follows that RtR = I2; since the rotation is special, it follows that
det R = 1. Hence the set of such rotations is parametrised by a real parameter θ ∈ R in
the sense that {Rθ , θ ∈ R} ' SO(2, R). It is elementary to show that

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The rotation Rθ acts on the space R2 and transforms vectors x ∈ R2 into y by

x→ Rθx =

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
=

(
y1
y2

)
= y.

Now

d
dθ

V(Rθx) =
∂V
∂x1

dy1

dθ
+

∂V
∂x2

dy2

dθ

=
∂V
∂x1

(−x1 sin θ − x2 cos θ) +
∂V
∂x2

(−x1 cos θ − x2 sin θ).
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Hence
d
dθ

V(Rθx)|θ=0 = − ∂V
∂x1

x2 +
∂V
∂x2

x1.

Now, computing the time derivative of L and using the equation of motion, we obtain

dL
dt

= ẋ1p2 + x1 ṗ2 − ẋ2p1 − x2 ṗ1

= − ∂V
∂x1

x2 +
∂V
∂x2

x1 =
d
dθ

V(Rθx)|θ=0.

Generalisation to higher dimension

The general form of the angular momentum in dimension n is given by the n ×
n matrix L = (Lkl)k,l=1,...,n where Lkl = xk pl − xl pk. Note that in dimension n =

3, this matrix simplifies into the form J =

 0 L1 −L2
−L3 0 L1
L2 −L1 0

, where (Jk)k=1,2,3 are

the Cartesian components of the vector J = x ∧ p (i.e. we can identify the angular
momentum — the matrix J — with the vector J).

We have introduced the notion of Poisson bracket on page 242 for differentiable
functions in two variables. The notion can be extended to arbitrary dimension.

Notation 16.4.2. Let f ∈ C∞(R2n) and denote x = (x1, . . . , xn) ∈ Rn and p =
(p1, . . . , pj) ∈ Rn the arguments of the function f . We denote by L f the differential
operator, acting on C∞(R2n), defined by

L f =
n

∑
k=1

∂ f
∂xk

∂

∂pk
− ∂ f

∂pk

∂

∂xk
.

With the above notation, the Poisson bracket of f and g becomes { f , g} = L f (g).

We derive a useful relationship for the components of the angular momentum in
dimension 3.

Lemma 16.4.3. For a particle in R3, identify its angular momentum with the vector L = x∧p
as stated above. Then

{Lk, Ll} = εklmLm, k, l, m = 1, 2, 3,

where εklm is the totally antisymmetric tensor (equal to 0 if there is a repeated index and being
equal to (−1)s, where s is the signature of the permutation needed to transform the triplet
(klm) into (123)).

Exercise 16.4.4. Prove the previous lemma.

Definition 16.4.5. For N particles evolving in space Rn, the total angular momentum
is the n× n matrix defined by its matrix elements Lk,l = ∑N

r=1(xr
k pr

l − xr
l pr

k), where xr

and pr are the position and the momentum of the r-th particle.
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Note also that the theorem 16.4.1 has a straightforward generalisation in arbitrary
dimension n, given without proof in

Theorem 16.4.6. Suppose N particles evolve in Rn under the influence of conservative forces
stemming from a potential V : RnN → R. Then the following statements are equivalent:

1. For all R ∈ SO(n, R) and all points x1, . . . , xN ∈ Rn, the mutli-particle potential V
remains invariant, i.e. V(Rx1, . . . , RxN) = V(x1, . . . , xN).

2. The total angular momentum is conserved, i.e. for all k, l = 1, . . . , n, L̇k,l = 0.

16.4.2 Lie groups and algebras

We follow [80] in this subsection.

We denote, as usual, GL(n, C) the group of invertible n× n matrices with complex
coefficients, viewed as an open subset of the space Mn(C) ' Cn2

of all n× n matrices
with complex coefficients.

Definition 16.4.7. A closed subgroup G of GL(n, C) is termed a matrix Lie group; it is
viewed as a smooth submanifold of Mn(C). A matrix Lie group G is

— connected if for any two A, B ∈ G, there exists a continuous path γ : [0, 1] →
Mn(C), such that γ(0) = A and γ(1) = B,

— simply connected if every closed path (loop) γ in G is continuously contractible
to one point in G,

— compact if, viewed as a subset of Mn(C), G is compact.

Example 16.4.8. The matrix Lie group

SU(2, C) = {M ∈ GL(2, C) : M∗M = I2, det M = 1} =
{(

a −b
b a

)
, a, b ∈ C, |a|2 + |b|2 = 1

}
is conncected, simply connected, and compact.

We shall mainly be interested in the closely related groups SO(3, R) and SU(2, C),
abbreviated into SO(3) and SU(2), in the sequel.

Definition 16.4.9. A complex or real vector space g is termed a Lie algebra if it is
equipped with an internal multiplication [·, ·] : g× g→ g that is

— bilinear,
— antisymmetric, i.e. [X, Y] = −[Y, X] for all X, Y ∈ g,
— fulfilling the Jacobi identity, i.e. [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0, for all

X, Y, Z ∈ g.

Example 16.4.10. The functional real space C∞(Rn) equipped with the internal prod-
uct [ f , g] = L f (g) = { f , g} is an infinite-dimensional Lie algebra.

Definition 16.4.11. Let g1 and g2 be two Lie algebras. A Lie algebra homomorphism
is a linear map φ : g1 → g2 preserving internal mulitplication, i.e. φ([X, Y]g1) =
[φ(X), φ(Y)]g2 for all X, Y ∈ g1.
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We remark that for every X ∈ Mn(C), the exponential map exp(X) is well de-
fined by its formal power series exp(X) = ∑m∈N

Xm

m! (which converges normally since

‖Xm‖ ≤ ‖X‖m for all m ∈ N). For example, if X =

(
0 a
−a 0

)
, with a ∈ R, then

exp(X) =

(
cos a sin a
− sin a cos a

)
.

Lemma 16.4.12. Let g ⊆Mn(C) be a Lie algebra and X, Y ∈ g. Then

1. exp(0X) = In,
2. exp(Xt) = (exp(X))t and exp(X∗) = (exp(X))∗,
3. for all B ∈ GL(n, C), we have exp(BXB−1) = B exp(X)B−1,
4. det(exp(X)) = exp(tr X),
5. if [X, Y] = 0, then 1 exp(X) exp(Y) = exp(X + Y), and
6. exp(X) in invertible and (exp(X))−1 = exp(−X).

Exercise 16.4.13. 1. Prove the previous lemma.
2. Conclude that, for all X ∈ g, the set {exp(tX), t ∈ R} is a subgroup of GL(n, C).
3. Show that d

dt exp(tX)|t=0 = X.

Definition 16.4.14. Let G ⊆ GL(n, C) a matrix Lie group. The Lie algebra of the group
G is the set (as a matter of fact the Lie algebra)

g = {X ∈Mn(C) : exp(tX) ∈ G, ∀t ∈ R}.

Exercise 16.4.15. Show that the following sets are are the (finite-dimensional) Lie al-
gebras of the classical matrix groups.

1. gl(n, K) = Mn(K), for K = R or C,
2. sl(n, K) = {X ∈Mn(K), tr X = 0}, for K = R or C,
3. u(n) = {X ∈Mn(C) : X∗ = −X},
4. su(n) = {X ∈ u(n) : tr X = 0},
5. o(n) = {X ∈Mn(R) : Xt = −X},
6. so(n) = {X ∈ o(n) : tr X = 0} = o(n), because the condtion tr X = 0 is

automatically fulfilled for X ∈ o(n).

Since the operation [·, ·] is an internal multiplication and g is a (finite-dimensional)
vector space, if (Xk)k∈I is a basis of g, it follows that we can always write

[Xk, Xl] = ∑
m∈I

ckl
mXm,

where the constants (ckl
m)k,l,m∈I are known as the structure constants of the Lie alge-

bra; they determine the Lie algebra g.

1. Note that if X and Y do not commute, then Z = log(exp(X) exp(Y)) is known as the Baker-
Cambell-Hausdorff formula and is given by a complicated combinatorial expression. Its general form
has be determined by Dynkin [50] (a more easily accessible reference is [51, pp. 31–35]) and reads

Z = ∑
n≥1

(−1)n−1

n

∗
∑

Xr1Ys1 · · ·Xrn Ysn

∑n
i=1(ri + si)∏n

k=1 rk!sk!
,

where
∗
∑ denotes summation over indices such that r1 + s1 > 0, . . . , rn + sn > 0.
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Exercise 16.4.16. 1. Show that the vector space so(3) admits as basis the matrices

F1 =

0 0 0
0 0 −1
0 1 0

 , F2 =

 0 0 1
0 0 0
−1 0 0

 , F3 =

0 −1 0
1 0 0
0 0 0

 .

2. Verify that [Fi, Fj] = εijkFk and conclude that the matrices of the basis (F1, F2, F3)
fulfill the Jacobi identity.

Proposition 16.4.17. Let G1 and G2 be matrix Lie groups and g1 and g2 their Lie algebras.
For every Lie group homomorphism Φ : G1 → G2, there exists a linear map φ : g1 → g2 such
that

Φ(exp(tX)) = exp(tφ(X)), ∀t ∈ R, ∀X ∈ g1.

Moreover, forall X, Y ∈ g1 and all A ∈ G1,

1. φ([X, Y]) = [φ(X), φ(Y)] (i.e. φ is a Lie algebra homomorphism),
2. φ(AXA−1) = Φ(A)φ(X)Φ(A−1), and
3. φ(X) = d

dt Φ(exp(tX))|t=0.

Corollary 16.4.18. If G1 and G2 are homomorphic matrix Lie groups then their Lie algebras
g1 and g2 are homomorphic.

In view of the previous corollary, a natural question is whether two homomorphic
Lie algebras give rise, by exponentiation, to homomorphic Lie groups. The answer is
in general negative as the following exercise shows.

Exercise 16.4.19. 1. Show that the vector space su(2) admits as basis the matrices

E1 =
1
2

(
0 i
i 0

)
, E2 =

1
2

(
0 1
−1 0

)
, E3 =

1
2

(
i 0
0 −i

)
.

2. Verify that [Ej, Ek] = ε jkl Fl and conclude that the matrices of the basis 2 (E1, E2, E3)
fulfill the Jacobi identity.

3. Denote by Φ : SU(2) → SO(3) the unique Lie group homomorphism for which
the associated Lie algebra homomorphism φ (see proposition 16.4.17) is defined
by φ(Ek) = Fk, for k = 1, 2, 3, where (F1, F2, F3) are the basis of so(3) (obtained
in exercise 16.4.16). Show that ker(Φ) = {I,−I}.

4. Conclude that although su(2) ' so(3), it is not true that SU(2) ' SO(3).

Therefore, the following theorem is interesting since it states the conditions under
which the Lie algebra uniquely determines the corresponding group.

Theorem 16.4.20. Let G1 and G2 be matrix Lie groups and g1 and g2 the corresponding Lie
algebras. If

1. G1 and G2 are connected, and
2. g1 ' g2,

then G1 ' G2.

2. It is worth noticing that those matrices are closely related to — although not coinciding with —
Pauli matrices. As a matter of fact, Ek =

iσk
2 , for k = 1, 2, 3, where (σk) are the Puali matrices.
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The previous results give also a non trivial significance to the following definition.

Definition 16.4.21. Let G be a connected matrix Lie group and g its Lie algebra. A
universal cover of G is a pair (G̃, Φ) where G̃ is a simply connected matrix Lie group
and Φ : G̃ → G is a Lie group homomorphism such that the Lie algebra homomor-
phism φ : g̃ → g between the corresponding Lie algebras is as a matter of fact an
isomorphism. The map Φ is termed the covering map.

Example 16.4.22. The universal cover of SO(3) is SU(2), Φ), with Φ defined in exercise
16.4.19.

Definition 16.4.23. Let G ⊆ GL(n, C) be a matrix Lie group and g ⊆ gl(n, C) its Lie
algebra. A finite-dimensional representation

1. of G is a continuous homomorphism A : G→ GL(V) where V is a finite dimen-
sional vector space,

2. of g is a Lie algebra homomorphism α : g → gl(V), where gl(V) is the space of
all linear mappings on V equipped with the internal product [X, Y] = XY−YX
for X, Y arbitrary linear mappings.

Remark 16.4.24. Let A : G→ GL(V) be a finite-dimensional representation of G.

1. When A is injective, then G is isomorphic with A(G) ⊆ GL(V), i.e. the map A
serves to “represent” every element of G by an invertible matrix acting on V.
Nevertheless, the term representation is used even if A fails to be injective.

2. We say that G acts on a set X if there exists a mapping • : G×X→ X, the action,
denoted multiplicatively as g • x ∈ X, for all g ∈ G and x ∈ X, verifying

e • x = x and g • (h • x) = (gh) • x,

for all g, h ∈ G, x ∈ X, and on denoting e the neutral element of G.
Every representation A : G→ GL(V) induces a linear action on V by

g • v = A(g)v.

3. In general, we view gl(V) as a real vector space. If V is a complex vector space
and g a real Lie algebra, we require that α : g→ gl(V) be a real linear function.

Definition 16.4.25. Let A : G → GL(V) (respectively α : g → gl(V)) be a representa-
tion of a Lie group G (respectively a Lie algebra g).

1. A vector subspace W ⊂ V is called invariant for the representation if for all
g ∈ G, w ∈W, X ∈ g, we have

A(g)w ∈W, α(X)w ∈W.

2. A representation is called irreducible if it has only trivial invariant subspaces,
i.e. the only invariant subspaces are {0} and V.

3. Let (A1, V1) and (A2, V2) be two representations of G. A morphism Φ : V1 →
V2 is called an intertwining if Φ(A1(g)v) = A2(g)Φ(v), for all g ∈ G and all
v ∈ V1.
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16.4.3 Rotations for quantum particles

A classical text for this section — where basic results of representation theory are
re-proven — is [52]; a more modern textbook is [80].

We deal only with rotations in dimension 3. Rotations in dimension 2 can be de-
fined analogously in a simpler fashion. Since classically the generators of the rota-
tions are the components of the angular momentum L = x ∧ p and the quantisation
of the system is obtained by the formal assignments x → multiplication operator and
p→ −ih̄∇x on L2(R3), we get the assignment L = −ih̄x∧∇x. Of course, this operator
is not defined on the whole space H = L2(R3) but only to a dense subset, for instance
on S(R3). For example, the third component of L can be defined through a differential
operator and be given a significance in terms of rotations as shown in the following
formula:

L3ψ(x) = −ih̄(x1
∂

∂x2
− x2

∂

∂x1
)ψ(x) = −ih̄

d
dθ

ψ(Rθx)|θ=0,

where Rθ denotes the rotation by θ (measured in the positive sense) on the plane de-
fined by the axes 1 and 2.

On S(R3), we verify easily that the components (Lk)k∈{1,2,3} of the angular momen-
tum operator fulfil the commutation relations

[Lk, Ll] = ih̄εklmLm.

These commutation relations are compatible with the Lie algebra structure. It will be
prove important to consider the above commutation relations as the defining prop-
erty of the components of the angular momentum instead of the previous differential
operator definition. As a matter of fact, the differential form of the angular momen-
tum operator will be associated with the classical notion of a particle rotating around
a given axis. However, quantum particles have also internal degrees of freedom, with-
out classical counterparts, obeying at precisely the same commutation relations. In
the sequel, we reserve the symbol L = (Lk)k=1,2,3 for the angular momentum stem-
ming from the differential operator of particle rotation around an axis, and we use the
symbol J = (Jk)k=1,2,3 for the family of operators defined algebraically through the
commutation relations

[Jk, Jl] = ih̄εklm Jm,

without reference to differentiation. These operators denote generically angular mo-
mentum or “generalised angular momentum” corresponding to internal degrees of
freedom — known as spin of the particle — or “sums” of the previous observables.

Definition 16.4.26. For R ∈ SO(3), define A : SO(3) → B(L2(R3)) an (infinite)-
dimensional representation of SO(3), by

A(R)ψ(x) = ψ(R−1x).

Proposition 16.4.27. The representation A defined in 16.4.26 is unitary and a strongly con-
tinuous homomorphism.

Proof. The unitarity follows from the invariance to rotations of the Lebesgue measure
on B(R3). To establish the second statement, remark that for all ψ ∈ L2(R3) and all
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R1, R2 ∈ SO(3),

A(R1R2)ψ(x) = ψ((R2 ◦ R1)
−1(x)) = ψ(R−1

1 ◦ R−1
2 x)

= A(R1)ψ(R−1
2 x) = A(R1)A(R2)ψ(x).

Hence A(R1R2) = A(R1)A(R2) establishing the homomorphism property.

To establish strong continuity, remark that C(R3) is dense in L2(R3), i.e. for every
ε > 0, there exists φ ∈ C(R3) such that ‖ψ− φ‖2 < ε/3. Hence, for R, S ∈ SO(3) such
that ‖R− S‖ → 0,

‖A(R)ψ− A(S)ψ‖ ≤ ‖A(R)(ψ− φ)‖+ ‖A(R)φ− A(S)φ‖+ ‖A(S)φ− A(S)ψ‖
≤ ‖ψ− φ‖+ ‖A(S)(A(S−1R)− I)φ‖+ ‖φ− ψ‖ ≤ ε.

Since the representation A defined in ?? is (formally) unitary, it follows that if we
define the representation α on the algebra so(3) by

A(exp(tX)) = exp(tα(X)), for X ∈ so(3), t ∈ R,

then S(R3) ⊆ dom(Fk) for k = 1, 2, 3 and on this domain, Jk = ih̄α(Fk).

Theorem 16.4.28. Let α : so(3) → gl(V) be an irreducible representation of so(3) in the
finite-dimensional space V with dim V = 2l + 1 (this expression defines l as a non-negative
integer or half-integer). Define Jk = iα(Fk), for k = 1, 2, 3 and J± = L1 ± iL2 = iα(F1)∓
α(F2). Then there exists a basis (v0, . . . , v2l) of V satistying

J3vj = (l − j)vj

J+vj =

{
j(2l + 1− j)vj−1 if j > 0,
0 if j = 0,

J−vj =

{
vj+1 if j < 2l,
0 if j = 2l.

Proof. The map α is a Lie algebra homomorphism; therefore, (α(Fk)) have the same
commutation properties as (Fk) for k = 1, 2, 3. Hence

[J3, J±] = J±, [J+, J−] = 2J3.

Since the number field C is algebraically closed, it follows that J3 has at least one eign-
vector v with some eigenvalue λ. Using the commutation relation, we get

J3(J+v) = (J+ J3 + J+)v = (λ + 1)J+v.

Consequently, either J+v = 0, or it is an eigenvector of J3 with eigenvalue λ + 1.

Since V is finite-dimensional, there are only finitely many eigenvalues. Therefore,
there eixsts an integer K ≥ 0 such that JK

+v 6= 0 but JK+1
+ v = 0. Introduce henceforth

v0 := Jk
+v and µ := λ + K. Obviously v0 6= 0, J+v0 = 0, and L3v0 = µv0.
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In the sequel, forget about v and consider solely v0. Define vj = J j
−v0 for j =

0, 1, 2, . . .. By exactly the same arguments as above, either J− yields a null vector or
an eigenvector of J3 with eigenvalue decreased by 1. Therefore, J3vj = (µ− j)vj. We
show by recurrence that J+vj j(2µ + 1− j), for j = 1, 2, . . .. Since J3 has finitely many
eigenvalues, there exists an integer N ≥ 0 such that vN 6= 0 and vN+1 = 0. Hence,

0 = J+vN+1 = (N + 1)(2µ + 1− N − 1)vN = (N + 1)(2µ− N)vN =⇒ 2µ = N.

Defining l = N/2 and µ = N/2 = l, we get the formulae stated in the theorem.

Now, the vectors vj are eigenvectors of J3 corresponding to distinct eigenvalues;
therefore they are linearly independent and W := vect{vj, j = 0, 1, . . . , N} is invariant
under the action of J3, J+, J−. Since the latter span so(3), it follows that W is invariant
under so(3). The representation is assumed irreducible; hence W = V and conse-
quently, dim V = N + 1 = 2l + 1.

Definition 16.4.29. Let (α, V) be a finite-dimensional irreducible representation of
so(3). We call spin of the representation the maximal eigenvalue of J3 = iα(F3). Equiv-
alently, l is the unique non-negative integer or half-integer such that dim V = 2l + 1.

Exercise 16.4.30. Show that for every l ∈ N/2, there exists an irreducible representa-
tion of so(3) of dimension 2l + 1.

Hint: For a given l ∈N/2, construct a vector space V by defining its basis {v0, v1, . . . , v2l}.
Let so(3) act on it as in theorem 16.4.28 and check that J3, J+, J− verify the correct com-
mutation relations so that V is indeed a representation space of so(3). Then one con-
cludes by showing irreducibility.

Proposition 16.4.31. Let α : so(3) → gl(V) be an irreducible representation of spin l.
Then, the vector space V can be equipped with a scalar product, unique up to multiplication by
constants, such that α(X) is skew-adjoint for all X ∈ so(3).

Proof. Suppose first that such a scalar product, guaranteeing skew-adjointness of all
α(X), exists. Then, recalling that J3 = iα(F3) and J± = iα(F1)∓ α(F2), skew adjointness
of all α(X) implies that J∗3 = J3 and J∗± = J∓. Let (vj) be the set of eigenvectors
corresponding to the different eigenvalues l − j of J3. By adjointness of J3 it follows
that (vj) must be orthogonal. Conversely, if 〈 · | · 〉 is a scalar product such that the
eigenvectors (vj) of J3 are orthogonal, it follows that J∗3 = J3.

Suppose henceforth the aforementioned properties for the adjoints of J3 and J±. We
get, using the identity [J+, J−] = 2J3, that

〈 vj | vj 〉 = 〈 J−vj−1 | J−vj−1 〉 = 〈 vj−1 | J+ J−vj−1 〉
= (j− 1)(2l + 1− (j− 1))〈 vj1 | J−vj−2 〉+ 2(l − j + 1)〈 vj−1 | vj−1 〉
= [(j− 1)(2l + 2− j) + 2(l − j + 1)]〈 vj−1 | vj−1 〉 = j(2l − j + 2)〈 vj−1 | vj−1 〉.

This recurrence must be valid for all l = 1, . . . , 2l. Now, since j(2l − j + 2) > 0 for
all these values of j, there is no obstacle preventing this recurrence from holding. In
order to completely determine the scalar product, it is enough to fix the constant c =
〈 v0 | v0 〉.
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For a finite-dimensional irreducible representation α : so(3)→ gl(V) on a vector space
V equipped with a non-degenerate invariant bilinear form b, there exists a linear op-
erator Cα acting on V in the centre of the representation (i.e. commutes with all α(Fk)).
This operator is called Casimir operator.

Theorem 16.4.32. Let α : so(3) → gl(V) be an irreducible representation of spin l (equiva-
lently dim V = 2l + 1). Then Cα = ∑3

k=1 α(Fk)
2 is a Casimir operator for α. Moreover for all

v ∈ V, Cαv = −l(l + 1)v.

Before proving this theorem, we need a standard result in the theory of Lie algebras:

Theorem 16.4.33 (Schur’s lemma). Let (α, V) be a finite-dimensional representation of a
complex Lie algebra g.

1. If α is irreducible then any operator T on V commuting with all α(X), X ∈ g, has the
form T = λ1, for some λ ∈ C.

2. It α is fully reducible (i.e. every invariant subspace has an invariant complement) and
is such that every operator T acting on V that commutes with all α(X), X ∈ g, has the
form T = λI for some λ ∈ C then α is irreducible.

Proof of the theorem 16.4.32. To show that Cα is in the centre of so(3), we use the com-
mutation relations to show that ∀k = 1, 2, 3, [Cα, α(Fk)] = 0. Since (Fk) is basis of so(3),
it follows that [Cα, α(X)] = 0 for every X ∈ so(3), hence, by Schur’s lemma, there
exists a λ ∈ C, such that Cαv = λv, for all v ∈ V. Let v0 be the non-vanishing
vector introduced in the proof of theorem 16.4.28 and use the standard re-writing
Cα = −∑3

k=1 J2
k = −(J2

3 + J− J+ + J3) to establish that Cαv0 = −l(l + 1)v0. Since this
equation holds for the non-vanishing vector v0, it holds for all vectors.

16.4.4 Irreducible representations of SO(3) and notion of the spin of
a particle

The natural invariance group for rotation is SO(3). We have already seen that its Lie al-
gebra so(3) is isomorphic to the Lie algebra su(2) of its universal covering groupSU(2).
Moreover, the representations of SO(3) can be obtained from those of so(3) by using
the exponential map. The following theorem clarifies this statement.

Theorem 16.4.34. Denote by αl : so(3) → gl(V), the irreducible representation whose spin
is l = 1

2(dim V− 1).
— If l ∈ N (i.e. dim V is odd), there exists a representation Al : SO(3) → GL(V) such

that
Al(exp(tX)) = exp(tαl(X)), ∀X ∈ so(3), t ∈ R.

— If l ∈N + 1
2 (i.e. dim V is even), there does not exist such a representation.

Remark 16.4.35. The representations of SO(3) are those precisely with integer spin.
Nevertheless, a natural question remains: do the other representations with spin in
N+ 1

2 have any physical meaning? These representations are termed half-integer spin
representations in the literature. We will see that those representations are responsible
for internal rotational degrees of freedom of the particle, present even in the absence
of any physical rotation in R3, known as spin of the particle.
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Proof ot the theorem 16.4.34. — Let l ∈N + 1
2 . In the eigenbasis (vj)j=0,...,2l of J3, we

have J3vj = (l − j)vj. For t = 2π,

exp(tαl(F3)) = exp(2iπαl(F3)) = exp(−2π J3),

and applying this operator on vj, we get exp(−2π J3)vj = −vj for all j = 0, . . . , 2l
because the eigenvalues l − j ∈ N + 1

2 . I.e. exp(−2iπ J3) = −I. It is an elemen-
tary computation to show that exp(2πF3) = e (e the neutral element of SO(3)).
Hence, if it was be possible to express the representation Al in terms of αl, we
should have

Al(e) = Al(exp(−2π J3)) = exp(2παl(F3)) = exp(−2iπ J3) = −I.

This is impossible because Al must be an homomorphism.
— Let now l ∈ N. Use the isomorphism φ : su(2) → so(3) to transform the basis

(E1, E2, E3) of su(2) into the basis (F1, F2, F3) of so(3). If αl is a representation of
so(3), the aforementioned isomorphism induces a representation α′l : su(2) →
gl(V) by α′l = αl ◦ φ. Since SU(2) is simply connected, there exists a represen-
tation A′l of SU(2) obtained by exponentiation, i.e. A′l(exp(X)) = exp(α′l(X)) =
exp(αl(φ(X))) for all X ∈ su(2). It is easy to verify that exp(2πE3) = −e. There-
fore,

A′l(−e) = A′l(exp(2πE3)) = exp(2παl(φ(E3))) = exp(2παl(F3)) = exp(2πi J3).

But now the eigenvalues of J3 are integers. Hence exp(2π J3))vj = vj for all j.
Consequently, exp(2π J3) = I.
Now recall that SU(2) is the universal cover of SO(3). There exists a surjective
homomorphism Φ : SU(2) → SO(3), whose kernel is ker(Φ) = {e,−e} that
leads to the previously mentioned Lie algebra isomorphism φ. We have estab-
lished in the previous lines that ker A′l ⊇ {−e, e}. Hence Φ factors, on SO(3), into
two components so that the representation A′l = Al ◦Φ leads to Al = A′l ◦Φ−1.

Irreducible representations of SO(3) in L2(S2)

We have seen, in 16.4.27, that the mapping A : SO(3)→ B(L2(R3)) defined by

SO(3) 3 R 7→ A(R) s.t. (A(R)ψ)(x) = ψ(R−1x),

for all ψ ∈ L2(R3) and x ∈ R3, is a unitary representation. Now, if the problem under
consideration has rotational symmetry and we split the x dependence into radial and
angular coordinates, the action of SO(3) manifests itself only by its action on angular
coordinates. It is therefore possible to split the action of SO(3) into its action on L2(S2)
— equipped with area measure on S2 that is invariant under SO(3) — and on the
angular part. The representation reads on the angular part (A(R)ψ)(u) = ψ(R−1u)
for u ∈ S2. Once the angular action will be determined, the full action on L2(R3) will
be easily recovered.
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The Laplacian on Rd is defined as being the differential operator defined formally on
L2(Rd) by

∆ =
d

∑
k=1

∂2
k ,

i.e. ∆ is only defined on a dense domain (for instance S(Rd).

Definition 16.4.36. A polynomial on Rd with complex coefficients is called
— harmonic if ∆p = 0,
— homogeneous of degree l if p(λx1, . . . , λxd) = λl p(x1, . . . xd) for all x = (x1, . . . , xd) ∈

Rd and all λ ∈ R.
The set of polynomials on Rd, homogeneous of degree l, is denoted by HPd

l while the
set of harmonic polynomials on Rd homogeneous of degree l by HHPd

l .

Exercise 16.4.37. Show that

1. HPd
l is a vector space,

2. dimHP2
l = l + 1,

3. dim HP3
l = (l+1)(l+2)

2 .

Hint: Look at figure ??.

Let l ∈N and
Vl = vect{p�S2 : p ∈ HHP 3

l } ⊆ L2(S2).

The set Vl constitutes the space of spherical harmonics of degree l.

Exercise 16.4.38. Let p be an homogeneous polynomial on R3. Show that its restriction
p�S2 ≡ 0 if, and only if, p ≡ 0.

Exercise 16.4.39. Show that all homogeneous polynomials of degree 0 and 1 are har-
monic. Determine V3

0, V3
1, and V3

2.

Theorem 16.4.40. The spaces Vl defined in 16.4.36 have the following properties:

1. dim Vl = 2l + 1,
2. Vl is invariant under SO(3) and irreducible
3. l 6= m =⇒ Vl ⊥ Vm in L2(S)2,
4. L2(S2) = ⊕l∈NVl.

The proof is split into various intermediate results.

Lemma 16.4.41. The set Pl is the space of homogeneous polynomials of degree l on R3. More-
over, for l ≥ 2,

1. ∆ : Pl → Pl−2, and
2. dim Vl = dim Pl − dim Pl−2 = 2l + 1.

Proof. 1. For l ≥ 2, we have obviously ∆(Pl) ⊆ Pl−2 since the action of the Lapla-
cian decreases powers by two.
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2. All homogeneous polynomials of degree 0 and 1 are harmonic. Since there is
only one such polynomial of degree 0 and there are 3 monomials of degree 1,
namely x1, x2, x3, the formula is satisfied.

Now, equip Pl with the scalar product of Bargmann-Segal. Instanciating the identity
ker(X∗) = im(X)⊥, valid for all operators X acting on Pl, to the case X = ∆ and using
the fact that ∆∗ is the multiplication operator by ‖x‖2, we conclude that ∆∗ is injective.
In fact, ‖x‖2 = 0⇔ x2

1 + x2
2 + x2

3 = 0⇔ x = 0.

Corollary 16.4.42. Let l ∈ N and k = l/2 (if l is even) or k = (l − 1)/2 (if l is odd). Then
every p ∈ Pl can be decomposed into a superposition of polynomials of the form

p(x) =
k

∑
m=0
‖x‖2m pm(x),

where pm is a harmonic polynomial homogeneous of degree l − 2m. In particular, if x ∈ S2,
then p�S2 = (∑k

m=0 pm)�S2 .

Remark 16.4.43. Mind that the polynomial ∑k
m=0 pm(x) is not homogeneous for gen-

eral x ∈ R3. However, given any polynomial p there exists a harmonic polynomial p′

such that p and p′ have the same restriction on S2.

Exercise 16.4.44. Let, as usual, Jk = iα(Fk) and J± = J1 ± i J2. Show that for any l ∈N,
the polynomial p(x) = (x1 + ix2)

l belongs to Vl. Moreover, show:
— J3p = lp,
— J+p = 0,
— Vl is irreducible under the action of SO(3) (hint: repeatedly act on p with J−),
— and conclude by completing the proof of the theorem 16.4.40.
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Figure 16.5 – The set of homogeneous polynomials of degree l in 3 variables x = (x1, x2, x3) is
spanned by monomials of the form xl1

1 xl2
2 xl3

3 , with l1, l2, l3 ∈ N and l1 + l2 + l3 = l. This remark
allows the bijective representation of the spanning monomials by the points depicted in the above
figures for the cases of l = 6 and l = 4.

Irreducible representations of SO(3) in L2(R3)

In the previous subsection, it has been established that L2(S2) = ⊕l∈NVl. Moreover,
it was shown that dim Vl = 2l + 1 by exhibiting a basis of Vl. Although the so con-
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structed basis can be used to obtain an orthonormal basis of Vl, this construction is a
little tedious. We shall follow below a slightly different approach.

Using spherical coordinates (r, θ, φ) in R3 instead of Cartesian (x1, x2, x3) ones, i.e.

x1 = r sin θ cos φ, x2 = r sin θ sin φ, x3 = r cos φ,

where

r = ‖x‖, θ = arccos
(x3

r

)
∈ [0, π], φ = arctan

(
x2

x1

)
∈ [0, 2π],

we observe that, expressing any ψ ∈ L2(R3) in spherical coordinates, we get

‖ψ‖2
2 =

ˆ ∞

0
dr r2

ˆ π

0
dθ sin θ

ˆ 2π

0
dφ ψ(r, θ, φ).

The previous equation means that for almost all r, the function ψ(r, θ, φ) must be square
integrable with respect to the measure to the sin θdθdφ acting on the angular variables
(θ, φ), i.e. for almost all r, ψ(r, ·, ·) ∈ L2(S2). Here the scalar product on L2(S2) is given
by

L2(S2)× L2(S2) 3 〈 f | g 〉 :=
ˆ π

0
dθ sin θ

ˆ 2π

0
dφ f (θ, φ)g(θ, φ).

In summarising, we have thus identified the Hilbert space L2(R3) with the Hilbert
space L2([0, ∞[; L2(S2), r2dr) of L2(S2)-valued measurable functions defined on the in-
terval [0, ∞[ that are square integrable with respect to the measure r2dr.

Let l ∈ N and f a measurable function such that
´ ∞

0 | f (r)|2r2l+2dr < ∞. Since every
x 6= 0 can be written as x = x̂‖x‖, where x̂ = x

‖x‖ ∈ S2, any function of the form
ψ(x) = p(x) f (‖x‖), with p ∈ Vl, can be rewritten in the equivalent form ψ(x) =
p(x̂)‖x‖l f (‖x‖), establishing thus that ψ is both measurable and square integrable. It
is therefore meaningful to define the subspace

V
f
l = {ψ ∈ L2(R3) : ψ(x) = p(x) f (‖x‖), p ∈ Vl}

where the dependence of ψ in x is split into an angular and a radial part. It is therefore
clear that the representations in L2(S2) can serve as germs of the representations in
L3(R3).

Now H(r; p) is invariant under the rotations of the group SO(3, R). Hence the angular
momentum J = r∧ p is conserved by Noether’s theorem [111]. Decomposing J into its
Cartesian components M1 = r2p3− r3p2 (and cyclically for the others) we easily check
that {H, Mi} = 0 for i = 1, 2, 3 and additionally, Jj = ih̄α(Fj).
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16.5. The hydrogen atom

16.5 The hydrogen atom

16.5.1 Classical planetary model and its inconsistencies

After the experimental confirmation of the existence of atoms 3 in 1908 by Perrin 4 [117]
(reprinted in [118]), that has been made possible thanks to the mathematical descrip-
tion of Brownian motion by Einstein [53], various models for the chemical atoms have
been proposed. The plum pudding model of the atom, proposed by J.J. Thomson in
1904, was experimentally shown to be totally unrealistic by Ernest Rutherford in 1909.
Rutherford’s experiments were compatible only with a planetary model for the atom.

The planetary model of the hydrogen atom considers a positively charged (with charge
e) massive proton having mass m1 around which gravitates a light negatively charged
(with charge −e) electron of mass m2, with m2 � m1. According to classical electrody-
namics, the total energy of the system is given by the Hamiltonian function

H(x1, x2; p1, p2) :=
‖p1‖2

2m1
+
‖p2‖2

2m2
+ V(‖x1 − x2‖),

where xi, i = 1, 2 designate the positions of the (centres of mass) of the particles and
pi = miẋi their moments. V stands for the Coulomb electrostatic potential V(‖x‖) =

−ke
e2

‖x‖ , where ke =
1

4πε0
is the Coulomb constant 5.

Due to the large disparity of the masses 6 the system is approximately decoupled. In-
troducing new coordinates (X, r) for the centre of mass of the system X = m1x1+m2x2

M ,
where M = m1 +m2 is the total mass and P = MẊ, and relative coordinates x = x1− x2
and p = mẋ, where 7 m = m1m2

M , the Hamiltonian decouples into

H(x, X; p, P) :=
‖P‖2

2M
+ H(x; p),

where the first term describes to free motion of the centre of mass and the second one

H(x; p) =
‖p‖2

2m
+ V(‖x‖)

describes the motion of a fictitious particle (having almost the same mass as the elec-
tron) of reduced mass m in the central potential V.

Although this form will be shown to be the right starting point for a genuine quantum
description, the classical model is flawed by two major inconsistencies:

3. The hypothesis of their existence has been issued by the British scientist John Dalton in 1802.
4. The 1926 Nobel Prize in Physics has been awarded to French physicist Jean Perrin for this discov-

ery.
5. Its value is 9.9875517873681764× 109 Nm2C−2.
6. The electron mass is m2 = 9.10938356 × 1031 kg while the proton mass is m1 = 1.6726219 ×

10−27 kg.
7. Note that m = 0.999449819m2.
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Some illustrating examples

— Since the electrons are charged and supposed to turn around the nucleus, they
emit constantly electromagnetic radiation as a consequence of Maxwell equa-
tions. Should the electrons — considered as classical particles — gravitate around
the nucleus, they rapidly would loose all their energy and collapse on the nu-
cleus. The (classically computed) collapse time for the hydrogen atom (in the
planetary model) is 16 ps = 1.6 × 10−11 s, while this atom is experimentally
known to be stable!

— The experimental observation of absorption and emission phenomena occur at
discrete very precise frequencies. For instance, the hydrogen in higher solar
atmosphere absorbs light at very specific frequencies so that the spectrum of
solar light when analysed by a prism does not only show the familiar rainbow-
like continuous spectrum; some specific colours are totally missing instead. On
the other hand, hydrogen lamps emit only at some very specific frequencies,
precisely located at the positions of the spectrum where absorption is observed
in the solar spectrum (see figure 16.6). These observations are incompatible with
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Figure 16.6 – The absorption and emission lines of hydrogen.

classical physics since classically energy can take continuous values (compare
with classical harmonic oscillator).

It will be shown below that both inconsistencies disappear in the quantum description.

16.5.2 The quantum description

The quantum description of the energy spectrum of the hydrogen atom constituted
one of the major triumph of the quantum formalism since all its predictions were ex-
perimentally verified with unprecedented accuracy. It paved the way of the unified
description of all atomic and molecular Physics, explaining thus the fundamentals of
Chemistry (and hence Biology).

Absorption and emission spectra from atoms other than hydrogen (or from molecules)
display the same features and their frequencies are so precise that can serve as signa-
tures of the existence of these elements. The figure 16.8 give such an example.
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16.6. Related results
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Figure 16.7 – Explanation of the absorption/emission lines of hydrogen.

Figure 16.8 – Absorption lines of other atoms or molecules used as signature of these elements.

16.6 Related results

16.6.1 Mechanism of classifying atomic elements into the periodic
table

16.7 Stern-Gerlach experiment and the spin of electron

Short video explaining the Stern-Gerlach experiment.

16.7.1 Principle of nuclear magnetic resonance imaging
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Some illustrating examples

Figure 16.9 – Mendele’ev periodic table of elements displaying the electronic configuration of the
outer shell.

Figure 16.10 – Facsimile from the 1922 original article of Stern-Gerlach [69, 68], displaying the
experimentally observed beam splitting.
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16.7. Stern-Gerlach experiment and the spin of electron

Figure 16.11 – Experimental setup of the Stern-Gerlach experiment. The elecrtronic configuration of
silver is [Kr]5s1; the full shells up to [Kr] contribute with 0 total spin. The nucleus spin has en effect
below the detection threshold because its Bohr magneton is 2000 times smaller that for the electron.
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17
Quantum formalism based on the

informational approach

Conditioning as disintegration [35], regular conditional probabilities, standard
Borel spaces.

Projective limits [109]. Probabilities on lattices [103]. Effect algebras [81, 90].
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A
What is light?

Most of the experiments investigating the nature of the quantum, at the crux of the
most important foundational questions of quantum formalism, although in principle
possible to realise with electrons or atoms, are more easily implemented using light.
Moreover, in these days, light plays a key role in the transmission, storage, processing,
and protection of digital information (let it be classical or quantum). It is therefore
important both for practitioners of cryptography and digital communication and for
those interested to the foundational aspects of quantum formalism to know some basic
facts about nature of light and its properties.

The major difficulty towards such a goal is that the nature of light cannot be easily
explained; stricto sensu its description lies outside the realm of pure (non-relativistic)
quantum mechanics since its speed (constant in all inertial frames) is not small com-
pared to the speed c of . . . light; it is precisely equal to c. Hence the correct framework
of its description is quantum field theory. We know these days that a beam of light is a
flow of a huge number of light quanta, called photons 1.

We start with a brief history ot Light. We continue then with its description as elec-
tromagnetic waves — solutions of the sourceless Maxwell equations — and give some
hints towards the (classical, i.e. non-quantum) relativistic rewriting of Maxwell equa-
tions in a relativistically covariant form. Then a step towards the quantisation of the
electromagnetic field is made and the description of the most common optical devices
is made in the framework of quantum optics.

The reader is warned however that this appendix is necessarily of phenomenologi-
cal nature, intending to give the basic necessary tools to handle phenomena involving

1. Within the quantum field theoretical framework photons are massless (hence travelling at the
speed c in all inertial frames) particles, with spin 1 (hence bosons) particles, and interacting with charged
matter. Since they cannot be stopped, the possible eigenvalues of their spin are only +1 and −1 (the
valued 0 is forbidden); it is therefore improper to speak about their polarisation, they bear only helicity.
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A.1. History

light. Readers interested in the full-fledged microscopic description of light within
quantum electrodynamics are invited to consult textbooks on quantum electrodynam-
ics (for instance [24, 57, 88, 91]).

A.1 History

The conjectured nature of light has undergone several profound changes during cen-
turies.

Ancient times: For Egyptians (ca. 10th century before our era) light was “ocular
fire” for the eye of the god of sun Ra. For the ancient Greeks (ca. 4 century before
our era) sight was an interaction of light rays emitted both by the eye and the
luminous source; rays were supposed to travel in straight lines. For the ancient
Indians (ca. 1–2 century of our era), light was a stream of high velocity “fire”
atoms.

Arabic golden age: Hasan Ibn al-Haytham (ca. 965–ca. 1040), Latinised as Alhazen,
mathematician, physicist, physician, astronomer, and philosopher, is considered
as the father of modern geometric optics. In a highly influential book, the Kitab
al-Manazir (Book of optics), he explained that vision occurs when light bounces
on an object and then is directed to the eyes. In the same book, among other
things, he formalises and investigates in detail refraction i.e. the phenomenon
of change of the direction of propagation when light crosses an interface of two
different optical media, e.g. air-water. Additionally, he gave the correct expla-
nation (as we now know) of this phenomenon, namely that light travel slower
in the denser medium.

Early 17th century: Light is particles. René Descartes (1596–1650) explained re-
fraction of light by a modification of its speed in the two media based on the
wrong conjecture (6 centuries after the correct prediction of al-Haytham!) that
light travels faster in the denser medium. Pierre Gassendi (1592–1655) proposed
a particle theory of light.

Late 17th century: In 1676, the Danish astronomer Ole Rømer (1644–1710), work-
ing at the Observatoire royal de Paris, by timing the eclipses of the Jupiter moon Io,
determined 2 that light travels at finite speed, he estimated at ca. 220000 km/s,
about 26% lower than the now known precise speed c. Sir Isaac Newton (1642–
1727) published in 1704 his treatise Opticks 3 where he provides a particle ex-
planation of refraction making the same mistake as Descartes by assuming that
light travels faster in water than in the air. Among other things, he established
that white light is a mixture of all colours.

Late 17th–19th centuries: Light is waves. Christiaan Huygens (1629-1695) pro-
posed a wave theory of light and introduced the fallacious idea of the luminif-
erous ether as the medium into which light propagates. Leonhard Euler (1707–
1738) and Augustin-Jean Fresnel (1788–1827), independently, developed a con-
sistent wave theory of light explaining many observed experimental facts. The

2. Démonstration touchant le mouvement de la lumière, Journal des sçavants, Académie des inscrip-
tions et belles-lettres, 1676, Accessible sur Gallica.

3. Opticks: or a treatise of the reflexions, refractions, inflexions and colours of light, Sam. Smith &
Benj. Walford, printers to the Royal Society, London (1704), Accessible on internet archive.
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What is light?

wave description culminated with the theory of electromagnetic radiation of
James Clerk Maxwell (1831–1879) who considered light as a very specific sub-
set of all possible electromagnetic waves providing a coherent classical theory
that is still instrumental for the description of electromagnetic radiation of fre-
quencies less than 1THz or for some specific phenomena concerning light in
frequencies even in the region of visible light.

1900 and onwards: Light is quantum relativistic particles. Monochromatic light
beams in vacuum are streams of a very large number of elementary particles
of zero mass, the photons 4 travelling at the . . . speed of light c in all inertial
frames. Every individual photon interacts with matter charged particles and
the result of such interactions is described probabilistically. Photon-photon in-
teraction is a second order effect and can be safely omitted in all the phenomena
discussed in this course.

A.2 Classical description

A.2.1 Maxwell equations

The mathematically rigorous solution of Maxwell equations is quite demanding and
lies outside the scope of this short appendix. The main reason is that we must use
Fourier transform but plane waves are not L1(R4) functions; therefore we have two
alternatives: either seek generalised (distributional) solutions as is done in [39, pp.
432–436], or pass through a decomposition into spherical harmonics as is done in [94,
chap. 2]. In this section, we follow the more intuitive approach of [43] (that can be
made perfectly rigorous in the distributional sense) and use the term “light” in a very
broad sense, meaning electromagnetic radiation of every frequency.

Electromagnetic phenomena are described by a system of partial differential equations,
known these days as Maxwell equations 5. These equations are the local (differential)
counterpart of global (integral) relationships between flux and circulations 6, connect-
ing time and space derivatives of electric (E) and magnetic fields (B) with charge (ρ)

4. A name coined in 1926 by the chemist Gilbert Newton Lewis (1875–1946).
5. The differential form of the equations, in spite of their name, is due to Oliver Heaviside (1850–

1925).
6. Let V be a bounded domain in R3 with smooth boundary ∂V and S a bounded smooth surface

embedded in R3 with boundary ∂S. The integral form of Maxwell equations is

‹
∂V

E · ds =
1
ε0

˚
V

ρ dv ;
˛

∂S
E · dl = − d

dt

¨
S

B · ds
‹

∂V
B · ds = 0 ;

˛
∂S

B · dl = µ0

(¨
S

j · ds + ε0
d
dt

¨
S

E · ds
)

,

where dv, ds, and dl are the volume, surface and length differential elements.
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A.2. Classical description

and current (j) densities. The parameters ε0 and µ0 are physical constants 7.

∇ · E =
ρ

ε0
(Gauss law for electricity) ; ∇× E = −∂B

∂t
(Faraday’s induction law)

∇ · B = 0 (Gauss law for magnetism) ; ∇× B = µ0(j + ε0
∂E
∂t

) (Ampère’s law)

Deriving with respect to time the Gauss law for electricity, we get the equation of local
conservation of electric charge:

∂ρ

∂t
+∇ · j = 0.

The equations governing the evolution of electric and magnetic fields are coupled with
the evolution equations for charged particles in these fields. If Γ is a family of charged
particles of masses mγ, γ ∈ Γ, the matter-field coupling is expressed by the equation

mγ
d2vγ(t)

dt2 = qγ[E(t, rγ(t)) + vγ(t)× B(t, rγ(t))),

where mγ, qγ are the mass and electric charge of particle γ and rγ, vγ its instantaneous
position and velocity. It is elementary to check tha the global evolution leaves certain
quantities invariant. Namely

H =
1
2 ∑

γ∈Γ
mγ‖vγ‖2 +

ε0

2

ˆ
R3

(
‖E‖2 + c2‖B‖2

)
dr (total energy)

P = ∑
γ∈Γ

rγ × (mγvγ) + ε0

ˆ
R3
(E× B) dr (total momentum)

J = ∑
γ∈Γ

r× (mγvγ) + ε0

ˆ
R3

r× (E× B) dr (total angular momentum)

are constants of motion.

Since ∇ · B = 0 and ∇× E = − ∂
∂t B, it follows that there exists a vector field (vector

potential) A and a scalar field (scalar potential) U such that, locally, we can write

B = ∇×A

E = − ∂

∂t
A−∇U.

Substituting into the Maxwell equations, they become the coupled equations for the
vector and scalar potentials:

∆U = − ρ

ε0
−∇ · ∂

∂t
A(

1
c2

∂2

∂t2 − ∆
)

A = µ0j−∇
(
∇ ·A +

1
c2

∂

∂t
U
)

,

7. Known respectively as electric permittivity ε0 = 8.8541878128(13)× 10−12 F ·m−1 and magnetic
permeability µ0 = 1.2566370614× 10−6 N/A2.
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What is light?

where c2 = 1
ε0µ0

is the speed of light. Obviously, the potentials U and A are not
uniquely determined, since these equations remain unaltered if the gradient of a smooth
function f is added to A or its time derivative subtracted from the scalar potential U,
i.e. the so called gauge transformation

A→ A′ = A +∇ f

U → U − 1
c

∂ f
∂t

leave the equations invariant. This indeterminacy can be removed by imposing an
additional constraint on the potentials, either of the form of

the Lorentz gauge: ∇ ·A + 1
c2

∂U
∂t = 0, or

the Coulomb gauge: ∇ ·A = 0.
The Lorentz gauge has the advantage of being relativistically covariant. As a matter of
fact, introducing the quadrivectors A = (A0, A) := (U/c, A) and j = (j0, j) := (cρ, j),
the Lorentz gauge takes the form 8: ∂α Aα = 0, where ∂α = 1

c
∂
∂t if α = 0 and ∂α = ∂

∂xα

when α = 1, 2, 3.The Maxwell equations take the particularly simple relativistically
covariant expression

�Aβ =
1

ε0c2 jβ, β = 0, . . . , 3,

where� denotes the differential operator� = ∂α∂α = 1
c2

∂2

∂t −∆, known as d’Alembertian.
In the vacuum this equation can be further simplified into

�A = 0.

The Coulomb gauge breaks the relativistic covariance since the Maxwell equations be-
come:

∆U = − ρ

ε0

�A =
1

ε0c2 j− 1
c2∇

∂U
∂t

.

However, the Coulomb gauge is more adapted in a semi-classical approach of the ra-
diation field.

In the vacuum, there are no sources, i.e. the densities of charge, ρ, and of current, j,
vanish. Since the four differential equations form a linear differential homogeneous
system, the space of solutions constitutes a vector space. Assume now that sufficiently
smooth (C2) solutions exist for the sourceless equations. Such solutions 9 must then
satisfy

∇× (∇× B) = ∇(∇ · B)− ∆B
= −∆B (since ∇ · B = 0)

= µ0ε0
∂

∂t
∇× E

= −µ0ε0
∂2

∂t2 B,

8. We use the Einstein’s convention for summing repeated indices: BαCα := ∑3
α=0 BαCα.

9. Recall that ∇× (∇×V) = ∇(∇ ·V)− ∆V.

/Users/dp/a/ens/iq-appen.tex
2019-11-24 • 15:12:36.

273



A.2. Classical description

hence a solution of the sourceless Maxwell equations for the magnetic field B fulfils the
wave equation

1
c2

∂2B
∂t2 − ∆B = 0 (wave equation for magnetic field).

With similar arguments, and using again the Maxwell equations, we get that a solution
for the electric field fulfils an analogous wave equation

1
c2

∂2E
∂t2 − ∆E = 0 (wave equation for electric field).

In other words, if smooth solutions exist, they must satisfy the two aforementioned
wave equations.

We work henceforth within the Coulomb gauge and seek solutions in the vacuum (i.e.
ρ = 0 and j = 0). Seek tentatively a solution of the wave equation for the electric field
in the form

E(t, r) = E0 exp(i(ωt− k · r− φ)),

where E0 stands for the amplitude of the solution, ω has dimensions of frequency and
k := ‖k‖ of inverse length while φ is an arbitrary phase. As a matter of fact, only the
real part of the field Re(E(t, r)) has a physical significance but it is more convenient to
take the real part only at the end of the computations.

Fixing the total phase ωt − k · r − φ at a constant value, the phase front of the wave
travels in direction k at the speed vphase = ω/k. The wavelength, λ, is defined as
the length ‖r′ − r′′‖ between the positions r′ and r′′ of two successive maxima of the
modulus of the field; it reads λ = 2π

k .

For the above expression to satisfy the wave equation, ω and k must be related through
the linear dispersion relation ω = ck as determined by substituting the tentative so-
lution into the wave equation for E. We obtain thus that the speed of the phase front
reads vphase = 1√

ε0µ0
= c, where c is the speed of light in vacuum: c = 299792458 m/s.

Substituting the elementary solution into the Maxwell equation ∇ · E = 0, we get
further k · E = 0, meaning that the vectors k and E are orthogonal.

We can repeat the same arguments with a tentative solution

B(t, r) = B0 exp(i(ω′t− k′ · r− φ′))

for the magnetic field. We obtain again the dispersion relation ω′ = ck′ (thus the phase
front of the magnetic field travels also at the speed of light). Substituting into the
Maxwell equation ∇ · B = 0 we get again orthogonality of k′ and B.

Still, tentative solutions for E and B of the wave equations are not necessarily solu-
tions of the Maxwell equations. Inserting these tentative solutions into the sourceless
Maxwell equation ∇× B = µ0ε0

∂E
∂t , we get that the condition

−k′ × B0 exp(i(ω′t− k′ · r− φ′)) =
ω

c2 E0 exp(i(ωt− k · r− φ)),
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must hold for every r′, r, t′, t, Due to the orthogonality of complex exponentials, it fol-
lows that ω′ = ω, k′ = k, and

B0 exp(−iφ′)× k =
ω

c
E0 exp(−iφ).

We conclude that elementary solutions of the Maxwell equations must have the same
frequency ω and wavevector k for both electric and magnetic components.

A general solution of the sourceless Maxwell equations is given by a linear combi-
nation of elementary solutions determined above. Electromagnetic radiation arises
at very different frequencies. (Human) eye is differentially sensitive to frequency ω
(or wavelength λ since, due to the dispersion relation, fequency and wavelenght are
connected trhough: ω/c = 2πλ). Electromagnetic waves carrying a single wave-
length λ in the range ca. [400, 700] nm, are physiologically perceived as light of a single
colour (ranging from violet to red). Mind however that electromagnetic spectrum has
a much broader range from 0.01 nm to some kilometres but only the spectrum within
[400, 700] nm is perceived as visible light. The figure A.1 gives information about fre-
quencies and wavelengths of different types of radiation and locates the region of the
visible spectrum in the whole frequency range of electromagnetic radiation. Neverthe-
less, we use the adjective monochromatic to signify an electromagnetic wave carrying
a single frequency (wavelentgth), even if it lies outside the visible range.

A.2.2 Polarisation

Substituting a monochromatic solution into the equations in vacuum, we get further

k · E = 0 ; k× E = ωµ0B
k · B = 0 ; k× B = −ωε0E.

The first column of these equations means that, for all t, r, both vectors E(t, r) and
B(t, r) are orthogonal to the vector k. From the second column we get

B · E = − 1
ω2µ0ε0

(k× E) · (k× B),

from where 10 we conclude that B · E = 0, i.e. the electric and magnetic field are mutu-
ally orthogonal so that the triple (E, B, k) defines a positively oriented orthogonal sys-
tem. Additionally, k̂ = k

k = E×B
‖E‖‖B‖ is proportional to the vector of Poynting, 1

µ0
E× B,

pointing 11 in the direction of propagation.

Assume henceforth that k̂ is in the direction of the z axis. Orthogonality of E and B
with k̂ means that the field vectors are evolving in the xy plane. Concentrate on the
electric field vector. Since it evolves in the xy plane, it is enough to consider its two

10. Recall that (a× b) · c = a · (b× c).
11. This vector has been introduced by the British physicist with the . . . predestined name John Henry

Poynting (1852–1914).
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Figure A.1 – Spectrum of visible light occupies only a tiny portion of the frequency range of electro-
magnetic radiation. (Source: Wikipedia).

dimensional restriction and write, with a slight abuse of notation, the more general
form 12 of the electric field as

E(t, z) =
(

Ex exp(iφx)
Ey exp(iφy)

)
exp(i(ωt− kz)),

where Ex = 〈 ex | E0 〉 = E0 cos(θ) and Ey = 〈 ey | E0 〉 = E0 sin(θ), with E0 = ‖E‖ =√
E2

x + E2
y and θ ∈ [0, 2π], are the components of the amplitude E0 relative to the ex

and ey directions while φx and φy are arbitrary phases. The magnetic field, as always
orthogonal to E and to k̂, reads B(t, z) = 1

c ez × E(z, t).

12. As a matter of fact, the electric field is given by the three dimensional vector

E(t, z) =

Ex exp(iφx)
Ey exp(iφy)

0

 exp(i(ωt− kz)),

whose expression we trivially restrict in the xy plane.
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On the xy-plane passing through z0 = φx/k, and on introducing the relative phase
φ = φy − φx, and taking real part, we get

ξ(t) =
(

ξx(t)
ξy(t)

)
:=

Re(E(t, z0))

E0
=

(
cos(θ) cos(ωt)

sin(θ) cos(ωt + φ)

)
.

The locus on the xy-plane passing through z0 of the projection of E(t, z0) is a periodic
function of time described by the parametric curve E0ξ(t), t ∈ [0, 2π]. Eliminating
the time coordinate, we get the quadratic equation for the shape of the curve ξ(t), t ∈
[0, 2π]:

ξ2
x

cos2(θ)
+

ξ2
y

sin2(θ)
− 2

ξxξy

cos(θ) sin(θ)
cos(φ) = sin2(φ),

that can be also expressed by the geometric condition 〈 ξ |Qξ 〉 = sin2(φ), where Q :=
Q(θ, φ) is the matrix

Q(θ, φ) =

( 1
cos2(θ)

− 1
cos(θ) sin(θ)

− 1
cos(θ) sin(θ)

1
sin2(θ)

)
.

The matrix Q is symmetric, hence it admits a spectral decomposition with real eigen-

values. We compute them explicitly: v± = 2(1±
√

D)

sin2(2θ)
, where D = 1− sin2(φ) sin2(2θ).

Denote V± the corresponding eigenvectors. Hence

M = v−|V− 〉〈V− |+ v+|V+ 〉〈V+ |;

consequently, the geometric condition becomes

sin2(φ) = 〈 ξ |Qξ 〉
= v−|〈V− | ξ 〉|2 + v+|〈V+ | ξ 〉|2

= v−|ξ−|2 + v+|ξ+|2,

where ξ± = 〈V± | ξ 〉. Equivalently, the geometric condition reads ξ2
−

a2 +
ξ2
+

b2 = 1, where
a2 = 1

sin2(φ)v−
and b2 = 1

sin2(φ)v+
(note that the eigenvalues are necessarily non-negative

because D ≤ 1).

Elliptic polarisation

Since 0 ≤ D ≤ 1, the eigenvalues are non-negative. and the normalised shape of
the projection of the electric field corresponds generically to a (tilted with respect to
the x and y axes) ellipse. The directions of the major and minor axes of the ellipse
are determined by the eigenvectors of Q; the length of the major semi-axis is a :=

| sin(2θ)|
| sin(φ)|

√
2(1−

√
D)

and of the minor semi-axis b := | sin(2θ)|
| sin(φ)|

√
2(1+

√
D)

.

The figure A.3 gives some examples of profiles for various values of the parameters θ
and φ.
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ξx

ξy

−| cos(θ)| | cos(θ)|

−| sin(θ)|

| sin(θ)|

ξ−

ξ+

ψ

a
b

Figure A.2 – The locus of the projection of electric field on the xy-plane is the homothetic image of the
above ellipse with dilation ratio E0 = ‖E0‖. This ellipse is tilted with respect to the canonical basis
and is inscribed in the rectangle of sides 2| cos(θ)| and 2| sin(θ)|. The major and minor semi-axes (of
length a and b respectively) of the ellipse are determined by the eigenvectors V− and V+. The angle ψ
formed by the major semi-axis with the Ox direction is given by ψ = 1

2 arctan
(
tan(2θ) cos(φ)

)
− π

2 .

Linear polarisation

The ratio of the minor over the major axis of the polarisation ellipse reads b
a =

√
1−
√

D√
1+
√

D
.

It follows that this ratio vanishes when φ = kπ, with k ∈ Z since then D = 1 and the
ellipse degenerates to a segment. The light is then called linearly polarised and the
figure A.4 below gives some examples of such polarisation.

In that situation, the electric field oscillates remaining constantly in a plane defined by
the direction of the linear polarisation (the magnetic field oscillates constantly in the
perpendicular plane) and the propagation in space of the plane electromagnetic wave
is depicted in the figure A.5.

Circular polarisation

When the lengths of the minor and major axes are equal, i.e. a = b, the locus of the
projections of E on the xy-plane is circle (see figure A.6 below). This happens when
the rectangle circumscribing the projection of the field on the xy-plane becomes a
square — which occurs whenever | cos(θ)| = | sin(θ)|, i.e. θ = π

4 + kπ, k ∈ Z —
and when the two eigenvalues v± of Q become equal — which occurs when D = 0, i.e.
sin2(2θ) sin2(φ) = sin2(φ) = 1, or φ = π/2 + kπ, for k ∈ Z.
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ξx

ξy

φ = π/10

ξx

ξy

φ = π/8

ξx

ξy

φ = π/6

ξx

ξy

φ = π/4

ξx

ξy

φ = π/3

ξx

ξy

φ = π/10

ξx

ξy

φ = π/8

ξx

ξy

φ = π/6

ξx

ξy

φ = π/4

ξx

ξy

φ = π/3

ξx

ξy

φ = π/10

ξx

ξy

φ = π/8

ξx

ξy

φ = π/6

ξx

ξy

φ = π/4

ξx

ξy

φ = π/3

Figure A.3 – The shape of the projection for different values of θ and φ. First row corresponds to
θ = π/5, second row to π/3, and third row to 3π/7.

ξx

ξy

θ = π/100

ξx

ξy

θ = π/10

ξx

ξy

θ = π/5

ξx

ξy

θ = π/3

ξx

ξy

θ = 7π/15

ξx

ξy

θ = π/100

ξx

ξy

θ = π/10

ξx

ξy

θ = π/5

ξx

ξy

θ = π/3

ξx

ξy

θ = 7π/15

Figure A.4 – Examples of linear polarisations for different values of the parameters θ and φ. First
row corresponds to φ = 0 and second one to φ = π.
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z

E

B
k

Figure A.5 – The planes of oscillation of electric (red, E) and magnetic (blue, B) fields are mutually
perpendicular and intersect at the axis of propagation of the electromagnetic wave, determined by
the Poynting’s pointing vector k = E×B

‖E‖‖B‖ . We call classical transversal polarisation the plane of
oscillation of the electric field. For instance, the wave depicted above has vertical polarisation.

ξx

ξy

Figure A.6 – When θ = π
4 + kπ with k ∈ Z, φ = π/2 + `π, with ` ∈ Z and the projection of the

electric field on the xy-plane degenerates into a circle.

The three dimensional profile of the electric field in a circularly polarized light beam is
depicted in figure A.7.

Figure A.7 – Snapshot of the three dimensional profile of circularly polarised plane wave. Only the
electric field is depicted. (Source: Wikipedia).

A.2.3 Helicity and chirality

For elliptic (or circular) polarisation an additional degree of freedom in describing the
polarisation profile is the sense of gyration on the projection ellipse. As a matter of fact,
as we can observe on the figure A.7, the end-point of the electric field vector sweeps

/Users/dp/a/ens/iq-appen.tex
2019-11-24 • 15:12:36.

280



What is light?

an helix progressing in space towards the k direction of propagation. For an observer
on the z axis and looking against the propagation (i.e. towards the source), assum-
ing that the vertical direction is x and the horizontal y, the helix of this example is
left-handed. In other words the circle of polarisation is swept counter-clockwise. The
sense of sweeping determines the chirality of the polarisation (counterclockwise/left-
handed versus clockwise/right-handed). The helicity of the polarisation is the sign of
advancement of a screw in the direction k when the screw is turned positively (coun-
terclockwise). For a left-handed helix, the sign is +1, for a right-handed helix it is −1.
The helicity is governed by the parameters θ and φ as shown in figure A.8.

ξx

ξy

ξx

ξy

Figure A.8 – The ellipse is swept clockwise or counterclockwise, depending on the parameters θ and
φ. In this example, θ = π/3 while φ = π/6 on the left side and φ = −π/6 on the right side.

A.2.4 Hilbert space description of classical polarisation

We have seen on page 276 that the polarisation is in fine determined by the vector(
Ex exp(iφx)
Ey exp(iφy)

)
= E0ξ, where E0 = Exex + Eyey, E0 = ‖E0‖, and ξ is the so called Jones

vector:

ξ :=
(

cos(θ)
sin(θ) exp(iφ)

)
exp(iφx).

Obviously ξ is a unit vector (ray) in a Hilbert space H ' C2 (we can even forget
the global phase exp(iφx)). Sourceless solutions of the Maxwell equations constitute
a vector space. Hence, linear combinations of solutions have a counterpart on linear
combinations of Jones vectors. Moreover, we can choose a basis in H. For instance,
the canonical basis (εx, εy). The Jones vector corresponding to a linear polarisation can
be expressed as | ξ(l) 〉 = cos(θ)| εx 〉 ± sin(θ))| εy 〉. Similarly, the Jones vector corre-
sponding to a circular polarisation can be expressed as | ξ(c) 〉 = 1√

2

(
| εx 〉 ± i| εy 〉

)
. But

the canonical basis has nothing special; every other orthonormal basis of H allows for
an equivalent description. For instance the chiral basis (| L 〉, | R 〉), with

| L 〉 = 1√
2

(
1
i

)
and | R 〉 = 1√

2

(
1
−i

)
,

is equally adapted for expressing any Jones vector. It is also worth noting that as a
unit vector (ray) of the Hilbert space H, it can be interpreted quantum mechanically as

/Users/dp/a/ens/iq-appen.tex
2019-11-24 • 15:12:36.

281



A.2. Classical description

corresponding to a pure polarisation state. It is outside the scope of this text to show
that this formal analogy is in fact more profound so that ξ can in fact be interpreted as
a quantum mechanical state vector abusively called polarisation vector. Recall now (see
exercise 3.12.21) that Pauli matrices (σα)α=0,...,3, defined on page 105, constitute a basis
of the set of self-adjoint operators on H. In particular, for every θ and φ, the projector
| ξ 〉〈 ξ | on the one dimensional subspace of H spanned by ξ can be decomposed on
the basis of Pauli matrices:

| ξ 〉〈 ξ | =
(

cos2(θ) cos(θ) sin(θ) exp(−iφ)
cos(θ) sin(θ) exp(iφ) sin2(θ)

)
=

1
2

3

∑
α=0

sασα =

(
1 + s3 s1 − is2
1− s3 s1 + is2

)
,

where the components of the quadrivector s = (s0, s) are

s0 = 1, s1 = sin(2θ) cos(φ), s2 = sin(2θ) sin(φ), s3 = cos(2θ).

The quadrivector s is called the Stokes vector corresponding to the polarisation of
light. Contrary to the Jones vector ξ, the components of s are directly accessible to
intensity measurements on the light source.

Active optical devices act on light and modify its polarisation state ξ into a new state
ξ ′. The transformation is implemented by the Jones matrix M i.e. ξ ′ = Mξ. The most
common such devices include linear polarisers, circular polarisers, phase shifters and
mirrors, beam splitters.

The table A.1 summarises the Jones matrices (projectors) corresponding to the action
of such devices, represented in the canonical basis.

Now the passage from the canonical basis to the chiral one is implemented by a a uni-
tary transformation. It turns out that this unitary transformation can be physically
implemented by an optical device called half wavelength plate or λ/2-plate. Insert-
ing such a λ/2 plate (with an appropriate orientation) in a monochromatic linearly
polarised beam, results in transforming the beam to a circularly polarised one.

Other useful optical devices are the beam splitters, i.e. devices with two input and two
output channels (see figure A.9).

IC1

IC2

OC1

OC2

Figure A.9 – The input and output channels for a beam splitter.

They are available into two different species: polarising and non-polarising ones. Clas-
sically a lossless polarising beam splitter sacts as a mirror on the horizontal polarisation
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Device Jones matrix M

Horizontal linear polariser
[

1 0
0 0
]

Linear polariser at ±π/4 1
2

[ 1 ±1
±1 1

]
Vertical linear polariser

[
0 0
0 1
]

Left circular polariser 1
2

[ 1 −i
i 1

]
Right circular polariser 1

2

[ 1 i
−i 1

]
λ/2 plate vertically retarding

[
1 0
0 i
]

λ/4 plate vertically retarding e−iπ/4 [ 1 0
0 i
]

Mirror (normal incidence)
[ −1 0

0 1

]

Table A.1 – Jones matrices representing the most common optical devices. Note that the first group
of four devices correspond to projective transformations while the second group of three devices to
unitary transformations that are unitary. Hence they can be viewed as basis transformations.

of the input and as a free transmitter for the vertical polarisation. Since the device has
two input and two output channels, the input polarisation is determined by the tensor
product of the corresponding Jones vectors ξ(1) or ξ(2) with the choice of the channel
(and similarly for the output). Hence the Jones vector for the input channel is given

by ξin =


ξ
(1)
h

ξ
(1)
v

ξ
(2)
h

ξ
(2)
v

 and analogously for the output. The Jones matrix MPBS of the lossless

polarising beam splitter is therefore defined by

MPBS =


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 .

For example, if a linearly polarised beam at angle π/4 enters the separator through the
input channel 1, the action of the PBS is summarised below:

ξout = Mξin =


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 1




1/
√

2
1/
√

2
0
0

 =


0

1/
√

2
−1/
√

2
0

 .

Classically, electromagnetic radiation is produced by the electric dipole oscillations
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inside antennas or atoms. The polarisation of light is hence determined by the axis
of the emitting antenna or of the electric atomic dipole. While the orientation of an
antenna is usually kept fixed, atoms are in all possible orientations in matter. Hence the
light produced by the Sun (or by incandescent bulbs) for instance arises in all possible
polarisations; the corresponding electromagnetic wave comes as a superposition of all
possible waves of different polarisations (unpolarised light).

A.3 Simplified quantum descriprtion

Since B = ∇×A and (in the Coulomb gauge) E = − ∂A
∂t , the wave equations for electric

and magnetic fields can be replaced by a single wave equation for the vectot potential

1
c2

∂2A
∂t2 − ∆A = 0.

Assume that the wace is Seeking for an elementary solution of this equation in the form
of a plane wave A(t, r) = A0 exp(i(ωt− k · r− φ), where A0 stands for the amplitude
of the solution, ω has dimensions of a frequency, k := ‖k‖ of an inverse length while
φ is an arbitrary phase.

Consider the wave confined within a cubic volume of size L and impose (for simplic-
ity) a periodic boundary condition. Periodisation of the space induces a discretisation
of the allowed wavevectors k = (kx, ky, kz) = 2π

L (nx, ny, nz), with (nx, ny, nz) ∈ Z.
Denote by ·̂ the spatial Fourier transform of the fields appearing in the Maxwell
equations. For instance Ê(k, t) =

´
R3 E(r, t) exp(−ik · r)d3r. The Coulomb gauge

(∇ · A = 0) implies the transversality condition k · A0 to hold (as is the case for B
and E). Assume (for simplicity) that the electromagnetic wave is linearly polarised, i.e.
there exists a transverse polarisation vector ξ in the xy plane such that an elementary
solution to the wave equation for A reads

A(t, r) = A0ξ exp(−i(ωt− k · r)),

and (hence)

E(t, r) = −iA0ωξ exp(−i(ωt− k · r))
B(t, r) = iA0[k× ξ] exp(−i(ωt− k · r)).

The general solution will be expressed as a linear superposition of elementary solutions
in the form

A(t, r) = L−3/2 ∑
k∈ 2π

L Z3
∑

`=1,2
ξk,`

(
qk,`(t) exp(−ik · r) + qk,`(t) exp(ik · r)

)
,

where ξ := ξk = ξk,1ε1 + ξk,2ε2, qk,`(t) := A0,k exp(iωkt), and ωk = c‖k‖. Now,
since we consider the situation in vacuum, i.e. without particles having kinetic energy,
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the total energy reduces merely to its electromagnetic component. Introducing the
multi-index α = (k, `), the total energy (constant of motion) reads:

H = +
ε0

2

ˆ
R3

(
‖E‖2 + c2‖B‖2

)
dr

= ε0 ∑
α

ω2
α (qαqα + qαqα) .

Introducing the real variables Qα(t) = qα(t) + qα(t) and (̇Q)α(t) = −iωα(qα(t) −
qα(t)), the energy takes the form of a classical harmonic oscillator Hamiltonian:

H =
ε0

2 ∑
α

(Q̇2
α + ω2

αQ2
α).

Introducing the canonical coordinate Pα = ε0Qα that is conjugate to Qα, we can for-
mally quantise the field by replacing Pα → −ih̄ ∂

∂Qα
to arrive to the quantised form of

the Hamiltonian

H = ∑
α

(
− h̄2

2ε0

∂2

∂Q2
α
+

ε0

2
ω2

αQ2
α

)
.

Repeat now the construction done in the study of simple harmonic oscillator for every
mode α of the radiation field and introduce the creation and annihilation operators

aα =

√
ε0ωα

2h̄

(
Qα +

i
ε0ωα

Pα

)
a∗α =

√
ε0ωα

2h̄

(
Qαi− i

ε0ωα
Pα

)
.

The Hamiltonian now becomes

H = ∑
α

h̄ωα

(
a∗αaα +

1
2

)
,

i.e. it is a decoupled sum of quantum harmonic oscillators over all possible modes of
the radiation field. The eigenstates of H are tensor products over all possible modes
and for every mode they are indexed by non-negative integers. In other words, the
eigenstates of are tensor products ⊗α| nα 〉, with nα ∈ N for all α. Moreover (recall
16.1.13),

1. a∗αaα

[
⊗β| nβ 〉

]
= nα

[
⊗β| nβ 〉

]
,

2. H
[
⊗β| nβ 〉

]
= ∑α h̄ωα(nα + 1/2)

[
⊗β| nβ 〉

]
,

3. aα

[
⊗β| nβ 〉

]
=

{√
nα| . . . , nα − 1, . . . 〉 if nα ≥ 1

0 otherwise.
4. a∗α

[
⊗β| nβ 〉

]
=
√

nα + 1| . . . , nα + 1, . . . 〉.
A photon corresponds to the elementary excitation of a single mode. It is caracterised
by its polarisation and wavenumber. It can be thought as an elementary wave packet
of the form depicted in figure A.10.

White light, as the one reaching us from the Sun, has a precise mixture of photons of
various frequencies. Monochromatic light, as the one emitted by a laser for instance,
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Figure A.10 – A non totally rigorous but useful mental representation of a photon as a wave packet.
The envelope (dashed blue curve) gives an estimate of the“position” of the photon (at the centre of
the enveloping curve) and of its “frequency” as the number of times the enveloped wave (solid red
curve) changes sign per unit time. Position and frequency are determined only up to the precision
allowed by Heisenberg’s uncertainty principle. The direction of propagation of the depicted photon is
the horizontal axis, its polarisation is vertical.

has photons of a single frequency. When the light intensity is 1mW/cm2, every square
centimetre 13 receives 3.59× 1020 red light photons/s and roughly half as much violet
photons (ν = 700THz). Huge numbers of photons being involved even for modest in-
tensities, the appropriate method to study experimental results is through a statistical
treatment of measurements.

13. Red light has a median frequency of ν = 420THz. A single red photon carries an energy E =
2πh̄ν = 2π × 1.05457× 10−34Js× 4.2× 1014s−1 = 2.783× 10−18J.
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[48] Anatolij Dvurečenskij and Sylvia Pulmannová. New trends in quantum structures,
volume 516 of Mathematics and its Applications. Kluwer Academic Publishers,
Dordrecht; Ister Science, Bratislava, 2000. URL: http://dx.doi.org/10.1007/
978-94-017-2422-7, doi:10.1007/978-94-017-2422-7. 59
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