

Master de mathématiques

Markov chains on measurable spaces

Lecture notes

Dimitri Petritis

UFR Mathématiques

Rennes October 2015 (preliminary draft) Dimitri Petritis Institut de recherche mathématique de Rennes Université de Rennes 1 et CNRS (UMR6625) Campus de Beaulieu 35042 Rennes Cedex France

Mathematics subject classification (2010): 60J05, 60J10, 60J27

©2005–2015 D. Petritis

Warning!

This text is still in a preliminary version. Even if \mathbb{E}_X makes it look like a book, **it is not as yet a book!**

Contents

1	Introduction					
	1.1	Motivating example	1			
	1.2	Observations and questions	3			
2	nels	5				
	2.1	Notation	5			
	2.2	Transition kernels	6			
	2.3	Examples-exercises	7			
		2.3.1 Integral kernels	7			
		2.3.2 Convolution kernels	9			
		2.3.3 Point transformation kernels	10			
	2.4	Markovian kernels	11			
	2.5	Further exercises	12			
3	Traj	jectory spaces	13			
	3.1	Motivation	13			
	3.2	Construction of the trajectory space	15			
		3.2.1 Notation	15			
		3.2.2 The Ionescu Tulcea theorem	16			
	3.3	Weak Markov property	21			
	3.4	Strong Markov property 2				
	3.5	Examples-exercises				
4	Mar	ckov chains on finite sets	29			
	4.1	Basic construction	29			
	4.2	Some standard results from linear algebra	30			
	4.3 Positive matrices		33			
	4.4	Some complements on spectral properties	38			
		4.4.1 Spectral constraints stemming from algebraic properties of				
		the stochastic matrix	38			
		4.4.2 Spectral constraints stemming from convexity properties of				
		the stochastic matrix	40			
	4.5	Application to Monte Carlo simulations	43			
		4.5.1 The Metropolis-Hastings algorithm	44			
		4.5.2 Simulating self-avoiding random walks	45			

5	Potential theory			
	5.1	Notation and motivation	49	
	5.2	Martingale solution to Dirichlet's problem	51	
	5.3	Asymptotic and invariant σ -algebras $\ldots \ldots \ldots \ldots \ldots \ldots$	57	
	5.4	Triviality of the asymptotic σ -algebra	58	
6	Ma	rkov chains on denumerably infinite sets	63	
	6.1	Classification of states	63	
	6.2	Recurrence and transience	66	
	6.3	Invariant measures	69	
	6.4	Convergence to equilibrium	72	
	6.5	Ergodic theorem	74	
	6.6	Semi-martingale techniques for denumerable Markov chains	76	
		6.6.1 Some historical remarks on Lyapunov method	76	
		6.6.2 Foster's criteria	77	
		6.6.3 Moments of passage times	81	
	6.7	Time reversal	81	
7	Βοι	undary theory for transient chains on denumerably infinite sets	83	
	7.1	Motivation	83	
	7.2	Martin boundary	84	
	7.3	Convexity properties of sets of superharmonic functions	88	
	7.4	Minimal and Poisson boundaries	90	
	7.5	Limit behaviour of the chain in terms of the boundary	92	
	7.6	Markov chains on discrete groups, amenability and triviality of the	06	
		boundary	30	
8	Cor	ntinuous time Markov chains on denumerable spaces	99	
	8.1	Embedded chain	99	
	8.2	Infinitesimal generator	99	
	8.3	Explosion	99	
	8.4	Semi-martingale techniques for explosion times	99	
9	Irre	educibility on general spaces	101	
	9.1	ϕ -irreducibility	101	
	9.2	<i>c</i> -sets	105	
	9.3	Cycle decomposition	110	
10	Asy	mptotic behaviour for ϕ -recurrent chains	115	
	10.1	$1 \text{ Tail } \sigma\text{-algebras} \dots \dots$	115	
	10.2	2 Structure of the asymptotic σ -algebra	117	
11	Uni	iform ϕ -recurrence	121	
	11.1	Exponential convergence to equilibrium	121	
	11.2	2 Embedded Markov chains	123	
	11.3	B Embedding of a general ϕ -recurrent chain \ldots	125	

12	12 Invariant measures for ϕ -recurrent chains127					
	12.1 Convergence to equilibrium	127				
	12.2 Relationship between invariant and irreducibility measures	128				
	12.3 Ergodic properties	134				
13	Quantum Markov chains	135				
A	Complements in measure theory	137				
	A.1 Monotone class theorems	137				
	A.1.1 Set systems	137				
	A.1.2 Set functions and their extensions	139				
	A.2 Uniformity induced by Egorov's theorem and its extension	140				
B	Some classical martingale results	141				
	B.1 Uniformly integrable martingales	141				
	B.2 Martingale proof of Radon-Nikodým theorem	142				
	B.3 Reverse martingales	143				
C	Semi-martingale techniques	145				
	C.1 Integrability of the passage time	145				
Re	eferences	147				
In	dex	150				
	Index of symbols	151				
	Index of terms and notions 152					

Introduction

1.1 Motivating example

The simplest non-trivial example of a Markov chain is the following model. Let $X = \{0, 1\}$ (heads 1, tails 0) and consider two coins, one honest and one biased giving tails with probability 2/3. Let

 $X_{n+1} = \begin{cases} \text{outcome of biased coin if } & X_n = 0 \\ \text{outcome of honest coin if } & X_n = 1. \end{cases}$

For $y \in X$ and $\pi_n(y) = \mathbb{P}(X_n = y)$, we have

$$\pi_{n+1}(y) = \mathbb{P}(X_{n+1} = y | \text{honest}) \mathbb{P}(\text{honest}) + \mathbb{P}(X_{n+1} = y | \text{biased}) \mathbb{P}(\text{biased}),$$

yielding

$$(\pi_{n+1}(0), \pi_{n+1}(1)) = (\pi_n(0), \pi_n(1)) \begin{pmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{pmatrix}$$

with $P_{00} = 2/3$, $P_{01} = 1/3$, and $P_{10} = P_{11} = 1/2$.

Iterating, we get

$$\boldsymbol{\pi}_n = \boldsymbol{\pi}_0 P^n$$

where π_0 must be determined ad hoc (for instance by $\pi_0(x) = \delta_{0x}$ for $x \in X$).

In this formulation, the probabilistic problem is translated into a purely algebraic problem of determining the asymptotic behaviour of π_n in terms of the asymptotic behaviour of P^n , where $P = (P_{xy})_{x,y \in X}$ is a **stochastic matrix** (i.e.

Figure 1.1 - Gray lines represent all possible and imaginable trajectories of heads and tails trials. Full line represents a particular realisation of such a sequence of trials. Note that only integer points have a significance, they are joined by line segments only for visualisation purposes.

 $P_{xy} \ge 0$ for all *x* and *y* and $\sum_{y \in \mathbb{X}} P_{xy} = 1$). Although the solution of this problem is an elementary exercise in linear algebra, it is instructive to give some details. Suppose we are in the non-degenerate case where $P = \begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}$ with 0 < a, b < 1. Compute the spectrum of *P* and left and right eigenvectors:

$$\mathbf{u}^t P = \lambda \mathbf{u}^t$$
$$P \mathbf{v} = \lambda \mathbf{v}.$$

Since the matrix *P* is not necessarily normal, the left (resp. right) eigenvectors corresponding to different eigenvalues are not orthogonal. However we can always normalise $\mathbf{u}_{\lambda}^{t}\mathbf{v}_{\lambda'} = \delta_{\lambda\lambda'}$. Under this normalisation, and denoting by $E_{\lambda} = \mathbf{v}_{\lambda} \otimes \mathbf{u}_{\lambda}^{t}$, we get

λ	uλ	\mathbf{v}_{λ}	E_{λ}
$\lambda_1 = 1$	$\begin{pmatrix} b\\a \end{pmatrix}$	$\begin{pmatrix} 1\\1 \end{pmatrix}$	$\frac{1}{a+b} \begin{pmatrix} b & a \\ b & a \end{pmatrix}$
$\lambda_2 = 1 - (a+b)$	$\left \begin{array}{c} 1 \\ -1 \end{array} \right $	$\begin{pmatrix} a \\ -b \end{pmatrix}$	$\frac{1}{a+b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}$

We observe that for λ and λ' being eigenvalues, $E_{\lambda}E_{\lambda'} = \delta_{\lambda\lambda'}E_{\lambda}$, i.e. E_{λ} are spectral projectors. The matrix *P* admits the **spectral decomposition**

$$P = \sum_{\lambda \in \operatorname{spec} P} \lambda E_{\lambda},$$

where spec $P = \{1, 1 - (a + b)\} = \{\lambda \in \mathbb{C} : \lambda I - P \text{ is not invertible}\}$. Now E_{λ} being orthogonal projectors, we compute immediately, for all positive integers *n*,

$$P^{n} = \sum_{\lambda \in \operatorname{spec} P} \lambda^{n} E_{\lambda} = \lambda_{1}^{n} E_{\lambda_{1}} + \lambda_{2}^{n} E_{\lambda_{2}}$$

and since $\lambda_1 = 1$ while $|\lambda_2| < 1$, we get that $\lim_{n \to \infty} P^n = E_{\lambda_1}$.

Applying this formula for the numerical values of the example, we get that $\lim_{n\to\infty} \pi_n = (0.6, 0.4)$.

/Users/dp/a/ens/markov-intro.tex 2015-09-13 • 15:59:47.

1.2 Observations and questions

- In the previous example, a prominent role is played by the stochastic matrix *P*. In the general case, *P* is replaced by an operator, known as **stochastic kernel** that will be introduced and studied in chapter 2.
- An important question, that has been eluded in this elementary introduction, is whether exists a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ sufficiently large as to carry the whole sequence of random variables $(X_n)_{n \in \mathbb{N}}$. This question will be positively answered by the Ionescu Tulcea theorem and the construction of the **trajectory space** of the process in chapter 3.
- In the finite case, motivated in this chapter and fully studied in chapter 4, the asymptotic behaviour of the sequence (X_n) is fully determined by the spectrum of P, a purely algebraic object. In the general case (countable or uncountable), the spectrum is an algebraic and topological object defined as

spec
$$P = \{\lambda \in \mathbb{C} : \lambda I - P \text{ is not invertible}\}.$$

This approach exploits the topological structure of measurable functions on X; a thorough study of the general case is performed, following the line of spectral theory of quasi-compact operators, in [21]. Although we don't follow this approach here, we refer the reader to the previously mentioned monograph for further study.

- Without using results from the theory of quasi-compact operators, we can study the formal power series $(I-P)^{-1} = \sum_{n=0}^{\infty} P^n$ (compare with the above definition of the spectrum). This series can be given both a probabilistic and an analytic significance realising a profound connection between harmonic analysis, martingale theory, and Markov chains. It is this latter approach that will be developed in chapter 5.
- Quantum Markov chains are objects defined on a quantum probability space. Now, quantum probability can be thought as a non-commutative extension of classical probability where real random variables are replaced by self-adjoint operators acting on a Hilbert space. Thus, once again the spectrum plays an important rôle in this context.

Exercise 1.2.1. (*Part of the paper of December 2006*) Let (X_n) be the Markov chain defined in the example of section 1.1, with $\mathbb{X} = \{0, 1\}$. Let $\eta_n^0(A) = \sum_{k=0}^{n-1} \mathbb{1}_A(X_k)$ for $A \subseteq \mathbb{X}$.

- 1. Compute $\mathbb{E}\exp(i\sum_{x\in\mathbb{X}}t_x\eta_n^0({x}))$ as a product of matrices and vectors, for $t_x\in\mathbb{R}$.
- 2. What is the probabilistic significance of the previous expectation?
- 3. Establish a central limit theorem for $\eta_n^0(\{0\})$.
- 4. Let $f : \mathbb{X} \to \mathbb{R}$. Express $S_n(f) = \sum_{k=0}^{n-1} f(X_k)$ with the help of $\eta_n^0(A)$, with $A \subseteq \mathbb{X}$.

2 Kernels

This chapter deals mainly with the general theory of kernels. The most complete reference for this chapter is the book [41]. Several useful results can be found in [35].

2.1 Notation

In the sequel, $(\mathbb{X}, \mathscr{X})$ will be an arbitrary measurable space; most often the σ -algebra will be considered **separable** or **countably generated** (i.e. we assume that there exists a sequence $(F_n)_{n \in \mathbb{N}}$ of measurable sets $F_n \in \mathscr{X}$, for all n, such that $\sigma(F_n, n \in \mathbb{N}) = \mathscr{X}$). A closely related notion for a measure space $(\mathbb{X}, \mathscr{X}, \mu)$ is the μ -separability of the σ -algebra \mathscr{X} meaning that there exists a separable σ -subalgebra \mathscr{X}_0 of \mathscr{X} such that for every $A \in \mathscr{X}$ there exists a $A' \in \mathscr{X}_0$ verifying $\mu(A \Delta A') = 0$. We shall denote by $m\mathscr{X}$ the set

of real (resp. complex) $(\mathcal{X}, \mathcal{B}(\mathbb{R}))$ - (resp. $(\mathcal{X}, \mathcal{B}(\mathbb{C}))$)-measurable functions defined on X. For $f \in m\mathcal{X}$, we introduce the norm $||f||_{\infty} = \sup_{x \in \mathbb{X}} |f(x)|$. Similarly, $b\mathcal{X}$ will denote the set of bounded measurable functions and $m\mathcal{X}_+$ the set of positive measurable functions.

Exercise 2.1.1. The space $(b\mathscr{X}, \|\cdot\|_{\infty})$ is Banach.

Similar definitions apply by duality to the set of measures. Recall that a measure is a σ -additive function defined on \mathscr{X} and taking values in $] -\infty, \infty]$. It is called positive if its set of values is $[0,\infty]$ and bounded if $\sup\{|\mu(F)|, F \in \mathscr{X}\} < \infty$.

For every measure μ and every measurable set *F*, we can define positive and negative parts by

$$\mu^+(F) = \sup\{\mu(G), G \in \mathcal{X}, G \subseteq F\}$$

and

$$\mu^{-}(F) = \sup\{-\mu(G), G \in \mathcal{X}, G \subseteq F\}.$$

Note that $\mu = \mu^+ - \mu^-$. The **total variation** of μ is the measure $|\mu| = \mu^+ + \mu^-$. The total variation is bounded iff $|\mu|$ is bounded; we denote by $\|\mu\|_1 = |\mu|(\mathbb{X})$.

We denote by $\mathscr{M}(\mathscr{X})$ the set of σ -finite measures on \mathscr{X} (i.e. measures μ for which there is an *increasing* sequence $(F_n)_{n \in \mathbb{N}}$ of measurable sets F_n such that $|\mu|(F_n) < \infty$ for all n and $\mathbb{X} = \cup^{\uparrow} F_n$.) Similarly, we introduce the set of bounded measures $b\mathscr{M}(\mathscr{X}) = \{\mu \in \mathscr{M}(\mathscr{X}) : \sup\{|\mu(A)|, A \in \mathscr{X}\} < \infty\}$. The sets $\mathscr{M}_+(\mathscr{X})$ and $b\mathscr{M}_+(\mathscr{X})$ are defined analogously for positive measures. The set $\mathscr{M}_1(\mathscr{X})$ denotes the set of probability measures on \mathscr{X} .

Exercise 2.1.2. The space $(b\mathcal{M}(\mathcal{X}), \|\cdot\|_1)$ is Banach.

Let $\mu \in \mathcal{M}(\mathcal{X})$ and $f \in \mathcal{L}^1(\mathbb{X}, \mathcal{X}, \mu)$. We denote in-distinctively, $\int_{\mathbb{X}} f d\mu = \int_{\mathbb{X}} f(x)\mu(dx) = \int_{\mathbb{X}} \mu(dx)f(x) = \mu(f) = \langle \mu, f \rangle$. As usual the space $L^1(\mathbb{X}, \mathcal{X}, \mu)$ is the quotient of $\mathcal{L}^1(\mathbb{X}, \mathcal{X}, \mu)$ by equality holding μ -almost everywhere. There exists a canonical isometry between $L^1(\mathbb{X}, \mathcal{X}, \mu)$ and $\mathcal{M}(\mathcal{X})$ defined by the two mappings:

$$f \mapsto \mu_f \quad : \quad \mu_f(A) = \int_A f(x)\mu(dx), \text{ for } f \in L^1$$
$$v \mapsto f_v \quad : \quad f_v(x) = \frac{dv}{d\mu}(x), \text{ for } v \ll \mu.$$

2.2 Transition kernels

Definition 2.2.1. Let (X, \mathscr{X}) and (X', \mathscr{X}') be two measurable spaces. A mapping $N: X \times \mathscr{X}' \to]-\infty, +\infty]$ such that

- $\forall x \in \mathbb{X}, N(x, \cdot)$ is a measure on \mathscr{X}' and
- $\forall A \in \mathscr{X}'$, *N*(·, *A*) is a \mathscr{X} -measurable function,

is called a **transition kernel** between X and X'. We denote $(X, \mathscr{X}) \xrightarrow{N} (X', \mathscr{X}')$.

The kernel is termed

- **positive** if its image is $[0, +\infty]$,
- *σ*-finite if for all *x* ∈ X, *N*(*x*, ·) ∈ *M*(*X*'),
- **proper** if there exists an increasing exhausting sequence $(A_n)_n$ of \mathscr{X}' -measurable sets such that, for all $n \in \mathbb{N}$, the function $N(\cdot, A_n)$ is bounded on \mathbb{X} , and
- **bounded** if its image is bounded.

Exercise 2.2.2. For a kernel, bounded implies proper implies σ -finite. A positive kernel is bounded if and only if the function $N(\cdot, \mathbb{X})$ is bounded.

/Users/dp/a/ens/markov-kerne.tex 6 2015-10-15 • 21:21:45. Henceforth, we shall consider positive kernels (even when Markovian this qualifying adjective is omitted).

Definition 2.2.3. Let *N* be a positive transition kernel $(X, \mathscr{X}) \stackrel{N}{\leadsto} (X', \mathscr{X}')$. For $f \in m\mathscr{X}'_+$, we define a function on $m\mathscr{X}_+$, denoted by *Nf*, by the formula:

$$\forall x \in \mathbb{X}, \ Nf(x) = \int_{\mathbb{X}'} N(x, dx') f(x') = \langle N(x, \cdot), f \rangle.$$

Remark 2.2.4. $f \in m\mathscr{X}_+$ is not necessarily integrable with respect to the measure $N(x, \cdot)$. The function Nf is defined with values in $[0, +\infty]$ by approximating by step functions. The definition can be extended to $f \in m\mathscr{X}'$ by defining $Nf = Nf^+ - Nf^-$ provided that the functions Nf^+ and Nf^- do not take simultaneously infinite values.

Definition 2.2.5. Let $(\mathbb{X}, \mathscr{X}) \xrightarrow{N} (\mathbb{X}', \mathscr{X}')$ be a positive kernel. For $\mu \in \mathcal{M}_+(\mathscr{X})$, we define a measure of $\mathcal{M}_+(\mathscr{X}')$, denoted by μN , by the formula:

$$\forall A \in \mathscr{X}', \ \mu N(A) = \int_{\mathbb{X}} \mu(dx) N(x, A) = \langle \mu, N(\cdot, A) \rangle.$$

Remark 2.2.6. The definition can be extended to $\mathcal{M}(\mathcal{X})$ by $\mu N = \mu^+ N - \mu^- N$.

Remark 2.2.7. We have the expression $N(x, A) = N \mathbb{1}_A(x)$ for all $x \in X$ and all $A \in \mathscr{X}'$. Similarly, $N(x, A) = \varepsilon_x N(A)$ where ε_x is the Dirac mass on x.

Remark 2.2.8. Note that the transition kernel $(X, \mathscr{X}) \xrightarrow{N} (X', \mathscr{X}')$ acts **contravariantly** on functions and **covariantly** on measures. In the language of categories, the whole picture reads:

2.3 Examples-exercises

2.3.1 Integral kernels

Let $\lambda \in \mathcal{M}_+(\mathcal{X}')$ and $n : \mathbb{X} \times \mathbb{X}' \to \mathbb{R}_+$ be a $\mathcal{X} \otimes \mathcal{X}'$ -measurable function. Define for all $x \in \mathbb{X}$ and all $A \in \mathcal{X}'$

$$N(x,A) = \int_{\mathbb{X}} n(x,x') \mathbb{1}_A(x') \lambda(dx').$$

/Users/dp/a/ens/markov-kerne.tex 2015-10-15 • 21:21:45. Then *N* is a positive transition kernel $(\mathbb{X}, \mathscr{X}) \xrightarrow{N} (\mathbb{X}', \mathscr{X}')$, termed **integral kernel**. For $f \in m\mathscr{X}'_+$, $\mu \in \mathscr{M}_+$ ($c = \mathscr{X}$), $A \in \mathscr{X}'$ and $x \in \mathbb{X}$ we have:

$$Nf(x) = \int_{\mathbb{X}} n(x, x') f(x') \lambda(dx')$$

$$\mu N(A) = \int_{\mathbb{X}} \int_{\mathbb{X}'} \mu(dx) n(x, x') (\mathbb{1}_A \lambda) (dx'),$$

where $\mathbb{1}_A \lambda$ is a measure absolutely continuous with respect to λ having Radon-Nikodým density $\mathbb{1}_A$.

Some remarkable particular integral kernels are given below:

1. Let $\mathbb{X} = \mathbb{X}'$ be countable (finite or infinite) sets, $\mathscr{X} = \mathscr{X}' = \mathscr{P}(\mathbb{X})$, and λ be the counting measure, defined by $\lambda(x) = 1$ for all $x \in \mathbb{X}$. Then the integral kernel *N* is defined, for $f \in m\mathscr{X}$, $\mu \in \mathscr{M}(\mathscr{X})$, by

$$\begin{split} Nf(x) &= \sum_{y \in \mathbb{X}} n(x,y) f(y), \text{ for all } x \in \mathbb{X} \\ \mu N(A) &= \sum_{x \in \mathbb{X}; y \in A} \mu(x) n(x,y), \text{ for all } A \in \mathcal{X}. \end{split}$$

In this discrete case, $N(x, \{y\}) \equiv N(x, y) \equiv n(x, y)$ are the elements of finite or infinite matrix whose columns are functions and rows are measures. If we impose further $N(x, \cdot)$ to be a probability, then $\sum_{y \in \mathbb{X}} n(x, y) = 1$ as was the case in the motivating example of chapter 3.1. In that case, the operator $N = (n(x, y))_{x,y \in \mathbb{X}}$ is a matrix whose rows sum up to one, termed **stochastic matrix**.

2. Let $X = X' = \mathbb{R}^d$ with $d \ge 3$, $\mathscr{X} = \mathscr{X}' = \mathscr{B}(\mathbb{R}^d)$, and λ be the Lebesgue measure in dimension d. The function given by the formula $n(x, x') = \|x - x'\|^{-d+2}$ for $x \ne x'$ defines the so-called Newtonian kernel. It allows expressing the electrostatic (or gravitational) potential U at x due to a charge (or mass) density ρ via the integral formula:

$$U(x) = c \int_{\mathbb{R}^d} n(x, x') \rho(x') \lambda(dx').$$

The function *U* is solution of the Poisson differential equation $\frac{1}{2}\Delta U(x) = -\rho(x)$. The Newtonian kernel can be thought as the "inverse" operator of the Laplacian. We shall return to this "inverting" procedure in chapter 5.

3. Let X = X', $\mathcal{X} = \mathcal{X}'$, and $\lambda \in \mathcal{M}(\mathcal{X})$ be arbitrary. Let $a, b \in b\mathcal{X}$ and define n(x, x') = a(x)b(x'). Then the integral kernel *N* is defined by

$$Nf(x) = a(x)\langle b\lambda, f \rangle$$

$$\mu N(A) = \langle \mu, a \rangle (b\lambda)(A).$$

In other words the kernel $N = a \otimes b\lambda$ is of the form function \otimes measure (to be compared with the form ${}^{1}E_{\lambda} = \mathbf{v}_{\lambda} \otimes \mathbf{u}_{\lambda}^{t}$ introduced in chapter 1).

^{1.} Recall that functions are identified with vectors, measures with linear forms.

2.3.2 Convolution kernels

Let \mathbb{G} be a topological semigroup (i.e. composition is associative and continuous) whose composition \cdot is denoted multiplicatively. Assume that \mathbb{G} is metrisable (i.e. there is a distance on \mathbb{G} generating its topology) and locally compact (i.e. every point $x \in \mathbb{G}$ is contained in an open set whose closure is compact). Denote by \mathscr{G} the Borel σ -algebra on \mathbb{G} . Define the convolution of two measures μ and ν by duality on continuous functions of compact support $f \in C_K(\mathbb{G})$ by $\langle \mu \star \nu, f \rangle = \int_{\mathbb{G}} \int_{\mathbb{G}} \mu(dx)\nu(dy) f(x \cdot y)$.

Let now $\mathbb{X} = \mathbb{X}' = \mathbb{G}$, $\mathscr{X} = \mathscr{X}' = \mathscr{G}$, and λ be a fixed positive Radon measure (i.e. $\lambda(K) < \infty$ for all compact measurable sets *K*) and define *N* by the formula $N(x, A) = (\lambda \star \varepsilon_x)(A)$. Then *N* is a transiton kernel (\mathbb{G}, \mathscr{G}) $\stackrel{N}{\rightsquigarrow}$ (\mathbb{G}, \mathscr{G}), called **convo-lution kernel**, whose action is given by

$$Nf(x) = \langle \lambda \star \varepsilon_x, f \rangle$$

=
$$\int_{\mathbb{G}} \int_{\mathbb{G}} \lambda(dy) \varepsilon_x(dz) f(y \cdot z)$$

=
$$\int_{\mathbb{G}} \lambda(dy) f(y \cdot x).$$

In particular, $N(x, A) = \langle \lambda \star \varepsilon_x, \mathbb{1}_A \rangle = \int_{\mathbb{G}} \lambda(dy) \mathbb{1}_A(y \cdot x)$ yielding for the left action on measures $\mu N(A) = \langle \lambda \star \mu, \mathbb{1}_A \rangle$.

Suppose now that G instead of being merely a semigroup, is henceforth a group. Then the above formula becomes $N(x, A) = \lambda(Ax^{-1})$ and consequently

$$\langle \mu N, f \rangle = \langle \lambda \star \mu, f \rangle,$$

yielding ${}^{2} \mu N = \lambda \star \mu$. This provides us with another reminding that N transforms differently arguments of functions and measures.

Definition 2.3.1. Let \mathbb{V} be a topological space and \mathcal{V} it Borel σ -algebra; the group \mathbb{G} **operates** on \mathbb{V} (we say that \mathbb{V} is a \mathbb{G} -space), if there exists a continuous map $\alpha : \mathbb{G} \times \mathbb{V} \ni (x, v) \mapsto \alpha(x, v) \equiv x \circ v \in \mathbb{V}$, verifying $(x_1 \cdot x_2) \circ v = x_1 \circ (x_2 \circ v)$.

With any fixed measure $\lambda \in \mathcal{M}_+(\mathcal{G})$ we associate a kernel $(\mathbb{V}, \mathcal{V}) \stackrel{K}{\leadsto} (\mathbb{V}, \mathcal{V})$ by its action on functions $f \in m\mathcal{V}_+$ and measures $\mu \in \mathcal{M}(\mathcal{V})$:

$$Kf(v) = \int_{\mathbb{G}} \lambda(dx) f(x \circ v), \text{ for any } v \in \mathbb{V}$$

$$\mu K(A) = \int_{\mathbb{G}} \lambda(dx) \int_{\mathbb{V}} \mu(dv) \mathbb{1}_A(x \circ v), \text{ for any } A \in \mathcal{V}.$$

When $\mathbb{V} = \mathbb{G}$ in the above formulae and identifying the operation \circ with the group composition \cdot , we say that the group operates (from the left) on itself. In

^{2.} Note however, that $Nf \neq \lambda \star f$ because the convolution $\lambda \star f(x) = \int_{\mathbb{G}} \lambda(dy) f(y^{-1}x)$. Hence on defining λ_* as the image of λ under the transformation $x \mapsto x^{-1}$, we have $Nf(x) = \int_{\mathbb{G}} \lambda(dy) f(y^{-1}x) = \lambda_* \star f(x)$.

that case, we recover the convolution kernel of the beginning of this section as a particular case of the action on G-spaces.

Some remarkable particular convolution kernels are given below:

1. Let G be the Abelian group \mathbb{Z} , whose composition is denoted additively. Let λ be the probability measure charging solely the singletons -1 and 1 with probability 1/2. Then the convolution kernel *N* acts on measurable functions and measures by:

$$Nf(x) = \frac{1}{2} (f(x+1) + f(x-1))$$

$$\mu N(A) = \frac{1}{2} (\mu (A-1) + \mu (A+1)).$$

This kernel corresponds to the transition matrix

$$n(x, y) = \begin{cases} 1/2 & \text{if } y - x = \pm 1\\ 0 & \text{otherwise,} \end{cases}$$

corresponding to the **simple symmetric random walk** on \mathbb{Z} . More generally, if $\mathbb{G} = \mathbb{Z}^d$ and λ is a probability measure whose support is a generating set of the group, the transition kernel defines a random walk on \mathbb{Z}^d .

- 2. The same holds more generally for non Abelian groups. For example, let $G = \{a, b\}$ be a set of free generators and \mathbb{G} the group generated by *G* via successive applications of the group operations. Then \mathbb{G} is the so-called **free group** on two generators, denoted by \mathbb{F}_2 . It is isomorphic with the homogeneous tree of degree 4. If λ is a probability supported by *G* and G^{-1} , then the convolution kernel corresponds to a random walk on \mathbb{F}_2 .
- 3. Let G be the semigroup of $d \times d$ matrices with strictly positive elements and $\mathbb{V} = \mathbb{R}P^{d-1}$ be the real projective space³. If $\mathbb{R}P^{d-1}$ is thought as embedded in \mathbb{R}^d , the latter being equipped with a norm $\|\cdot\|$, define the action of a matrix $x \in \mathbb{G}$ on a vector $v \in \mathbb{R}P^{d-1}$ by $x \circ v = \frac{xv}{\|xv\|}$. Let λ be a probability measure on G. Then the kernel *K* defined by $Kf(v) = \int_{\mathbb{G}} \lambda(dx) f(x \circ v)$ induces a random walk on the space \mathbb{V} .

2.3.3 Point transformation kernels

Let (X, \mathscr{X}) and (Y, \mathscr{Y}) be two measurable spaces and $\theta : X \to Y$ a measurable function. Then, the function *N* defined on $X \times \mathscr{Y}$ by $N(x, A) \equiv \mathbb{1}_A(\theta(x)) =$

^{3.} The real projective space $\mathbb{R}P^n$ is defined as the space of all lines through the origin in \mathbb{R}^{n+1} . Each such line is determined as a nonzero vector of \mathbb{R}^{n+1} , unique up to scalar multiplication, and $\mathbb{R}P^n$ is topologised as the quotient space of $\mathbb{R}^{n+1} \setminus \{0\}$ under the equivalence relation $v \simeq \alpha v$ for scalars $\alpha \neq 0$. We can restrict ourselves to vectors of length 1, so that $\mathbb{R}P^n$ is also the quotient space $\mathbb{S}^n/v \simeq -v$ of the sphere with antipodal points identified.

 $\mathbb{1}_{\theta^{-1}(A)}(x) = \varepsilon_{\theta(x)}(A)$ for $x \in \mathbb{X}$ and $A \in \mathscr{Y}$ defines a transition kernel $(\mathbb{X}, \mathscr{X}) \xrightarrow{N} (\mathbb{Y}, \mathscr{Y})$, termed **point transformation kernel** or **deterministic kernel**. Its action on functions and measures reads:

$$Nf(x) = \int_{\mathbb{Y}} N(x, dy) f(y) = \int_{\mathbb{Y}} \varepsilon_{\theta(x)}(dy) f(y)$$
$$= f(\theta(x)) = f \circ \theta(x)$$
$$\mu N(A) = \int_{\mathbb{X}} \mu(dx) \mathbb{1}_{\theta^{-1}(A)}(x)$$
$$= \mu(\theta^{-1}(A)) = \theta_*(\mu)(A),$$

where θ_* denotes the pullback on measures.

Remark 2.3.2. (Please stop here for a moment's thought!) The function θ is as a matter of fact a random variable on $(\mathbb{X}, \mathscr{X})$ taking values in $(\mathbb{Y}, \mathscr{Y})$. If the initial space is endowed with a probability μ , then μN is the law of θ ! If $\mathbb{Y} = \mathbb{R}$ equipped with its Borel σ -algebra, what is the significance the function $Nid_{\mathbb{Y}}$, where $id_{\mathbb{Y}}$ is the identify function on \mathbb{Y} ?

Example 2.3.3. Let X = Y = [0, 1], $\mathcal{X} = \mathcal{Y} = \mathcal{B}([0, 1])$ and θ the mapping given by the formula $\theta(x) = 4x(1-x)$. The iterates of θ applied on a given point $x \in [0, 1]$ describe the trajectory of x under the **dynamical system** defined by the map. The corresponding kernel is deterministic.

Exercise 2.3.4. Determine the explicit form of the kernel in the previous example.

2.4 Markovian kernels

Definition 2.4.1. (Kernel composition) Let *M* and *N* be positive transition kernels $(\mathbb{X}, \mathscr{X}) \xrightarrow{M} (\mathbb{X}', \mathscr{X}')$ and $(\mathbb{X}', \mathscr{X}') \xrightarrow{N} (\mathbb{X}'', \mathscr{X}'')$. Then by *MN* we shall denote the positive kernel $(\mathbb{X}, \mathscr{X}) \xrightarrow{MN} (\mathbb{X}'', \mathscr{X}'')$ defined, for all $x \in \mathbb{X}$ and all $A \in \mathscr{X}''$ by

$$MN(x, A) = \int_{\mathbb{X}'} M(x, dy) N(y, A).$$

Exercise 2.4.2. The composition of positive kernels is associative.

Remark 2.4.3. If *N* is a positive kernel $(\mathbb{X}, \mathscr{X}) \xrightarrow{N} (\mathbb{X}, \mathscr{X})$ then N^n is defined for all $n \in \mathbb{N}$ by $N^0 = I$, where *I* is the identity kernel $(\mathbb{X}, \mathscr{X}) \xrightarrow{I} (\mathbb{X}, \mathscr{X})$ defined by $I(x, A) = \varepsilon_x(A)$ and recursively for n > 0 by $N^n = NN^{n-1}$.

Definition 2.4.4. (Kernel ordering) Let *M* and *N* be two positive kernels $(X, \mathscr{X}) \xrightarrow{M} (Y, \mathscr{Y})$ and $(X, \mathscr{X}) \xrightarrow{M} (Y, \mathscr{Y})$. We say $M \leq N$ if $\forall f \in \mathscr{Y}_+$, the inequality $Mf \leq Nf$ holds (point-wise).

Definition 2.4.5. (Markovian kernels) Let *N* be a positive kernel $(X, \mathscr{X}) \xrightarrow{N} (X, \mathscr{X})$.

/Users/dp/a/ens/markov-kerne.tex 11 2015-10-15 • 21:21:45.

- The kernel *N* is termed **sub-Markovian** or **a transition probability** if $N(x, A) \le 1$ holds for all $x \in X$ and all $A \in \mathcal{X}$.
- The kernel *N* is termed **Markovian** if N(x, X) = 1 holds for all $x \in X$.

Remark 2.4.6. It may sound awkward to term a sub-Markovian kernel, for which the strict inequality $N(x, \mathbb{X}) < 1$ may hold, transition probability. The reason for this terminology is that it is always possible to extend the space \mathbb{X} to $\hat{\mathbb{X}} = \mathbb{X} \cup \{\partial\}$ by adjoining a particular point $\partial \notin \mathbb{X}$, called **cemetery**. The σ -algebra is extended analogously to $\hat{\mathscr{X}} = \sigma(\mathscr{X}, \{\partial\})$. The kernel is subsequently extended to a Markovian kernel \hat{N} defined by $\hat{N}(x, A) = N(x, A)$ for all $A \in \mathscr{X}$ and all $x \in \mathbb{X}$, assigning the missing mass to the cemetery by $\hat{N}(x, \{\partial\}) = 1 - N(x, \mathbb{X})$ for all $x \in \mathbb{X}$, and trivialising the additional point by imposing $\hat{N}(\partial, \{\partial\}) = 1$. It is trivially verified that \hat{N} is now Markovian. Moreover, if N is already Markovian, obviously $\hat{N}(x, \{\partial\}) = 0$ for all $x \in \mathbb{X}$. Functions $f \in m\mathscr{X}$ are also extended to $\hat{f} \in m\hat{\mathscr{X}}$ coinciding with fon \mathbb{X} and verifying $\hat{f}(\{\partial\}) = 0$.

We use henceforth the **reserved symbol** *P* to denote positive kernels that are transition probabilities. Without loss of generality, we can always assume that *P* are Markovian kernels, possibly at the expense of adjoining a cemetery point to the space (X, \mathcal{X}) according the previous remark, although the [^] symbol will be omitted.

Exercise 2.4.7. Markovian kernels, as linear operators acting to the right on the Banach space $(b\mathcal{X}, \|\cdot\|_{\infty})$ or to the left on $(b\mathcal{M}(\mathcal{X}), \|\cdot\|_1)$, are positive contractions.

2.5 Further exercises

- 1. Let (X, \mathscr{X}) be a measurable space, $g \in m\mathscr{X}_+$, $v \in \mathscr{M}_+(\mathscr{X})$, and $(X, \mathscr{X}) \stackrel{M}{\rightsquigarrow} (X, \mathscr{X})$ an arbitrary positive kernel. Define $N = g \otimes v$ and compute *NM* and *MN*.
- 2. Let *P* be a Markovian kernel and define $G^0 = \sum_{n=0}^{\infty} P^n$.
 - Show that G^0 is a positive kernel not necessarily finite on compact sets. — Show that $G^0 = I + PG^0 = I + G^0 P$.
- 3. Let *P* be a Markovian kernel and *a*, *b* arbitrary sequences of positive numbers such that $\sum_{n=0}^{\infty} a_n \le 1$ and $\sum_{n=0}^{\infty} b_n \le 1$. Define $G_{(a)}^0 = \sum_{n=0}^{\infty} a_n P^n$ and compute $G_{(a)}^0 G_{(b)}^0(x, A)$.
- 4. Let *P* be a Markovian kernel. For every $z \in \mathbb{C}$ define $G_z^0 = \sum_{n=0}^{\infty} z^n P^n$.
 - Show that G_z^0 is a finite kernel for all complex z with |z| < 1.
 - Is the linear operator zI P invertible for z in some subset of the complex plane?

B Trajectory spaces

In this chapter a minimal construction of a general probability space is performed on which lives a general Markov chain.

3.1 Motivation

Let (X, \mathscr{X}) be a measurable space. In the well known framework of the Kolmogorov axiomatisation of probability theory, to deal with a X-valued random variable *X* we need an *ad hoc* probability space $(\Omega, \mathscr{F}, \mathbb{P})$ on which the the random variable is defined as a $(\mathscr{F}, \mathscr{X})$ -measurable function. The law of *X* is the probability measure \mathbb{P}_X on (X, \mathscr{X}) , image of \mathbb{P} under *X*, i.e. $\mathbb{P}_X(A) = \mathbb{P}(\{\omega \in \Omega :$ $X(\omega) \in A\} = X_*(\mathbb{P})(A) = \mathbb{P}N_X(A)$ for all $A \in \mathscr{X}$, where $N_X(\omega, A) = \varepsilon_{X(\omega)}(A)$ is the point kernel associated with the random variable *X*.

What is much less often stressed in the various accounts of probability theory is the profound significance of this framework. As put by Kolmogorov himself in [29, page 1]:

"... the field of probabilities is defined as a system of [sub]sets [of a universal set] which satisfy certain conditions. What the elements of this [universal] set represent is of no importance ... ".

Example 3.1.1. (Heads and tails) Let $X = \{0, 1\}$ and $p \in [0, 1]$. Modelling the outcomes *X* of a coin giving tails with probability *p* is equivalent to specifying $\mathbb{P}_X = p\varepsilon_0 + (1 - p)\varepsilon_1$.

Several remarks are necessary:

- 1. All information experimentally pertinent to the above example is encoded into the probability space $(X, \mathcal{X}, \mathbb{P}_X)$.
- 2. The choice of the probability space (Ω, 𝔅, ℙ), on which the random variable *X*="the coin outcome" is defined, is not unique. Every possible choice corresponds to a **possible physical realisation** used to model the random experiment. This idea clearly appears in the classical text [29].
- 3. According to Kolmogorov, in any random experiment, the only fundamental object is $(X, \mathcal{X}, \mathbb{P}_X)$; with every such probability space, we can associate infinitely many pairs composed of an auxiliary probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a measurable mapping $X : \Omega \to X$ such that \mathbb{P}_X is the image of \mathbb{P} under *X*.
- 4. This picture was further completed later by Loomis [30] and Sikorski [46]: in the auxiliary space $(\Omega, \mathscr{F}, \mathbb{P})$, the only important object is \mathscr{F} since for every abstract σ -algebra \mathscr{F} , there exists a universal set Ω such that \mathscr{F} can be realised as a σ -algebra of subsets of Ω (Loomis-Sikorski theorem).

Example 3.1.2. (Heads and tails revisited by the layman) When one tosses a coin on a table (approximated as an infinitely extending plane and very plastic), the space $\Omega = (\mathbb{R}_+ \times \mathbb{R}^2) \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{S}^2$ is used. This space encodes position **R** of the centre of the mass, velocity **V**, angular momentum **M** and orientation **N** of the normal to the head face of the coin. The σ -algebra $\mathscr{F} = \mathscr{B}(\Omega)$ and \mathbb{P} corresponds to some probability of compact support (initial conditions of the mechanical system). Newton equations govern the time evolution of the system and due to the large plasticity of the table, the coin does not bounce when it touches the table. Introduce the random time $T(\omega) = \inf\{t > 0 : R_3(t) = 0; \mathbf{V}(t) = 0, \mathbf{M}(t) = 0\}$ and the random variable

$$X(\omega) = \begin{cases} 0 & \text{if } \mathbf{N}(T(\omega)) \cdot \mathbf{e}_3 = -1 \\ 1 & \text{if } \mathbf{N}(T(\omega)) \cdot \mathbf{e}_3 = 1, \end{cases}$$

where \mathbf{e}_3 is the unit vector parallel to the vertical axis. A tremendously complicated modelling indeed! The randomness of the outcome is due to the fine stratification of the space Ω . This mechanical systems is mathematically studied in detail in [27, 9]. Under the simplifying assumption that the rotation of the coin is around the normal axis of the vertical plane containing the vertical motion of the centre of the mass, the phase space is stratified as in the figure 3.1.

Example 3.1.3. (Heads and tails revisited by the Monte Carlo simulator) Let $\Omega = [0,1]$, $\mathscr{F} = \mathscr{B}([0,1])$ and \mathbb{P} be the Lebesgue measure on [0,1]. Then the outcome of a honest coin is modelled by the random variable

$$X(\omega) = \begin{cases} 0 & \text{if } \omega < 1/2\\ 1 & \text{if } \omega > 1/2 \end{cases}$$

A simpler modelling but still needing a Borel σ -algebra on an uncountable set!

Example 3.1.4. (Heads and tails revisited by the mathematician) Let $\Omega = \{0, 1\}$, $\mathscr{F} = \mathscr{P}(\Omega)$ and $\mathbb{P} = \frac{1}{2}\varepsilon_0 + \frac{1}{2}\varepsilon_1$. Then the outcome of a honest coin is modelled by the random variable X = id. Note further that $\mathbb{P}_X = \mathbb{P}$. Such a realisation is called **minimal**.

Figure 3.1 – The (v, M) phase space, where v denotes the vertical speed and M the angular momentum, is stratified into red and blue regions corresponding to the two different possible outcomes (heads and tails). Only the first layers of the stratification are shown but as a matter of fact it extends indefinitely to cover the whole quadrant.

Exercise 3.1.5. (Your turn to toss coins! Please work out this exercise before reading \$3.2) Construct a minimal probability space carrying the outcomes for two honest coins.

Let (X, \mathscr{X}) be an arbitrary measurable space and $X = (X_n)_{n \in \mathbb{N}}$ a countable family of X-valued random variables. Two natural questions arise:

- 1. What is the significance of \mathbb{P}_X ?
- 2. Does there exist a minimal probability space $(\Omega, \mathscr{F}, \mathbb{P})$ carrying the whole family of random variables?

3.2 Construction of the trajectory space

3.2.1 Notation

Let $(X_k, \mathscr{X}_k)_{k \in \mathbb{N}}$ be a family of measurable spaces. For $n \in \mathbb{N} \cup \{\infty\}$, denote $X^n = \times_{k=0}^n X_k$ and $\mathscr{X}^n = \otimes_{k=0}^n \mathscr{X}_k$. **Beware** of the difference between subscripts and superscripts in the previous notation!

Definition 3.2.1. Let $(X_k, \mathcal{X}_k)_{k \in \mathbb{N}}$ be a family of measurable spaces. The set

 $\mathbb{X}^{\infty} = \{ x = (x_0, x_1, x_2, \ldots) : x_k \in \mathbb{X}_k, \forall k \in \mathbb{N} \}$

/Users/dp/a/ens/markov-traje.tex 15 2015-10-15 • 21:25:00. is called the **trajectory space** on the family $(X_k)_{k \in \mathbb{N}}$.

Remark 3.2.2. The trajectory space, \mathbb{X}^{∞} , can be thought as the subset of all infinite sequences $\{x : \mathbb{N} \to \bigcup_{k \in \mathbb{N}} \mathbb{X}_k\}$ that are **admissible**, in the sense that necessarily for all $k, x_k \in \mathbb{X}_k$. When all spaces of the family are equal, i.e. $\mathbb{X}_k = \mathbb{X}$ for all k, then the space of admissible sequences trivially reduces to the set of sequences, i.e. $\mathbb{X}^{\infty} = \mathbb{X}^{\mathbb{N}}$.

Definition 3.2.3. Let $0 \le m \le n$. Denote by $\mathfrak{p}_m^n : \mathbb{X}^n \to \mathbb{X}^m$ the **projection** defined by the formula:

 $\mathfrak{p}_m^n(x_0,\ldots,x_m,\ldots,x_n)=(x_0,\ldots,x_m).$

We simplify notation to $\mathfrak{p}_m \equiv \mathfrak{p}_m^{\infty}$ for the projection form \mathbb{X}^{∞} to \mathbb{X}^m . More generally, let $\emptyset \neq S \subseteq \mathbb{N}$ be an arbitrary subset of the indexing set. Denote by $\mathfrak{D}_S : \mathbb{X}^{\infty} \to \mathbb{X}_{k \in S} \mathbb{X}_k$ the projection defined for any $x \in \mathbb{X}^{\infty}$ by $\mathfrak{D}_S(x) = (x_k)_{k \in S}$. If $S = \{n\}$, we write \mathfrak{D}_n instead of $\mathfrak{D}_{\{n\}}$.

Remark 3.2.4. Obviously, $\mathfrak{p}_m = \varpi_{\{0,\dots,m\}}$.

Definition 3.2.5. Let $(X_k, \mathcal{X}_k)_{k \in \mathbb{N}}$ be a family of measurable spaces.

1. We call family of rectangular sets over the trajectory space the collection

$$\begin{aligned} \mathscr{R} &= \{ \times_{k \in \mathbb{N}} A_k : A_k \in \mathscr{X}_k, \forall k \in \mathbb{N} \text{ and } \sharp \{k \in \mathbb{N} : A_k \neq \mathbb{X}_k\} < \infty \\ &= \{ \times_{k \in \mathbb{N}} A_k : A_k \in \mathscr{X}_k, \forall k \in \mathbb{N} \text{ and } \exists N : k \ge N \Rightarrow A_k = \mathbb{X}_k \} \\ &= \bigcup_{N \in \mathbb{N}} \mathscr{R}_N, \end{aligned}$$

where $\mathscr{R}_N = \times_{k=0}^N \mathscr{X}_k \times \times_{k>N} \mathbb{X}_k \cong \times_{k=0}^N \mathscr{X}_k.$

2. We call family of cylinder sets over the trajectory space the collection

$$\mathscr{C} = \bigcup_{N \in \mathbb{N}} \{ F \times (\times_{k > N} \mathbb{X}_k) : F \in \mathscr{X}^N \}.$$

The cylinder set $F \times (\times_{k>N} X_k)$ will be occasionally denoted $[F]_N$.

Definition 3.2.6. The σ -algebra on \mathbb{X}^{∞} generated by the sequence of projections $(\varpi_k)_{k \in \mathbb{N}}$ is denoted by \mathscr{X}^{∞} ; i.e. $\mathscr{X}^{\infty} = \bigotimes_{k \in \mathbb{N}} \mathscr{X}_k = \sigma(\bigcup_{k \in \mathbb{N}} \varpi_k^{-1}(\mathscr{X}_k)).$

Exercise 3.2.7. \mathscr{R} is a semi-algebra with $\sigma(\mathscr{R}) = \mathscr{X}^{\infty}$, while \mathscr{C} is an algebra with $\sigma(\mathscr{C}) = \mathscr{X}^{\infty}$. (See A.1.1 for the definitions of various set systems).

3.2.2 The Ionescu Tulcea theorem

The theorem of Ionescu Tulcea is a classical result [22] (see also[35, 4, 16] for more easily accessible references) of existence and unicity of a probability measure on the space ($\mathbb{X}^{\infty}, \mathscr{X}^{\infty}$) constructed out of finite dimensional marginals. There exist formulations of this result assuming some topological structure (out of which the measurable structure is derived); in that case the space \mathbb{X}^{∞} is assumed to be Polish (metrisable, separable and complete). The result given here is very general, with minimal assumptions on the space \mathbb{X} , requiring only that the space (\mathbb{X}, \mathscr{X}) be measurable. We follow the exposition of [35]. **Theorem 3.2.8** (Ionescu Tulcea). Let $(\mathbb{X}_n, \mathscr{X}_n)_{n \in \mathbb{N}}$ be a sequence of measurable spaces, $(\mathbb{X}^{\infty}, \mathscr{X}^{\infty})$ the corresponding trajectory space, $(N_{n+1})_{n \in \mathbb{N}}$ a sequence of transition probabilities¹ $(\mathbb{X}^n, \mathscr{X}^n) \xrightarrow{N_{n+1}} (\mathbb{X}_{n+1}, \mathscr{X}_{n+1})$, and μ a probability on $(\mathbb{X}_0, \mathscr{X}_0)$. Define, for $n \ge 0$, a sequence of probabilities $\mathbb{P}_{\mu}^{(n)}$ on $(\mathbb{X}^n, \mathscr{X}^n)$ by initialising $\mathbb{P}_{\mu}^{(0)} = \mu$ and recursively, for $n \in \mathbb{N}$, by

$$\mathbb{P}_{\mu}^{(n+1)}(F) = \int_{\mathbb{X}_0 \times \dots \times \mathbb{X}_{n+1}} \mathbb{P}_{\mu}^{(n)}(dx_0 \times \dots \times dx_n) N_{n+1}((x_0, \dots, x_n); dx_{n+1}) \mathbb{1}_F(x_0, \dots, x_{n+1}),$$

for $F \in \mathscr{X}^{n+1}$. Then there exists a unique probability \mathbb{P}_{μ} on $(\mathbb{X}^{\infty}, \mathscr{X}^{\infty})$ such that for all n we have

$$(\mathfrak{p}_n)_*(\mathbb{P}_\mu) = \mathbb{P}_\mu^{(n)},$$

 $(i.e. (\mathfrak{p}_n)_*(\mathbb{P}_\mu)(G) \equiv \mathbb{P}_\mu(\mathfrak{p}_n^{-1}(G)) = \mathbb{P}_\mu^{(n)}(G) \text{ for all } G \in \mathcal{X}^n).$

Before proving the theorem, note that for $F = A_0 \times \cdots \times A_n \in \mathscr{X}^n$, the term appearing in the last equality in the theorem 3.2.8 reads:

$$\mathbb{P}_{\mu}(\mathfrak{p}_n^{-1}(F)) = \mathbb{P}_{\mu}(A_0 \times \cdots \times A_n \times \mathbb{X}_{n+1} \times \mathbb{X}_{n+2} \times \ldots)$$

i.e. \mathbb{P}_{μ} is the **unique probability** on the trajectory space $(\mathbb{X}^{\infty}, \mathscr{X}^{\infty})$ admitting $(\mathbb{P}_{\mu}^{(n)})_{n \in \mathbb{N}}$ as sequence of *n*-dimensional marginal probabilities.

A sequence $(\mathbb{P}^{(n)}_{\mu}, \mathfrak{p}_n)_{n \in \mathbb{N}}$ as in theorem 3.2.8 is called a **projective system**. The unique probability \mathbb{P}_{μ} on the trajectory space, is called the **projective limit** of the projective system, and is denoted

$$\mathbb{P}_{\mu} = \lim_{n \to \infty} (\mathbb{P}_{\mu}^{(n)}, \mathfrak{p}_n).$$

The essential ingredient in the proof of existence of the projective limit is the following observation: since, for $0 \le m \le n$, the following diagram commutes

in other words, $\mathfrak{p}_m = \mathfrak{p}_m^n \circ \mathfrak{p}_n$, it follows that pulling back on the probabilities, the following diagram must also commute

^{1.} Beware of superscripts and subscripts

/Users/dp/a/ens/markov-traje.tex 2015-10-15 • 21:25:00. in other words the following equality $\mathbb{P}^{(m)}_{\mu} = (\mathfrak{p}^n_m)_*(\mathbb{P}^{(n)}_{\mu})$, called **Kolmogorov compatibility condition**, holds for arbitrary $0 \le m \le n$. The proof relies also heavily on standard results of the "monotone class type"; for the convenience of the reader, the main results of this type are reminded in the Appendix.

Proof of theorem 3.2.8: Denote by $\mathscr{C}_n = \mathfrak{p}_n^{-1}(\mathscr{X}^n)$. Obviously, $\mathscr{C} = \bigcup_{n \in \mathbb{N}} \mathscr{C}_n$. Since for $m \leq n$ we have $\mathscr{C}_m \subseteq \mathscr{C}_n$, the collection \mathscr{C} is an algebra on \mathbb{X}^∞ . In fact,

- Obviously $X^{\infty} \in \mathscr{C}$.
- For all $C_1, C_2 \in \mathscr{C}$ there exist integers N_1 and N_2 such that $C_1 \in \mathscr{C}_{N_1}$ and $C_2 \in \mathscr{C}_{N_2}$; hence, choosing $N = \max(N_1, N_2)$, we see that the collection \mathscr{C} is closed for finite intersections.
- Similarly, for every $C \in \mathcal{C}$ there exists an integer *N* such that $C \in \mathcal{C}_N$; hence $C^c \in \mathcal{C}_N \subseteq \mathcal{C}$, because \mathcal{C}_N is a σ -algebra.

However, \mathscr{C} is not a σ -algebra but it generates the full σ -algebra \mathscr{X}^{∞} (see exercise 3.2.7).

Next we show that if a probability \mathbb{P}_{μ} exists, then it is necessarily unique. In fact, for every $C \in \mathscr{C}$ there exists an integer N and a set $F \in \mathscr{X}^N$ such that $C = \mathfrak{p}_N^{-1}(F)$. Therefore, $\mathbb{P}_{\mu}(C) = \mathbb{P}_{\mu}(\mathfrak{p}_N^{-1}(F)) = \mathbb{P}_{\mu}^{(N)}(F)$. If another such measure \mathbb{P}'_{μ} exists (i.e. satisfying the same compatibility properties) we shall have similarly $\mathbb{P}'_{\mu}(C) = \mathbb{P}_{\mu}^{(N)}(F) = \mathbb{P}_{\mu}(C)$, hence $\mathbb{P}_{\mu} = \mathbb{P}'_{\mu}$ on \mathscr{C} . Define for a fixed $C \in \mathscr{C}$ such that $\mathbb{P}_{\mu}(C) = \mathbb{P}'_{\mu}(C)$,

$$\Lambda_C = \{A \in \mathscr{X}^{\infty} : \mathbb{P}_{\mu}(C \cap A) = \mathbb{P}'_{\mu}(C \cap A)\} \subseteq \mathscr{X}^{\infty}.$$

Next we show that Λ_C is a λ -system (see definition A.1.3). In fact

- Obviously $X^{\infty} \in \Lambda_C$.
- If $B \in \Lambda_C$ then

$$\mathbb{P}_{\mu}(C \cap B^{c}) = \mathbb{P}_{\mu}(C \setminus (C \cap B))$$
$$= \mathbb{P}_{\mu}(C) - \mathbb{P}_{\mu}(C \cap B)$$
$$= \mathbb{P}'_{\mu}(C) - \mathbb{P}'_{\mu}(C \cap B)$$
$$= \mathbb{P}'_{\mu}(C \cap B^{c}).$$

Hence $B^c \in \Lambda_C$.

— Suppose now that $(B_n)_{n \in \mathbb{N}}$ is a disjoint family of sets in Λ_C . Then σ -additivity establishes that

$$\mathbb{P}_{\mu}((\sqcup_{n\in\mathbb{N}}B_n)\cap C)=\sum_{n\in\mathbb{N}}\mathbb{P}_{\mu}(B_n\cap C)=\sum_{n\in\mathbb{N}}\mathbb{P}'_{\mu}(B_n\cap C)=\mathbb{P}'_{\mu}(((\sqcup_{n\in\mathbb{N}}B_n)\cap C).$$

Hence $\sqcup_{n \in \mathbb{N}} B_n \in \Lambda_C$ establishing thus that Λ_C is a λ -system.

Now stability of \mathscr{C} under finite intersections implies that $\sigma(\mathscr{C}) = \lambda(\mathscr{C}) \subseteq \Lambda_C$ (see exercise A.1.6); consequently $\sigma(\mathscr{C}) \subseteq \Lambda_C \subseteq \mathscr{X}^\infty$. But $\sigma(\mathscr{C}) = \mathscr{X}^\infty$. Hence for all $C \in \mathscr{C}$, we have $\Lambda_C = \mathscr{X}^\infty$. Consequently, for all $A \in \mathscr{X}^\infty$ we have $\mathbb{P}_{\mu}(C \cap A) = \mathbb{P}'_{\mu}(C \cap A)$. Choose now an increasing sequence of cylinders $(C_n)_{n \in \mathbb{N}}$ such that $C_n \uparrow \mathbb{X}^\infty$. Monotone continuity of \mathbb{P}_{μ} yields then $\mathbb{P}_{\mu} = \mathbb{P}'_{\mu}$, proving unicity of \mathbb{P}_{μ} .

To establish existence of \mathbb{P}_{μ} verifying the projective condition, it suffices to show that \mathbb{P}_{μ} is a premeasure (see definition A.1.2) on the algebra \mathscr{C} . For an

arbitrary $C \in \mathscr{C}$, chose an integer N and a set $F \in \mathscr{X}^N$ such that $C = \mathfrak{p}_N^{-1}(F)$. On defining $\kappa(C) = \mathbb{P}_{\mu}^{(N)}(F)$, we note that κ is well defined on \mathscr{C} and is a content. Further $\kappa(\mathbb{X}^{\infty}) = \mathbb{P}(\mathfrak{p}_N^{-1}(\mathbb{X}^N)) = \mathbb{P}_{\mu}^{(N)}(\mathbb{X}^N) = 1$. To show that κ is a premeasure, it remains to show continuity at \emptyset (see exercise A.1.8), i.e. for any sequence of cylinders (C_n) such that $C_n \downarrow \emptyset$, we must have $\kappa(C_n) \downarrow 0$, or, equivalently, if $\inf_n \kappa(C_n) > 0$, then $\bigcap_n C_n \neq \emptyset$. Let (C_n) be a decreasing sequence of cylinders such that $\inf_n \kappa(C_n) > 0$. Without loss of generality, we can represent these cylinders for all n by $C_n = F \times (\times_{k>n} \mathbb{X}_k)$ and $F \in \mathscr{X}^n$. For any $x_0 \in \mathbb{X}_0$, consider the sequence of functions

$$f_n^{(0)}(x_0) = \int_{\mathbb{X}_1} N_1(x_0, dx_1) \int_{\mathbb{X}_2} N_2(x_0 x_1, dx_2) \dots \int_{\mathbb{X}_n} N_n(x_0 \cdots x_{n-1}, dx_n) \mathbb{1}_F(x_0 \dots x_n).$$

Obviously, for all n, $f_{n+1}^{(0)}(x_0) \le f_n^{(0)}(x_0)$ (why?). Monotone convergence yields then:

$$\int_{\mathbb{X}_0} \inf_n f_n^{(0)}(x_0) \mu(dx_0) = \inf_n \int_{\mathbb{X}_0} f_n^{(0)}(x_0) \mu(dx_0) = \inf_n \kappa(C_n) > 0.$$

Consequently, there exists a $\overline{x}_0 \in X_0$ such that $\inf_n f_n^{(0)}(\overline{x}_0) > 0$. We can introduce similarly a decreasing sequence of two variables

$$f_n^{(1)}(\overline{x}_0, x_1) = \int_{\mathbb{X}_2} N_2(\overline{x}_0 x_1, dx_2) \dots \int_{\mathbb{X}_n} N_n(\overline{x}_0 x_1 \cdots x_{n-1}, dx_n) \mathbb{1}_F((\overline{x}_0 \dots x_n))$$

and show that

$$\int_{\mathbb{X}_1} \inf_n f_n^{(1)}(\overline{x}_0, x_1) N_1(\overline{x}_0, dx_1) = \inf_n \int_{\mathbb{X}_1} f_n^{(1)}(\overline{x}_0, x_1) N_1(\overline{x}_0, dx_1) > 0.$$

There exists then a $\overline{x}_1 \in \mathbb{X}_1$ such that $\inf_n f_n^{(1)}(\overline{x}_0, \overline{x}_1) > 0$. By recurrence, we show then that there exists $\overline{x} = (\overline{x}_0, \overline{x}_1, \ldots) \in \mathbb{X}^\infty$ such that for all k we have $\inf_n f_n^{(k)}(\overline{x}_0, \ldots, \overline{x}_k) > 0$. Therefore, $\overline{x} \in \bigcap_n C_n$ implying that $\bigcap_n C_n \neq \emptyset$.

Remark 3.2.9. There are several other possibilities of defining a probability on the trajectory space out of a sequence of finite dimensional data, for instance by fixing the sequence of conditional probabilities verifying the so called Dobrushin-Lanford-Ruelle (DLR) compatibility conditions instead of Komogorov compatibility conditions for marginal probabilities (see [17] for instance). This construction naturally arises in Statistical Mechanics and is less rigid than the Kolmogorov condition: the projective system may fail to converge, can have a unique limit or have several convergent subsequences. Limiting probabilities are called **Gibbs measures** of a DLR projective system. If there are several different Gibbs measures, the system is said undergoing a **phase transition**.

Definition 3.2.10. A (discrete-time) **stochastic process** is the sequence of probabilities $(\mathbb{P}^{(n)}_{\mu})_{n \in \mathbb{N}}$ appearing in Ionescu-Tulcea existence theorem.

Definition 3.2.11. Suppose that for every *n*, the kernel $(X^n, \mathscr{X}^n) \xrightarrow{N_{n+1}} (X_{n+1}, \mathscr{X}_{n+1})$ is a Markovian kernel depending merely on x_n (instead of the complete dependence on (x_0, \ldots, x_n)), i.e. for all $n \in \mathbb{N}$, there exists a Markovian kernel $(X_n, \mathscr{X}_n) \xrightarrow{P_{n+1}} (X_{n+1}, \mathscr{X}_{n+1})$ such that $N_{n+1}((x_0, \ldots, x_n); A_{n+1}) = P_{n+1}(x_n; A_{n+1})$ for all $x_0, \ldots, x_n \in X_n$ and all $A_{n+1} \in \mathscr{X}_{n+1}$. Then the stochastic process is termed a **Markov chain**.

Let $\Omega = \mathbb{X}^{\infty}$, $\mathscr{F} = \mathscr{X}^{\infty}$, and $(\mathbb{X}_n, \mathscr{X}_n) \xrightarrow{P_{n+1}} (\mathbb{X}_{n+1}, \mathscr{X}_{n+1})$ be a sequence of Markovian kernels as in definition 3.2.11. Then theorem 3.2.8 guarantees, for every probability $\mu \in \mathscr{M}_1(\mathscr{X}_0)$, the existence of a unique probability \mathbb{P}_{μ} on $(\mathbb{X}^{\infty}, \mathscr{X}^{\infty})$. Let $C = \mathfrak{p}_N^{-1}(A_0 \times \ldots \times A_N)$, for some integer N > 0, be a cylinder set. Then,

$$\begin{split} \mathbb{P}_{\mu}(C) &= \mathbb{P}_{\mu}(A_{0} \times \cdots \times A_{N} \times \mathbb{X}_{N+1} \times \mathbb{X}_{N+2} \times \cdots) \\ &= \mathbb{P}_{\mu}(\mathfrak{p}_{N}^{-1}(A_{0} \times \cdots \times A_{N})) \\ &= \mathfrak{p}_{N}(\mathbb{P}_{\mu})(A_{0} \times \cdots \times A_{N}) \\ &= \mathbb{P}_{\mu}^{(N)}(A_{0} \times \cdots \times A_{N}) \\ &= \int_{A_{0} \times \cdots \times A_{N-1}} \mathbb{P}_{\mu}^{(N-1)}(dx_{0} \times \cdots \times dx_{N-1})P_{N}(x_{N-1};A_{N}) \\ &\vdots \\ &= \int_{A_{0} \times \cdots \times A_{N}} \mu(dx_{0})P_{1}(x_{0}, dx_{1}) \cdots P_{N}(x_{N-1}, dx_{N}). \end{split}$$

On defining $X : \Omega \to X^{\infty}$ by $X_n(\omega) = \omega_n$ for all $n \in \mathbb{N}$. we have on the other hand,

$$\mathbb{P}_{\mu}(C) = \mathbb{P}_{\mu}^{(N)}(A_0 \times \cdots \times A_N)$$

= $\mathbb{P}_{\mu}(\{\omega \in \Omega : X_0(\omega) \in A_0, \dots X_N(\omega) \in A_N\}).$

The **coordinate mappings** $X_n(\omega) = \omega_n$, for $n \in \mathbb{N}$, defined in the above framework provide the **canonical (minimal) realisation** of the sequence $X = (X_n)_{n \in \mathbb{N}}$.

Remark 3.2.12. If $\mu = \varepsilon_x$ for some $x \in \mathbb{X}$, we write simply \mathbb{P}_x or $\mathbb{P}_x^{(N)}$ instead of $\mathbb{P}_{\varepsilon_x}$ or $\mathbb{P}_{\varepsilon_x}^{(N)}$. Note further that for every $\mu \in \mathcal{M}_1(\mathscr{X}_0)$ we have $\mathbb{P}_{\mu} = \int_{\mathbb{X}_0} \mu(dx) \mathbb{P}_x$.

Remark 3.2.13. Giving

- the sequence of measurable spaces $(X_n, \mathscr{X}_n)_{n \in \mathbb{N}}$,
- the sequence $(P_{n+1})_{n \in \mathbb{N}}$ of the Markovian kernels $(X_n, \mathcal{X}_n) \xrightarrow{P_{n+1}} (X_{n+1}, \mathcal{X}_{n+1})$, and
- the initial probability $\mu \in \mathcal{M}_1(\mathcal{X}_0)$,

uniquely determines

- the trajectory space $(X^{\infty}, \mathscr{X}^{\infty})$,
- a unique probability $\mathbb{P}_{\mu} \in \mathcal{M}_1(\mathscr{X}^{\infty})$, projective limit of the sequence of finite dimensional marginals, and
- upon identifying $(\Omega, \mathscr{F}) = (\mathbb{X}^{\infty}, \mathscr{X}^{\infty})$, this construction also provides the canonical realisation of the sequence $X = (X_n)_{n \in \mathbb{N}}$ through the standard coordinate mappings.

Under these conditions, we say that *X* is an **(inhomogeneous) Markov chain**, and more precisely a $MC((X_n, \mathscr{X}_n)_{n \in \mathbb{N}}, (P_{n+1})_{n \in \mathbb{N}}, \mu))$. If for all $n \in \mathbb{N}$, we have $X_n = X, \mathscr{X}_n = \mathscr{X}$, and $P_n = P$, for some measurable space (X, \mathscr{X}) and Markovian kernel $(X, \mathscr{X}) \xrightarrow{P} (X, \mathscr{X})$, then we have a **(homogeneous) Markov chain** and more precisely a $MC((X, \mathscr{X}), P, \mu)$.

3.3 Weak Markov property

Proposition 3.3.1 (Weak Markov property). *Let X be a* $MC((X, \mathcal{X}), P, \mu)$. *For all* $f \in b\mathcal{X}$ *and all* $n \in \mathbb{N}$ *,*

$$\mathbb{E}_{\mu}(f(X_{n+1})|\mathscr{X}^n) = Pf(X_n) \ a.s.$$

Proof: By the definition of conditional expectation, we must show that for all $n \in \mathbb{N}$ and $F \in \mathcal{X}^n$, the measures α and β , defined by

$$\alpha(F) = \int_{F} f(X_{n+1}(\omega)) \mathbb{P}_{\mu}(d\omega)$$

$$\beta(F) = \int_{F} Pf(X_{n}(\omega)) \mathbb{P}_{\mu}(d\omega)$$

coincide on \mathscr{X}^n . Let

$$\mathscr{A}_n \equiv \times_{k=0}^n \mathscr{X}_k = \{A_0 \times \cdots \times A_n, A_k \in \mathscr{X}_k, 0 \le k \le n\}.$$

Now, it is immediate that for all *n*, the family \mathscr{A}_n is a π -system while $\sigma(\mathscr{A}_n) = \mathscr{X}_n$. It is therefore enough to check equality of the two measures on \mathscr{A}_n . On any $F \in \mathscr{A}_n$, of the form $F = A_0 \times \ldots \times A_n$, with $A_i \in \mathscr{X}$,

$$\alpha(F) = \int \mathbb{P}_{\mu}(\{\omega : X_0(\omega) \in A_0, \dots, X_n(\omega) \in A_n, X_{n+1}(\omega) \in dx_{n+1}, X_{n+2}(\omega) \in \mathbb{X}, \dots\}) f(x_{n+1}).$$

Hence

$$\begin{aligned} \alpha(F) &= \int \mathbb{P}_{\mu}(\mathfrak{p}_{n+1}^{-1}(A_0, \dots, A_n, dx_{n+1})) f(x_{n+1}) \\ &= \int \mathbb{P}_{\mu}^{n+1}(F \times dx_{n+1}) f(x_{n+1}). \end{aligned}$$

Developing the right hand side of the above expression, we get

$$\alpha(F) = \int_{A_0 \times \cdots \times A_n \times \mathbb{X}} \mu(dx_0) P(x_0, dx_1) \cdots P(x_n, dx_{n+1}) f(x_{n+1})$$

= $\beta(F).$

Remark 3.3.2. The previous proof is an example of the use of some version of "monotone class theorems". An equivalent way to prove the weak Markov property should be to use the following conditional equality for all $f_0, ..., f_n, f \in b\mathcal{X}$:

$$\mathbb{E}_{\mu}(f_{0}(X_{0})\dots f_{n}(X_{n})f(X_{n+1})) = \mathbb{E}_{\mu}(f_{0}(X_{0})\dots f_{n}(X_{n})\mathbb{E}_{\mu}(f(X_{n+1})|\mathscr{X}^{n}))$$

= $\mathbb{E}_{\mu}(f_{0}(X_{0})\dots f_{n}(X_{n})Pf(X_{n})).$

Privileging measure formulation or integral formulation is purely a matter of taste.

/Users/dp/a/ens/markov-traje.tex 21 2015-10-15 • 21:25:00. The following statement can be used as an alternative definition of the Markov chain.

Definition 3.3.3. Let $(\Omega, \mathscr{F}, (\mathscr{F})_{n \in \mathbb{N}}, \mathbb{P})$ be a filtered probability space, $X = (X_n)_{n \in \mathbb{N}}$ a sequence of $(\mathbb{X}, \mathscr{X})$ -valued random variables defined on the probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and $(\mathbb{X}, \mathscr{X}) \xrightarrow{P} (\mathbb{X}, \mathscr{X})$ a Markovian kernel. We say that *X* is a MC($(\mathbb{X}, \mathscr{X}), P, \mu$) if

- 1. (X_n) is adapted to the filtration (\mathcal{F}_n) ,
- 2. Law(X_0) = μ , and
- 3. for all $f \in b\mathcal{X}$, the equality $\mathbb{E}(f(X_{n+1})|\mathcal{F}_n) = Pf(X_n)$ holds almost surely.

We assume henceforth, unless stated differently, that $\Omega = \mathbb{X}^{\infty}$, $\mathscr{F} = \mathscr{X}^{\infty}$, $X_n(\omega) = \omega_n$ while $\mathscr{F}_n \simeq \mathscr{X}^n$. The last statement in the definition 3.3.3 implicitly implies that the conditional probability $\mathbb{P}(f(X_{n+1}) \in A | \mathscr{F}_n)$ admits a regular version.

Let *X* be a MC((\mathbb{X}, \mathscr{X}), *P*, μ). Distinguish artificially the (identical) probability spaces ($\Omega, \mathscr{F}, \mathbb{P}_{\mu}$) and ($\mathbb{X}^{\infty}, \mathscr{X}^{\infty}, \mathbb{P}_{\mu}^{X}$); equip further those spaces with filtrations (\mathscr{F}_{n}) and (\mathscr{X}^{n}) respectively. Assume that $X : \Omega \to \mathbb{X}^{\infty}$ is the canonical representation of *X* (i.e. X = 1). Let $G \in m\mathscr{X}_{+}^{\infty}$ and $\Gamma = G \circ X : \Omega \to \mathbb{R}_{+}$ be a random variable (note that $\Gamma = G$!). Define the right shift $\theta : \Omega \to \Omega$ for $\omega = (\omega_{0}, \omega_{1}, ...)$ by $\theta(\omega) = (\omega_{1}, \omega_{2}, ...)$ and powers of θ by $\theta^{0} = 1$ and recursively for n > 0 by $\theta^{n} = \theta \circ \theta^{n-1}$.

Theorem 3.3.4. The weak Markov property is equivalent to the equality

 $\mathbb{E}_{\mu}(\Gamma \circ \theta^{n} | \mathscr{F}_{n}) = \mathbb{E}_{X_{n}}(\Gamma), \text{ on the set } \{X_{n} \neq \partial\},\$

holding for all $\mu \in \mathcal{M}_1(\mathcal{X})$, all $n \in \mathbb{N}$, and all $\Gamma \in m\mathcal{F}_+$.

Remark 3.3.5. Define $\gamma(y) = \mathbb{E}_y(\Gamma)$ for all $y \in \mathbb{X}$. The meaning of the right hand side of the above equation is $\mathbb{E}_{X_n}(\Gamma) \equiv \gamma(X_n)$.

Exercise 3.3.6. Prove the theorem **3.3.4**.

3.4 Strong Markov property

Definition 3.4.1. Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n)$ be a filtered space.

- A generalised random variable $T : \Omega \to \mathbb{N} \cup \{+\infty\}$ is called a **stopping time** (more precisely a (\mathcal{F}_n) -stopping time) if for all $n \in \mathbb{N}$ we have $\{\omega \in \Omega : T(\omega) = n\} \in \mathcal{F}_n$.
- Let *T* be a stopping time. The collection of events

$$\mathscr{F}_T = \{A \in \mathscr{F} : \forall n \in \mathbb{N}, \{T = n\} \cap A \in \mathscr{F}_n\}$$

is the trace σ -algebra.

Definition 3.4.2. Let *X* be a MC(($(X, \mathcal{X}), P, \mu$) and $A \in \mathcal{X}$.

/Users/dp/a/ens/markov-traje.tex 2 2015-10-15 • 21:25:00.

- The **hitting time** of *A* is the stopping time $\tau_A^1 = \inf\{n > 0 : X_n \in A\}$. The **passage time** at *A* is the stopping time $\tau_A^0 = \inf\{n \ge 0 : X_n \in A\}$. The **death time** of *X* is the stopping time $\zeta \equiv \tau_{\{\partial\}}^0 = \inf\{n \ge 0 : X_n = \partial\}$.

The symbols τ_A^{\flat} , for $\flat \in \{0, 1\}$ and ζ are reserved.

Remark 3.4.3. Note the difference between τ_A^0 and τ_A^1 .

Remark 3.4.4. Suppose that the Markov chain starts with initial probability $\mu =$ ε_x for some $x \in \mathscr{X}$. If $x \in A$, then $\tau_A^0 = 0$, while τ_A^1 may be arbitrary, even ∞ . If $x \notin A$, then $\tau_A^0 = \tau_A^1$. If the transition probability of the chain is sub-Markovian, the space is extended to include $\{\partial\}$ that can be visited with strictly positive probability. If the transition probability is already Markovian, we can always extend the state space X to contain $\{\partial\}$, the latter being a negligible event; the death time is then $\zeta = \infty$ a.s.

Remark 3.4.5. Another quantity, defined for all $F \in \mathcal{X}$ and $\flat \in \{0, 1\}$ by T

$$\eta^{\flat}(F) = \sum_{n \ge \flat} \mathbb{1}_F(X_n),$$

bears often the name "occupation time" in the literature. We definitely prefer the term occupation measure than occupation time because it is a (random) measure on \mathscr{X} . The symbol $\eta^{\flat}(\cdot)$ will be reserved in the sequel.

Exercise 3.4.6. Is the occupation measure a stopping time?

Let *T* be a stopping time. Then

$$X_T(\omega) = \begin{cases} X_n(\omega) & \text{on } \{T=n\} \\ \partial & \text{on } \{T=\infty\} \end{cases}$$
$$= \sum_{n \in \mathbb{N}} X_n \mathbb{1}_{\{T=n\}} + \partial \mathbb{1}_{\{T=\infty\}},$$

establishing the $(\mathscr{F}_T, \mathscr{X})$ -measurability of X_T .

We already know that the right shift θ verifies $X_n \circ \theta^m(\omega) = X_n(\theta^m(\omega)) = X_{n+m}(\omega) =$ ω_{n+m} . On defining

$$\theta^{T}(\omega) = \begin{cases} \theta^{n}(\omega) & \text{on} \quad \{T = n\} \\ \omega_{\partial} & \text{on} \quad \{T = \infty\} \end{cases}$$

where $\omega_{\partial} = (\partial, \partial, ...)$, we see that $\theta^T \in \mathscr{F}_T$ and

$$X_{n+T}(\omega) = X_n \circ \theta^T(\omega)$$

= $X_n(\theta^T(\omega))$
= $\begin{cases} X_{n+m}(\omega) & \text{on } \{T=m\} \\ \partial & \text{on } \{T=\infty\} \end{cases}$
= $\sum_{m \in \mathbb{N}} X_{n+m} \mathbb{1}_{\{T=m\}} + \partial \mathbb{1}_{\{T=\infty\}}$
= $X_{n+T} \mathbb{1}_{\{T<\infty\}} + \partial \mathbb{1}_{\{T=\infty\}}.$

/Users/dp/a/ens/markov-traje.tex 2015-10-15 • 21:25:00.

Theorem 3.4.7 (Strong Markov property). Let $\mu \in \mathcal{M}_1(\mathcal{X})$ be an arbitrary probability and Γ a bounded random variable defined on $(\Omega, \mathcal{F}, \mathbb{P}_{\mu})$. For every stopping time *T* we have:

$$\mathbb{E}_{\mu}(\Gamma \circ \theta^{T} | \mathscr{F}_{T}) = \mathbb{E}_{X_{T}}(\Gamma)_{T}$$

with the two members of the above equality vanishing on $\{X_T = \partial\}$.

Proof: Define $\gamma(y) = \mathbb{E}_y(\Gamma)$ for $y \in X$. We must show that for all $A \in \mathscr{F}_T$, we have on $\{X_T \neq \partial\}$:

$$\int_{A} \Gamma \circ \theta^{T}(\omega) \mathbb{P}_{\mu}(d\omega) = \int_{A} \gamma(X_{T}(\omega)) \mathbb{P}_{\mu}(d\omega).$$

Now,

$$A = [\sqcup_{n \in \mathbb{N}} (A \cup \{T = n\})] \sqcup [A \cup \{T = \infty\}].$$

On $\{T = \infty\}$, we have $\{X_T = \partial\}$. Hence on $\{X_T \neq \partial\}$, the above partition reduces to $A = \bigsqcup_{n \in \mathbb{N}} (A \cup \{T = n\})$. Hence, the sought left hand side reads:

l.h.s. =
$$\sum_{n \in \mathbb{N}} \int_{A \cap \{T=n\}} \Gamma \circ \theta^T(\omega) \mathbb{P}_{\mu}(d\omega)$$

= $\sum_{n \in \mathbb{N}} \int_{A \cap \{T=n\}} \Gamma \circ \theta^n(\omega) \mathbb{P}_{\mu}(d\omega)$
= $\sum_{n \in \mathbb{N}} \int_{A \cap \{T=n\}} \gamma(X_n(\omega)) \mathbb{P}_{\mu}(d\omega),$

the last equality being a consequence of the weak Markov property because $A \cap \{T = n\} \in \mathcal{F}_n$.

3.5 Examples-exercises

1. Let $\mathcal{T}_n = \sigma(X_n, X_{n+1}, ...)$ for all $n \in \mathbb{N}$ and recall that $\mathcal{F}_n = \sigma(X_0, ..., X_n)$. Prove that for all $A \in \mathcal{F}_n$ and all $B \in \mathcal{T}_n$, past and future become conditionally independent of present, i.e.

$$\mathbb{P}_{\mu}(A \cap B | \sigma(X_n)) = \mathbb{P}_{\mu}(A | \sigma(X_n)) \mathbb{P}_{\mu}(B | \sigma(X_n)).$$

- 2. Let $X = (X_n)_{n \in \mathbb{N}}$ be a sequence of independent $(\mathbb{X}, \mathscr{X})$ -valued random variables identically distributed according to the law v. Show that X is $MC((\mathbb{X}, \mathscr{X}), P, \mu)$ with P(x, A) = v(A) for all $x \in \mathbb{X}$ and all $A \in \mathscr{X}$.
- 3. Let $(\mathbb{X}, \mathscr{X})$ be a measurable space, $f \in \mathscr{bX}$, and x a point in \mathbb{X} . Define a sequence $X = (X_n)_{n \in \mathbb{N}}$ by $X_0 = x$ and recursively $X_{n+1} = f(X_n)$ for $n \in \mathbb{N}$; the trajectory of point x under the dynamical system f. Show that X is a $MC((\mathbb{X}, \mathscr{X}), P, \mu)$ with $\mu = \varepsilon_x$ and $P(y, A) = \varepsilon_y(f^{-1}(A))$ for all $y \in \mathbb{Y}$ and all $A \in \mathscr{X}$.
- 4. Consider again the heads and tails example presented in chapter 1. Show that the sequence of outcomes is a $MC((X, \mathcal{X}), P, \mu)$ with $X = \{0, 1\}$ and P the kernel defined by $P(x, \{y\}) \equiv P(x, y)$ where $P = (P(x, y))_{x, y \in X} = \begin{pmatrix} 1 a & a \\ b & 1 b \end{pmatrix}$,

with $0 \le a, b \le 1$.

- 5. Let *X* be a MC((X, \mathcal{X}), *P*, μ) on a discrete (finite or countable) set X.
 - Show that the kernel *P* can be uniquely represented as a **weighed di**rected graph having $\mathbb{A}^0 = \mathbb{X}$ as vertex set and $\mathbb{A}^1 = \{(x, y) \in \mathbb{X}^2 : P(x, y) > 0\}$ as set of directed edges; any edge (x, y) is assigned a weight P(x, y).
 - For every edge $a \in \mathbb{A}^1$ define two mappings $s, t : \mathbb{A}^1 \to \mathbb{A}^0$, the source and terminal maps defined by

$$\mathbb{A}^1 \ni a = (x, y) \quad \mapsto \quad s(a) = x \in \mathbb{A}^0,$$

$$\mathbb{A}^1 \ni a = (x, y) \quad \mapsto \quad t(a) = y \in \mathbb{A}^0.$$

Let ${}^2 \mathbb{A}^2 = \{ab \in \mathbb{A}^1 \times \mathbb{A}^1 : s(b) = t(a)\}$ be the set of composable edges (paths of length 2). Let $\alpha = \alpha_1 \cdots \alpha_n$ be a sequence of *n* edges such that for all $i, 0 \le i < n$, subsequent edges are composable, i.e. $\alpha_i \alpha_{i+1} \in \mathbb{A}^2$. Such an α is termed **combinatorial path** of length *n*; the set of all paths of length *n* is denoted by \mathbb{A}^n . Finally, define the space of **combinatorial paths** of indefinite length by $\mathbb{A}^* = \bigcup_{n=0}^{\infty} \mathbb{A}^n$. Show that \mathbb{A}^* has a natural forest structure composed of rooted trees.

— Let $\alpha \in \mathbb{A}^*$, denote by $|\alpha|$ the length of the skeleton α , and by $v(\alpha)$ the sequence of vertices appearing in α . Show that the cylinder set $[v(\alpha)]$ has probability

$$\mathbb{P}_{\mu}([\nu(\alpha)]) = \mu(s(\alpha_1)) \times P(s(\alpha_1), t(\alpha_1))$$
$$\times \cdots \times P(s(\alpha_{|\alpha|}), t(\alpha_{|\alpha|})).$$

6. Let $\xi = (\xi_n)_n$ be a sequence of $(\mathbb{Y}, \mathscr{Y})$ -valued i.i.d. random variables, such that Law $(\xi_0) = v$. Let X_0 a $(\mathbb{X}, \mathscr{X})$ -valued random variable, independent of ξ such that Law $(X_0) = \mu$, and $f : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$ be a bounded measurable function. Define for $n \ge 0$ $X_{n+1} = f(X_n, \xi_{n+1})$. Show that X is a MC($(\mathbb{X}, \mathscr{X}), P, \mu$) with Markovian kernel given by

$$P(x, A) = \nu(\{y \in \mathbb{Y} : f(x, y) \in A\}),$$

for all $x \in X$ and all $A \in \mathcal{X}$.

- 7. Let X be the Abelian group \mathbb{Z}^d ; $\Gamma = \{\pm \mathbf{e}_1, \dots, \pm \mathbf{e}_d\}$ a (minimal) generating set (i.e. $\langle \Gamma \rangle = \mathbb{Z}^d$), and v a probability on Γ . Let $(\xi_i)_{i \in \mathbb{N}}$ be a sequence of independent Γ -valued random variables identically distributed according to v. Define, for $x \in X$ and $n \ge 0$, the sequence $X_n = x + \sum_{i=0} \xi_i$. Show that X is a Markov chain on \mathbb{Z}^d ; determine its Markovian kernel and initial probability. (This Markov chain is termed a nearest-neighbour **random walk** on \mathbb{Z}^d , anchored at x.)
- 8. Let $\mathbb{X} = \mathbb{R}$ and $\mathscr{X} = \mathscr{B}(\mathbb{R}^d)$, $v \in \mathscr{M}_+(\mathscr{X})$, and $(\xi_i)_{i \in \mathbb{N}}$ be a sequence of independent \mathbb{X} -valued random variables identically distributed according to v. Define, for $x \in \mathbb{X}$ and $n \ge 0$, the sequence $X_n = x + \sum_{i=0} \xi_i$. Show that X is a Markov chain on \mathbb{R}^d ; determine its Markovian kernel and initial probability. (This Markov chain is termed a random walk on \mathbb{R}^d , anchored at x.)

^{2.} Note that \mathbb{A}^2 is not in general the Cartesian product $\mathbb{A}^1 \times \mathbb{A}^1$. The graph is not in general a group; it has merely a semi-groupoid structure ($\mathbb{A}^0, \mathbb{A}^1, s, t$).

- 9. Let $(\xi_i)_{i \in \mathbb{N}}$ be a sequence of independent \mathbb{R} -valued random variables identically distributed according to *v*. Define, for $x \in \mathbb{R}_+$ and $n \ge 0$, the sequence $X = (X_n)$, by $X_0 = x$ and recursively $X_{n+1} = (X_n + \xi_{n+1})^+$. Show that X is a Markov chain on an appropriate space, determine its Markovian kernel and its initial probability.
- 10. Let $(\mathbb{G}, \mathscr{G})$ be a topological locally compact group with composition denoted multiplicatively, $v \in \mathcal{M}_+(\mathcal{G})$, and $(\xi_i)_{i \in \mathbb{N}}$ a sequence of independent $(\mathbb{G}, \mathcal{G})$ -valued random variables identically distributed according to v. Define, for $x \in \mathbb{R}_+$ and $n \ge 0$, the sequence $X = (X_n)$, by $X_0 = x$ and recursively $X_{n+1} = \xi_{n+1} X_n$. Show that *X* is a Markov chain on (G, G); determine its Markovian kernel and initial probability.
- 11. Let $\mathbb{X} = \mathbb{R}^d$, $\mathscr{X} = \mathscr{B}(\mathbb{R}^d)$, $v \in \mathscr{M}_+(\mathscr{X})$, and $(\xi_i)_{i \in \mathbb{N}}$ a sequence of independent (X, \mathscr{X}) -valued random variables identically distributed according to v. Define $\Xi_0 = 0$ and, for $n \ge 1$, $\Xi_n = \sum_{i=1}^n \xi_i$. Let $x \in X$ and define $X_0 = 0$ and, for $n \ge 1$, $X_n = x + \sum_{i=1}^n \Xi_i$.
 - Show that *X* is not a Markov chain.
 - Let $Y_n = \begin{pmatrix} X_{n+1} \\ X_n \end{pmatrix}$, for $n \in \mathbb{N}$. Show that Y is a Markov chain (on the appropriate space that will be determined); determine its Markovian kernel and initial probability.
 - When Y defined as above is proved to be a Markov chain, the initial process X is termed Markov chain of order 2. Give a plausible definition of a **Markov chain of order** k, for $k \ge 2$.
- 12. Let $Z = (Z_n)_n$, with $Z_n = (X_n, Y_n)$ for $n \in \mathbb{N}$, be a CM(($(X \times Y), (\mathscr{X} \otimes \mathscr{Y})), P, \mu$). Show that neither $X = (X_n)_n$ nor $Y = (Y_n)_n$ are in general Markov chains. They are termed hidden Markov chains. Justify this terminology.
- 13. We have defined in the exercise section 2.5 the potential kernel G^0 associated with any Markov kernel P. Consistently with our notation convention, we define $G \equiv G^1 = \sum_{n=1}^{\infty} P^n$. Show that for all $x \in X$ and all $F \in \mathcal{X}$,

$$G(x,F) = \mathbb{E}_x(\eta^1(F)).$$

14. We define for $b \in \{0, 1\}$

$$L_F^{\flat}(x) = \mathbb{P}_x(\tau_F^{\flat} < \infty)$$

$$H_F^{\flat}(x) = \mathbb{P}_x(\eta^{\flat}(F) = \infty).$$

- How H_F^0 compares with H_F^1 ?
- Does the same comparison hold for L_F^0 and L_F^1 ?
- Are the quantities H^{\flat} and L^{\flat} kernels? If yes, are they associatively composable?
- Show that $L_F^{\flat}(x) = \mathbb{P}_x(\bigcup_{n \ge \flat} \{X_n \in F\}).$ Show that $H_F^0(x) = \mathbb{P}_x(\cap_{m \ge 0} \bigcup_{n \ge m} \{X_n \in F\}).$
- 15. Let *X* be a MC((X, \mathcal{X}), *P*, μ).
 - Suppose that $f \in b\mathcal{X}_+$ is a right eigenvector of P associated with the eigenvalue 1. Such a function is called **bounded harmonic function** for the kernel P. Show that the sequence $(f(X_n))_{n\in\mathbb{N}}$ is a $(\mathscr{F}_n)_{n\in\mathbb{N}}$ martingale.

— Any $f \in m\mathscr{X}_+$ verifying point-wise $Pf \leq f$ is called **superharmonic**. Show that the sequence $(f(X_n))_{n \in \mathbb{N}}$ is a $(\mathscr{F}_n)_{n \in \mathbb{N}}$ -supermartingale.

3.5. Examples-exercises
4

Markov chains on finite sets

Although the study of Markov chains on finite sets is totally elementary and can be reduced to the study of powers of finite-dimensional stochastic matrices, it is instructive to give the convergence theorem 4.3.17 thus obtained as a result of the spectral theorem — a purely algebraic result in finite dimension — of the Markovian kernel. This chapter greatly relies on [23]. Spectral methods can as a matter of fact be applied to more general contexts at the expense of more a sophisticated approach to spectral properties of the kernel. In the case the Markov kernel is a compact operator on a general state space, the formulation of the convergence theorem 4.3.17 remains valid almost *verbatim*. Another important reason for studying Markov chains on finite state spaces is their usefulness to the theory of stochastic simulations.

4.1 Basic construction

Let X be a discrete finite set of cardinality d; without loss of generality, we can always identify $X = \{0, ..., d - 1\}$. The set X will always be considered equipped with $\mathcal{X} = \mathcal{P}(X)$. A Markovian kernel $P = (P(x, y))_{x,y \in X}$ on X will be a $d \times d$ matrix of positive elements — where we denote $P(x, y) \equiv P(x, \{y\})$ — that verifies, for all $x \in X$, $\sum_{y \in X} P(x, y) = 1$. Choosing ε_x , with some $x \in X$, as starting measure, the theorem 3.2.8 guarantees that there is a unique probability measure \mathbb{P}_x on the standard trajectory space (Ω, \mathscr{F}) verifying

$$\mathbb{P}_{x}(\mathfrak{p}_{n}^{-1}(A_{0} \times \dots \times A_{n})) = \mathbb{P}_{x}(X_{0} \in A_{0} \dots X_{n} \in A_{n})$$
$$= \sum_{x_{0} \in A_{0}} P(x_{0}, x_{1}) \cdots P(x_{n-1}, x_{n}).$$
$$\vdots$$
$$x_{n} \in A_{n}$$

In particular

$$\mathbb{P}_{x}(X_{n} = y) = P^{n}(x, y)$$
$$\mathbb{P}_{\mu}(X_{n} = y) = \sum_{x \in \mathbb{X}} \mu(x)P^{n}(x, y).$$

As was the case in chapter 1, the asymptotic behaviour of the chain is totally determined by the spectral properties of the matrix *P*. However, we must now consider the general situation, not only the case of simple eigenvalues.

4.2 Some standard results from linear algebra

This section includes some elementary results from linear algebra as they can be found in [45, 47]. Denote by $\mathbb{M}_d(\mathbb{C})$ the set of $d \times d$ matrix with complex entries. With every matrix $A \in \mathbb{M}_d(\mathbb{C})$ and $\lambda \in \mathbb{C}$ associate the spaces

$$D_{\lambda}(A) = \{ \mathbf{v} \in \mathbb{C}^{d} : A\mathbf{v} = \lambda \mathbf{v} \}$$

= ker(A - \lambda I_d)
$$D^{\lambda}(A) = \{ \mathbf{v} \in \mathbb{C}^{d} : (A - \lambda I_d)^{k} \mathbf{v} = 0, \text{ for some } k \in \mathbb{N} \}$$

= $\cup_{k \in \mathbb{N}} \ker(A - \lambda I_d)^{k},$

termed respectively right and **generalised right eigenspace** associated with the value λ . Obviously $D_{\lambda}(A) \subseteq D^{\lambda}(A)$ and if $D_{\lambda}(A) \neq \{0\}$ then λ is an **eigenvalue** of *A*.

Proposition 4.2.1. For any $A \in M_d(\mathbb{C})$, the following statements are equivalent:

- 1. λ is an eigenvalue of A,
- 2. $D_{\lambda}(A) \neq \{0\},\$
- 3. $D^{\lambda}(A) \neq \{0\},\$
- 4. rank $(A \lambda I_d) < d$
- 5. $\chi_A(\lambda) \equiv \det(A \lambda I_d) = b(\lambda_1 \lambda)^{a_1} \cdots (\lambda_s \lambda)^{a_s} = 0$ for some integer $s, 0 < s \le d$ and some positive integers a_1, \ldots, a_s , called the **algebraic multiplicities** of the eigenvalues $\lambda_1, \ldots, \lambda_s$.

Proof: Equivalence of 1 and 2 is just the definition of the eigenvalue. The implication $2 \Rightarrow 3$ is trivial since $D_{\lambda}(A) \subseteq D^{\lambda}(A)$. To prove equivalence, suppose

conversely that a vector $v \neq 0$ lies in $D^{\lambda}(A)$; let $k \ge 1$ be the smallest integer such that $(A - \lambda I_d)^k v = 0$. Then the vector $w = (D - \lambda I_d)v$ is a non-zero element of $D_{\lambda}(A)$. To prove the equivalence of 4 and 5, note that by the equivalence of 1 and 2, λ is an eigenvalue if and only if ker $(A - \lambda I_d)$ contains a non-zero element, i.e. $A - \lambda I_d$ is not injective which happens if and only if it is not invertible. The last statement is then equivalent to 4 and 5.

We call **spectrum** of *A* the set spec(*A*) = { $\lambda_1, ..., \lambda_s$ } = { $\lambda \in \mathbb{C} : A - \lambda I_d$ is not invertible}. For $\lambda \in \text{spec}(A)$, we call **geometric multiplicity** of λ the dimension $g_{\lambda} = \dim D_{\lambda}(A)$.

Proposition 4.2.2. *Let* $A \in M_d(\mathbb{C})$ *.*

- 1. There exists a unique polynomial $m_A \in \mathbb{C}[x]$, of minimal degree and leading numerical coefficient equal to 1 such that $m_A(A) = 0$. This polynomial is termed **minimal polynomial** of A.
- 2. m_A divides any polynomial $p \in \mathbb{C}[x]$ such that p(A) = 0. In particular, it divides the characteristic polynomial χ_A .
- 3. The polynomials χ_A and m_A have the same roots (possibly with different multiplicities).
- 4. If λ is a r-uple root of m_A then $D^{\lambda}(A) = \ker(A \lambda I_d)^r$. In that case, $c_{\lambda} = r$ is the **generalised multiplicity** of λ , while the **algebraic multiplicity** is expressed as $a_{\lambda} = \dim D^{\lambda}(A) = \dim \ker(A \lambda I_d)^{c_{\lambda}}$ and the minimal polynomial reads $m_A(\lambda) = (\lambda_1 \lambda)^{c_{\lambda_1}} \cdots (\lambda_s \lambda)^{c_{\lambda_s}}$.

Proof: To prove 1 and 2, note that there exists a polynomial $p \in \mathbb{C}[x]$ such that p(A) = 0 (for instance consider the characteristic polynomial). Hence there exists also a polynomial of minimal degree m. Now, if p(A) = 0 perform division of p by m to write p = qm + r, where r is either the zero polynomial or has degree less than the degree of m. Now r(A) = p(A) - q(A)m(A) = 0 - q(A)0 = 0 and since m was chosen of minimal degree, then r = 0. Thus every polynomial vanisihing on A is divisible by m. In particular if m and m' are both minimal polynomials, they can differ only by a scalar factor. Fixing the leading coefficient of m to 1, uniquely determines $m \equiv m_A$.

To prove 3 note that if λ is a root of χ_A , i.e. is an eigenvalue of A, then there is a non-zero vector v with $Av = \lambda v$. Hence $0 = m_A(A)v = m(\lambda)v$, implying $m(\lambda) = 0$. Conversely, every root of m_A is a root of χ_A because m_A divides the characteristic polynomial.

To conclude, suppose that there is a vector $v \in D^{\lambda}(A)$ such that $w = (A - \lambda I_d)^r v \neq 0$. Write $m_A(x) = q(x)(x-\lambda)^r$. Then q and $(x-\lambda)^{n-r}$ are coprime; hence there are polynomials f and g with $f(x)q(x) + g(x)(x-\lambda)^{n-r} = 1$. Consequently,

$$w = f(A)q(A)w + g(A)(A - \lambda I_d)^{n-r}w$$

= $f(A)m(A)v + g(A)(A - \lambda I_d)^n v$
= $f(A)0 + g(A)0$
= $0,$

/Users/dp/a/ens/markov-finit.tex 2015-10-16 • 18:23:35. which is a contradiction.

Another possible characterisation of c_{λ} is $c_{\lambda} = \min\{n \in \mathbb{N} : \ker(A - \lambda I_d)^n = \ker(A - \lambda I_d)^{n+1}\}$. Moreover, the vector space \mathbb{C}^d decomposes into the direct sum (see [48, 9.21(d), p. 184] for instance):

$$\mathbb{C}^{d} = \bigoplus_{\lambda \in \operatorname{spec}(A)} D^{\lambda}(A) = \bigoplus_{\lambda \in \operatorname{spec}(A)} \ker(A - \lambda I_{d})^{c_{\lambda}}$$

Definition 4.2.3. Let $A \in M_d(\mathbb{C})$ and $\lambda \in \text{spec}(A)$.

- If $c_{\lambda} = 1$ (i.e. $D^{\lambda} = D_{\lambda}$) then the eigenvalue λ is called **semisimple**.
- If $a_{\lambda} = 1 = \dim D^{\lambda}$ then the eigenvalue λ is called **simple**.

Example 4.2.4. — Let
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. Then spec $(A) = \{0\}$ and $a_0 = c_0 = 2$ while $g_0 = 1$.
— Let $B = \begin{pmatrix} b & & \\ & \ddots & \\ & & b \end{pmatrix} \in \mathbb{M}_d(\mathbb{C})$. Then spec $(B) = \{b\}$ and $a_b = d, c_b = 1$ while $g_b = d$.
— Let $C = \begin{pmatrix} b & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & b \end{pmatrix} \in \mathbb{M}_d(\mathbb{C})$. Then spec $(C) = \{b\}$ and $a_b = c_b = d$ while $g_b = 1$.

Denote by E_{λ} the **spectral projector** on D^{λ} . Since the space admits the direct sum decomposition $\mathbb{C}^d = \bigoplus_{\lambda \in \text{spec}(A)} D^{\lambda}$ it follows that spectral projections form a **resolution of the identity** $I_d = \sum_{\lambda \in \text{spec}(A)} E_{\lambda}$.

Theorem 4.2.5. Let $A \in \mathbb{M}_d(\mathbb{C})$ and U an open set in \mathbb{C} (not necessarily connected), containing spec(A). Denote by $C^{\omega}(A)$ the set of analytic functions on U (i.e. indefinitely differentiable functions developable in Taylor series around any point of U) and let $f \in C^{\omega}_A$. Then,

$$f(A) = \sum_{\lambda \in \operatorname{spec}(A)} \sum_{i=0}^{c_{\lambda}-1} \frac{(A - \lambda I_d)^i}{i!} f^{(i)}(\lambda) E_{\lambda}.$$

Proof: See [13, pp. 555–559].

Exercise 4.2.6. Choose any circuit B in U not passing through any point of the spectrum. Use analyticity of f, extended to matrices, to write by virtue of the residue theorem:

$$f(A) = \frac{1}{2\pi i} \oint_B f(\lambda) (\lambda I_d - A)^{-1} d\lambda.$$

The operator $R_A(\lambda) = (\lambda I_d - A)^{-1}$, defined for λ in an open domain of \mathbb{C} , is called **resolvent** of *A*.

32

/Users/dp/a/ens/markov-finit.tex 2015-10-16 • 18:23:35. .

Remark: Suppose that all the eigenvalues of a matrix *A* are semisimple ($c_{\lambda} = 1$ for all $\lambda \in \text{spec}(A)$), then $f(A) = \sum_{\lambda \in \text{spec}(A)} f(\lambda) E_{\lambda}$. In particular, $A^k = \sum_{\lambda \in \text{spec}(A)} \lambda^k E_{\lambda}$.

Lemma 4.2.7. Suppose $(f_n)_{n \in \mathbb{N}}$ is a sequence of analytic functions in $C^{\omega}(A)$. The sequence of matrices $(f_n(A))_{n \in \mathbb{N}}$ converges if and only if, for all $\lambda \in \text{spec}(A)$ and all integers k with $0 \le k \le c_{\lambda} - 1$, the numerical sequences $(f_n^{(k)}(\lambda))_{n \in \mathbb{N}}$ converge. If $f \in C^{\omega}(A)$, then $\lim_{n \to \infty} f_n(A) = f(A)$ if and only if, for all $\lambda \in \text{spec}(A)$ and all integers k with $0 \le k \le c_{\lambda} - 1$, we have $\lim_{n \to \infty} f_n^{(k)}(\lambda) = f^{(k)}(\lambda)$.

Proof: See [13, pp. 559–560].

Proposition 4.2.8. Let $A \in \mathbb{M}_d(\mathbb{C})$. The sequence of matrices $(\frac{1}{n}\sum_{p=1}^n A^p)_{n\in\mathbb{N}}$ coverges if and only if $\lim_{n\to\infty} \frac{A^n}{n} = 0$.

Proof: Define for all $n \ge 1$ and $z \in \mathbb{C}$, $f_n(z) = \frac{1}{n} \sum_{p=1}^n z^p$ and $g_n(z) = \frac{z^n}{n}$. We observe that the sequence $(f_n(\lambda))_{n \in \mathbb{N}}$ converges if and only if $|\lambda| \le 1$, the latter being equivalent to $\lim_{n \to \infty} g_n(\lambda) = 0$. For k > 0, the sequence $(f_n^{(k)}(\lambda))_{n \in \mathbb{N}}$ converges if and only if $|\lambda| < 1$, the latter being equivalent to $\lim_{n \to \infty} g_n^{(k)}(\lambda) = 0$. We conclude by theorem 4.2.5 and lemma 4.2.7.

Definition 4.2.9. Let $A \in M_d(\mathbb{C})$. We call **spectral radius** of *A*, the quantity denoted by sr(*A*) and defined by

$$sr(A) = max\{|\lambda| : \lambda \in spec(A)\}.$$

Corollary 4.2.10. For all $A \in M_d(\mathbb{C})$, $\lim_{n\to\infty} \frac{A^n}{n} = 0$ if and only if the two following conditions are fulfilled:

$$- \operatorname{sr}(A) \le 1, and$$

— all peripheral eigenvalues of A, i.e. all $\lambda \in \text{spec}(A)$ with $|\lambda| = 1$, are semisimple.

4.3 **Positive matrices**

Definition 4.3.1. Let $x \in \mathbb{R}^d$ and $A \in M_d(\mathbb{R})$. The vector x is called **positive**, and denoted $x \ge 0$, if for all i = 1, ..., d, $x_i \ge 0$. It is called **strictly positive** if for all i = 1, ..., d, $x_i \ge 0$. It is called **strictly positive** if viewed as a vector of \mathbb{R}^{d^2} is positive (resp. strictly positive). For arbitrary $x \in \mathbb{R}^d$ and $A \in M_d(\mathbb{R})$, we denote by |x| and |A| the vector and matrix whose elements are given by $|x|_i = |x_i|$ and $|A|_{ij} = |A_{ij}|$.

Remark: The above positivity of elements must not be confused with positivity of quadratic forms associated with symmetric matrices. For example $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ge 0$ (in the sense of the definition 4.3.1) but there exist $x \in \mathbb{R}^2$ such that $(x, Ax) \ge 0$.

Proposition 4.3.2.

$$A \ge 0 \quad \Leftrightarrow \quad [x \ge 0 \Rightarrow Ax \ge 0]$$
$$A > 0 \quad \Leftrightarrow \quad [x \ge 0 \text{ and } x \ne 0 \Rightarrow Ax \ge 0].$$

Exercise 4.3.3. Prove the previous proposition.

Definition 4.3.4. A matrix *A* is **reducible** if there exists a permutation ¹ matrix *S* such that $SAS^{-1} = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$. Otherwise, *A* is called **irreducible**.

Proposition 4.3.5. For a positive matrix $A \in M_d(\mathbb{R})$, the following statements are equivalent:

- A is irreducible, $- (I_d + A)^{d-1} > 0$, and — for all pairs of integers (i, j) with $1 \le i, j \le d$, there exists an integer k =k(i, j) such that $(A^k)_{ij} > 0$.

Exercise 4.3.6. Prove the previous proposition.

Theorem 4.3.7 (Brower's fixed point theorem). Let $C \subseteq \mathbb{R}^d$ be a non-empty, closed, bounded, and convex set, and let $f : C \to C$ be continuous. Then, there exists a $x \in C$ such that f(x) = x.

Proof: See [5, p. 176] for instance.

Theorem 4.3.8 (Weak Perron-Frobenius theorem). Let $A \in M_d(\mathbb{R})$ be a positive matrix. Then sr(A) is an eigenvalue of A associated with a positive eigenvector v.

Proof: Let λ be an eigenvalue of maximal modulus, i.e. with $|\lambda| = sr(A)$. We can always normalise the eigenvector v of λ so that $||v||_1 = 1$. Then,

$$\operatorname{sr}(A)|v| = |\lambda v| = |Av| \le A|v|.$$

If

$$C = \{x \in \mathbb{R}^d : x \ge 0, \sum_{i=1}^d x_i = 1, Ax \ge sr(A)x\},\$$

then C is closed, convex, non-empty (since it contains |v|), and bounded (since $0 \le x_i \le 1$ for all i = 1, ..., d). We distinguish two cases:

- 1. There exists a $x \in C$ such that Ax = 0. Then $sr(A)x \le Ax = 0$; consequently sr(A) = 0 and the theorem is proved.
- 2. For all $x \in C$, $Ax \neq 0$. Define then $f: C \to \mathbb{R}^d$ by $f(x) = \frac{1}{\|Ax\|_1} Ax$. We observe that

 - For all $x \in C$, $f(x) \ge 0$, $||f(x)||_1 = 1$ and f continuous. $Af(x) = \frac{1}{||Ax||_1} AAx \ge \frac{\operatorname{sr}(A)}{||Ax||_1} Ax = \operatorname{sr}(A)f(x)$. Therefore $f(C) \subseteq C$. The theorem 4.3.7 ensures that there exists $y \in C : f(y) = y$.

^{1.} If we apply the same permutation on the indices of columns and rows.

- $y \ge 0$ (since $y \in C$) and f(y) = y, therefore, y is an eigenvector associated with the eigenvalue $r = ||Ay||_1$.
- Hence $Ay = ry \ge sr(A)y$, the last inequality holding since $y \in C$. Therefore $r \ge sr(A)$.
- Hence r = sr(A).

For $r \ge 0$ denote by

$$C_r = \{ x \in \mathbb{R}^d : x \ge 0, \|x\|_1 = 1, Ax \ge rx \}.$$

Obviously every C_r is a convex and compact set.

Lemma 4.3.9. Let $A \in \mathbb{M}_d(\mathbb{R})$ be a positive irreducible matrix; let $r \ge 0$ and $x \in \mathbb{R}^d$, with $x \ge 0$, be such that $Ax \ge rx$ and $Ax \ne rx$. Then there exists r' > r such that $C_{r'} \ne \phi$.

Proof: Let $y = (I_d + A)^{d-1}x$. Since the matrix A is irreducible and $x \ge 0$, thanks to the proposition 4.3.5, we get y > 0. For the same reason, $Ay - ry = (I_d + A)^{d-1}(Ax - rx) > 0$. On defining $r' = \min_j \frac{(Ay)_j}{y_j}$ we get r' > r. But then $Ay \ge r'y$ so that $C_{r'}$ contains the vector $y/||y||_1$.

Lemma 4.3.10. Let $A \in M_d(\mathbb{R})$ be a positive irreducible matrix. If $x \in \mathbb{R}$ is an eigenvector of A and $x \ge 0$ then x > 0.

Proof: Given such a vector *x* with $Ax = \lambda x$, we have that $\lambda \ge 0$. Then $x = \frac{1}{(1+\lambda)^{n-1}}(I_d + A)^{d-1}x > 0$, thanks to the proposition 4.3.5.

Lemma 4.3.11. Let $A, B \in M_d(\mathbb{R})$ be matrices, with A irreducible and $|B| \le A$. Then sr(B) \le sr(A). In the case of equality of the spectral radii, we have further:

- |B| = A, and
- for every eigenvector x of B associated with an eigenvalue of modulus sr(A), the vector |x| is an eigenvector of A associated with sr(A).

Proof: If λ is an eigenvalue of *B* of modulus sr(*B*) and *x* is the corresponding normalised eigenvector, then sr(*B*) $|x| \leq |B||x| \leq A|x|$, so that $C_{sr(B)} \neq \emptyset$. Hence, sr(*B*) $\leq R = sr(A)$.

In case of equality honding, then $|x| \in C_{sr(A)}$ and |x| is an eigenvector: $A|x| = sr(A)|x| = sr(B)|x| \le |B||x|$ Hence, $(A - |B|)[x| \le 0$, but since |x| > 0, from lemma 4.3.10, and $A - |B| \ge 0$, the equality |B| = A follows.

Theorem 4.3.12 (Strong Perron-Frobenius theorem). Let $A \in M_d(\mathbb{R})$ be a positive *irreducible matrix. Then* sr(A) *is a simple eigenvalue of* A *associated with a strictly positive eigenvector* v. Moreover sr(A) > 0.

- 6				
	-	-	-	

Proof: If λ is an eigenvalue associated with an eigenvectors v of unit norm, then |v| is a vector of $C_{|\lambda|}$; in particular, the set $C_{sr(A)}$ is non-empty. Conversely, if C_r is non-empty, then for $v \in C_r$:

$$r = r \|v\|_1 \le \|Av\|_1 \le \|A\|_1 \|v\|_1 = \|A\|_1,$$

and therefore $r \le ||A||_1$. Further, the map $r \mapsto C_r$ is non-increasing with respect to inclusions and is "left continuous", in the sense $C_r = \bigcap_{s < r} C_s$. Define then $R = \sup\{r : C_r \ne \emptyset\}$; subsequently, $R \in [\operatorname{sr}(A), ||A||_1]$. Decreasing with respect to inclusions implies that $r < R \Rightarrow C_r \ne \emptyset$.

If x > 0 of norm 1, then $Ax \ge 0$ and $Ax \ne 0$ since $A \ge 0$ and irreducible. From lemma 4.3.9 follows that R > 0; consequently, the set C_R being the intersection of a totally ordered family of non-empty compact sets is non-empty. For $x \in C_R$, the lemma 4.3.9 guarantees then that x is an eigenvector of A associated with the eigenvalue R. Observing that $R \ge sr(A)$ implies then that R = sr(A), showing that sr(A) is the eigenvalue associated with the eigenvector x, and sr(A) > 0. Lemma 4.3.10 guarantees then that x > 0.

It remains to show simplicity of the eigenvalue sr(A). The characteristic polynomial $\chi_A(\lambda)$ is seen as the composition of a *d*-linear form (the determinant) with polynomial vector valued functions (the columns of $\lambda I_d - A$). Now, if ϕ is a *p*-linear form and if $V_1(\lambda), \ldots, V_p(\lambda)$ are *p* polynomial vector-valued functions, then the polynomial $p(\lambda) = \phi(V_1(\lambda), \ldots, V_p(\lambda))$ has derivative:

$$p'(\lambda) = \phi(V_1'(\lambda), \dots, V_p(\lambda)) + \dots + \phi(V_1(\lambda), \dots, V_p'(\lambda)).$$

Denoting $(\mathbf{e}^1, \dots, \mathbf{e}^d)$ the canonical basis of \mathbb{R}^d and writing *A* in terms of its column vectors $A = [a_1, \dots, a_d]$, one obtains:

$$\chi'_{A}(\lambda) = \det([\mathbf{e}^{1}, a_{2}, ..., a_{d}]) + \det([a_{1}, \mathbf{e}^{2}, ..., a_{d}]) + ... + \det([a_{1}, a_{2}, ..., \mathbf{e}^{d}])$$

=
$$\sum_{j=1}^{d} \chi_{A_{j}}(\lambda),$$

where $A_j \in M_{d-1}(\mathbb{R})$ is the matrix obtained from *A* be deleting the *j*-th comumn and row. (This formula is obtained by developing the determinants with respect the *j*-th column.)

Denote by $B_j \in \mathbb{M}_d(\mathbb{R})$ the matrix obtained from A by replacing the j-th row and column by zeroes. This matrix is block-diagonal with two non-zero blocks and a block $0 \in \mathbb{M}_1(\mathbb{R})$. The two non-zero blocks can be put together by permutation of rows and columns to reconstruct A_j . Hence the eigenvalues of B_j are those of A_j and 0; therefore $\operatorname{sr}(B_j) = \operatorname{sr}(A_j)$. Further $|B_j| \ge A$ but $|B_j| \ne A$ because A is irreducible while B_j is block-diagonal, hence reducible. It follows by lemma 4.3.11 that $\operatorname{sr}(B_j) < \operatorname{sr}(A)$. Hence $\chi_{A_j}(\operatorname{sr}(A)) \ne 0$ with the same sign as $\lim_{t\to\infty} \chi_{A_j}(t) > 0$. Therefore, $\chi'_A(\operatorname{sr}(A)) > 0$ showing that $\operatorname{sr}(A)$ is a simple root. \Box

Let $A \in \mathbb{M}_d(\mathbb{R})$ be a positive irreducible matrix. Denote by $\lambda_1, \dots, \lambda_s$ the eigenvalues of modulus sr(A). If s = 1, the matrix is called **primitive**, else **cyclic** of order *s*.

Exercise 4.3.13. Show that *A* > 0 implies that *A* is primitive.

Exercise 4.3.14. (Characterisation of the peripheral spectrum) $A \in M_d(\mathbb{R})$ be a positive matrix. If $p = \sharp\{\lambda \in \operatorname{spec}(A) : |\lambda| = \operatorname{sr}(A)\}$, then $\{\lambda \in \operatorname{spec}(A) : |\lambda| = \operatorname{sr}(A)\} = \operatorname{sr}(A)\mathcal{U}_p$, where \mathcal{U}_p is the group of p^{th} roots of unity. *Hint:* Associate the peripheral spectrum of A with its periodicity properties.

The spectrum of any matrix A decomposes into three disjoint components:

$$\operatorname{spec}(A) = \Sigma_{\bullet} \sqcup \Sigma_{\odot} \sqcup \Sigma_{\odot},$$

where $\Sigma_{\bullet} = \{sr(A)\}$ is the **maximal eigenvalue spectrum**, $\Sigma_{\odot} = \{\lambda \in spec(A) : |\lambda| = sr(A)\} \setminus \{sr(A)\}$ is the **peripheral spectrum** and $\Sigma_{\odot} = \{\lambda \in spec(A) : |\lambda| < sr(A)\}$ is the **contracting spectrum**. With the exception of Σ_{\bullet} the other parts of the spectrum can be empty.

Lemma 4.3.15. If P is a stochastic matrix, then sr(P) = 1.

Exercise 4.3.16. Prove the previous lemma.

Theorem 4.3.17 (Convergence theorem for Markov chains). *Let* P *be a stochastic matrix and* E_1 *the spectral projector to the eigenspace associated with the eigenvalue 1.*

1. There exists a positive real constant K_1 such that for all $n \ge 1$,

$$\|\frac{1}{n}\sum_{k=0}^{n-1}P^k - E_1\| \le \frac{K_1}{n}$$

and, for every $\mu \in \mathcal{M}_1(\mathcal{X})$ (thought as a row vector),

$$\|\frac{1}{n}\sum_{k=0}^{n-1}\mu P^k - \mu E_1\| \le \frac{K_1}{n}.$$

2. If $\Sigma_{\odot} = \emptyset$, then there exist constants $K_2 < \infty$ and 0 < r < 1 such that for all $n \in \mathbb{N}$,

$$\|P^n - E_1\| \le K_2 r^n.$$

3. If the eigenvalue 1 is simple, then E_1 defines a unique invariant probability π (i.e. verifying $\pi P = \pi$) by $E_1 f = \pi(f) 1$ for all $f \in b\mathcal{X}$.

Proof: We only give the main idea of the proof, technical details are tedious but without any particular difficulty.

Since *P* is stochastic, by lemma 4.3.15 we have that sr(P) = 1. Now $||P||_{\infty} = \max_{x \in X} \sum_{y \in X} P_{xy} = 1$ and $||P^n||_{\infty} = 1$, for all *n*. Hence $\lim_{n\to\infty} \frac{P^n}{n} = 0$. Therefore, by corollary 4.2.10 the peripheral values are semi-simple.

Let us prove first assertion 2. Since $\Sigma_{\odot} = \emptyset$, it follows that $r' = \max\{|\lambda| : \lambda \in \text{spec}(A), \lambda \neq 1\} < 1$. For every *r* in the spectral gap, i.e. r' < r < 1, we have from theorem 4.2.5, that

$$\|\sum_{\lambda\in\Sigma_{\odot}}\sum_{i=0}^{c_{\lambda}-1}\frac{(P-\lambda I_{d})^{i}}{i!}\frac{d^{i}}{d\lambda^{i}}(\lambda^{n})E_{\lambda}\|\leq K_{1}r^{n}.$$

Hence $||P^n - E_1||_{\infty} \leq K_1 r^n$.

Prove now assertion 1. For all $\lambda \in \Sigma_{\odot}$ there exists a $\theta = \theta(\lambda) \in]0, \pi[$ such that $\lambda = \exp(i\theta)$. Then $\varepsilon = \min\{|\theta(\lambda)| : \lambda \in \Sigma_{\odot}\} > 0$. Therefore, $|\sum_{k=0}^{n-1} \lambda^k| \le \frac{1}{\sin(\varepsilon/2)}$. Consequently,

$$\|\frac{1}{n}\sum_{k=0}^{n-1}P^k - E_1\|_{\infty} \leq \frac{1}{n\sin(\varepsilon/2)}\sum_{\lambda\in\Sigma_{\odot}}\|E_{\lambda}\|_{\infty} + \frac{K_1'}{n}\sum_{k=0}^{n-1}r^k.$$

To prove 3, just remark that E_1 is a projector onto an one-dimensional space, hence it is a stable matrix (i.e. all its rows are equal) its row summing up to 1. \Box

4.4 Some complements on spectral properties

The previous results establish that the spectrum of the stochastic matrix is contained in the unit disk of \mathbb{C} , the value 1 always being an eigenvalue. On the other hand, finer knowledge of the spectral values can be used to improve the speed of convergence that has been established in theorem 4.3.17. Besides, the study of the locus of the spectral values of an arbitrary stochastic matrix constitutes an interesting mathematical problem first posed by Kolmogorov. As an experimental fact stemming from numerical simulations, we know that the spectral values of stochastic matrices concentrate on a set strictly contained in the unit disk. It is therefore important to have better estimates of the localisation of the spectrum of the stochastic matrix within the unit disk.

4.4.1 Spectral constraints stemming from algebraic properties of the stochastic matrix

The next results [44] improve the localisation properties of the eigenvalues.

Proposition 4.4.1 (Gershgorin disks). Let $A \in \mathcal{M}_d(\mathbb{R}_+)$ and define $a_x = \sum_{y \in \mathbb{X}: y \neq x} A_{xy}$ for $x \in \mathbb{X}$. Then, each eigenvalue of A is contained in at least one of the circular disks

$$\mathbb{D}_x = \{ \zeta \in \mathbb{C} : |\zeta - A_{xx}| \le a_x \}, \ x \in \mathbb{X}.$$

/Users/dp/a/ens/markov-finit.tex 2015-10-16 • 18:23:35. *Proof:* Let $\lambda \in \text{spec}(A)$. Then $\lambda v = Av$ for some vector $v \neq 0$ with $||v||_{\infty} = 1$. Let $x \in \mathbb{X}$ be such that $|v_x| = 1$. Since $|v_y| \le 1$ for all $y \in \mathbb{X}$, it follows that $|\lambda - A_{xx}| = |(\lambda - A_{xx})v_x| = |\sum_{y:y\neq x} A_{xy}v_y| \le \sum_{y:y\neq x} A_{xy}|v_y| \le a_x$.

In the sequel we denote by SM_d the set of $d \times d$ stochastic matrices.

Corollary 4.4.2. If $P \in SM_d$, then each eigenvalue of P is contained in at least one of circular disks

$$\mathbb{D}_i = \{ \zeta \in \mathbb{C} : |\zeta - A_{xx}| \le 1 - A_{xx} \} \ x \in \mathbb{X}.$$

Proposition 4.4.3. Suppose the matrix $A \in \mathcal{M}_d(\mathbb{R}_+)$ has spectral radius sr(A) = r; assume further that the eigenvalue r corresponds to the left eigenvector u (it will have necessarily strictly positive components: $u_x > 0$, for all $x \in X$). Denote by e the vector with unit components, $S = \{w \in \mathbb{R}^d_+ : \langle u | w \rangle = 1\}$, $T = \{v \in \mathbb{R}^d_+ : \langle v | e \rangle = 1\}$, and $H = S \times T$. Let

$$m = \inf_{(w,v)\in H} \langle v | Aw \rangle \text{ and } M = \sup_{(w,v)\in H} \langle v | Aw \rangle.$$

Then, each eigenvalue $\lambda \neq r$ *satisfies*

$$|\lambda| \le \min(M - r, r - m).$$

If further m > 0 (which occurs if and only if the matrix A has all its elements strictly positive) then the previous bound implies

$$|\lambda| \le \frac{M-m}{M+m}r.$$

Proof: Define the matrices $B = A - me \otimes u^t$ and $C = Me \otimes u^t - A$. They are both positive since

$$\langle v | Bw \rangle = \langle v | Aw \rangle - m \langle v | e \otimes u^t w \rangle = \langle v | Aw \rangle - m \langle v | e \rangle \langle u | w \rangle \ge 0,$$

and similarly for *C*. Let $\lambda \neq r$ be an eigenvalue of *A* and *z* the corresponding right eigenvector, therefore $\langle u | w \rangle = 0$. Now

$$Bz = Az - me \otimes u^{t} w = Aw - m\langle u | w \rangle e = Aw = \lambda w,$$

and similarly $Cw = -\lambda w$. Hence, *w* is also an eigenvector of *B* and *C* corresponding respectively to the eigenvalues λ and $-\lambda$. On the other hand

$$u^{t}B = u^{t}A - mu^{t}e \otimes u^{t} = ru^{t} - m\langle u | e \rangle u^{t} = (r - m)u^{t},$$

and similarly $u^t C = (M - r)u^t$. Since the eigenvector *u* has all its components strictly positive, it follows that $r - m = \operatorname{sr}(B)$ and $M - r = \operatorname{sr}(C)$. Hence $|\lambda| \le \min(M - r, r - m)$. Now, if m > 0, two cases can occur:

— Either $M - r \ge r - m$, implying $M + m \ge 2r$ and

$$|\lambda| \le r - m = \frac{2r - m - M}{2} + \frac{M - m}{2}.$$

Hence $|\lambda| \le \frac{(M-m)/2}{1+\frac{M+m-2r}{2|\lambda|}}$ and, since $|\lambda| < r$, finally

$$|\lambda| \leq \frac{(M-m)/2}{1+\frac{M+m-2r}{2r}} = r\frac{M-m}{M+m}$$

/Users/dp/a/ens/markov-finit.tex 2015-10-16 • 18:23:35.

— Or M - r < r - m hence M + m < 2r, implying that

$$|\lambda| \le M - r < \frac{M - r}{2} + \frac{r - m}{2} = \frac{M - m}{2} = \frac{M - m}{2r}r < \frac{M - m}{M + m}r.$$

Note finally, the trivial observation that the spectrum of a stochastic matrix is symmetric around the real axis since the characteristic polynomial has only real coefficients.

4.4.2 Spectral constraints stemming from convexity properties of the stochastic matrix

Let us first recall some standard results concerning convex sets (see [1, 12] for instance).

Definition 4.4.4. Let $A \subseteq \mathbb{V}$ be an arbitrary subset of a vector space \mathbb{V} . The **convex hull** of *A*, denoted by co *A*, is the smallest convex set containing *A*, i.e. the intersection of all convex sets covering *A*.

Exercise 4.4.5. Let \mathbb{V} be a vector space. For any *finite* subset $F \subset \mathbb{V}$, denote by

$$OS(F) = \{ v \in \mathbb{V} : \exists (\lambda_x)_{x \in F}, \lambda_x > 0, \sum_{x \in F} \lambda_x = 1, \text{ s.t. } v = \sum_{x \in F} \lambda_x x \}$$

the **open simplex** spanned by *F*. Show that for any subset $A \in V$,

$$co(A) = \bigcup_{F \subseteq A: F \text{finite}} OS(F).$$

Theorem 4.4.6 (Carathéodory's convexity theorem). In an n-dimensional affine linear space, every vector in the convex hull of a nonempty set A can be written as a convex combination using no more than n + 1 vectors from A.

Exercise 4.4.7. Prove theorem 4.4.6. Hint: assume on the contrary that k > n + 1 vectors are needed to express vectors in the convex hull and arrive in a contradiction.

Example 4.4.8. Let $PV_d = \{p \in \mathbb{R}^d_+ : \sum_{i=1}^d p_i = 1\}$; obviously any element of PV_d defines a probability measure on a finite set of cardinality *d*. The set PV_d is convex and although is defined as a subset of \mathbb{R}^d_+ , the condition $\sum_{i=1}^d p_i = 1$ constrains this set to be a subset of an affine linear space of dimension d - 1; therefore its dimension is d - 1. The set of the *d* canonical unit vectors $extr(PV_d) = \{e_1, \dots, e_d\}$ of \mathbb{R}^d contains (the sole) elements of PV_d that cannot be written as a non-trivial convex combinations of others; they are the **extremal** elements of PV_d . All other elements of PV_d can be written as convex combinations $p = \sum_{i=1}^d p_i e_i$, therefore $PV_d = co(extr(PV_d))$. The latter means that the convex set PV_d is in fact a **simplex**, i.e. coincides with the convex hull of its extremal points.

Let X be a finite set with card X = d; denote by $SM_d = \{P \in \mathcal{M}_d(\mathbb{R}) : \sum_{y \in X} P_{xy} = 1, \forall x \in X\}$ the set of stochastic matrices. The stochastic matrices of $DM_d = \{P \in \mathcal{M}_d(\{0,1\}) : \sum_{y \in X} P_{xy} = 1, \forall x \in X\} \subseteq SM_d$ are called **deterministic transition matrices**. The reason for this terminology is obvious: deterministic transition matrices have precisely one 1 in every row, i.e. for every $D \in DM_d$ and every $x \in X$, there exists exactly one $y_{D,x} \in X$ such that $D_{xy} = \delta_{y,y_{D,x}}$. Therefore, there exists a bijection between DM and the set of functions $\{\beta : X \to X\}$, established by choosing for every D the map $\beta_D(x) = y_{D,x}$.

Proposition 4.4.9. The set SM_d is convex. Its extremal points are the deterministic matrices $extr(SM_d) = DM_d$. The set SM_d is not a simplex.

Proof: Since $SM_d = PV_d^d$, convexity of SM_d follows from the convexity of every one of its rows. Moreover dim $SM_d = d(d-1)$.

To prove extremality of deterministic matrices, suppose on the contrary that for every $D \in DM_d$ there exist $P, Q \in SM_d$ and $\lambda \in]0, 1[$ such that $D = \lambda P + (1 - \lambda)Q$. Since D is deterministic,

$$1 = \lambda P_{x,\beta_D(x)} + (1-\lambda)Q_{x,\beta_D(x)}, \forall x \in \mathbb{X}$$

$$0 = \lambda P_{xy} + (1-\lambda)Q_{xy} \forall x \in \mathbb{X}, \forall y \in \mathbb{X} \setminus \{\beta_D(x)\}.$$

Since $P_{xy}, Q_{xy} \in [0, 1]$ for all x, y and $\lambda, (1 - \lambda) \in]0, 1[$, the above equations have a solution if and only if P = Q = D.

Finally since card $DM_d = d^d > d(d-1) + 1$, it follows that $SM_d \neq co(DM_d)$. \Box

A stochastic matrix is called **bi-stochastic** if both all its row- and columnsums equal 1; the set of $d \times d$ bistochastic matrices is denoted by BM_d.

It is worth noting that the map β_D is bijective if and only if D is a permutation matrix, i.e. has exactly one 1 in every row and every column. Therefore permutation matrices are deterministic bi-stochastic transition matrices. It is easy to show that the spectrum of deterministic transition matrices is contained in the set $\{0\} \cup \{\zeta \in \mathbb{C} : |\zeta| = 1\}$. (Hint: As a matter of fact, if D is a permutation matrix and the permutation has a cycle of lenght l, then the l roots of unity are in its spectrum. If D is a general deterministic transition matrix, the space \mathbb{C}^d can be decomposed into a direct sum $F \oplus F'$ so that $D \upharpoonright_F$ is a permutation, while $D \upharpoonright_{F'}$ is non-invertible.)

The external points of the set SM_d admit also a purely algebraic description. To describe it, we need a definition.

Definition 4.4.10. A linear map $A : \mathbb{C}^d \to \mathbb{C}^d$ is called a **lattice homomorphism** if |Av| = A|v| for all $v \in \mathbb{C}^d$, where $|v| = (|v_i|)_{i=1,...,d}$. It is called a **lattice isomorphism** if A^{-1} exists and both A and A^{-1} are lattice homomorphisms.

Proposition 4.4.11. A stochastic matrix $P \in SM_d$ is a lattice homomorphism if and only if $P \in extr(SM_d) = DM_d$.

/Users/dp/a/ens/markov-finit.tex 41 2015-10-16 • 18:23:35. Proof: Exercise.

Let $Z_k = \{\exp(\frac{il\pi}{k}), l = 0, ..., k - 1\}$ denote the *k*-th roots of unity, for $k \in \mathbb{N}^*$. A first estimate of the spectrum of an arbitrary stochastic matrix is given by the following

Proposition 4.4.12. For every $P \in SM_d$, its spectrum verifies spec $(P) \subseteq co(\bigcup_{k=2}^d Z_k)$.

Remark: Although the above result is not optimal, its proof is quite tricky in general. We give it below only in the simpler case where *P* is bistochastic since then the extremal points are the permutation matrices.

Partial proof: Every permutation matrix *D* is normal because $D^t D = I_d$. Now for any normal matrix *N*, it is known ([42] for instance) that the numerical range $\{\langle v | Nv \rangle, v \in \mathbb{C}^d, \|v\|_2 = 1\}$ equals co(spec(N)). On the other hand, the spectrum of *d*-dimensional permutation matrices is contained in $\bigcup_{k=2}^d Z_k$. Since permutation matrices are extremal points of the set of bistochastic matrices, any bistochastic matrix *P* admits a convex decomposition $P = \sum_{D \in BM_d \cap DM_d} \alpha_D D$ where $\alpha = (\alpha_D)$ is a probability on the set of permutation matrices². Suppose now that $\lambda \in spec(P)$ is an eigenvalue corresponding to the eigenvector *u*. Normalising *v* so that $\|v\|_2 = 1$, we have

$$\lambda = \lambda \langle v | v \rangle = \langle v | Pv \rangle = \sum_{D \in \mathsf{BM}_d \cap \mathsf{DM}_d} \alpha_D \langle v | Dv \rangle,$$

which implies that spec(*P*) \subseteq co($\cup_{k=2}^{d} Z_k$).

Nevertheless, the numerical simulation, depicted in figure 4.1 below, demonstrates that the convex hull of the roots of unity provide us with an overestimate of the spectral set. An optimal estimate of the spectrum is given by a very tricky result obtained by Karpelevich [26], answering definitely the question asked by Kolmogorov. We present below the statement of the Karpelevich theorem in a shortened form due to Ito [24] and shown by this same author to be equivalent to the original formulation of [26].

Theorem 4.4.13 (Karpelevich [26], Ito [24]). *There exists a region* $M_d \subseteq \mathbb{C}$ *verify-ing:*

- $-M_d$ is symmetric with respect to the real axis and contained in the unit disk.
- M_d intersects the unit circle at the points $\exp(2i\pi m/n)$ where m, n run over the relatively prime integers satisfying $0 \le m \le n \le d$.
- The boundary of M_d consists of these points and of curvilinear arcs connecting them in circular order.
- Let the endpoints of an arc be $\exp(2\pi i m_1/n_1)$ and $\exp(2\pi i m_2/n_2)$ (with $n_1 \le n_2$). Each of these arcs is given by the following parametric equation:

$$\lambda^{n_2} (\lambda^{n_1} - s)^{[d/n_1]} = (1 - s)^{[d/n_1]} \lambda^{n_1[d/n_2]}$$

where the real parameter s runs over the interval [0, 1].

^{2.} Since the set of stochastic matrices is not a simplex, this decomposition is by no means unique.

Then for any $P \in SM_d$, we have $spec(P) \subseteq M_d$.

Figure 4.1 – Distribution of spectral values for 3000 stochastic matrices of size d, randomly chosen in SM_d: a) Distribution for d = 3. The dotted lines depict the boundary of $co(Z_2 \cup Z_3)$; obviously, this set overestimates the locus of spectral values. b) Same picture for d = 4; again we observe the overestimate. The optimal boundary of the locus, stemming from Karpelevich theorem [26], is curved and depicted as a thick curve in the figure; the locus of the spectral values is not convex any longer.

Exercise 4.4.14. The figure 4.1 is produced by "randomly choosing" 3000 matrices $P \in SM_d$.

- What do you understand by the term "randomly choosen"?
- Propose an algorithm to "randomly chose" a $P \in SM_d$. (Hint: can you construct a uniform probability measure on SM_d ?)

Exercise 4.4.15. Since SM_d is convex and $extr(SM_d) = DM_d$, every stochastic matrix *P* admits a (not necessarily) unique convex decomposition $P = \sum_{D \in DM_d} \alpha_D D$ where $(\alpha_D)_D$ is a probability vector over DM_d .

- Using this decomposition and the deterministic mapping $\beta_D : \mathbb{X} \to \mathbb{X}$, uniquely defined from every *D*, express the matrix elements P_{xy}^n , for $n \in \mathbb{N}$ and $x, y \in \mathbb{X}$.
- Express the Markov evolution as an evolution of a random automaton (see [39] for details on automata and Turing machines).

4.5 Application to Monte Carlo simulations

Beyond the possibility to obtain very precise results on Markov chains with finite state space by using solely elementary methods, the finite case has also an intrinsic interest for stochastic simulations, also known under the vocable **Monte Carlo simulations**. Since every stochastic simulation is performed on a real computer, it concerns a finite state space. If the original problem is modelled by an infinite space, it must be approximated by a finite-size problem to be simulated on a computer.

The practical problem we have to solve is how to implement numerically a Markov chain on some space X that although finite is huge (typical cardinalities

of X lie in $2^{10^4} - 2^{10^6}$) having an unknown invariant probability π in some general class. Typically, the sought invariant probabilities are in the class of Gibbs measures on X. Now, a fundamental theorem in information theory is that if the entropy of the measure does not saturate its absolute bound ($\log_2 \operatorname{card} X$), then typical configurations, supporting almost all of the mass of π are a tiny proportion of the total space, often hundreds or thousends orders of magnitude smaller than X. (For an elementary statement and proof of this result, see [40]). Therefore, the problem reduces into simulating an arbitrarily long trajectory of a Markov chain having π as invariant probability.

4.5.1 The Metropolis-Hastings algorithm

The algorithm has been introduced in [33] and further developed in [20] in order to produce (effectively, on a computer) arbitrarily long trajectories of a Markov chain on a huge state space X and admitting a invariant probability π . The crux of the effectivity of the method is that the transition matrix *P* of the chain — having the prohibitively large size $|X| \times |X|$ — is not stored on the computer; the algorithm describes precisely how to chose the next step of the chain by computing the matrix elements afresh at every transition.

We start by a mathematical problem and its solution (as presented essentially in [20]). Let π be a probability measure on \mathbb{X} . How to construct an irreducible stochastic matrix $(P(x, y))_{(x, y) \in \mathbb{X} \times \mathbb{X}}$ admitting π as invariant probability, i.e. $\pi P = \pi$. All over this section, we demand irreducibility of *P*.

In order to construct *P*, we start from an auxiliary irreducible stochastic matrix *Q* also of size $|X| \times |X|$ and for any $x \in X$, we denote by $A_x = \{y \in X : Q(x, y) > 0\}$ the set of immediately accessible states from *x* by a Markov chain having transition matrix *Q*. Additionally, we require that Q(x, y) > 0 for some pair (x, y) entails that Q(y, x) > 0 as well. The point is that *Q* can be chosen in such a manner to have $|A_x|$ very small (several orders of magnitude smaller than |X|), while the corresponding quantity for a Markov chain evolving with *P* should be of the order |X|. The matrix *Q* is termed **tentative stochastic matrix** since it serves to propose possible moves of the Markov chain from state *x* according to the probability $Q(x, \cdot)$ (having support on A_x). The algorithm also gives a method to compute elements $A(x, y) \in]0, 1]$ of another matrix *A* called **acceptance matrix**. Moves $x \to y$, tentatively proposed by *Q*, will be accepted with probability A(x, y) and rejected with probability 1 - A(x, y). Let *P* be a matrix defined for $x, y \in X$ as follows:

$$P(x, y) = \begin{cases} A(x, y)Q(x, y) & \text{if } y \in \mathbb{A}_x \setminus \{x\}, \\ Q(x, x) + \sum_{z \in \mathbb{A}_x \setminus \{x\}} (1 - A(x, y))Q(x, y) & \text{if } y = x, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 4.5.1. The matrix P defined above is stochastic and irreducible. Moreover,

/Users/dp/a/ens/markov-finit.tex 44 2015-10-16 • 18:23:35. if the elements of the acceptance matrix A satisfy

$$\frac{A(x, y)}{A(y, x)} = \frac{\pi(y)Q(y, x)}{\pi(x)Q(x, y)}, \forall x \in \mathbb{X}, \forall y \in \mathbb{A}_x \setminus \{x\},$$

then π satisfies the detailed balance condition $\pi(x)P(x, y) = \pi(y)P(y, x)$ for all $x, y \in X$.

Proof: Matrix elements of *P* are obviously non-negative. For every $x \in X$ we have

$$\begin{split} \sum_{y \in \mathbb{X}} P(x, y) &= P(x, x) + \sum_{y \in \mathbb{A}_x \setminus \{x\}} P(x, y) \\ &= Q(x, x) + \sum_{y \in \mathbb{A}_x \setminus \{x\}} A(x, y)Q(x, y) + \sum_{z \in \mathbb{A}_x \setminus \{x\}} (1 - A(x, z))Q(x, z) \\ &= \sum_{y \in \mathbb{A}_x} Q(x, y) = 1, \end{split}$$

which proves stochasticity of *P*. Irreducibility of *P* follows from the assumed irreducibility of *Q* and the fact that A(x, y) > 0.

Now, for given $x \in X$ and every $y \in A \setminus \{x\}$, we get

$$\pi(x)P(x,y) = \pi(x)A(x,y)Q(x,y) = \pi(x)\frac{\pi(y)Q(y,x)}{\pi(x)Q(x,y)}Q(x,y)A(y,x)$$

= $\pi(y)Q(y,x)A(y,x) = \pi(y)P(y,x),$

proving thus detailed balance.

The condition of detailed balance, $\pi(x)P(x, y) = \pi(y)P(y, x)$ for all $x, y \in X$, is stronger than invariance of π since the latter follows by summing over all y in the previous condition. It remains to appropriately determine the acceptance matrix. This is done in the next

Lemma 4.5.2. Let $F : [0, +\infty] \to [0, 1]$ be a function verifying $\frac{F(z)}{F(1/z)} = z$, for all $z \in [0, +\infty]$. If for all $x \in X$ and all $y \in A \setminus \{x\}$, we have

$$A(x, y) = F\left(\frac{\pi(x)Q(x, y)}{\pi(y)Q(y, x)}\right),$$

then the matrix elements of A satisfy $\frac{A(x,y)}{A(y,x)} = \frac{\pi(y)Q(y,x)}{\pi(x)Q(x,y)}$.

Proof: Evident.

4.5.2 Simulating self-avoiding random walks

Self-avoiding random walks are mathematical models of polymers, i.e. macromolecules composed by repetitions of the same (usually organic) structural unit

/Users/dp/a/ens/markov-finit.tex 45 2015-10-16 • 18:23:35.

Figure 4.2 – An example of self-avoiding trajectory of length 436 in dimension 2.

a big number of times (typically 50000–100000). The joining of the structural units is made by loose chemical bonds so that every newly added bond can rotate almost freely as a generatrix of the lateral surface of a cone with fixed apical angle. Such structures could be efficiently modelled by trajectories of simple random walks in dimension $d \ge 2$ save for non self-intersections of those trajectories.

Now, if the global constraint of non self-intersection is imposed on the trajectory of a simple random walk, then it cannot be obtained as a sum of independent random variables; the Markovian character is lost because all the previous trajectory must be taken into account so that self-intersection condition be satisfied in the next step. The figure 4.2 shows an example of a short (of length 436) self-avoiding trajectory in dimension 2.

It is a challenging problem to simulate such trajectories. Algorithmically, it is a very bad idea to start by simulating trajectories of simple random walks of the same length and throwing away all those that do not fulfil the self-avoidance condition. As a matter of fact the proportion of self-avoiding trajectories in the set of ordinary trajectories decays like $(\frac{\mu_d}{2d})^N$ for large N with μ_d taking **approximate** values $\mu_2 \simeq 2.64$ [6] and $\mu_3 \simeq 4.68$ [8]. The probability of getting a self-avoiding trajectory in the set of uniformly distributed trajectories of length 436 in dimension 2 is 2×10^{-79} .

The idea is to simulate a Markov chain taking values in the set $X_{d,N}$ of selfavoiding trajectories of length N in dimension d, having the uniform probability on this set as invariant measure. More precisely, let $E_d = \{\pm e_1, \ldots, \pm e_d\}$ be the set of unit vectors (and of their inverses) of \mathbb{Z}^d and denote by $\mathbb{N}_N = \{0, \ldots, N\}$ define

$$\mathbb{X}_{d,N} = \{x : \mathbb{N}_N \to \mathbb{Z}^d | x(i+1) - x(i) \in E_d, i = 0, \dots, N-1, x(i) \neq x(j) \text{ for } 0 \le i < j \le N\},\$$

with fixed origin $x(0) \in \mathbb{Z}^d$. The condition of self-avoidance is very strong in d = 1, where $X_{1,N}$ has only 2 elements for any $N \ge 1$, to become negligible when $d \to \infty$. In dimension 2 or 3, it is nevertheless sufficiently strong to make the asymptotic

(for large *N*) cardinality $card(X_{d,N})$ behave like μ_d^N — with the numerical values of μ_d cited above — substantially deviating from the corresponding cardinality for ordinary random walk trajectories. It is worth noting that the cardinality of $X_{d,N}$ is unknown; even the asymptotic values of μ_d quoted above are obtained numerically. We must thus generate a uniform probability on a set of unknown cardinality!

Let G_d be the discrete subgroup of the orthogonal transformations of \mathbb{R}^d leaving the set \mathbb{Z}^d invariant. For instance, in d = 2, we have

$$G_2 = \{I, \pm \pi/2, \pi, R_x, R_y, R_{D_1}, R_{D_2}\},\$$

where *I* denotes the identity, R_x and R_y the reflections with respect to Ox and Oy axes, and R_{D_1} and R_{D_2} the reflections with respect to the two principal diagonals.

We shall make G_d act on $\mathbb{X}_{d,N}$ in some very simple way. Let k be any integer with 0 < k < N, g any element of $G_d \setminus I$, and $x = (x(0), \dots, x(N))$ any trajectory of $\mathbb{X}_{d,N}$. We define

$$(k,g) \cdot x = (x(0), \dots, x(k), x(k) + g(x(k+1) - x(k)), x(k) + g(x(N) - x(k))),$$

to be the transformation which transforms with *g* the N - k last nodes of the trajectory, leaving the first k+1 unchanged. Choosing *k* and *g* will play the role of tentative matrix for the algorithm. The proposed transformation will be accepted if it satisfies self-avoidance condition and rejected otherwise.

Algorithm 1 Self-avoiding walk

1: **procedure** SAW(N, G_d, x) 2: $k \leftarrow \text{UNIFRANDOMGENERATOR}(\{1, ..., N-1\})$ 3: $g \leftarrow \text{UNIFRANDOMGENERATOR}(G_d \setminus \{I\})$ 4: $y \leftarrow (k, g) \cdot x$ 5: **if** y fulfils self-avoidance **then** y6: **else** x7: **end if** 8: **end procedure**

Denote $r_d = \operatorname{card}(G_d \setminus I)$. At every step, the algorithm SAW, on an input x, either returns a new self-avoiding trajectory y, or the input trajectory x. The Markov chain it generates is a sequence (X_n) taking values in $X_{d,N}$ with transition matrix

$$P(x, y) = \mathbb{P}(X_{n+1} = y | X_n = x) = \begin{cases} \frac{1}{Nr_d} & \text{if } y = \text{SAW}(N, G_d, x) \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 4.5.3. *The previously defined Markov chain in* $X_{d,N}$ *has the uniform probability on* $X_{d,N}$ *as invariant measure.*

/Users/dp/a/ens/markov-finit.tex 47 2015-10-16 • 18:23:35.

$$x(k-1)$$
 $x(k)$ $x(k+1)$ $x(k-1)$ $x(k)$

Figure 4.3 – Possible local configurations of a trajectory x around its k^{th} vertex (up to symmetries), in dimension 2. Even we ignore other possible obstacles preventing moves violating the self-avoidance condition, we check that, even locally, choosing $g = \pi$ for the first or $g = \pi/2$ for the second (what will arise with positive probability) we end up with a configuration $(k, g) \cdot x$ that is not self-avoiding.

Proof: Since *N* and *d* are kept fixed, denote simply $X := X_{d,N}$ and $r := r_d$.

The matrix *P* is stochastic.

$$\begin{split} \sum_{z \in \mathbb{X}} P(x, z) &= P(x, x) + \sum_{z \in \mathbb{X} \setminus \{x\}} P(x, z) \\ &= \frac{1}{Nr} \sum_{k,g} \mathbb{1}_{\mathbb{X}^c}((k, g) \cdot x) + \frac{1}{Nr} \sum_{k,g} \mathbb{1}_{\mathbb{X}}((k, g) \cdot x) = 1. \end{split}$$

- The matrix *P* is aperiodic. It is enough to establish that diagonal elements P(x, x) do not vanish. As a matter of fact for an element P(x, x) to vanish, for all (k, g) the proposed configurations $(k, g) \cdot x$ have to be always self-avoiding. Now, this cannot happen. Consider in fact local configurations around the chosen node *k*. Up to symmetries, the only possibilities (in d = 2) are those depicted in figure 4.3. Obviously, there always exists an element of $G_d \setminus \{I\}$, chosen with probability 1/r, that will lead to a non self-avoiding trajectory.
- The matrix *P* is irreducible. For every trajectory $x \in \mathbb{X}$ (if it is not a straight segment), there exists a finite sequence $(k_1, g_1), \dots, (k_m, g_m)$ of possible choices allowing to "unfold" *x* into a straight segment. Therefore, for every $(x, y) \in \mathbb{X}^2$ there exists a *n* such that $P^n(x, y) > 0$.
- The matrix *P* is bistochastic. If $y = (k, g) \cdot x$ for some (k, g), then $x = (k, g^{-1}) \cdot y$. Hence, $\forall y \in \mathbb{X}, \sum_{x} P(x, y) = 1$.

Therefore, *P* has an invariant measure *v*. We verify that the uniform measure is in fact invariant. Since the matrix is bistochastic, normalising $v = \frac{1}{cardX}$, gives a uniform probability on X.

Remark 4.5.4. The practical implementation means that we start with an initialising self-avoiding trajectory $X_0 = x \in \mathbb{X}$, apply repeatedly the procedure SAW, ignore the first M_0 iterates (to allow approximate convergence to equilibrium $\mathbb{P}_x(X_{M_0} \in A) \simeq v(A)$), and subsequently sample the generated sequence $Y_n = X_{M_0+nM_1}$ every M_1 iterates. In that way we get an almost uncorrelated sequence of uniformly distributed self-avoiding trajectories. The parameter M_0 is associated with the second largest (in modulus) eigenvalue of P, while M_1 is also depending on another spectral property of P, known under the name "decorrelation length".

5 Potential theory

In the case of finite state space, we have obtained precious information on the convergence properties of the sequence of kernels P^n by studying properties of the resolvent $R_P(\lambda) = (\lambda I - P)^{-1}$ through the spectral representation of P and theorem 4.2.5. In this chapter, we pursue a different approach, stemming in the development of the **resolvent**, $R_P(\lambda)$, into a formal power series

$$R_P(\lambda) = (\lambda I - P)^{-1} = \frac{1}{\lambda} (I + \sum_{n=1}^{\infty} \frac{P^n}{\lambda^n}),$$

in the case where *P* is a Markovian kernel acting on a general measurable space (X, \mathcal{X}) .

5.1 Notation and motivation

We recollect here notation, largely already introduced in the previous chapters but scattered through the text.

Definition 5.1.1. Let *P* be a Markovian kernel $(X, \mathscr{X}) \xrightarrow{P} (X, \mathscr{X})$.

1. For $b \in \{0, 1\}$, $x \in X$ and $A \in \mathcal{X}$, the **potential kernel** is the quantity

$$G^{\flat}(x,A) = \sum_{n \ge \flat} P^n(x,A).$$

2. For $z \in \mathbb{C}$, the **generating functional** of the sequence $(P^n)_n$ is given by the formal power series

$$G_z^{\flat}(x, A) = \sum_{n \ge \flat} z^n P^n(x, A).$$

- 3. Let $f \in m\mathscr{X}_+$. This function is called **harmonic** if Pf = f, **superharmonic** if $Pf \leq f$, **potential** if there exists another function $r \in m\mathscr{X}_+$ such that $f = G^0 r$; the function r is then called a **charge** for f.
- 4. Let $\phi \in \mathcal{M}_+(\mathcal{X})$. This measure is called **harmonic** if $\phi P = \phi$, **superharmonic** if $\phi P \leq \phi$, **potential** if there exists another measure $\rho \in m\mathcal{X}_+$ such that $\phi = \rho G^0$; the measure ρ is then called a **charge** for ϕ .

Remark 5.1.2. It is worth noting once again that the potential kernel *G* may be infinite even on finite sets.

Proposition 5.1.3. Let $g \in m\mathscr{X}_+$ and $\mathscr{S}_g(Poisson)$ the set of solutions of the **Poisson equation** g = (I - P)f, *i.e.*

$$\mathscr{S}_g(Poisson) = \{f \in m\mathscr{X}_+ : g = (I - P)f\}.$$

If G^0g is finite, then it is the smallest element of $\mathscr{S}_g(Poisson)$.

Proof: First show that $h = G^0 g$ is an element of \mathscr{S}_g (Poisson). In fact,

$$Ph + g = P \sum_{n=0}^{\infty} P^n g + g = \sum_{n=1}^{\infty} P^n g + g = G^0 g = h.$$

Therefore (I - P)h = g, hence $h \in \mathcal{S}_g$ (Poisson).

Suppose now that $f \in \mathscr{S}_g$ (Poisson). Observe that equalities

$$g + Pf = f$$

$$Pg + P^{2}f = Pf$$

$$\vdots$$

$$P^{n}g + P^{n+1}f = P^{n}f$$

imply $f = \sum_{k=0}^{n} P^{k}g + P^{n+1}f$, for all *n*. Due to the positivity of both *f* and *P*, we have that $\liminf_{n} P^{n+1}f \ge 0$. The latter implies $f \ge G^{0}g = h$.

A few comments are necessary to justify the terminology. Consider first a simple symmetric random walk on \mathbb{Z} . Then, if *f* is additionally bounded,

$$(I-P)f(x) = f(x) - \frac{1}{2}[f(x+1) + f(x-1)]$$

$$\approx -\frac{1}{2}[f'(x+1/2) - f'(x-1/2)]$$

$$\approx -\frac{1}{2}\Delta f(x).$$

This approximate formula holds also for the simple symmetric random on \mathbb{Z}^d almost unchanged: $(I - P)f(x) \simeq -\frac{1}{2d}\Delta f(x)$.

Consider now the Maxwell equations for electric fields in dimension 3. The electric vector field E is expressed as the gradient of a potential scalar field f

/Users/dp/a/ens/markov-poten.tex 50 2015-10-15 • 21:15:51. through: $E = -\nabla f$. Additionally its divergence is proportional to the electric charge density *r* through: $\nabla \cdot E = cr$ where *c* is a physical constant. Hence, $-\Delta f = cr$. It is a well known result of electromagnetic theory that the electric potential field is expressed in terms of the charge density through Coulomb formula: $f(x) = c' \int_{\mathbb{R}^3} \frac{r(y)}{\|x-y\|} d^3 y$ (provided that the function $\frac{1}{\|x-y\|}$ is integrable with respect to the measure whose density with respect to the Lebesgue 3-dimensional measure is *r*. In this case, we have $f = G^0 r$ where *G* is the integral kernel $G^0(x, A) = \int_A g(x, y) d^3 y$, with $g(x, y) = \frac{1}{\|x-y\|}$. Now comparing the two equations:

$$-\Delta f = r$$
$$f = G^0 r$$

we conclude that the operator *G* "inverts" the operator $-\Delta$.

Come now back to proposition 5.1.3 applied to the random walk case: $g = (I - P)f \simeq -\Delta f$. Inverting formally, we get $f = G^0 g$. We can then "verify" that $-\Delta G^0 g = (I - P)\sum_{n=0}^{\infty} P^n g = g$.

Of course at this level of presentation all computations are purely formal. The purpose of this chapter is to show that all these formal results can be given a precise mathematical meaning and moreover provide us with a valuable tool for the study of Markov chains on general state spaces.

5.2 Martingale solution to Dirichlet's problem

Proposition 5.2.1 (The maximum principle). *Let* $f, g \in m\mathcal{X}_+$ *and* $a \in \mathbb{R}_+$.

- 1. If $G^0 f \le G^0 g + a$ holds on $\{x \in X : f(x) > 0\}$ then holds everywhere (i.e. on X).
- 2. For all $x, y \in \mathbb{X}$, $G^0(x, y) = \mathbb{P}_x(\tau_y^0 < \infty) G^0(y, y)$.
- 3. For all $x \in X$ and $B \in \mathcal{X}$, $G^0(x, B) \leq \sup_{z \in B} G^0(z, B)$.

Remark 5.2.2. In the previous proposition = $\mathbb{P}_x(\tau_y < \infty)$ can vanish. In this situation the term $G^0(x, y)$ also vanishes.

Proof: of proposition 5.2.1.

/Users/dp/a/ens/markov-poten.tex 51 2015-10-15 • 21:15:51. 1. Let $A = \{f > 0\} \in \mathcal{X}$.

$$\begin{split} G^{0}f(x) &= \mathbb{E}_{x}(\sum_{n=0}^{\infty} f(X_{n})) \\ &= \mathbb{E}_{x}(\sum_{n=0}^{\infty} f(X_{n})\mathbb{1}_{\{\tau_{A}^{0} < \infty\}}) + \mathbb{E}_{x}(\sum_{n=0}^{\infty} f(X_{n})\mathbb{1}_{\{\tau_{A}^{0} = \infty\}}) \\ &= \mathbb{E}_{x}(\sum_{n=0}^{\infty} f(X_{n})\mathbb{1}_{\{\tau_{A}^{0} < \infty\}}) \text{ (because } f = 0 \text{ on } A^{c}) \\ &= \mathbb{E}_{x}(\sum_{n=\tau_{A}^{0}}^{\infty} f(X_{n})\mathbb{1}_{\{\tau_{A}^{0} < \infty\}}) = \mathbb{E}_{x}(\sum_{n=0}^{\infty} f(X_{n} \circ \theta^{\tau_{A}^{0}})\mathbb{1}_{\{\tau_{A}^{0} < \infty\}}) \\ &= \mathbb{E}_{x}(\mathbb{E}(\sum_{n=0}^{\infty} f(X_{n}) \circ \theta^{\tau_{A}^{0}}\mathbb{1}_{\{\tau_{A}^{0} < \infty\}} |\mathscr{F}_{\tau_{A}^{0}})) = \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{A}^{0} < \infty\}} \mathbb{E}_{X_{\tau_{A}^{0}}}(\sum_{n=0}^{\infty} f(X_{n}))) \\ &= \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{A}^{0} < \infty\}} G^{0}f(X_{\tau_{A}^{0}}))) \leq \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{A}^{0} < \infty\}} G^{0}g(X_{\tau_{A}^{0}})) + a\mathbb{P}_{x}(\tau_{A}^{0} < \infty). \end{split}$$

Now compute explicitly the expectations appearing in the previous formula to get

$$G^{0}f(x) \leq \sum_{n=0}^{\infty} \mathbb{E}_{x} \left(\sum_{k \in \mathbb{N}} \mathbb{1}_{\{\tau_{A}^{0}=k\}} \int_{B} P^{k}(x, dy) P^{n}(y, dz) g(z)\right) + a$$
$$\leq \sum_{n \in \mathbb{N}} P^{n}(x, dz) g(z) + a = G^{0}g(x) + a.$$

- 2. Apply the previous formula to $f = \mathbb{1}_{\{\gamma\}}$.
- 3. Apply the previous formula to $f = \mathbb{1}_B$.

Proposition 5.2.3. Let $B \in \mathscr{X}$ be such that $\sup_{x \in B} G^0(x, B) < \infty$ and $A = \{x \in X : \mathbb{P}_x(\tau_B < \infty) > 0\}$. Then A is a countable union of sets $A_{n,k}$ for $n, k \in \mathbb{N}$ such that $G(x, A_{n,k})$ is bounded on X for all $n, k \in \mathbb{N}$.

Proof: Define for $n \ge 0$ and $k \ge 1$:

$$A_{n,k} = \{x \in \mathbb{X} : P^n(x, B) > 1/k\}.$$

For all $x \in X$ and $m, n \in \mathbb{N}$, we have:

$$P^{m+n}(x,B) = \int_{\mathbb{X}} P^m(x,dy) P^n(y,B) \ge \int_{A_{n,k}} P^m(x,dy) P^n(y,B) \ge \frac{1}{k} P^n(x,A_{n,k}),$$

establishing that $kG^0(x, B) \ge G^0(x, A_{n,k})$. Using now the maximum principle we show further for all $x \in \mathbb{X}$ that $G^0(x, A_{n,k}) \le kG^0(x, B) \le k \sup_{x \in B} G^0(x, B) < +\infty$. Moreover $A = \bigcup_{n,k} A_{n,k}$.

Theorem 5.2.4 (Dirichlet's problem). Let $B \in \mathcal{X}$ and $g \in m\mathcal{X}_+$. The set of solutions to the **Dirichlet's problem** is the set

$$\mathscr{S}_{g}(Dirichlet) = \{f \in m\mathscr{X}_{+} : Pf = f \text{ on } B^{c} \text{ and } f = g \text{ on } B\}.$$

The smallest element of $\mathscr{S}_g(Dirichlet)$ is the function $h(x) = \mathbb{E}_x(\mathbb{1}_{\{\tau_p^0 < \infty\}}g(X_{\tau_p^0})).$

/Users/dp/a/ens/markov-poten.tex 5 2015-10-15 • 21:15:51. *Proof:* If $x \in B$ then $\tau_B^0 = 0$ and consequently h(x) = g(x), else $\tau_B^0 \ge 1$ and $h(x) = \mathbb{E}_x(\sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_B^0 = k\}} g(X_k))$.

$$Ph(x) = \int_{\mathbb{X}} P(x, dy)h(y) = \int_{B} P(x, dy)g(y) + \int_{B^{c}} P(x, dy)h(y)$$

$$= \int_{B} P(x, dy)g(y) + \sum_{k=1}^{\infty} \int_{B^{c}} P(x, dy)\mathbb{E}_{y}(\mathbb{1}_{\{\tau_{B}^{0}=k\}}g(X_{k}))$$

$$= \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{B}^{0}=1\}}g(X_{1})) + \sum_{k=1}^{\infty} \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{B}^{0}=k\}}g(X_{k+1}))$$

$$= \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{B}^{0}=1\}}g(X_{1})) + \sum_{k=2}^{\infty} \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{B}^{0}=k\}}g(X_{k})) = h(x).$$

This establishes that $h \in \mathscr{S}_g$ (Dirichlet).

Suppose now that *f* is another element of \mathscr{S}_g (Dirichlet). Define for all *n*:

$$Z_n = f(X_{\tau^0_B \wedge n}) = \sum_{k=0}^{n-1} \mathbb{1}_{\{\tau^0_B = k\}} f(X_k) + \mathbb{1}_{\{\tau^0_B \ge n\}} f(X_n)$$

and $\mathscr{F}_n = \sigma(X_0, \dots, X_n)$. Then,

$$\mathbb{E}(Z_{n+1}|\mathscr{F}_n) = \sum_{k=0}^n \mathbb{1}_{\{\tau_B^0 = k\}} f(X_k) + \mathbb{1}_{\{\tau_B^0 > n\}} \mathbb{E}(f(X_{n+1})|\mathscr{F}_n)$$
$$= \sum_{k=0}^n \mathbb{1}_{\{\tau_B^0 = k\}} f(X_k) + \mathbb{1}_{\{\tau_B^0 > n\}} Pf(X_n)$$
$$= \sum_{k=0}^n \mathbb{1}_{\{\tau_B^0 = k\}} f(X_k) + \mathbb{1}_{\{\tau_B^0 > n\}} f(X_n) = Z_n,$$

the penultimate line of the above equality holding because on $\tau_B^0 > n \Rightarrow X_n \notin B \Rightarrow Pf(X_n) = f(X_n)$. Thus $(Z_n)_n$ is a positive $(\mathscr{F}_n)_n$ -martingale. Therefore it converges almost surely to some random variable Z_∞ . On $\{\tau_B^0 < \infty\}$, $Z_n \to f(X_{\tau_B^0}) = g(X_{\tau_B^0})$. On $\{\tau_B^0 = \infty\}$, $Z_n \to Z_\infty$ and consequently by Fatou inequality: $\mathbb{E}_x(Z_\infty) \leq \liminf_n \mathbb{E}_x Z_n$. We have finally:

$$h(x) = \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{B}^{0} < \infty\}}g(X_{\tau_{B}^{0}})) = \mathbb{E}_{x}(\mathbb{1}_{\{\tau_{B}^{0} < \infty\}}\lim_{n} Z_{n})$$
$$\leq \mathbb{E}_{x}(\lim_{n} Z_{n}) \leq \liminf_{n} \mathbb{E}_{x}(Z_{n}) = \mathbb{E}_{x}(Z_{0}) = f(x).$$

Remark 5.2.5. The main interest of this formula is theoretical: if v denotes the boundary measure, i.e. $v(C) = \mathbb{P}_x(X_{\tau_B^0} \in C)$, for C a measurable subset of the boundary, then any harmonic function h can be disintegrated with respect to the surface density as $h(x) = \int_{\partial B^c} v(dz)g(z)$. It maintains nevertheless some algorithmic interest since it solves the Dirichlet problem in a finite domain without any smoothness condition on the shape of the boundary.

Theorem 5.2.6 (Riesz decomposition). Let f be a finite superharmonic function. Then there exists a unique harmonic function h and a unique charge $r \in m\mathcal{X}_+$ such that $f = h + G^0 r$.

Proof: For any $N \in \mathbb{N}$: $\sum_{k=0}^{N} (P^k f - P^{k+1} f) = f - P^{N+1} f$. Now $0 \le Pf \le f \Rightarrow f - Pf \ge 0$. It follows that $0 \le \sum_{k=0}^{N} P^k (f - Pf) = f - P^{N+1} f$ is an increasing sequence of N implying that $P^N f$ is decreasing (and obviously minorised by 0), thus converging; let $h = \lim_n P^n f$. Now $Ph = P(\lim_n P^n f) = \lim_n P^{n+1} f = h$ proving that h is harmonic.

On the other hand, $0 \le f - h = \lim_N \sum_{k=0}^N P^k (f - Pf) = G^0 (f - Pf)$, showing that f - h is the finite potential due to the positive charge r = f - Pf. Thus the decomposition $f = h + G^0 r$ is established.

To show unicity, suppose that h' and r' are another such pair satisfying

$$f = h + G^0 r = h' + G^0 r'.$$

Then

$$Pf = P(h+G^{0}r) = h+G^{0}r - r = f - r$$

= $P(h'+G^{0}r') = h'+G^{0}r' - r' = f - r'$

Consequently r = r' and therefore h = h'.

Corollary 5.2.7. A finite superharmonic function f is a potential if $\lim_{n} P^{n} f = 0$. If a finite superharmonic function is bounded from above by a finite potential, then its harmonic part is 0.

Exercise 5.2.8. Let $\phi \in \mathcal{M}_+(\mathcal{X})$ be a superharmonic measure. Then there exists a unique harmonic measure α and a unique charge $\rho \in \mathcal{M}_+(\mathcal{X})$ such that $\phi = \alpha + \rho G^0$.

Lemma 5.2.9. 1. If s is P-superharmonic, then s is a potential if and only if $\lim_{n} P^{n} s = 0$.

- 2. If $0 \le s \le v$, s is P-superharmonic, and v a potential, then s is also a potential.
- 3. If *s* and *s*' are *P*-superharmonic, then $w = s \wedge s'$ is also *P*-superharmonic.

Proof:

- 1. By theorem 5.2.6, *s* can be uniquely decomposed into $s = h + G^0 r$, where $h = \lim_{n} P^n s$ is the harmonic part of the Riesz decomposition. If this term vanishes, then *s* is a potential and conversely, if *s* is a potential then the harmonic part must vanish.
- 2. Since for every *n*, the inequality $0 \le P^n s \le P^n v$ holds and *v* is a potential, it follows from 1. that $\lim_n P^n v = 0$. Hence $\lim_n P^n s = 0$, and from 1. *s* is a potential.

3. We have $Pw \le Ps \le s$ and $Pw \le Ps' \le s'$; hence $Pw \le s \land s' = w$.

Exercise 5.2.10. First recall some definitions:

- A partially ordered set (\mathbb{Y}, \leq) is a **lattice** if any for any pair of points $x, y \in \mathbb{Y}$ there exists a supremum $s = x \lor y \in \mathbb{Y}$.
- An \mathbb{R} -vector space \mathbb{Y} is **ordered** if is equipped with a partial order \leq compatible with the operations of the vector space, i.e. for all $x, y \in \mathbb{Y}$

$$\begin{array}{ll} x \leq y & \Rightarrow & \forall z \in \mathbb{Y}, x + z \leq y + z \\ x \leq y & \Rightarrow & \forall \lambda \in \mathbb{R}_+, \lambda x \leq \lambda y. \end{array}$$

- An ordered \mathbb{R} -vector space \mathbb{Y} , such that (\mathbb{Y}, \preceq) is a lattice, is called a **Riesz** space or vector lattice.
- A subset *C* of a vector space is called a **cone** if for all $\lambda \in \mathbb{R}_+$, $\lambda C \subseteq C$.
- A subset *C* of a vector space is said **convex** if $C + C \subseteq C$.

After this recollection of definitions, show that

- 1. the set of of superharmonic functions of $m\mathcal{X}_+$ is a lattice and a convex cone,
- 2. the set of harmonic functions of $m\mathcal{X}_+$ is a Riesz space,
- the set of bounded harmonic functions of *m*𝔅₊ is a subspace of the Banach space (𝔅, || · ||∞).

Recall the notation previously defined in the exercise section 3.5.

Definition 5.2.11. For $B \in \mathcal{X}$ and $\flat \in \{0, 1\}$, we define

$$L_B^{\flat}(x) = \mathbb{P}_x(\tau_B^{\flat} < \infty) \text{ and } H_B^{\flat}(x) = \mathbb{P}_x(\eta^{\flat}(B) = \infty).$$

When *B* is a singleton $B = \{y\}$, we write usually L_y^{\flat} and H_y^{\flat} , instead of $L_{\{y\}}^{\flat}$ and $H_{\{y\}}^{\flat}$.

Proposition 5.2.12. The function L_B^0 is finite superharmonic. Its harmonic part in the Riesz decomposition is H_B^0 . Moreover, $\lim_{n\to\infty} L_B^0(X_n) = \lim_{n\to\infty} H_B^0(X_n) = \mathbbm{1}_{\{\eta^0(B)=\infty\}}$ almost surely.

Proof: Obviously $L_B^0(x) \le 1$ for all x. To apply Riesz decomposition, we must establish its superharmonicity. Define $\tau_B^k = \inf\{n \ge k : X_n \in B\}$ and observe that $\mathbb{1}_{\{\tau_B^k < \infty\}} = \mathbb{1}_{\{\tau_B^0 < \infty\}} \circ \theta^k$. Strong Markov property yields then:

$$P^{k}L_{B}^{0}(x) = \mathbb{E}_{x}(L_{B}^{0}(X_{k})) = \mathbb{E}_{x}(\mathbb{P}_{X_{k}}(\tau_{B}^{0} < \infty))$$
$$= \mathbb{E}_{x}(\mathbb{E}_{x}(\mathbb{1}_{\{\tau_{B}^{0} < \infty\}} \circ \theta^{k} | \mathscr{F}_{k})) = \mathbb{P}_{x}(\tau_{B}^{k} < \infty)$$
$$\leq \mathbb{P}_{x}(\tau_{B}^{0} < \infty) = L_{B}^{0}(x).$$

/Users/dp/a/ens/markov-poten.tex 55 2015-10-15 • 21:15:51. Since L_B^0 is shown to be finite superharmonic, repeating the reasoning appearing in the proof of theorem 5.2.6, we establish

$$P^{n}L_{B}^{0}(x) = \mathbb{P}_{x}(\tau_{B}^{n} < \infty) \downarrow \lim_{n \to \infty} {}^{\downarrow}\mathbb{P}_{x}(\tau_{B}^{n} < \infty)$$
$$= \mathbb{P}_{x}(\cap_{n \in \mathbb{N}} \{\tau_{B}^{n} < \infty\}) = \mathbb{P}_{x}(\eta^{0}(B) = \infty) \quad (*)$$
$$= H_{B}^{0}(x) \le 1,$$

the statement (*) above holding because on defining $A = \bigcup_{n \in \mathbb{N}} \{\tau_B^n = \infty\}$ and $C = \{\eta^0(B) < \infty\}$, we have:

$$[\omega \in A] \Rightarrow [\exists N : \tau_B^N(\omega) = \infty] \Rightarrow [\eta^0(B)(\omega) \le N]$$

and

$$[\omega \in C] \Rightarrow [\exists N : \eta^0(B)(\omega) \le N] [\Rightarrow [\exists M = M(N) : \tau_B^M(\omega) = \infty]$$

Thus it is established that H_B^0 is the harmonic part of L_B^0 (and is moreover finite).

Now, the previous conclusions imply that the sequences defined by $S_n = L_B^0(X_n)$ (resp. $M_n = H_B^0(X_n)$) are positive supermartingale (resp. martingale). As such, they converge almost surely to S_∞ (resp. M_∞). Additionally, both are bounded by 1, therefore they are uniformly integrable, establishing thus their convergence in L^1 and, for (M_n) we have the closure property:

$$M_n = \mathbb{E}(M_\infty | \mathscr{F}_n).$$

Note that for all $n \in \mathbb{N}$

$$\mathbb{1}_{\{\eta^{0}(B)=\infty\}} = \mathbb{1}_{\{\eta^{0}(B)=\infty\}} \circ \theta^{n}.$$

Consequently,

$$M_n = H_B^0(X_n) = \mathbb{E}_{X_n}(\mathbb{1}\{\eta^0(B) = \infty\})$$

= $\mathbb{E}_x(\mathbb{1}\{\eta^0(B) = \infty\} \circ \theta^n | \mathscr{F}_n) = \mathbb{E}_x(\mathbb{1}\{\eta^0(B) = \infty\} | \mathscr{F}_n)$
 $\xrightarrow[n \to \infty]{} \mathbb{1}_{\{\eta^0(B) = \infty\}}$ by uniform integrability
= M_∞ .

Consider now the supermartingale $(S_n)_n$. Note that almost surely

$$S_{\infty} = \lim_{n \to \infty} L^0_B(X_n) \ge \lim_{n \to \infty} H^0_B(X_n) = M_{\infty}.$$

On the other hand

$$\mathbb{E}_{x}(S_{\infty}) = \lim_{n \to \infty} \mathbb{E}_{x}(L_{B}^{0}(X_{n})) = \lim_{n \to \infty} P^{n}L_{B}^{0}(x) = H_{B}^{0}(x)$$
$$= \mathbb{E}_{x}(H_{B}^{0}(X_{n})), \text{ for all } n \text{ (because } H_{B}^{0}(X_{n}) \text{ is a martingale})$$
$$= \mathbb{E}_{x}(\lim_{n \to \infty} H_{B}^{0}(X_{n}))$$
$$= \mathbb{E}_{x}(M_{\infty}) \text{ because of the convergence in } \mathcal{L}^{1}.$$

Thus $S_{\infty} = M_{\infty}$ almost surely.

/Users/dp/a/ens/markov-poten.tex 56 2015-10-15 • 21:15:51.

5.3 Asymptotic and invariant σ -algebras

Definition 5.3.1. Let *X* be a MC((X, \mathcal{X}), *P*, μ) and $\mathcal{T}_n = \sigma(X_m, m \ge n)$, for $n \in \mathbb{N}$.

- The σ -algebra $\mathcal{T}_{\infty} = \bigcap_{n \in \mathbb{N}} \mathcal{T}_n$ is called **tail** σ -algebra for the sequence *X*.
- A random variable *Y* on the path space $(\mathbb{X}^{\infty}, \mathscr{X}^{\infty}, \mathbb{P})$ is called **asymptotic** if there exists a sequence $(f_n)_n$ of measurable mappings $f_n : \mathbb{X}^{\infty} \to \mathbb{R}$ for $n \in \mathbb{N}$, such that $Y = f_n(X_n, X_{n+1}, ...)$ for all $n \in \mathbb{N}$.
- If $Y = \mathbb{1}_A$ for some event $A \in \mathscr{X}^{\infty}$, then *A* is called **asymptotic event**.
- The class of all asymptotic events generates a σ -algebra, called the **asymptotic** σ -algebra, that is isomorphic to \mathcal{T}_{∞} .

Exercise 5.3.2. Let *X* be a $MC((X, \mathscr{X}), P, \mu)$, $g : X \to \mathbb{R}_+$ a measurable function, and $(F_n)_n$ a fixed sequence of measurable sets in \mathscr{X} . Determine which of the following events (if any) are asymptotic:

- 1. $\{X_n \in F_n, \text{ infinitely often}\},\$
- 2. { $X_n \in F_n$, for all $n \ge k$ }, for some fixed k,
- 3. $\{\sum_{n\geq k} \mathbb{1}_B(X_n) = \infty\}$, for fixed $B \in \mathscr{X}$ and $k \in \mathbb{N}$,
- 4. $\{\sum_{n \ge k} \mathbb{1}_B(X_n) < \infty\}$, for fixed $B \in \mathcal{X}$ and $k \in \mathbb{N}$,
- 5. $\{\sum_{n\geq k} \mathbb{1}_B(X_n) = l\}$, for fixed $B \in \mathscr{X}$ and $k, l \in \mathbb{N}$,
- 6. $\{\sum_{n\geq k} g(X_n) = \infty\}$, for fixed $k \in \mathbb{N}$,
- 7. $\{\sum_{n\geq k} g(X_n) < \infty\}$, for fixed $k \in \mathbb{N}$,
- 8. $\{\sum_{n\geq k} \mathbb{1}_B(X_n) = c\}$, for fixed $k \in \mathbb{N}$ and $c \in \mathbb{R}_+$.

Definition 5.3.3. Let *X* be a MC(($(X, \mathcal{X}), P, \mu$).

- A random variable *Y* on the path space $(X^{\infty}, \mathscr{X}^{\infty}, \mathbb{P})$ is called **invariant** if there exists a measurable mapping $f : X^{\infty} \to \mathbb{R}$, such that $Y = f(X_n, X_{n+1}, ...)$ for all $n \in \mathbb{N}$.
- If $Y = \mathbb{1}_A$ for some event $A \in \mathscr{X}^\infty$, then *A* is called **invariant event**.
- The class of all invariant events generates a *σ*-subalgebra of \mathcal{T}_{∞} , called the **invariant** *σ*-algebra, denoted by \mathcal{J}_{∞} .

Exercise 5.3.4. Which among the events defined in exercise 5.3.2 are elements of \mathcal{J}_{∞} ?

Remark 5.3.5. The probability \mathbb{P}_{μ} on the path space does not intervene in the definitions of either asymptotic or invariant events. On identifying random variables on \mathbb{X}^{∞} that coincide \mathbb{P} -almost surely, we determine a class of events that generate the so-called \mathbb{P} -asymptotic or \mathbb{P} -invariant σ -algebras, denoted respectively by $\mathscr{T}_{\infty}^{\mathbb{P}}$ or $\mathscr{J}_{\infty}^{\mathbb{P}}$. Recall that a σ -algebra containing just two sets is called **trivial**. Criteria establishing triviality of the asymptotic σ -algebras are sought in the sequel since they will play an important role in establishing convergence results for Markov chains.

Definition 5.3.6. Let *X* be a $MC((X, \mathscr{X}), P, \mu)$ and denote by $\mathscr{N} = \mathscr{P}(\mathbb{N})$. The process $(X_n, T_n)_n$ taking values in the measurable space $(X \times \mathbb{N}, \mathscr{X} \otimes \mathscr{N})$ with $T_{n+1} = T_n + 1$, is called the **spacetime process** associated with *X*.

Proposition 5.3.7. Let $(X_n, T_n)_n$ be a spacetime process with $T_0 = k$ for some $k \in \mathbb{N}$. An event A is asymptotic for $(X_n)_n$ if and only if is invariant for $(X_n, T_n)_n$.

Proof: Let $Y = \mathbb{1}_A$.

- (⇒) Since *A* is asymptotic for $(X_n)_n$, there exists a sequence $(f_n)_n$ in $m\mathscr{X}^\infty$ such that $Y = f_n(X_n, X_{n+1}, ...)$ for all *n*. Let $(n_l)_{l \in \mathbb{N}}$ be a sequence of integers with $n_0 \ge k$ and $n_{l+1} = n_l + 1$ for all *l*. Define $\tilde{f} : (X \times \mathbb{N})^\infty \to \mathbb{R}$ by $\tilde{f}((x_0, n_0), (x_1, n_1), ...) = f_{n_0-k}(x_0, x_1, ...)$. It follows then immediately that $Y = \tilde{f}((X_n, T_n), (X_{n+1}, T_{n+1}), ...)$.
- (\Leftarrow) Since *A* is invariant for $(X_n, T_n)_n$, from the last equality, we obtain on defining $f_n(x_0, x_1, ...) = \tilde{f}(x_0, n+k), (x_1, n+k+1), ...)$ for every *n* that $Y = f_n(X_n, X_{n+1}, ...)$.

5.4 Triviality of the asymptotic σ -algebra

Since with any *X* a MC((X, \mathscr{X}), *P*, μ) is associated a spacetime chain, we use the tilde notational convention to denote quantities referring to the latter. Thus the kernel *P* : $X \times \mathscr{X} \to [0, 1]$ induces a kernel $\tilde{P}(X \times \mathbb{N}) \times (\mathscr{X} \otimes \mathscr{N}) \to [0, 1]$ by the formula

$$\tilde{P}((x, n), F \times \{n'\}) = \delta_{n+1, n'} P(x, F), \forall x \in \mathbb{X}, \forall F \in \mathcal{X}, \forall n \in \mathbb{N}.$$

The path space $\tilde{X}^{\infty} = (X \times \mathbb{N})^{\infty}$ will be identified with $\tilde{\Omega} = \{\tilde{\omega} : \mathbb{N} \to X \times \mathbb{N}\}$. Similarly the spacetime process $(\tilde{X}_n)_n = (X_n, T_n)_n$ will be defined through its coordinate ¹ representation: $\tilde{X}_n(\tilde{\omega}) = \tilde{\omega}_n = (X_n(\tilde{\omega}), T_n(\tilde{\omega}))$. Finally, we use the tilde convention to extend notions defined on functions f in $m\mathscr{X}$ to notions defined o functions \tilde{f} in $m(\mathscr{X} \otimes \mathscr{N})$. For example, if h is an harmonic function for P, \tilde{h} will be an harmonic function for \tilde{P} , verifying: $\tilde{h}(x, n) = \int_{\mathbb{X}} P(x, dy)\tilde{h}(y, n+1)$.

A random variable $\Xi : \Omega \to \mathbb{R}$, defined on the probability space $(\Omega, \mathscr{F}, \mathbb{P})$, is invariant if and only if $\Xi \circ \theta = \Xi$. With any $\Xi \in b\mathscr{F}$ is associated a $h \in b\mathscr{K}$ by $h(x) = \mathbb{E}_x(\Xi)$.

Theorem 5.4.1. — Let $\Xi \in b\mathcal{F}_+$ be invariant. Then $h \in b\mathcal{X}$, defined by $h(x) = \mathbb{E}_x(\Xi)$, is harmonic. Additionally, $h \equiv 0 \Leftrightarrow \mathbb{P}_x(\Xi = 0) = 1$.

- Let $h \in b\mathcal{X}$ be harmonic. Then the random variable $\Xi = \liminf_n h(X_n)$ verifies $\mathbb{E}_x(\Xi) = h(x)$ for all x.

Proof: For all n:

 $h(X_n) = \mathbb{E}_{X_n}(\Xi) = \mathbb{E}_x(\Xi \circ \theta^n | \mathscr{F}_n)$ by Markov property = $\mathbb{E}_x(\Xi | \mathscr{F}_n)$ by invariance.

For $n \ge 1$ the previous equality yields

$$\mathbb{E}_{x}(h(X_{n})|\mathscr{F}_{n-1}) = \mathbb{E}_{x}(\mathbb{E}_{x}(\Xi|\mathscr{F}_{n})|\mathscr{F}_{n-1}) = h(X_{n-1}),$$

/Users/dp/a/ens/markov-poten.tex 58 2015-10-15 • 21:15:51.

^{1.} Note the trivial modification on the coordinate representation of the process $(X_n)_n$ that is necessary.

establishing that $(h(X_n))_n$ is a martingale. Applying to n = 1:

$$\mathbb{E}_{x}(h(X_{1})) = h(x) = \mathbb{E}_{x}(\mathbb{E}_{X_{1}}(\Xi))$$
$$= \int_{\mathbb{X}} P(x, dy) \mathbb{E}_{y}(\Xi) = \int_{\mathbb{X}} P(x, dy) h(y)$$

proving the harmonicity of *h*. Since $\Xi \in b\mathscr{F}$, this martingale is uniformly integrable, hence closed, meaning that $\lim_{n\to\infty} h(X_n) = \Xi$, \mathbb{P}_x -a.s. and for arbitrarily chosen *x*. The latter proves the equivalence $h \equiv 0 \Leftrightarrow \mathbb{P}_x(\Xi = 0) = 1$. The second statement of the theorem is just a consequence of the unicity of the limit. \Box

Corollary 5.4.2. The following two conditions are equivalent:

- 1. All bounded harmonic functions are constant.
- 2. For every $\mu \in \mathcal{M}_1(\mathcal{X})$, the $\mathcal{J}_{\infty}^{\mathbb{P}_{\mu}}$ is trivial.

Proof: The theorem 5.4.1 guarantees $1\Rightarrow 2$. To prove the converse, suppose that there exists a bounded harmonic function h and there exist $x, y \in \mathbb{X}$, with $x \neq y$, such that $h(x) \neq h(y)$. The theorem 5.4.1 guarantees the existence of an invariant random variable $\Xi \in b\mathcal{F}$, such that $h(z) = \mathbb{E}_z(\Xi)$. Let $\mu = \frac{1}{2}(\varepsilon_x + \varepsilon_y)$. Then $\mathbb{E}_{\mu}(\Xi|X_0 = x) = h(x) \neq h(y) = \mathbb{E}_{\mu}(\Xi|X_0 = y)$, thus Ξ is not almost surely constant. \Box

Theorem 5.4.3. A Markov chain X satisfies the condition

$$\lim_{n\to\infty}\sup_{A\in\mathcal{T}_n}|\mathbb{P}(A\cap B)-\mathbb{P}(A)\mathbb{P}(B)|=0,\;\forall B\in\mathcal{F},$$

if and only if the σ -algebra $\mathcal{T}^{\mathbb{P}}_{\infty}$ is trivial.

Proof:

(⇒) Suppose the limit vanishes. For any $B \in \mathcal{T}_{\infty} \subseteq \mathcal{F}$, and A = B, we get $\mathbb{P}(B)^2 = \mathbb{P}(B)$. It follows that either $\mathbb{P}(B) = 0$ or $\mathbb{P}(B) = 1$. Therefore, up to \mathbb{P} -negligible events, the asymptotic σ -algebra \mathcal{T}_{∞} is trivial.

 (\Leftarrow) For $B \in \mathscr{F}$, $A \in \mathscr{T}_n$:

$$\begin{aligned} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| &= \left| \int_{A} (\mathbb{P}(B|\mathcal{T}_{n}) - \mathbb{P}(B)) d\mathbb{P} \right| \\ &\leq \int_{\mathbb{X}} \left| \int_{\mathbb{X}} (\mathbb{P}(B|\mathcal{T}_{n}) - \mathbb{P}(B)) d\mathbb{P} \right|. \end{aligned}$$

Now, $(\mathbb{P}(B|\mathcal{T}_n))_n$ is a reverse martingale; as such it converges almost surely to $\mathbb{P}(B|\mathcal{T}_\infty)$. If the σ -algebra $\mathcal{T}_\infty^{\mathbb{P}}$ is trivial, $\mathbb{P}(B|\mathcal{T}_\infty) = \mathbb{P}(B)$.

Theorem 5.4.4. Let X be a $MC((X, \mathcal{X}), P, \mu)$ and \tilde{X} the corresponding spacetime chain $MC((X \times N, \mathcal{X} \otimes \mathcal{N}), \tilde{P}, \tilde{\mu})$. The following are equivalent:

1. For any $\tilde{\mu} \in \mathcal{M}_1(\mathcal{X} \otimes \mathcal{N})$ such that $\tilde{\mu}(\mathbb{X} \times \{k\}) = 1$ for some $k \in \mathbb{N}$, the σ -algebra $\tilde{\mathcal{J}}_{\infty}^{\tilde{\mathbb{P}}_{\tilde{\mu}}}$ is trivial.

/Users/dp/a/ens/markov-poten.tex 59 2015-10-15 • 21:15:51.

- 2. For any $\mu \in \mathcal{M}_1(\mathcal{X})$, the σ -algebra $\mathcal{T}_{\infty}^{\mathbb{P}_{\mu}}$ is trivial.
- 3. For any $\mu, \nu \in \mathcal{M}_1(\mathcal{X})$, we have $\lim_{n\to\infty} \|\mu P^n \nu P^n\| = 0$.

4. The only bounded harmonic spacetime functions are the constants.

Proof:

 $1 \Rightarrow 2$ This follows from the equivalence established in proposition 5.3.7.

 $2 \Rightarrow 3$ Let $x, y \in \mathbb{X}, x \neq y, \mu = \frac{1}{2}(\varepsilon_x + \varepsilon_y)$, and $A = \{X_0 = x\} \in \mathcal{F}$. For any $F \in \mathcal{X}$, we have $\{X_n \in F\} \in \mathcal{T}_n$ and by theorem 5.4.3,

$$\lim_{n\to\infty} |\mathbb{P}_{\mu}(A \cap \{X_n \in F\}) - \mathbb{P}_{\mu}(A)\mathbb{P}_{\mu}(\{X_n \in F\})| = 0.$$

Now,

$$\mathbb{P}_{\mu}(A \cap \{X_n \in F\}) = \mathbb{P}_{\mu}(\{X_n \in F\} | A) \mathbb{P}_{\mu}(A)$$
$$= P^n(x, F) \times \frac{1}{2}$$

and

$$\begin{split} \mathbb{P}_{\mu}(A)\mathbb{P}_{\mu}(X_n \in F) &= \frac{1}{2}(\mathbb{P}_x(X_n \in F) + \mathbb{P}_y(X_n \in F)) \\ &= \frac{1}{4}\mathbb{P}_{\mu}(A)(P^n(x,F) + P^n(y,F)), \end{split}$$

yielding $|\mathbb{P}_{\mu}(A \cap \{X_n \in F\}) - \mathbb{P}_{\mu}(A)\mathbb{P}_{\mu}(X_n \in F)| = \frac{1}{4}|(P^n(x,F) - P^n(y,F)| \xrightarrow[n \to \infty]{} 0$, **uniformly** in $F \in \mathcal{X}$. Now for any two probabilities $\mu, v \in \mathcal{M}_1(\mathcal{X})$, the measure $\sigma_n = \mu P^n - vP^n$ is a signed measure in $\mathcal{M}(\mathcal{X})$. For any additive set function (hence for signed measures also) we have the Hahn decomposition (see [7], p. 441): For every *n*, there is a partition of \mathbb{X} into disjoint sets $\mathbb{X} = \mathbb{X}_n^- \sqcup \mathbb{X}_n^+$ such that $\sigma_n(F) \leq 0$ for all $F \subseteq \mathbb{X}_n^-$ and $\sigma_n(F) \geq 0$ for all $F \subseteq \mathbb{X}_n^-$ and $\sigma_n(F) \geq 0$ for all $F \subseteq \mathbb{X}_n^+$. Therefore, for all $F \in \mathcal{X}$, we define $\sigma_n^+(F) \equiv \sigma_n(F \cap \mathbb{X}_n^+)$ and $\sigma_n^-(F) \equiv -\sigma_n(F \cap \mathbb{X}_n^-)$, so that $\sigma_n(F) = \sigma_n^+(F) - \sigma_n^-(F)$ for two positive measures σ_n^+ and σ_n^- of disjoint support. Now, for all $G \in \mathcal{X}$, with $G \subseteq F$: $\sigma_n(G) \leq \sigma_n^+(G) \leq \sigma_n^+(F)$ with equality holding if $G = F \cap \mathbb{X}_n^+$. Thus, $\sigma_n^+(F) = \sup_{G \in \mathcal{X}; G \subseteq F} \sigma_n(G)$. Similarly, $\sigma_n^-(F) = -\inf_{G \in \mathcal{X}; G \subseteq F} \sigma_n(G)$. Moreover, $\sigma_n^+(G) + \sigma_n^-(G) = |\sigma_n|(G)$ and $||\sigma_n||_1 = \sup_{F \in \mathcal{X}} |\sigma_n|(F) = |\sigma_n|(\mathbb{X})$. Use the explicit form of the measure σ_n to write:

$$\sigma_{n}(\mathbb{X}_{n}^{+}) = (\mu P^{n} - \nu P^{n})(\mathbb{X}_{n}^{+})$$

$$= \int_{\mathbb{X}\times\mathbb{X}} \mu(dx)\nu(dy) (P^{n}(x,\mathbb{X}_{n}^{+}) - P^{n}(y,\mathbb{X}_{n}^{+}))$$

$$\leq \int_{\mathbb{X}\times\mathbb{X}} \mu(dx)\nu(dy) \sup_{F\in\mathscr{X}} |P^{n}(x,F) - P^{n}(y,F)|$$

Now, $\sup_{F \in \mathscr{X}} |P^n(x, F) - P^n(y, F)| \longrightarrow 0$ and $|P^n(x, F) - P^n(y, F)| \le 2$; dominated convergence theorem guarantees that $\sigma_n(\mathbb{X}_n^+) \xrightarrow[n \to \infty]{} 0$. Similarly, we prove that $\sigma_n(\mathbb{X}_n^-) \xrightarrow[n \to \infty]{} 0$. Thus,

$$\|\sigma_n\|_1 = \|\mu P^n - \nu P^n\|_1 = \sigma_n^+(\mathbb{X}) + \sigma_n^-(\mathbb{X}) \xrightarrow[n \to \infty]{} 0.$$

/Users/dp/a/ens/markov-poten.tex 2015-10-15 • 21:15:51. $3 \Rightarrow 4$ Let \tilde{h} be an harmonic spacetime function that is bounded, i.e. there exists some constant $K \leq \infty$, such that for all $x \in \mathbb{X}$ and all $m \in \mathbb{N}$: $|\tilde{h}(x, m)| \leq K$. For any $x, y \in \mathbb{X}$ and any $m, n \in \mathbb{N}$:

$$\begin{split} |\tilde{h}(x,n) - \tilde{h}(y,n)| &= \left| \int_{\mathbb{X}} (P^m(x,dz) - P^m(y,dz))h(z,m+n) \right| \\ &\leq K \left\| P^m(x,\cdot) - P^m(y,\cdot) \right\|_1 \\ &\xrightarrow[m \to \infty]{} 0 \text{ by (3),} \end{split}$$

implying that \tilde{h} is, as a matter of fact, a function merely of the second argument, i.e. there exists a function $g : \mathbb{N} \to \mathbb{R}$ such that for all $x \in X$ and all $n \in \mathbb{N}$, $g(n) = \tilde{h}(x, n)$. Using harmonicity of \tilde{h} , we get, for all $n \in \mathbb{N}$:

$$g(n) = \tilde{h}(x, n), \ \forall x \in \mathbb{X} = \int_{\mathbb{X}} P(x, dy) \tilde{h}(y, n+1)$$
$$= \int_{\mathbb{X}} P(x, dy) g(n+1) = g(n+1).$$

Thus \tilde{h} is in fact a constant.

 $4 \Rightarrow 1$ Applying corollary 5.4.2 to the spacetime chain we conclude that $\tilde{\mathscr{J}}_{\infty}^{\tilde{\mathbb{P}}_{\tilde{\mu}}}$ is trivial.

Remark: The main interest of this result is that we only need to check harmonicity of merely **local** functions i.e. in $m\mathcal{X}$ instead of global properties of the whole sequence *X*.

6

Markov chains on denumerably infinite sets

Here the state space is a denumerably infinite set X. Note however that most of the results stated in this chapter remain valid (as a matter of fact they are even easier) for denumerably finite sets. Since the approach developed here is different from the spectral methods developed in chapter 4, they provide another possible approach of the finite case. Conversely, most of the spectral methods can be adapted (with considerable effort however) to the denumerably infinite case. We can, without loss of generality, assume that $\mathscr{X} = \mathscr{P}(X)$. Recall also the notation introduced earlier for $\flat \in \mathbb{N}$.

$$\begin{split} L_B^{\flat}(x) &= \mathbb{P}_x(\tau_B^{\flat} < \infty) \\ H_B^{\flat}(x) &= \mathbb{P}_x(\eta^{\flat}(B) = \infty) = \mathbb{P}_x(\eta^0(B) = \infty). \end{split}$$

The standard reference for a first approach to Markov chains on denumerably infinite sets is [36]. This chapter concludes with some more advanced topics on the study of recurrence/transience with the help of Lyapunov functions, pertaining to the constructive theory of Markov chains [14].

6.1 Classification of states

We use the notation introduced in definition 5.2.11.

Definition 6.1.1. Let *X* be a MC((X, \mathscr{X}), *P*, μ). The directed graph (X, A) with vertex set X and oriented edge set $A = \{(x, y) \in X \times X : P(x, y) > 0\}$ is called the **graph**

of the Markov chain.

Definition 6.1.2. Let $x, y \in X$.

- We say *y* is **accessible** from *x*, and write $x \rightarrow y$, if $L^1_y(x) > 0$.
- We say *x* and *y* **communicate**, and write $x \leftrightarrow y$, if $x \rightarrow y$ and $y \rightarrow x$.

Remark 6.1.3. Accessibility of *y* from *x* means that there exists an integer n = n(x, y) such that $P^n(x, y) > 0$, i.e. the graph of the Markov chain contains a finite path of directed edges leading from *x* to *y*.

Definition 6.1.4. A state $x \in X$ is called **essential** if for each $y \in X$ such that $x \to y$ follows that $y \to x$. We write X_e for the set of essential states.

Proposition 6.1.5. *Let* P *be a Markov transition matrix on* X*.*

- 1. For all $x \in X$, there exists $y \in X$ accessible from x.
- 2. Accessibility is transitive.
- 3. If $x \in X_e$ then $x \leftrightarrow x$.
- 4. If $x \in X_e$ and $x \to y$ then $y \in X_e$ and $x \leftrightarrow y$.
- 5. *Restricted on* X_e *, communication is an equivalence relationship.*

Proof: The proof of all items is left as an exercise; we only prove item 4. Since $x \in X_e$ and $x \to y$, then $y \to x$; therefore $x \leftrightarrow y$. Suppose that z is such that $y \to z$. We must show that $z \to y$. Now, since $x \to y$ and $y \to z$, transitivity implies that $x \to z$. But $x \in X_e$, hence $z \to x$. Therefore, $z \to x$ and $x \to y$. Transitivity implies $z \to y$.

Corollary 6.1.6. We have the decomposition

 $\mathbb{X} = (\sqcup_{[x] \in K} [x]) \sqcup \mathbb{X}_u,$

where $K = X_e / \leftrightarrow$ is the set of communicating classes $K \ni [x] = \{y \in X_e : x \leftrightarrow y\}$ and X_u is the set of unessential states.

Definition 6.1.7. A subset $A \subseteq X$ is called **absorbing** or **(stochastically) closed** if $A \neq \emptyset$ and for all $x \in A$, $\sum_{y \in A} P_{xy} = 1$. If for some $x \in X$, we have [x] = X, then the chain (or equivalently the transition kernel) is called **irreducible**.

- **Example 6.1.8.** 1. For the "ruin problem" with total fortune *L*, the set of essential states is $\mathbb{X}_e = \{0, L\} = [0] \sqcup [L]$ and the set of unessential ones is $\mathbb{X}_u = \{1, \dots, L-1\}.$
 - 2. For the simple symmetric random walk on \mathbb{Z} , the set of essential states is $\mathbb{X}_e = \mathbb{Z} = [0]$. The chain is irreducible.

Theorem 6.1.9. Let $B \subseteq \mathbb{X}$ and $m_x(B) = \mathbb{E}_x(\tau_B^0) = \mathbb{R}_+ \cup \{+\infty\}$. Then the function $m_x(B)$ is the minimal positive solution of the system

$$m_x(B) = 0 \quad if x \in B$$

$$m_x(B) = 1 + \sum_{y \in B^c} P_{xy} m_y(B) \quad if x \notin B.$$

/Users/dp/a/ens/markov-count.tex 6 2015-10-16 • 16:37:24.
Proof: Exercise. (Hint, use proposition 5.2.12).

Definition 6.1.10. Let $x \in X$ be such that $\mathbb{P}_x(\tau_x < \infty) > 0$. The **period** d_x of x is defined as

 $d_x = \gcd\{n \ge 1 : \mathbb{P}_x(X_n = x) > 0\}.$

If $d_x = 1$, then the state *x* is called **aperiodic**.

Remark 6.1.11. We always have: $1 \le d_x \le \inf\{n \ge 1 : \mathbb{P}_x(X_n = x) > 0\}$.

Proposition 6.1.12. *Period is a class property, i.e.*

$$\forall x \in \mathbb{X}, \forall y \in [x] : d_x = d_y.$$

Proof: Since

$$[x \leftrightarrow y] \Leftrightarrow [x \to y \text{ and } y \to x]$$

$$\Leftrightarrow [\exists n_1 \ge 1 : \mathbb{P}_x(X_{n_1} = y) = \alpha > 0 \text{ and } \exists n_2 \ge 1 : \mathbb{P}_y(X_{n_2} = x) = \beta > 0],$$

it follows that $\mathbb{P}_x(X_{n_1+n_2} = x) \ge \alpha\beta > 0$. Therefore, d_x is a divisor of $n_1 + n_2$. If $\mathbb{P}_y(X_n = y) > 0$, then $\mathbb{P}_x(X_{n_1+n+n_2} = x) \ge \alpha\beta\mathbb{P}_y(X_n = y) > 0$, hence d_x is a divisor of $n_1 + n + n_2$. Consequently, d_x is a divisor of n because it is already a divisor of $n_1 + n_2$. Therefore, d_x is a divisor of all $n \ge 1$ such that $\mathbb{P}_y(X_n = y) > 0$, or

$$d_x \le d_y = \gcd\{n \ge 1 : \mathbb{P}_y(X_n = y) > 0\}.$$

Exchanging the roles of x and y, we get the reverse inequality, hence $d_x = d_y$. \Box

Lemma 6.1.13. Let I be a non-empty set of strictly positive integers that is closed for addition (i.e. for all $x, y \in I$ we have $x + y \in I$) and d = gcd I. Then, the set I contains all the sufficiently large multiples of d.

Remark 6.1.14. In particular, if d = 1, then there exists an integer $n_0 = n_0(I)$ such that $n \ge n_0 \Rightarrow n \in I$.

Proof: Since $d = \gcd I$, there exists necessarily a finite set of integers $\{a_1, \ldots, a_k\} \subseteq I$ such that $d = \gcd\{a_1, \ldots, a_k\}$. If *c* is divisible by *d* then Bezout theorem (stating that for all *a* and *b* strictly positive integers, there exist $u, v \in \mathbb{Z}$ such that $\gcd(a, b) = au + bv$) implies that there exist $u_1, \ldots, u_k \in \mathbb{Z}$ such that $c = a_1u_1 + \ldots + a_ku_k$. For all $i = 2, \ldots, k$ the Euclidean division by a_1 yields $u_i = v_i a_1 + r_i$ with $v_i \in \mathbb{Z}$ and $r_i \in \mathbb{N}$ with $0 \le r_i < a_1$. Hence,

$$c = a_1(u_1 + a_2v_2 + \ldots + a_kv_k) + (a_2r_2 + \ldots + a_kr_k),$$

where the first parenthesis is in \mathbb{Z} and the second in \mathbb{N} . Therefore, on dividing both members by a_1 , we get

$$\mathbb{Z} \ni (u_1 + a_2 v_2 + \dots + a_k v_k) = \frac{c}{a_1} - (a_2 \frac{r_2}{a_1} + \dots + a_k \frac{r_k}{a_1})$$
$$\geq \frac{c}{a_1} - (a_2 + \dots + a_k).$$

For *c* sufficiently large, the left hand side becomes strictly positive, hence $c \in I$. \Box

/Users/dp/a/ens/markov-count.tex 65 2015-10-16 • 16:37:24. **Lemma 6.1.15.** Let *P* be irreducible and possessing an aperiodic state *x* (i.e. $d_x = 1$). Then for every pair of states $y, z \in X$, there exists an integer $n_0 = n_0(y, z) \ge 0$ such that for all $n \ge n_0$, we have $P^n(y, z) > 0$. In particular, all states are aperiodic.

Proof: Let $I_x = \{n \ge 1 : \mathbb{P}_x(X_n = x) > 0\}$. Then I_x is closed for addition because, if $m, n \in I_x$ then $\mathbb{P}_x(X_{n+m} = x) \ge \mathbb{P}_x(X_n = x)\mathbb{P}_x(X_m = x) > 0$. Hence, by previous lemma 6.1.13, the set I_x contains all integers larger than a certain n_0 (because $d_x = 1$). Irreducibility means that for arbitrary states y, z there exist integers m_1 and m_2 such that $P^{m_1}(y, x) > 0$ and $P^{m_2}(x, z) > 0$. Hence, for all $n \ge n_0$, we have

$$P^{m_1+n+m_2}(y,z) \ge P^{m_1}(z,y)P^n(x,x)P^{m_2}(x,z) > 0.$$

Exercise 6.1.16. Let $\mu \in \mathcal{M}_1(\mathbb{Z})$ and $(\xi_n)_n$ be a sequence of independent random variables identically distributed with law μ . Denote by $r = \sum_{z=-\infty}^{-1} \mu(\{z\})$ and consider the Markov chain $MC((\mathbb{X}, \mathcal{X}), P, \mu)$ with $\mathbb{X} = \mathbb{N}$ and $\mathcal{X} = \mathscr{P}(\mathbb{N})$ defined by $X_0 = x \in \mathbb{X}$ and $X_{n+1} = (X_n + \xi_{n+1})^+$ for all $n \ge 0$.

- 1. Determine *P*.
- 2. Using a simple probabilistic argument, show that, depending on the value of *r*, the state 0 is
 - either accessible,
 - or inaccessible.
- 3. Suppose that μ charges all even integers and only them. Consider the partition of the space \mathbb{X} into $\mathbb{X}_0 = 2\mathbb{N}$ and $\mathbb{X}_1 = 2\mathbb{N} + 1$.
 - Are the sets X_0 , X_1 accessible from any point $x \in X$? Are they (stochastically) closed?
 - Are the sets X_0 , X_1 composed of essential states?

6.2 Recurrence and transience

Definition 6.2.1. Let $x \in X$. We say the state x is

- recurrent if $\mathbb{P}_x(X_n = x \text{ i.o}) = 1$,
- transient if $\mathbb{P}_x(X_n = x \text{ i.o}) = 0$.

Exercise 6.2.2. Let *X* be a MC((X, \mathscr{X}), *P*, μ) and *T* a stopping time. Conditionally on *T* < ∞ and *X*_{*T*} = *y* the sequence $\tilde{X} = (X_{T+n})_{n \in \mathbb{N}}$ is a MC((X, \mathscr{X}), *P*, ε_y).

For $x \in X$, define the sequence $(\tau_x^{(n)})_{n \in \mathbb{N}}$ of random times ¹ recursively by

$$\begin{aligned} \tau_x^{(1)} &= \tau_x^1 \\ \tau_x^{(n+1)} &= \inf\{k > \tau_x^{(n)} : X_k = x\} \text{ on the set } \{\tau_x^{(n)} < \infty\}, \end{aligned}$$

^{1.} **Beware** of the difference between the symbol $\tau_x^{(n)}$, defined here, and the symbol $\tau_x^n = \inf\{k \ge n : X_k = x\}$, defined in proposition 5.2.12.

and

$$T_x^{n+1} = \begin{cases} \tau_x^{(n+1)} - \tau_x^{(n)} & \text{if } \tau_x^{(n)} < \infty, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 6.2.3. For $n \in \mathbb{N}^*$, conditionally on $\tau_x^{(n)} < \infty$, the time T_x^{n+1} is independent of $\mathscr{F}_{\tau_x^{(n)}}$ and

$$\mathbb{P}(T_x^{n+1} = k | \tau_x^{(n)} < \infty) = \mathbb{P}_x(\tau_x^1 = k),$$

for all k.

Proof: For *x* and *n* fixed, denote by $\sigma = \tau_x^{(n)}$. Then, σ is a stopping time such that $X_{\sigma} = x$ on $\{\sigma < \infty\}$. On that set, the sequence $(X_{\sigma+n})_{n \in \mathbb{N}}$ is a $MC((X, \mathscr{X}), P, \varepsilon_x)$, independent of X_0, \ldots, X_{σ} .

Recall the notation for the occupation measure $\eta^0(x) := \eta^0(\{x\}) := \sum_{n=0}^{\infty} \mathbb{1}_{\{x\}}(X_n)$. Consequently,

$$\mathbb{E}_x(\eta^0(x)) = \sum_{n \in \mathbb{N}} \mathbb{P}_x(X_n = x) = \sum_{n \in \mathbb{N}} P_{xx}^n = G_{xx}^0 = \sum_{n \in \mathbb{N}} \mathbb{P}_x(\eta^0(x) > n),$$

and $L_x^1(x) := L_{\{x\}}(x) = \mathbb{P}_x(\tau_x^1 < \infty).$

Lemma 6.2.4. For n = 0, 1, 2, ..., we have $\mathbb{P}_x(\eta^0(x) > n) = (L_x(x))^n$.

Proof: If $X_0 = x$, then for all $n \in \mathbb{N}$, we have: $\{\eta^0(x) > n\} = \{\tau_x^{(n)} < \infty\}$. For n = 1 the claim $\mathbb{P}_x(\eta^0(x) > n) = L_x(x)^n$ is true. Suppose that it remains true for *n*. Then

$$\mathbb{P}_{x}(\eta^{0}(x) > n+1) = \mathbb{P}_{x}(\tau_{x}^{(n+1)} < \infty)$$

$$= \mathbb{P}_{x}(\tau_{x}^{(n)} < \infty \text{ and } T_{x}^{n+1} < \infty)$$

$$= \mathbb{P}_{x}(T_{x}^{n+1} < \infty | \tau_{x}^{(n)} < \infty) \mathbb{P}_{x}(\tau_{x}^{(n)} < \infty)$$

$$= L_{x}(x)(L_{x}(x))^{n}.$$

Theorem 6.2.5 (Recurrence/transience dichotomy). *For a* $MC((X, \mathcal{X}), P, \varepsilon_x)$ *the following dichotomy holds:*

1. Either $\mathbb{P}_x(\tau_x^1 < \infty) = 1$, implying that the state *x* is recurrent and $G^0(x, x) = +\infty$,

2. or $\mathbb{P}_x(\tau_x^1 < \infty) < 1$, implying that the state x is transient and $G^0(x, x) < +\infty$. In particular, every $x \in X$ is either recurrent or transient.

Proof:

1. Obviously, $\mathbb{P}_x(\tau_x^1 < \infty) = L_x(x) = 1$. The previous lemma 6.2.4 yields

$$\mathbb{P}_x(\eta^0(x) = \infty) = \lim_{r \to \infty} \mathbb{P}_x(\eta^0(x) > r) = \lim_{r \to \infty} (L_x(x))^r = 1.$$

Hence *x* is recurrent and

$$G^0(x,x) = \sum_{n \in \mathbb{N}} P^n(x,x) = \mathbb{E}_x(\eta^0(x)) = \infty.$$

/Users/dp/a/ens/markov-count.tex 2015-10-16 • 16:37:24. 2. If $L_x(x) = \mathbb{P}_x(\tau_x < \infty) < 1$, then

$$G^{0}(x,x) = \sum_{n \in \mathbb{N}} P^{n}(x,x) = \mathbb{E}_{x}(\eta^{0}(x))$$

= $\sum_{r \ge 0} \mathbb{P}_{x}(\eta^{0}(x) > r) = \sum_{r \ge 0} (L_{x}(x))^{r} = \frac{1}{1 - L_{x}(x)} < \infty,$

implying that $\mathbb{P}_x(\eta^0(x) = \infty) = 0$ (since otherwise $\mathbb{E}_x(\eta^0(x))$ diverges) that *x* is transient.

Remark 6.2.6. Recurrence is equivalent to almost sure finiteness of return time. However, it may happen that $\mathbb{P}_x(\tau_x < \infty) = 1$ and $m_x(x) = \mathbb{E}_x(\tau_x) = \infty$; we say that *x* is **null recurrent**. If, on the contrary $m_x(x) = \mathbb{E}_x(\tau_x) < \infty$ occurs, we say that *x* is **positive recurrent**.

Exercise 6.2.7. Recurrence and transience are class properties.

In summarising, we have the following equivalences for $x \in X$:

 $x \text{ recurrent} \Leftrightarrow L_x(x) = 1 \Leftrightarrow \mathbb{P}_x(X_n = x \text{ i.o.}) = 1$ $\Leftrightarrow \mathbb{P}_x(\eta^0(x) = \infty) = 1 \Leftrightarrow H_x(x) = 1 \Leftrightarrow G^0(x, x) = \infty$ $x \text{ transient} \Leftrightarrow L_x(x) < 1 \Leftrightarrow \mathbb{P}_x(X_n = x \text{ i.o.}) = 0$ $\Leftrightarrow \mathbb{P}_x(\eta^0(x) < \infty) = 1 \Leftrightarrow H_x(x) = 0 \Leftrightarrow G^0(x, x) < \infty.$

Definition 6.2.8. Let (X_n) be a Markov chain on a denumerably infinite set and $B \in \mathcal{X}$. The set *B* is called

- **transient** if $H_B(x) := \mathbb{P}_x(\limsup_n \{X_n \in B\}) = 0$ for all $x \in B$,
- **almost closed** if $0 < \mathbb{P}_x(\liminf_n \{X_n \in B\}) = \mathbb{P}_x(\limsup_n \{X_n \in B\})$,

— **recurrent** if *B* is a communicating class and $L_B(x) = 1$ for all $x \in B$. The chain is called

- **recurrent** if for all $x \in X$, [x] = X and x is recurrent,
- **transient** if all its recurrent classes are absorbing,
- tending to infinity if for every finite $F \in \mathscr{X}$, we have $\mathbb{P}_{x}(\tau_{F^{c}} < \infty) = 1$.

Exercise 6.2.9. 1. Every recurrent class is stochastically closed.

2. All stochastically closed equivalence classes consisting of *finitely* many states are recurrent.

Exercise 6.2.10. If the chain is irreducible and transient, then every finite set $F \in \mathcal{X}$ is transient.

Exercise 6.2.11. If the chain is irreducible and recurrent then all bounded (or non-negative) harmonic functions on \times are constant. (Therefore, if there exist a non-constant bounded (or non-negative) harmonic function, the chain is transient.)

Figure 6.1 - The figure illustrates the phenomenon of an absorbing recurrent class in a transient overall setting in a finite space state.

6.3 Invariant measures

In this section, we consider a Markov chain *X* on (X, \mathcal{X}) associated with the Markov operator *P*. We denote by (\mathcal{F}_n) the natural filtration of the chain.

Definition 6.3.1. A measure $\mu \in \mathcal{M}_+(\mathcal{X})$ is said **invariant**, or **stationary**, or **equilibrium**, if it is *P*-harmonic, i.e. $\mu P = \mu$.

Remark 6.3.2. Any *P*-harmonic measure μ is invariant and vice-versa. If μ is not a probability measure, we extend the notion of standard Markov chain MC((X, \mathscr{X}), *P*, μ) by introducing the measure \mathbb{P}_{μ} on the trajectory space defined by its disintegration $\mathbb{P}_{\mu} = \int_{\mathbb{X}} \mu(dx) \mathbb{P}_{x}$ into its probability components \mathbb{P}_{x} .

Theorem 6.3.3. Let $A \in \mathscr{X}$; define the average occupation measure between excursions $v_x(A) = \mathbb{E}_x(\sum_{n=0}^{\tau_x-1} \mathbb{1}_A(X_n))$. If P is irreducible and recurrent then

v_x(x) = 1, for all x ∈ X,
 v_xP = v_x,
 0 < v_x(y) < ∞, for all y ∈ X.

Proof:

- 1. It is evident that between times 0 and $\tau_x 1$, the chain *X* is at *x* only at instant 0.
- 2. For $n \ge 1$, $\{\tau_x \ge n\} = \{\tau_x < n\}^c = \{\tau_x \le n-1\} \in \mathcal{F}_{n-1}$. Thus for *y* and *z* different from *x*:

$$\mathbb{P}_{x}(X_{n-1} = y, X_{n} = z, \tau_{x} \ge n) = \mathbb{P}_{x}(X_{n-1} = y | X_{n} = z, \tau_{x} \ge n) \mathbb{P}_{x}(X_{n} = z, \tau_{x} \ge n)$$

= $\mathbb{P}_{x}(X_{n-1} = y, \tau_{x} \ge n) P(y, z).$

/Users/dp/a/ens/markov-count.tex 2015-10-16 • 16:37:24. Since *P* is recurrent, we have $\mathbb{P}_x(\tau_x < \infty, X_{\tau_x} = x) = 1$. For $z \neq x$:

$$\begin{split} v_{x}(z) &= \mathbb{E}_{x} (\sum_{n=0}^{\tau_{x}-1} \mathbb{1}_{\{z\}}(X_{n})) = \mathbb{E}_{x} (\sum_{n=1}^{\tau_{x}} \mathbb{1}_{\{z\}}(X_{n})) \\ &= \sum_{n=1}^{\infty} \mathbb{P}_{x} (X_{n} = z, n \leq \tau_{x}) \\ &= \sum_{y \in \mathbb{X}} \sum_{n=1}^{\infty} \mathbb{P}_{x} (X_{n} = z, X_{n-1} = y, n \leq \tau_{x}) \\ &= \sum_{y \in \mathbb{X}} \sum_{n=1}^{\infty} \mathbb{E}_{x} (\mathbb{1}_{X_{n-1} = y} \mathbb{1}_{n \leq \tau_{x}} \mathbb{P}(X_{n} = z | \mathscr{F}_{n-1})) \\ &= \sum_{y \in \mathbb{X}} \sum_{n=1}^{\infty} \mathbb{E}_{x} (P(X_{n-1}, z) \mathbb{1}_{X_{n-1} = y} \mathbb{1}_{n \leq \tau_{x}}) \\ &= \sum_{y \in \mathbb{X}} \sum_{n=0}^{\infty} \mathbb{P}_{x} (X_{n-1} = y, n \leq \tau_{x}) P(y, z) \\ &= \sum_{y \in \mathbb{X}} \mathbb{E}_{x} (\sum_{n=0}^{\tau_{x}-1} \mathbb{1}_{\{y\}} (X_{n} = y)) P(y, z) \\ &= \sum_{y \in \mathbb{X}} \mathbb{V}_{x}(y) P(y, z). \end{split}$$

3. Irreducibility of *P* implies that for all $x, y \in X$, there exist integers $n, m \ge 0$, depending on *x*, *y* such that $P^n(x, y) > 0$ and $P^m(y, x) > 0$. Hence

$$v_x(y) = \sum_{x' \in \mathbb{X}} v_x(x') P^n(x', y) \ge v_x(x) P^n(x, y) = P^n(x, y) > 0.$$

Similarly, $v_x(y)P^m(y, x) \le v_x(x) = 1$, implying that $v_x(y) \le \frac{1}{P^m(y, x)} < \infty$.

Remark 6.3.4. Thus, v_x is a σ -finite measure that is harmonic for *P*.

Theorem 6.3.5. Let P be irreducible and $\mu \in \mathcal{M}_+(\mathcal{X})$ such that — μ is P-harmonic, and — $\mu(x) = 1$ for some $x \in \mathbb{X}$. Then $\mu \ge v_x$. If P is further recurrent, then $\mu = v_x$.

/Users/dp/a/ens/markov-count.tex 70 2015-10-16 • 16:37:24. *Proof:* Harmonicity of μ means that for all $z \in X$, we have:

$$\begin{split} \mu(z) &= \sum_{y_0 \in X} \mu(y_0) P(y_0, z) \\ &= \mu(x) P(x, z) + \sum_{y_0 \neq x} \mu(y_0) P(y_0, z) \\ &= P(x, z) + \sum_{y_0 \neq x} (\sum_{y_1 \in X} \mu(y_1) P(y_1, y_0)) P(y_0, z) \\ &= P(x, z) + \sum_{y_0 \neq x} P(x, y_0) P(y_0, z) + \sum_{y_0, y_1 \neq x} \mu(y_1) P(y_1, y_0) P(y_0, z) \\ &\vdots \\ &= P(x, z) + \sum_{y_0 \neq x} P(x, y_0) P(y_0, z) + \ldots + \sum_{y_0, \ldots, y_{n-1} \neq x} P(x, y_0) \cdots P(y_{n-1}, y_{n-1} P(y_{n-1}, z) \\ &+ \sum_{y_0, \ldots, y_{n-1} \neq x, y_n \in X} \mu(y_n) P(y_n, y_{n-1}) \cdots P(y_0, z) \\ &\geq P(x, z) + \sum_{y_0 \neq x} P(x, y_0) P(y_0, z) + \ldots + \sum_{y_0, \ldots, y_{n-1} \neq x} P(x, y_0) \cdots P(y_{n-1}, y_{n-1} P(y_{n-1}, z) \\ &= \mathbb{P}_x(X_1 = z, \tau_x \ge 1) + \ldots + \mathbb{P}_x(X_n = z, \tau_x \ge n) \\ n \rightarrow \infty \quad \mathbb{E}_x(\sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = z; \tau_x \ge n\}}) \\ &= v_x(z). \end{split}$$

If *P* is additionally recurrent, then v_x is harmonic by theorem 6.3.3 and $\kappa = \mu - v_x \ge 0$ by the previous result and further κ is harmonic as a difference of two harmonic measures. Irreducibility of *P* implies that for every $z \in X$, there exists an integer *n* such that $P^n(z, x) > 0$. Now, harmonicity of κ reads:

$$\kappa(x) = \mu(x) - \nu_x(x) = 1 - 1 = 0 = \sum_{z' \in \mathbb{X}} \kappa(z') P^n(z', x) \ge \kappa(z) P^n(z, x),$$

implying that $0 \le \kappa(z) \le \frac{\kappa(x)}{P^n(z,x)} = 0$.

Theorem 6.3.6. Let *P* be irreducible. The following are equivalent:

- 1. All states are positive recurrent.
- 2. There exists a positive recurrent state.
- 3. Let $\pi \in \mathcal{M}_+(\mathcal{X})$ be defined by $\pi(x) = \frac{1}{m_x(x)}$, for all $x \in \mathbb{X}$. Then π is a *P*-harmonic probability measure.

Proof:

 $1 \Rightarrow 2$: Obvious.

 $2 \Rightarrow 3$: Suppose that the state *x* is positive recurrent, hence recurrent. Irreducibility of *P* implies then recurrence of *P*. The theorem 6.3.3 guarantees then that v_x is *P*-harmonic. Now,

$$v_{x}(\mathbb{X}) = \sum_{y \in \mathbb{X}} v_{x}(y) = \mathbb{E}_{x}\left(\sum_{n=0}^{\tau_{x}-1} \mathbb{1}_{\mathbb{X}}(X_{n})\right) = \mathbb{E}_{x}\tau_{x} = m_{x}(x) < \infty,$$

hence $\pi = \frac{v_x}{v_x(X)} = \frac{v_x}{m_x(x)}$ is a *P*-harmonic probability measure, verifying further $\pi(x) = \frac{v_x(x)}{m_x(x)} = \frac{1}{m_x(x)}$.

/Users/dp/a/ens/markov-count.tex 71 2015-10-16 • 16:37:24. 3 ⇒ 1: For every *x*, *y* ∈ X, irreducibility of *P* implies the existence of an integer *n* such that $P^n(x, y) > 0$. Invariance of π reads: $\pi(y) = \sum_{z \in X} \pi(z)P^n(z, y) \ge \pi(x)P^n(x, y) > 0$. Since π is a probability, $\pi(X) = \sum_{y \in X} \pi(y) = 1$, on defining $\lambda(y) = \frac{\pi(y)}{\pi(x)}$ yields $\lambda(x) = 1$ and harmonicity of λ . By virtue of theorem 6.3.5, $\lambda \ge v_x$. Consequently,

$$m_{x}(x) = v_{x}(\mathbb{X}) = \sum_{y \in \mathbb{X}} \leq \frac{\sum_{y \in \mathbb{X}} \pi(y)}{\pi(x)} = \frac{\pi(\mathbb{X})}{\pi(x)} = \frac{1}{\pi(x)} < \infty,$$

implying positive recurrence of x, hence recurrence. Since P is irreducible and x is arbitrary P itself is recurrent and the previous inequality is as a matter of fact an equality. Therefore, each x is positive recurrent.

Exercise 6.3.7. Let *X* be a simple symmetric random walk on \mathbb{Z} . Show that

- the kernel *P* is irreducible and recurrent;
- the counting measure κ on \mathbb{Z} is invariant;
- every other invariant measure for *P* is a scalar multiple of κ ;
- the chain is null recurrent.

Exercise 6.3.8. Recurrence combined with irreducibility guarantees the existence of an invariant measure. Give an example showing that the converse is in general false if the invariant measure is not a *probability*.

6.4 Convergence to equilibrium

Although direct spectral methods, very much comparable to the finite case exist to prove convergence to equilibrium for chains on denumerably infinite spaces, we give here a purely probabilistic method, based on the idea of coupling.

Theorem 6.4.1. Let X be a $MC((X, \mathcal{X}), P, \cdot)$ and suppose that P is irreducible and aperiodic and possesses an invariant probability π . Then for every initial $\mu \in \mathcal{M}_1(\mathcal{X})$ we have

$$\lim_{n\to\infty}\mathbb{P}_{\mu}(X_n=y)=\pi(y),\;\forall\,y\in\mathbb{X}.$$

In particular $\lim_{n\to\infty} P^n(x, y) = \pi(y)$, for all $x, y \in X$.

Proof: Let *Y* be a MC((X, \mathscr{X}), *P*, π) independent of *X*. Considering simultaneously both chains, requires extending the trajectory space. Thus the sequence of pairs $(X_n, Y_n)_{n \in \mathbb{N}}$ is a MC(($X \times X, \mathscr{X} \otimes \mathscr{X}$), $\hat{P}, \mu \otimes \pi$), where $\hat{P}((x, y), (x', y')) = P(x, x')P(y, y')$. On the underlying abstract probability space $(\Omega, \mathscr{F}, \mathbb{P})$ (extended if necessary to hold the sequence $(X_n, Y_n)_{n \in \mathbb{N}}$), we define, for an arbitrary fixed state $z_0 \in X$, the random time $T = \inf\{n \ge 1 : X_n = Y_n = z_0\}$.

First step: establishing $\mathbb{P}_{\mu \otimes \pi}(T < \infty) = 1$. Aperiodicity and irreducibility of *P* implies that there exists a sufficiently large integer *n* such that $\hat{P}^n((x, y), (x', y')) > 0$,

for all $x, x', y, y' \in \mathbb{X}$. Therefore, \hat{P} is irreducible. Obviously \hat{P} verifies the invariance condition $(\pi \otimes \pi)\hat{P} = \pi \otimes \pi$ with an invariant probability $\pi \otimes \pi \in \mathcal{M}_1(\mathcal{X} \otimes \mathcal{X})$; consequently, \hat{P} is positive reurrent. As such, it verifies $\hat{\mathbb{P}}_{\hat{\mu}}(\hat{\tau}_{(z_0,z_0)} < \infty) = 1$. Now, it is immediately seen that $T = \hat{\tau}_{(z_0,z_0)}$, establishing thus that the two independent chains *X* and *Y* will meet at point z_0 in an almost surely finite time.

Second step: coupling. Define new (X, \mathcal{X}) -valued processes $(Z_n)_{n \in \mathbb{N}}$ and $(Z'_n)_{n \in \mathbb{N}}$ as follows:

$$Z_n = \begin{cases} X_n & \text{if } n < T \\ Y_n & \text{if } n \ge T, \end{cases}$$
$$Z'_n = \begin{cases} Y_n & \text{if } n < T \\ X_n & \text{if } n \ge T. \end{cases}$$

These processes allow introducing new $(\mathbb{X} \times \mathbb{X}, \mathscr{X} \otimes \mathscr{X})$ processes W and W' by defining $W_n = (X_n, Y_n)$ and $W'_n = (Z_n, Z'_n)$, for all $n \in \mathbb{N}$. Now strong Markov property implies that the translated chain $(W_{T+n})_{n \in \mathbb{N}}$ is a MC($(\mathbb{X} \times \mathbb{X}, \mathscr{X} \otimes \mathscr{X}), \hat{P}, \varepsilon_{(z_0, z_0)}$), independent of $(X_0, Y_0), \ldots, (X_{T-1}, Y_{T-1})$. Similarly, $(W'_n)_{n \in \mathbb{N}}$ is a MC($(\mathbb{X} \times \mathbb{X}, \mathscr{X} \otimes \mathscr{X}), \hat{P}, \varepsilon_{(z_0, z_0)}$), $\mathscr{X}, \hat{P}, \mu \otimes \pi$), while $(Z_n)_{n \in \mathbb{N}}$ is a MC($(\mathbb{X}, \mathscr{X}), P, \mu$).

Third step: establishing convergence to equilibrium. By virtue of the definition of (Z_n) , we have:

$$\hat{\mathbb{P}}_{\mu \otimes \pi}(Z_n = y) = \hat{\mathbb{P}}_{\mu \otimes \pi}(X_n = y; n < T) + \hat{\mathbb{P}}_{\mu \otimes \pi}(Y_n = y; n \ge T).$$

Now

$$\begin{aligned} |\mathbb{P}_{\mu}(X_n = x) - \pi(x)| &= |\hat{\mathbb{P}}_{\mu \otimes \pi}(Z_n = x) - \pi(x)| \\ &= |\hat{\mathbb{P}}_{\mu \otimes \pi}(Z_n = x) - \mathbb{P}_{\pi}(Y_n = x)| \\ &= |\hat{\mathbb{P}}_{\mu \otimes \pi}(Z_n = x; n < T) - \hat{\mathbb{P}}_{\mu \otimes \pi}(Z'_n = x; n < T)| \\ &\leq \hat{\mathbb{P}}_{\mu \otimes \pi}(n < T) \\ &\xrightarrow[n \to \infty]{} 0, \end{aligned}$$

the last line holding because $T < \infty$ almost surely.

Proposition 6.4.2. *Let P be irreducible. Then, there exist an integer* $d \ge 1$ *and a partition* $X = X_0 \sqcup ... \sqcup X_{d-1}$ *such that*

- 1. *if* $x \in X_i$ and $y \in X_j$, then $P^n(x, y) = 0$ unless n (j i) is divisible by d, and
- 2. for all $r \in \{0, ..., d-1\}$, for all $x, y \in \mathbb{X}_r$, there exists $n_0 = n_0(x, y)$ such that for all $n \ge n_0$ we have $P^{nd}(x, y) > 0$.

Proof: Let $d = d_x$ for some $x \in X$. Since the chain is irreducible, it is composed of a single communicating class, say [x] = X. Hence, for all $y \in X$, $d_y = d$. Let m_1 be such that $\mathbb{P}_x(X_{m_1} = y) > 0$ and m_2 such that $\mathbb{P}_y(X_{m_2} = x) > 0$. Then, $\mathbb{P}_y(X_{m_1+m_2} = y) \ge \mathbb{P}_y(X_{m_2} = x)\mathbb{P}_x(X_{m_1} = y) > 0$, therefore $m_1 + m_2$ is divisible by d. If $\mathbb{P}_x(X_n = y) > 0$, then $\mathbb{P}_y(X_{n+m_2} = y) > 0$; hence $n + m_2$ is divisible by d. Combined with the divisibility of $m_1 + m_2$ yields $n - m_1$ divisible by d; otherwise stated, there exists

an integer $k \ge 0$ such that $n = kd + m_1$. But for the same reason, $m_1 = ld + r$ with some integer $l \ge 0$ and some $r \in \{0, ..., d-1\}$. Thus, n = (k+l)d + r, with $k+l \ge 0$, yielding $P^n(x, y) > 0$ only if n = jd + r. Chose an arbitrary $a \in X$ and define

$$\mathbb{X}_r = \{ y \in \mathbb{X} : \mathbb{P}_a(X_{md+r} = y) > 0, \text{ for an } m \ge 0 \}.$$

If $x \in X_i$, $y \in X_j$, and $P^n(x, y) > 0$, then there exists $m_0 \ge 0$ such that $\mathbb{P}_a(X_{m_0d+i} = x) > 0$, hence $\mathbb{P}_a(X_{m_0d+i+n} = y) > 0$. Therefore, $n + m_0d + i = kd + j$ for some $k \ge 0$, showing that n - (j - i) is a multiple of d.

The second claim is evident.

Remark 6.4.3. When $X_n \in X_r$ implies $X_{n+1} \in X_{r+1 \mod d}$, we say that $(X_r)_{r=0,\dots,d-1}$ are the **cyclic classes** of the chain. The corresponding partition is the **cycle de-composition** of the state space.

Proposition 6.4.4. Let *P* be irreducible with period $d \ge 1, X_0, ..., X_{d-1}$ its cyclic classes, and $\mu \in \mathcal{M}_1(\mathcal{X})$ an arbitrary probability such that $\mu(X_0) = 1$. Then for all $r \in \{0, ..., d-1\}$ and all $y \in X_r$,

$$\lim_{n \to \infty} \mathbb{P}_{\mu}(X_{nd+r} = y) = \frac{d}{m_{\gamma}(y)}$$

In particular, for all $x \in X_0$, we have $\lim_{n\to\infty} P^{nd+r}(x, y) = \frac{d}{m_y(y)}$.

Proof: On defining $v = \mu P^r$, we see that $v(X_r) = 1$, by virtue of the previous theorem. Now the process $(\tilde{X}_n)_{n \in \mathbb{N}}$ defined by $\tilde{X}_n = X_{nd+r}$ is a $\mathsf{MC}(X_r, \mathscr{X}_r), P^n, v$) that is irreducible and aperiodic on X_r . For $\tilde{\tau}_y = \inf\{n \ge 1 : \tilde{X}_n = y\}$, we have for all $y \in X_r$: $\mathbb{E}_y(\tilde{\tau}_y) = \frac{m_y(y)}{d}$. Hence $\mathbb{P}_\mu(X_{nd+r} = y) = \tilde{\mathbb{P}}_v(\tilde{X}_n = y) \to \frac{m_y(y)}{d}$.

Remark 6.4.5. If $m_y(y) = \infty$ (i.e. the state — hence the chain — is either transient or null recurrent), then $\lim_{n\to\infty} P^{nd+r}(x, y) = 0$, for all x. We say that the mass **escapes at infinity**.

6.5 Ergodic theorem

The archetype of ergodic² theorems in probability is the strong law of large numbers, stating that for a sequence of independent identically distributed random variables (ξ_n) with $\mathbb{E}\xi_1 = m \in [0,\infty]$, the "time" average $\frac{\xi_1 + \dots + \xi_n}{n}$ converges

^{2.} The term "ergodic" has been coined by the Austrian physicist Ludwig Boltzmann. In its initial formulation it applied to macroscopic physical systems and gave, for the first time, an explanation why physical systems macroscopically evolve irreversibly towards equilibrium although microscopically they are governed by time-reversible physical laws. Boltzmann also proved, under the so called ergodic hypothesis, that if physical quantities are averaged over large times, statistical fluctuations disappear so that they attain a deterministic value. Nowadays, ergodic theory is an independent branch of mathematics, at the (common!) frontier of measure theory, geometry, group theory, operator algebras, stochastic processes, etc.

almost surely to the "space" average *m*. This theorem has several extensions to variables that are neither independent nor identically distributed. For Markov chains it reads:

Theorem 6.5.1 (Ergodic theorem for Markov chains). *Let P be irreducible and* $\mu \in \mathcal{M}_1(\mathcal{X})$. *Then,*

1. the empirical occupation probability³ converges almost surely, more precisely

$$\lim_{n\to\infty}\frac{\eta_n^0(x)}{n}=\frac{1}{m_x(x)}, \mathbb{P}_{\mu}\text{-}a.s.;$$

2. if additionally, the chain is positive recurrent, then for all $f \in b\mathcal{X}$, the trajectory averages of f converge almost surely to the integral of f with respect to the invariant measure, more precisely

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(X_k)=\overline{f}:=\int_{\mathbb{X}}\pi(dx)f(x)=\sum_{x\in\mathbb{X}}\pi(x)f(x),$$

where π is the unique invariant probability of the chain.

Proof:

1. If *P* is transient then every state is visited only finitely many times, so that $\eta^0(x) < \infty$ almost surely. Thus

$$\frac{\eta_n^0(x)}{n} \le \frac{\eta^0(x)}{n} \to 0 = \frac{1}{m_x(x)}$$

and the claim is proved.

Suppose therefore that *P* is recurrent and let $x \in X$ be fixed. Recurrence of *x* entails $\tau_x < \infty$ almost surely. Thus the process \tilde{X} defined, for all *n*, by $\tilde{X}_n = X_{\tau_x+n}$ is a MC(X, \mathscr{X}), P, ε_x) independent of X_0, \ldots, X_{τ_x} . Thus, for $n > \tau_x$, we have: $\eta_n^0(x) = \eta_{\tau_x}^0(x) + \tilde{\eta}_{n-\tau_x}^0(x)$. Since $\frac{\eta_{\tau_x}^0(x)}{n} \le \frac{\tau_x}{n} \to 0$ (because $\mathbb{P}_x(\tau_x < \infty) = 1$), it is enough to consider $\mu = \varepsilon_x$. Recall that we have introduced the sequence of random times $T_x^{r+1} = \tau_x^{(r+1)} - \tau_x^{(r)}$ as the time span between two successive returns to *x* and shown in lemma 6.2.3 that $\mathbb{P}_x(T_x^{(r+1)} = n | \tau_x^{(r)} < \infty) = \mathbb{P}_x(\tau_x = n)$. Therefore, $\mathbb{E}_x(T_x^{(r)}) = m_x(x)$ for all *r*. Now, $T_x^{(1)} + \ldots + T_x^{(\eta_n^0(x)-1)} \le n-1$ while $T_x^{(1)} + \ldots + T_x^{(\eta_n^0(x))} \ge n$, so that

$$\frac{T_x^{(1)} + \ldots + T_x^{(\eta_n^0(x) - 1)}}{\eta_n^0(x)} \le \frac{n}{\eta_n^0(x)} \le \frac{T_x^{(1)} + \ldots + T_x^{(\eta_n^0(x))}}{\eta_n^0(x)}$$

Since the random variables $T_x^{(r)}$ are independent and identically distributed, the strong law of large numbers guarantees that $\lim_{n\to\infty} \frac{T_x^{(1)} + ... + T_x^{(n)}}{n} = m_x(x)$ almost surely. On the other hand, recurrence of *P* guarantees that $\lim_{n\to\infty} \eta_n^0(x) = \infty$. Combining these two results with the above inequalities implies that $\lim_{n\to\infty} \frac{n}{\eta_n^0(x)} = \frac{1}{m_x(x)}$.

^{3.} We recall that the occupation measure up to time *n* reads $\eta_n^0(x) = \sum_{k=0}^{n-1} \mathbb{1}_{\{x\}}(X_k)$.

2. If *P* possesses an invariant probability π , then

$$|\frac{1}{n}\sum_{k=0}^{n-1}f(X_k) - \overline{f}| = |\sum_{x \in \mathbb{X}} (\frac{\eta_n^0(x)}{n} - \pi(x))f(x)|.$$

Since $f \in b\mathcal{X}$, we can without loss of generality assume that $|f|_{\infty} \leq 1$, so that for any subset $\mathbb{Y} \subseteq \mathbb{X}$ the right hand side of the above equation can be majorised by

$$\begin{aligned} |\frac{1}{n} \sum_{k=0}^{n-1} f(X_k) - \overline{f}| &\leq |\sum_{x \in \mathbb{Y}} (\frac{\eta_n^0(x)}{n} - \pi(x)) f(x)| + |\sum_{x \in \mathbb{Y}^c} (\frac{\eta_n^0(x)}{n} - \pi(x)) f(x)| \\ &\leq |\sum_{x \in \mathbb{Y}} \frac{\eta_n^0(x)}{n} - \pi(x)| + \sum_{x \in \mathbb{Y}^c} (\frac{\eta_n^0(x)}{n} + \pi(x)) \\ &\leq 2\sum_{x \in \mathbb{Y}} |\frac{\eta_n^0(x)}{n} - \pi(x)| + 2\sum_{y \in \mathbb{Y}^c} \pi(x). \end{aligned}$$

Now, $\pi(\mathbb{X}) = 1$, hence for all $\varepsilon > 0$, there exists a finite $\mathbb{Y} \subseteq \mathbb{X}$ such that $\pi(\mathbb{Y}^c) < \varepsilon/4$. Since, on the other hand, $\mathbb{P}_{\mu}\left(\frac{\eta_n^0(x)}{n} \to \pi(x)\right)$, for all $x \in \mathbb{X}$ = 1, for that ε we can chose $N = N(\omega, \varepsilon)$ such that for $n \ge N$, $\sum_{y \in \mathbb{Y}} |\frac{\eta_n^0(x)}{n} - \pi(x)| < \varepsilon/4$. Thus, finally, $|\frac{1}{n} \sum_{k=0}^{n-1} f(X_k) - \overline{f}| < \varepsilon$.

6.6 Semi-martingale techniques for denumerable Markov chains

The general setting in this section will be that of a $X = (X_n)_{n \in \mathbb{N}}$. The chain will be of $MC((X, \mathscr{X}), P, \varepsilon_x)$; however, the underlying abstract probability space $(\Omega, \mathscr{F}, \mathbb{P})$ will also be tacitly considered, either as identified with the trajectory space or larger than it. Measurable functions $f : X \to \mathbb{R}_+$ will be also considered throughout the section verifying some conditions; applied on the chain, they transform it into a semi-martingale process $Z_n = f(X_n)$. The asymptotic properties of the chain are obtained as stability properties of the process obtained by transformation. The functions f allowing such a study are termed **Lyapunov functions**. They constitute an essential component of the constructive theory of Markov chains [14].

6.6.1 Some historical remarks on Lyapunov method

Introduction historique de fonctions de Lyapunov pour équa-diff [31]

76

6.6.2 Foster's criteria

In [15], Foster established criteria for recurrence/transience of Markov chains. Here we give a slightly more general form of these criteria. Since for every $x \in X$, the $P(x, \cdot)$ is a probability on \mathscr{X} , it is meaningful to ask integrability with respect to this measure. We denote by

$$\mathsf{Dom}(P) = \{ f \in m\mathscr{X} : \forall x \in \mathbb{X}, \int_{\mathbb{X}} P(x, dy) f(y) < \infty \},\$$

and analogously $Dom_+(P)$ for non-negative functions. For a $f \in Dom(P)$, we define $Df(x) = (P - I)f(x) = \int_X P(x, dy)f(y) - f(x)$.

Theorem 6.6.1 (Foster's criterion for positive recurrence). Let *X* be an irreducible $MC((X, \mathcal{X}), P, \mu)$. The following are equivalent:

- 1. X is positive recurrent.
- 2. There exists a triple (V, F, ε) , where $V \in Dom_+(P)$, $\varepsilon > 0$, and $F \in \mathscr{X}$ a finite set, such that: $DV(y) \leq -\varepsilon$ for all $y \notin F$.

Proof:

1 ⇒ 2: Let $x \in X$ be fixed, $F = \{x\}$, and $\tau_F = \inf\{n \ge 1 : X_n \in F\}$. Positive recurrence entails that for every $\mathbb{E}_{V}(\tau_F) < \infty$ for all $y \in F$. Define subsequently:

$$V(y) = \begin{cases} 0 & \text{if } y \in F, \\ \mathbb{E}_{y}(\tau_{F}) & \text{if } y \notin F. \end{cases}$$

Now, for $y \notin F$:

$$DV(y) = \mathbb{E}(V(X_{n+1}) - V(X_n) | X_n = y) = \sum_{z \in \mathbb{X}} P_{yz} V(z) - V(y)$$
$$= \sum_{z \in F^c} P_{yz} \mathbb{E}_z(\tau_F) + \sum_{z \in F^c} P_{yz} \cdot \mathbf{0} - \mathbb{E}_y(\tau_F) = \mathbb{E}_y(\tau_F - 1) - \mathbb{E}_y(\tau_F) = -1,$$

the last line following from the observation, valid for all $y \in F$,

$$\begin{split} \sum_{z \in F^c} P_{yz} \mathbb{E}_z(\tau_F) &= \sum_{z \in F^c} P_{yz} \sum_{k=1}^{\infty} k \mathbb{P}_z(\tau_F = k) = \sum_{k=1}^{\infty} k \mathbb{P}_y(\tau_F = k+1) \\ &= \sum_{k=1}^{\infty} k \mathbb{P}_y(\tau_F - 1 = k) = \mathbb{E}_y(\tau_F - 1). \end{split}$$

This observation establishes claim $DV(y) \le -\varepsilon$ with $\varepsilon = 1$. Additionally, the last equation is equivalent to stating:

$$\infty > \mathbb{E}_{y}(\tau_F) - 1 = \sum_{z \in F^c} P_{yz} \mathbb{E}_{z}(\tau_F) = \sum_{z \in F^c} P_{yz} V(z) = \mathbb{E}(V(X_{n+1}) | X_n = y),$$

establishing thus claim $V \in Dom_+(P)$.

/Users/dp/a/ens/markov-count.tex 77 2015-10-16 • 16:37:24. $2 \Rightarrow 1$: For $n \ge 0$, define $\mathscr{F}_n = \sigma(X_0, ..., X_n)$, $W_n = V(X_n)$, and $\tau_F = \inf\{n \ge 1 : X_n \in F\}$. Then, the strict supermartingale condition entails

$$\mathbb{E}(W_{(n+1)\wedge\tau_F} - W_{n\wedge\tau_F} | X_n = y) \le -\varepsilon \mathbb{1}_{\tau_F > n}$$

Note that $\tau_F > n$ means, in particuar, that $y \notin F$. For $y \notin F$, the last inequality and theorem C.1.1 imply $\mathbb{E}_y(\tau_F) \leq \frac{\mathbb{E}_y(\tau_F)}{\varepsilon} = \frac{V(y)}{\varepsilon} < \infty$. Now, since for all *y* we have:

$$\mathbb{E}_{y}(\tau_{F}) = 1 + \sum_{z \in F^{c}} P_{yz} \mathbb{E}_{z}(\tau_{F}) \le 1 + \frac{1}{\varepsilon} \sum_{z \in F^{c}} P_{yz} V(z)$$
$$\le 1 + \frac{1}{\varepsilon} \sum_{z \in \mathbb{X}} P_{yz} V(z) = \frac{1}{\varepsilon} \mathbb{E}(V(X_{n+1}) | X_{n} = y) < \infty$$

In all situations, we have for all $z \in \mathbb{X}$, $\mathbb{E}_z(\tau_F) < \infty$, implying positive recurrence of the chain because for one *z*, hence for all (due to irreducibility), $\mathbb{E}_z(\tau_z) < \infty$.

Theorem 6.6.2. Let X be an irreducible $MC((X, \mathcal{X}), P, \mu)$, where $card X = \aleph_0$. The following are equivalent:

- 1. X is transient.
- 2. There exists a pair (V, A) where $V \in Dom_+(P)$ and $A \in \mathscr{X}$ such that:
 - (a) $DV(y) \leq 0$, for $y \notin A$ and
 - (b) there exists $y \notin A$ such that $V(y) < \inf_{z \in A} V(z)$.

Proof:

2 ⇒ 1: Define $W_n = V(X_{n \wedge \tau_A})$ for $n \ge 0$. Then, claim a) guarantees that (W_n) is a positive supermartingale. For arbitrary $x \in X$, we have

$$\mathbb{E}_x W_n = \mathbb{E}_x W_0 + \sum_{k=0}^{n-1} \mathbb{E}_x (W_{k+1} - W_k).$$

On the event { $\tau_A \le n$ } the summand on the right hand side of the above equality is 0 while on { $\tau_A > n$ } is negative. Therefore, in all situations, $\mathbb{E}_x W_n \le \mathbb{E}_x W_0 = V(x)$. Suppose that the chain is not transient. Then $\mathbb{P}_x(\tau_A < \infty) = 1$. Since $W_n \to W_\infty$ almost surely, by vitrue of the supermartingale convergence theorem, we have equivalently: $V(X_{n \land \tau_A}) \to V(X_{\tau_A})$, almost surely. Fatou's lemma yields:

$$\mathbb{E}_{x}(V(X_{\tau_{A}})) = \mathbb{E}_{x}(\liminf_{n} W_{n}) \leq \liminf_{n} \mathbb{E}_{x}W_{n} \leq \mathbb{E}_{x}W_{0} = V(x),$$

which contradicts claim b) (because $X_{\tau_A} \in A$). We conclude *ad absurdum* that the chain must be transient.

 $1 \Rightarrow 2$: Fix some $x \in \mathbb{X}$ and define $A = \{x\}$ and $f : \mathbb{X} \to \mathbb{R}_+$ by

$$V(y) = \begin{cases} 1 & \text{if } y \in A \\ \mathbb{P}_y(\tau_A < \infty) & \text{if } y \not\in A. \end{cases}$$

/Users/dp/a/ens/markov-count.tex 2015-10-16 • 16:37:24. Then, for $y \not\in A$:

$$\begin{split} DV(y) &= \mathbb{E}(V(X_{n+1}) - V(X_n) | X_n = y) \\ &= \sum_{z \in \mathbb{X}} P_{yz} V(z) - V(y) = P_{yx} + \sum_{z \in A^c} P_{yz} V(z) - V(y) \\ &= \mathbb{P}_y(\tau_A = 1) + \sum_{z \in A^c} P_{yz} \sum_{N=1}^{\infty} \mathbb{P}_z(\tau_A = N) - \sum_{N=1}^{\infty} \mathbb{P}_y(\tau_A = N) = 0, \end{split}$$

guaranteeing thus a). If the chain is transient, then for all $y \neq x$:

$$V(y) = \mathbb{P}_{y}(\tau_{A} < \infty) < 1 = V(x) = \inf_{z \in A} V(z).$$

Since the state space X is not necessarily ordered, we need the following

Definition 6.6.3. On a denumerably infinite set X, we say a function $f : X \to \mathbb{R}_+$ **tends to infinity**, and write $f \to \infty$, if for every $n \in \mathbb{N}$, the set $X_n = \{x \in X : f(x) \le n\}$ is finite.

Theorem 6.6.4. Let X be an irreducible $MC((X, \mathcal{X}), P, \mu)$, the set X being denumerably infinite. The following are equivalent:

- 1. X is recurrent.
- 2. There exists a positive measurable function $V \in Dom_+(P)$ tending to infinity, and a finite set $F \in \mathscr{X}$ such that $DV(y) \leq 0$, for all $y \notin F$.

Proof:

 $2 \Rightarrow 1$: Let $W_n = V(X_{n \wedge \tau_F})$, for $n \ge 0$. From b) follows that (W_n) is a supermartingale; therefore, $W_{\infty} = \lim_{n \to \infty} W_n$ exists almost surely. Fatou's lemma implies that

$$\mathbb{E}_{x}(W_{\infty}) \leq \liminf_{n} \mathbb{E}_{x}(W_{n}) \leq \mathbb{E}_{x}(W_{0}) = V(x).$$

Suppose now that *X* is transient. Irreducibility implies then that the finite set $F \in \mathscr{X}$ is transient, so that $\mathbb{P}_x(\tau_F = \infty) = s_x > 0$. Irreducibility implies that not only *F* but every finite set $F' \in \mathscr{X}$ is transient, i.e. $\eta^0(F') < \infty$ almost surely. Denote by $K_{F'} = \sup\{V(x), x \in F'\}$. It is then obvious (why?) that

$$\{\eta^0(F') < \infty\} \subseteq \{\liminf V(X_n) \ge K_{F'}\}.$$

For all $a \ge 0$, let $F_a = \{x \in X : V(x) \le a\}$. Then, for $c \ge K_F$, the set F_c is finite and contains F. Since F_c is finite, it follows that $\mathbb{P}_x(\eta^0(F_c) < \infty) = 1$. Hence

$$\mathbb{E}_{x}(W_{\infty}) = \mathbb{E}_{x}(\liminf W_{n}) \ge \mathbb{E}_{x}(\liminf W_{n} \mathbb{1}_{\{\tau_{F}=\infty\}} \mathbb{1}_{\{\eta^{0}(F_{c})<\infty\}})$$
$$\ge c\mathbb{P}_{x}(\eta^{0}(F_{c})<\infty;\tau_{F}=\infty) \ge cs_{x}>0.$$

Since *c* is arbitrary, it follows that $\mathbb{E}_x(W_\infty) = \infty$, in contradiction with $\mathbb{E}_x(W_\infty) \le V(x)$. We conclude *ad absurdum* that *X* is recurrent.

1 ⇒ 2: Since the set X is denumerably infinite, there exists a bijection b: X →
 N. Introduce a new chain X̂ on X evolving with the transition matrix P̂ defined by

$$\hat{P}_{xy} = \left\{ \begin{array}{ll} 1 & \text{if } b(x) = b(y) = 0 \\ P_{xy} & \text{if } b(x) \ge 1. \end{array} \right.$$

Denote also by $X_N = \{b \ge N\}$, $T(N) := \hat{\tau}_{X_N}$, and define, for arbitrary $x \in X$ and $N \in \mathbb{N}$,

$$\phi_x(N) = \begin{cases} 1 & \text{if } x \in \mathbb{X}_N, \\ \hat{\mathbb{P}}_x(T(N) < \infty) & \text{if } x \notin \mathbb{X}_N. \end{cases}$$

Since for all $a \in \mathbb{R}_+$, the set $F_a = \{f \le a\}$ is finite, irreducibility of the chain implies that all F_a will be transient, i.e. $\eta^0(F_a) < \infty$ almost surely. Denote $K_{F_a} = \inf\{V(x), x \notin F_a\}$. Obviously $K_{F_a} \le a$. Moreover, $\phi_{b^{-1}(0)}(N) = 0$ for all N > 0. It is also a simple observation (exercise⁴) that $\lim_{N\to\infty} \phi_x(N) = 0$ for all $x \in X$. Therefore, for all $k \ge 1$, there exists an integer N_k (with (N_k) an increasing sequence), such that $\phi_x(N_k) < 1/2^k$ for all $x \in \{b \le k\}$.

First step: Fix some *N* and start by defining $V(x) = \phi_x(N)$ and $F = \{b^{-1}(0)\}$. Then, for $x \notin F$:

$$DV(y) = \mathbb{E}(V(X_{n+1}) - V(X_n) | X_n = x) = \sum_{y \in \mathbb{X}} P_{xy} V(y) - V(x)$$

$$= \sum_{y \in \{b \le N-1\}} P_{xy} V(y) + \sum_{y \in \{b \ge N\}} P_{xy} V(y) - V(x)$$

$$= \sum_{y \in \{b \le N-1\}} P_{xy} \phi_y(N) + \sum_{y \in \{b \ge N\}} P_{xy} 1 - V(x)$$

$$= \sum_{k=1}^{\infty} \sum_{y \in \{b \le N-1\}} P_{xy} \mathbb{P}_y(T(N) = k) + \mathbb{P}_y(T(N) = 1) - V(x)$$

$$= \sum_{k=1}^{\infty} \sum_{y \in \{b \le N-1\}} P_{xy} \mathbb{P}_y(T(N) = k) + \mathbb{P}_x(T(N) = 1) - V(x)$$

$$= \mathbb{P}_x(T(N) < \infty) - V(x) \le 0.$$

Therefore, 2) is verified for this particular V.

Second step: Define now $V(x) = \sum_{k=1}^{\infty} \phi_x(N_k) < \infty$ (because $\phi_x(N_k) < 1/2^k$). Since every individual term of the series defining *f* verifies 2), it follows that *f* also does. It remains to show that *f* tends to infinity. Consider $V(b^{-1}(i)) = \sum_{k=1}^{\infty} \phi_{b^{-1}(i)}(N_k) < \infty$. On the other hand, $\lim_{i\to\infty} \phi_{b^{-1}(i)}(N_k) = 1$ for all *k*. Therefore

$$\infty = \sum_{k=1}^{\infty} 1 = \sum_{k=1}^{\infty} \liminf_{i} \phi_{b^{-1}(i)}(N_k) \le \liminf_{i} \sum_{k=1}^{\infty} \phi_{b^{-1}(i)}(N_k) = \liminf_{i} V(b^{-1}(i)),$$

by Fatou's lemma. This remark concludes the proof.

^{4.} The idea of the proof is the following: since *X* is recurrent, the chain starting at *x* returns to *x* in a finite time. Therefore the number of sites visited between two successive visits at *x* is finite. We conclude by choosing *N* sufficiently large, e.g. $N > \sup\{b(X_n) : n = 0, ..., \tau_x^0\}$.

Exercise 6.6.5. Let *X* be a simple random walk on \mathbb{N} with transition kernel

$$P_{xy} = \begin{cases} 1 & \text{if } x = 0, y = 1; \\ p & \text{if } x > 0, y = x - 1; \\ 1 - p & \text{if } x > 0, y = x + 1; \\ 0 & \text{otherwise;} \end{cases}$$

where $p \in]0, 1[$. Let $\lambda = \ln \frac{p}{1-p}$. Show that

- 1. The chain is positive recurrent if, and only if, $\lambda > 0$.
- 2. The chain is null recurrent if, and only if, $\lambda = 0$.
- 3. The chain is transient if, and only if, $\lambda < 0$.

Exercise 6.6.6. Let $(p_x)_{x \in \mathbb{N}}$ be a sequence of independent and identically distributed [0, 1]-valued random variables whose law has not atoms in 0 or 1. Let *X* be a simple random walk in the random environment (p_x) on \mathbb{N} with transition kernel

$$P_{xy} = \begin{cases} 1 & \text{if } x = 0, y = 1; \\ p_x & \text{if } x > 0, y = x - 1; \\ 1 - p_x & \text{if } x > 0, y = x + 1; \\ 0 & \text{otherwise.} \end{cases}$$

Let $\lambda = \mathbb{E}(\ln \frac{p_1}{1-p_1})$. Show that

- 1. The chain is positive recurrent if, and only if, $\lambda > 0$.
- 2. The chain is null recurrent if, and only if, $\lambda = 0$.
- 3. The chain is transient if, and only if, $\lambda < 0$.

6.6.3 Moments of passage times

Compléter [2, 32].

6.7 Time reversal

Renversement du temps, reversibilité, lien avec l'existence d'une probabilité invariante, lien avec les frontières (chapitre suivant).

7

Boundary theory for transient chains on denumerably infinite sets

7.1 Motivation

From the theory of harmonic functions in \mathbb{R}^2 , we know (see [3] for instance) that every $h : \mathbb{R}^2 \to \mathbb{R}_+$ that is harmonic ($\Delta h = 0$) in the open unit disk $\mathbb{D} = B(0, 1)$ is in one-to-one correspondence with a Borel measure μ^h on $\partial \mathbb{D} = \mathbb{S}^1$ through the Poisson kernel (recall also remark 5.2.5). In polar coordinates, this correspondence is defined through

$$h(r\exp(i\theta)) = \int_{\partial \mathbb{D}} K(r,\theta,\phi) \mu^h(d\phi),$$

where the Poisson kernel reads

$$K(r,\theta,\phi) = K((r,\theta);(1,\phi)) := \frac{1-r^2}{1-2r\cos(\theta-\phi)+r^2}.$$

The purpose of this section is to provide, in the case of a transient *P*, an analogue of the previous formula for *P*-harmonic, non-negative functions $h : \mathbb{X} \to \mathbb{R}_+$ through an integral Martin-Poisson representation

$$h(x) = \int_{\partial \mathbb{X}} K(x, \alpha) \mu^h(d\alpha).$$

Obviously, not only the boundary kernel *K* must be defined but also the meaning of the boundary of the state space ∂X and the measure μ^h . This representation will be useful in studying the asymptotic behaviour of the chain.

Several comments are necessary at this level. The first concerns the abstract space ∂X playing the role of the boundary. It will turn out that this space (more precisely a subset of this space) will be identified to the set of *P*-harmonic functions. Secondly, the mere notion of compactification implies the definition of a topology on the space that will defined in terms of the boundary kernel *K*; the corresponding boundary space is termed the Martin boundary. As for the convexity considerations, the aforementioned representation goes beyond the Krein-Milman theorem ¹ to propose a Choquet decomposition ² of the set of harmonic functions. Finally, a measure-theoretic notion of boundary can be introduced (the Poisson boundary), indexed by *bounded* harmonic functions, that is conceptually simpler than the topological one.

Boundary theory for transient Markov chains is far from being trivial; a certain number of important ramifications to other mathematical fields can be obtained as a by-product of this study. For this reason, only an elementary approach to the boundary theory of transient chains on denumerably infinite state spaces is given here. This chapter heavily relies on more complete original references as [11, 25, 52] or more pedagogical ones [28, 43].

7.2 Martin boundary

In the sequel, we assume that the chain is **transient**, i.e. for all $x, y \in X$, we have $G^0(x, y) < \infty$; for most results **irreducibility** must also be assumed, although this latter condition can be slightly relaxed for some specific results where can be replaced by accessibility of all states from a reference point $o \in X$.

Definition 7.2.1. (Boundary kernel) Suppose that there exists $o \in X$ such that $G^0(o, y) > 0$ for all $y \in X$. Define the **boundary kernel** *K* by

$$K(x, y) = \frac{G^0(x, y)}{G^0(o, y)}.$$

Lemma 7.2.2. Assume that there exists a state $o \in X$ from which all other states are accessible i.e. $\forall y \in X : G^0(o, y) > 0$. Then there exist constants $C_x > 0$ (independent of y) such that

$$K(x, y) \leq C_x, \forall y \in \mathbb{X}.$$

^{1.} It is recalled that the Krein-Milman theorem states: Let *C* be a non-empty compact convex subset of a topological vector space. Then $C = \overline{co}(Extr(C))$.

^{2.} It is recalled that the Choquet theorem states: Let *C* be a non-empty compact convex subset of a topological vector space \mathbb{Y} . Then for every $y \in C$ there exists a measure v on $\mathscr{B}(\mathsf{Extr}(C))$ such that $y = \int_{\mathsf{Extr}(C)} v(\alpha) \alpha$.

Proof: We have

$$\sum_{z \in \mathbb{X}} P^m(x, z) G^0(z, y) = \sum_{z \in \mathbb{X}} \sum_{n=0}^{\infty} P^m(x, z) P^n(z, y)$$
$$= \sum_{n=m}^{\infty} P^n(x, y)$$
$$= G^0(x, y) - \sum_{n=0}^{m-1} P^n(x, y).$$

Since $\forall x \in \mathbb{X}$, the potential kernel verifies $G^0(o, x) > 0$, it follows that there exists an integer $m \ge 0$ such that $P^m(o, x) > 0$. Therefore $G^0(o, y) \ge \sum_{z \in \mathbb{X}} P^m(o, z) G^0(z, y) \ge P^m(o, x) G^0(x, y)$, hence $K(x, y) \le \frac{1}{P^m(o, x)} := C_x < \infty$.

Theorem 7.2.3 (Martin compactification). For a Markov chain $MC((X, \mathscr{X}), P, \mu)$ which is irreducible and transient, there exist a compact metric space (\hat{X}_M, ρ) and a homeomorphic embedding $\iota : X \to \hat{X}_M$.

Definition 7.2.4. (Martin boundary) For a Markov chain as in theorem 7.2.3 above, the set $\partial X_M = \hat{X}_M \setminus X$ is called the **Martin boundary** of the chain.

Proof of theorem 7.2.3: For the denumerable family of constants $C = (C_x)_{x \in X}$, as in lemma 7.2.2, and an arbitrary sequence $w = (w_x)_{x \in X} \in \ell^1(X)$ of strictly positive real constants $w_x > 0$, set

$$\rho(x, y) := \sum_{z \in \mathbb{X}} w_z \frac{|K(z, x) - K(z, y)| + |\delta_{zx} - \delta_{zy}|}{C_z + 1}, \text{ for } x, y \in \mathbb{X}.$$

The condition $w \in \ell^1(\mathbb{X})$ guarantees that the series defining ρ converges uniformly in x, y. Additionally, $\rho(x, y) \ge 0$ for all x, y and $\rho(x, x) = 0$ for all x; moreover, if $x \ne y$ then $\rho(x, y) > 0$. Finally, for all $w, x, y \in \mathbb{X}$, the triangular inequality $\rho(w, y) \le \rho(w, x) + \rho(x, y)$ holds. Hence ρ is a distance on \mathbb{X} . Recall that for a sequence $(y_n)_{n \in \mathbb{N}}$ of points in \mathbb{X} , we write $\lim_{n\to\infty} y_n = \infty$ if the sequence eventually leaves any finite set $F \subset \mathbb{X}$ and never returns (converges within $\hat{\mathbb{X}} = \mathbb{X} \cup \{\infty\}$, the one-point compactification of \mathbb{X}). Consequently, a sequence $(y_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in the metric space (\mathbb{X}, ρ) when

- either there exist $y \in X$ and n_0 such that for all $n \ge n_0$: $y_n = y$ (so that (y_n) converges within X);
- or else $\lim_{n\to\infty} y_n = \infty$ and $\lim_{n\to\infty} K(x, y_n)$ exists for every *x*.

Now the metric space (X, ρ) is embedded as usual into a complete metric space (\hat{X}_M, ρ) by considering equivalence classes of Cauchy sequences. Consider now an arbitrary sequence $(y_n)_{n \in \mathbb{N}}$ of elements of X. Either there exists a finite subset $F \subseteq X$ visited infinitely often by the sequence (y_n) , or the sequence leaves any finite set and (eventually) never returns. Consider these two cases separately:

— If $(y_n)_n$ returns infinitely often in F, then we can extract a subsequence $(y_{n_k})_k$ always remaining in F. Consequently, there exists a point $y \in F$ that is visited infinitely often by $(y_{n_k})_k$, i.e. there exists a subsequence $(y_{n_{k_l}})_{l \in \mathbb{N}}$ such that $y_{n_{k_l}} = y$ for all l hence, according to the first condition above, this subsequence is Cauchy.

— If (y_n) eventually leaves any finite set and never returns, the sequence of numbers $\kappa_n = K(z, y_n) \le \sup_{y \in \mathbb{X}} K(z, y) \le C_z < \infty$ is bounded. Since the interval $[0, C_z]$ is compact in \mathbb{R} , the sequence (κ_n) has a converging subsequence $\kappa_{n_k} = K(z, y_{n_k})$, for $k \in \mathbb{N}$, i.e. $\lim_{k \to \infty} K(z, y_{n_k})$ exists. Hence, according to the second condition above, the subsequence (y_{n_k}) is Cauchy.

Since the space (\hat{X}_M, ρ) is complete, we conclude that in both cases, from every sequence of X (hence of \hat{X}) we can extract a converging subsequence. Hence the space $(\hat{\mathbb{X}}_M, \rho)$ is compact.

Since X is discrete, the boundary kernel K(x, y) is a continuous function in y for each fixed $x \in X$. By the definition of ρ it follows that

$$|K(x,y) - K(x,z)| \le \frac{C_x + 1}{w_x} \rho(y,z).$$

Thus, for each $x \in X$, the function $K(x, \cdot)$ has a unique extension to \hat{X}_M as a continuous function of its second argument. Since K(o, y) = 1 for every $y \in X$, it follows that $K(o, \alpha) = 1$ for all $\alpha \in \hat{X}_M$. The complete compact metric space (\hat{X}_M, ρ) is the Martin compactification of X. It obviously depends on P and possibly on the reference point *o*.

Definition 7.2.5. For a transient Markov chain MC(($(X, \mathcal{X}), P, \mu$) and \hat{X}_M the Martin compactification defined in theorem 7.2.3, the function $K : \mathbb{X} \times \hat{\mathbb{X}}_M \to \mathbb{R}_+$ is called the Martin kernel corresponding to the transition kernel P and the reference point o.

Corollary 7.2.6. Let K be the Martin kernel corresponding to the transient Markov kernel P and reference point o. Then

— for all $\alpha \in \partial X_M$, $K(o, \alpha) = 1$,

— for all $x \in \mathbb{X}$, there exists $C_x > 0$ such that: $K(x, \alpha) \leq C_x, \forall \alpha \in \partial \mathbb{X}_M$.

Remark: The terms δ_{zx} and δ_{zy} in the definition of ρ in the previous proof are **not** necessary to make ρ a metric. If $\rho'(x, y) := \sum_{z \in \mathbb{X}} w_z \frac{|K(z, x) - K(z, y)|}{C_z + 1}$, for $x, y \in \mathbb{X}$, then $\rho'(x, y) = 0$ still implies x = y (why?). The raison d'être of these terms is more profound. Suppose that we had a sequence (y_n) of elements of X — eventually leaving any finite set (i.e. such that $y_n \to \infty$) — and a $y' \in X$ such that for all $x \in X$, $\lim_{n\to\infty} K(x, y_n) = K(x, y')$ implying that $\lim_{n\to\infty} \rho'(y_n, y') = 0$. Therefore what should be a non-convergent Cauchy sequence (y_n) converges actually to $y' \in X$. The result should be that the set X would non be open in the completion \hat{X}_M and the boundary $\partial X_M = \hat{X}_M \setminus X$ would not be closed in \hat{X}_M . Using ρ instead prevents this phenomenon from occurring, since then $\rho(y_n, y') \ge \frac{w_z}{C_z+1} > 0$ whenever $y_n \neq 0$ v'.

Lemma 7.2.7. Let the boundary kernel K be defined as in definition 7.2.1. Then the function $K(\cdot, \alpha)$ is P-superharmonic for all $\alpha \in \partial X_M$.

/Users/dp/a/ens/markov-bndry.tex 2015-10-16 • 18:25:17.

Proof: Fix an arbitrary $y \in \mathbb{X}$ and define $r(y') = \frac{\mathbb{1}_{\{y\}}(y')}{G^0(o,y')}$. Then

$$G^{0}r(x) = \sum_{n \in \mathbb{N}} \sum_{y' \in \mathbb{X}} P^{n}(x, y')r(y') = \sum_{n \in \mathbb{N}} \frac{P^{n}(x, y)}{G^{0}(o, y)} = K(x, y),$$

showing that $K(\cdot, y)$ is a potential — hence *P*-superharmonic — for every $y \in X$. If $y_n \to \alpha \in \partial X_M$, by Fatou's lemma

$$\sum_{z \in \mathbb{X}} P(x, z) K(z, \alpha) = \sum_{z \in \mathbb{X}} P(x, z) \lim_{n \to \infty} K(z, y_n) \le \lim_{n \to \infty} \sum_{z \in \mathbb{X}} P(x, z) K(z, y_n) \le \lim_{n \to \infty} K(x, y_n) = K(x, \alpha).$$

Since the boundary ∂X_M inherits the metric topology with which the set \hat{X}_M is endowed, it is meaningful to speak about the Borel σ -algebra $\mathscr{B}(\partial X_M) = \mathscr{B}(\hat{X}_M) \cap \partial X_M$.

Exercise 7.2.8. Let $v \in \mathcal{M}_1(\mathcal{B}(\partial \mathbb{X}_M))$ and *P* a transient kernel. Then the function $s : \mathbb{X} \to \overline{\mathbb{R}}_+$, defined by $s(x) = \int_{\widehat{\mathbb{X}}_M} K(x, \alpha) v(d\alpha)$, is finite *P*-superharmonic.

Theorem 7.2.9 (Poisson-Martin representation theorem). Let *P* be a stochastic kernel on the denumerably infinite set X, equipped with the exhaustive σ -algebra \mathcal{X} . Assume that

1. for all $x, y \in X$, $G^0(x, y) < \infty$, and

2. there exists $o \in X$ such that for all $y \in X$, $G^0(o, y) > 0$.

Define the boundary kernel K as in definition 7.2.1 and the Martin boundary ∂X_M as in definition 7.2.4. Then for any P-harmonic non-negative function h, there exists a measure μ^h on $\mathcal{B}(\partial X_M)$ such that

$$h(x) = \int_{\partial \mathbb{X}_M} K(x, \alpha) \mu^h(d\alpha).$$

Proof: Since X is countably infinite, there exists a sequence $(X_n)_{n \in \mathbb{N}}$ of finite sets such that $X_n \uparrow X$. Define $w_n = nG^0 \mathbb{1}_{X_n}$ and $h_n(x) = h(x) \land w_n(x)$. Obviously w_n is a potential, therefore h_n is a potential by lemma 5.2.9 (claims 2 and 3). Thus, there exists a positive charge r_n such that

$$h_n(x) = \sum_{y \in \mathbb{X}} G^0(x, y) r_n(y) = \sum_{y \in \mathbb{X}} \frac{G^0(x, y)}{G^0(o, y)} G^0(o, y) r_n(y) = \int_{\mathbb{X}} K(x, y) \mu_n^h(dy),$$

where $\mu_n^h(\{y\}) = G^0(o, y)r_n(y)$. Recall that K(o, y) = 1 for all $y \in X$, so that $\mu_n^h(X) = h_n(o) \le h(o)$; subsequently, the sequence (μ_n^h) extends to a sequence of bounded measures on the compact metric space \hat{X}_M , so that a subsequence $(\mu_{n_k}^h)_k$ converges weakly $\lim_{k\to\infty} \mu_{n_k}^h = \mu^h$ over continuous functions of \hat{X}_M . Now, for every fixed $x \in X$, the function $K(x, \cdot)$ is continuous on \hat{X}_M , hence

$$h(x) = \lim_{n} \int_{\hat{\mathbb{X}}_{M}} K(x,\alpha) \mu_{n}^{h}(d\alpha)$$

$$= \int_{\hat{\mathbb{X}}_{M}} K(x,\alpha) \mu^{h}(d\alpha)$$

$$= \sum_{y \in \mathbb{X}} G^{0}(x,y) \frac{\mu^{h}(\{y\})}{G^{0}(o,y)} + \int_{\partial \mathbb{X}_{M}} K(x,\alpha) \mu^{h}(d\alpha).$$

/Users/dp/a/ens/markov-bndry.tex 2015-10-16 • 18:25:17. *P*-harmonicity of *h* reads

$$0 = h(x) - Ph(x) = \frac{\mu^h(\lbrace x \rbrace)}{G^0(o, x)} + \int_{\partial \hat{\mathbb{X}}_M} (K - PK)(x, \alpha) \mu^h(d\alpha), \forall x \in \mathbb{X}.$$

Since by the previous lemma 7.2.7, $K(\cdot, \alpha)$ is *P*-superharmonic for all $\alpha \in \partial \hat{X}_M$, vanishing of the r.h.s. implies simultaneously that $\mu(X) = 0$ — showing thus that μ^h is concentrated on $\partial \hat{X}_M$ — and moreover, the measure μ^h is concentrated on the subset of $\alpha \in \partial X_M$ on which $K(\cdot, \alpha)$ is *P*-harmonic (as a function of *x*).

Remark: It is worth noting that the measure μ^h occurring in the previous representation is not unique. To ensure uniqueness, the integral must be further restricted on a smaller susbet of ∂X_M called the minimal boundary (see section 7.4).

Corollary 7.2.10. Let K be the Martin kernel corresponding to a transient Markov kernel P and a reference point o. Let h be a non-negative P-harmonic function and μ^h a measure occurring in the Martin representation 7.2.9 of h. Then

$$- \mu^h(\partial X_M) = h(o) < \infty$$
, and

— the integral representing h converges whenever $\mu^h(\partial X_M) < \infty$.

Corollary 7.2.11. Let *s* be *P*-superharmonic on X and $s(x) \ge 0$ for all $x \in X$. Then under the same assumptions as for the theorem 7.2.9, there exists a non-negative measure μ on \hat{X}_M such that

$$s(x) = \int_{\hat{\mathbb{X}}_M} K(x, \alpha) \mu(d\alpha), \forall x \in \mathbb{X}.$$

7.3 Convexity properties of sets of superharmonic functions

It is convenient to extend slightly the notion of superharmonicity. Recall that the space X contains a reference point *o*.

Definition 7.3.1. Let *P* be a Markov kernel and t > 0.

- A function $s : \mathbb{X} \to \mathbb{R}_+$ is called (non-negative) (*P*, *t*)-**superharmonic** if it verifies $Ps \le ts$. The set of (non-negative) (*P*, *t*)-superharmonic functions is denoted $SH^+(P, t)$. When t = 1, we write $SH^+(P)$.
- A function $h : \mathbb{X} \to \mathbb{R}_+$ is called (non-negative) (P, t)-harmonic if it verifies Ps = ts. The set of (non-negative) (P, t)-harmonic functions is denoted $H^+(P, t)$. When t = 1, we write $H^+(P)$.
- A function $f : \mathbb{X} \to \mathbb{R}_+$ is called a **normalised** if f(o) = 1. The set of normalised harmonic (resp. superharmonic) functions is denoted $H_1^+(P, t)$ (resp. $SH_1^+(P, t)$).
- A *P*-harmonic function (with t = 1) is called **minimal** if for every other *P*-harmonic function h_1 , verifying $0 \le h_1 \le h$, we have $h_1 = ch$ for some constant *c*. We denote by $H_m^+(P)$ the set of minimal and normalised *P*-harmonic functions.

Lemma 7.3.2. Let *P* be an irreducible Markov kernel and t > 0. If $SH_1^+(P, t) \neq \emptyset$, then $SH_1^+(P, t)$ is compact in the topology of pointwise convergence and $SH^+(P, t)$ is a convex cone with compact base.

Proof: Let (s_n) be a sequence in $SH_1^+(P, t)$ converging simply towards *s*. We have $Ps = P \lim_n s_n = P \liminf_n s_n \le \liminf_n Ps_n \le t \liminf_n s_n = ts$ by Fatou lemma. Additionally, s(o) = 1 by pointwise convergence. Hence $s \in SH_1^+(P, t)$, showing that $SH_1^+(P, t)$ is closed.

From the irreducibility of *P* follows that for every $x \in \mathbb{X}$, there exists $n_x \in \mathbb{N}$ such that $P^{n_x}(o, x) > 0$. Define thus $c_x = \frac{t^{n_x}}{P^{n_x}(o, x)} < \infty$. For $s \in SH_1^+$ we have

$$P^{n_x}(o, x)s(x) \le P^{n_x}s(o) \le t^{n_x}s(o),$$

so that $s(x) \le c_x$. Since for every $x \in \mathbb{X}$, the set $[0, c_x]$ is compact in the usual topology of \mathbb{R} , the set $\times_{x \in \mathbb{X}}[0, c_x]$ is compact by Tychonoff's theorem. Further $\mathsf{SH}_1^+(P, t) \subseteq \times_{x \in \mathbb{X}}[0, c_x]$, hence compact as closed subset of a compact space.

Convexity of $SH^+(P, t)$ is trivial. Any $s \in SH^+(P, t)$ can be written $s = \beta b$ with $b \in SH_1^+(P, t)$ by choosing $\beta = s(o)$. Hence $SH^+(P, t)$ is a convex cone of base $SH_1^+(P, t)$.

Proposition 7.3.3. Let *P* be a transient irreducible kernel and *K* the corresponding boundary kernel associated with the reference point o. Then

$$\mathsf{Extr}(\mathsf{SH}_1^+(P)) = \{K(\cdot, y), y \in \mathbb{X}\} \cup \mathsf{H}_m^+(P).$$

Proof: Let $b \in SH_1^+(P)$ and assume that b is extremal. Extremality of b means that its Riesz decomposition is either purely harmonic or purely potential.

Consider first the purely potential case, i.e. there exists a non-negative, non identically 0 charge *r* such that

$$b(x) = \sum_{y \in \mathbb{X}} G^{0}(x, y) r(y)$$
$$= \sum_{y \in \mathbb{X}} \frac{G^{0}(x, y)}{G^{0}(o, y)} G^{0}(o, y) r(y)$$
$$= \sum_{y \in \text{supp } r} K(x, y) c_{y},$$

where $c_y = G^0(o, y)r(y)$. Note also that $\sum_{y \in \mathbb{X}} c_y = \sum_{y \in \text{supp } r} c_y = \sum_{y \in \mathbb{X}} G^0(o, y)r(y) = G^0r(o) = b(o) = 1$. Hence, on supp r, we have $c_y > 0$ and $\sum_{y \in \text{supp } r} c_y = 1$. Since $PK(x, y) = K(x, y) - \frac{\delta_{x, y}}{G^0(o, y)}$, it follows that $K(\cdot, y)$ is harmonic on $\mathbb{X} \setminus \{y\}$ and strictly superharmonic on $\{y\}$. Now, the above expression $b(x) = \sum_{y \in \text{supp } r} K(x, y)c_y$ provides a convex superposition of b in terms of superharmonic functions. Extremality of b implies that card supp r = 1, meaning that there exists some $y \in \mathbb{X}$ such that $b(\cdot) = K(\cdot, y)$.

/Users/dp/a/ens/markov-bndry.tex & 2015-10-16 • 18:25:17.

Consider now the case of *b* being purely harmonic. Every convex combination of harmonic functions is still harmonic; extremality of *b* means then minimal harmonicity. We have thus established so far that $\text{Extr}(\mathsf{SH}_1^+(P)) \subseteq \{K(\cdot, y), y \in \mathbb{X}\} \cup \mathsf{H}_m^+(P)$.

To establish the converse inclusion, consider first the case of a function $K(\cdot, y)$ for some $y \in X$. We know that $K(\cdot, y) \in SH^+(P)$ and since K(o, y) = 1 for all y, that K belongs to the base of the cone: $K(\cdot, y) \in SH_1^+(P)$. Assume now that $K(\cdot, y) = \lambda b_1(\cdot) + (1-\lambda)b_2(\cdot)$, with $\lambda \in]0, 1[$ and $b_1, b_2 \in SH_1^+(P)$. Then $PK(x, y) = \lambda Pb_1(x) + (1-\lambda)Pb_2(x) \leq K(x, y)$. Since further $b(\cdot) = \lambda b_1(\cdot) + (1-\lambda)b_2(\cdot)$ is bounded from above by the potential $K(\cdot, y)$ the harmonic part in its Riesz decomposition must be 0. Hence both b_1 and b_2 are potentials: $b_i = G^0r_i$, i = 1, 2. Since $K(\cdot, y)$ is harmonic in $X \setminus \{y\}$, the same holds true for both b_i and the latter can occur only if supp $r_i = \{y\}$. Now, degeneracy of the supports of r_i to the singleton $\{y\}$ means that b_1/b_2 is a constant and this constant can only be 1 since both b_i are normalised. Hence, we conclude that $b_1 = b_2 = b$ and consequently $K(\cdot, y) \in \text{Extr}(\text{SH}_1^+(P))$.

Similarly, if $h \in H_m^+(P)$ we can always decompose into $h = \lambda b_1 + (1 - \lambda)b_2$ with $b_i \in SH_1^+(P)$. Now, harmonicity of h implies that $b_i \in H_1^+(P)$ and minimality of h implies extremality $b_1 = b_2 = h$ and consequently the inclusion $H_m^+(P) \subseteq$ Extr(SH_1^+(P)).

7.4 Minimal and Poisson boundaries

The theorem 7.2.9 guarantees that for every *P*-harmonic function *h* there exists a measure μ representing it through the Martin representation. This section deals with the questions that remain still unsettled:

- is the measure μ^h unique?
- is the Martin kernel $K(\cdot, \alpha)$, for fixed $\alpha \in \partial \mathbb{X}_M$, always harmonic so that for *every* probability μ on $\partial \mathbb{X}_M$, the integral $\int_{\partial \mathbb{X}_M} K(x, \alpha) \mu(d\alpha)$ defines a harmonic function on \mathbb{X} ?

It will be shown in this section that the measure μ^h is unique (and defines a harmonic function whenever $\mu^h(\partial X_M) < \infty$) provided that is restricted to a subset $\partial_m X_M \subseteq \partial X_M$.

Theorem 7.4.1. Let P be an irreducible transient kernel. If $h \in H_m^+(P)$ then the measure μ^h occurring in its Poisson-Martin representation is

- unique and
- a point mass.

Proof: We have $\int_{\partial X_M} \mu^h(d\alpha) = \int_{\partial X_M} K(o, \alpha) \mu^h(d\alpha) = h(o) = 1$, hence μ^h is a probability. Assume there exists $B \in \mathscr{B}(\partial X_M)$ such that $0 < \mu^h(B) < 1$; define then $h_B(x) = \frac{1}{\mu^h(B)} \int_B K(x, \alpha) \mu^h(d\alpha)$. We have then the non-trivial convex decomposition $h = \mu^h(B)h_B + (1 - \mu^h(B))h_{B^c}$. Minimal harmonicity of h implies that $h = h^{-1}(B)h_B + (1 - \mu^h(B))h_{B^c}$.

 $h_B = h_{B^c}$, hence, for all $x \in \mathbb{X}$ and all $B \in \mathscr{B}(\partial \mathbb{X}_M)$:

$$\int_B h(x)\mu^h(d\alpha) = h_B(x)\mu^h(B) = \int_B K(x,\alpha)\mu^h(d\alpha).$$

(Note that the above equalities hold trivially if $\mu^h(B) \in \{0,1\}$.) Therefore $K(x, \cdot) =$ h(x) holds, for every $x \in \mathbb{X}$, μ^h -a.s. Let $A = \{\alpha \in \partial \mathbb{X}_M : h(x) = K(x, \alpha), \forall x \in \mathbb{X}\}$. Since X is countable, we have $\mu^h(A) = 1$, implying in particular that $A \neq \emptyset$. We conclude that there exists $\alpha \in \partial X_M$ such that for all x, $h(x) = K(x, \alpha)$. Further, this α must be unique since by construction $K(\cdot, \alpha) \neq K(\cdot, \alpha')$ if $\alpha \neq \alpha'$. Consequently, μ^h is a Dirac mass on some $\alpha \in \partial X_M$.

Definition 7.4.2. (Minimal boundary) The set

 $\partial_m \mathbb{X}_M = \{ \alpha \in \partial \mathbb{X}_M : K(\cdot, \alpha) \text{ is minimal } P \text{-harmonic} \}$

is called the **minimal boundary**.

Corollary 7.4.3. The set $\partial_m X_M$ is a Borel subset of ∂X_M . For every $h \in H^+(P)$, there exists a unique μ^h on $\mathscr{B}(\partial X_M)$ such that $\mu^h(\partial X_M \setminus \partial_m X_M) = 0$ and h(x) = $\int_{\partial X_M} K(x,\alpha) \mu^h(d\alpha).$

Exercise 7.4.4. Prove the previous corollary 7.4.3.

Suppose now that $h, f \in H^+(P)$ and $0 \le h \le f$ holds; then obvisously g = $f - h \in H^+(P)$. Using the uniqueness of the representing measures supported by the minimal boundary $\partial_m X_M$, we have $\mu^f = \mu^h + \mu^{f-h}$, implying that the inequality $\mu^h \leq \mu^f$ holds for the representing measures as well. Now suppose that for all x, $h(x) \le M$, where M > 0 is a given constant, i.e. h is bounded Pharmonic. We denote $b H^+(P)$ the set of bounded *P*-harmonic functions. The inequality $0 \le h(x) \le M$, holding for all $x \in X$ implies that $\mu^h(B) \le M\mu^1(B)$ holds for all $B \in \mathscr{B}(\partial_m X_M)$ as well, where μ^1 is the representing measure of the constant harmonic function 1. Therefore the measure μ^h is absolutely continuous with respect to μ^1 ; the Radon-Nikodým derivative reads $p_h(\alpha) = \frac{d\mu^h}{du^1}(\alpha)$.

Definition 7.4.5. (Poisson boundary) Let μ^1 be the unique measure representing the constant normalised P-harmonic function 1. We call Poisson boundary the set $\partial_P X_M = \operatorname{supp} \mu^1$. For all $h \in b \operatorname{H}^+(P)$, we have the Poisson representation

$$h(x) = \int_{\partial_P X_M} K(x, \alpha) p_h(\alpha) \mu^1(d\alpha),$$

where $p_h(\alpha) = \frac{d\mu^h}{d\mu^1}(\alpha)$.

Exercise 7.4.6. (Zero-one law) Let $h_1 \equiv 1$ (obviously in $H_1^+(P)$). Show that

- 1. $h_1 \in H_m^+(P) \Leftrightarrow [\forall h \in b \mid H^+(P) \Rightarrow h \equiv \text{const}]$, and
- 2. conclude that, if $h_1 \in H_m^+(P)$, then for all $x \in X$ and all $A \subseteq X$, the function $H^0_A(x)$ can take only two values, 0 or 1.

/Users/dp/a/ens/markov-bndry.tex 2015-10-16 • 18:25:17.

7.5 Limit behaviour of the chain in terms of the boundary

Assume that (X_n) is transient and irreducible in X. Transience means that (X_n) eventually leaves any bounded subset of X. Now, even though the sequence (X_n) **does not** converge in X, it does converge in the Martin compactification \hat{X}_M towards a random limit $X_\infty \in \partial_m X_M$, i.e.

 $\mathbb{P}_x(\lim_{n\to\infty}X_n \text{ exists and equals } X_\infty \in \partial_m \mathbb{X}_M) = 1.$

The purpose of this section (see theorem 7.5.6 below) is to determine the law of X_{∞} .

Lemma 7.5.1. Let X be a transient $MC((X, \mathcal{X}), P, \mu)$ and $F \subseteq X$ a finite set. Then there exists a charge $r_F \ge 0$, supported by the set F, such that

$$L_F^0(x) := \mathbb{P}_x(\tau_F^0 < \infty) = G^0 r_F(x),$$

for all $x \in X$.

Proof: From the very definition of L_F^0 , we have

$$P^n L^0_F(x) = \mathbb{P}_x(X_k \in F, \text{ for some } k \ge n).$$

Define

$$r_F(x) := L_F^0(x) - PL_F^0(x) = \mathbb{P}_x(X_0 \in F; X_k \notin F \text{ for } k \ge 1) \ge 0.$$

Hence L_F^0 is *P*-superharmonic³. Since *F* is finite and the chain transient, $\lim_n P^n L_F^0(x) = 0$, therefore from the Riesz decomposition theorem 5.2.6 follows that L_F^0 is a potential corresponding to the charge r_F . From the definition of r_F , namely $r_F(x) = \mathbb{P}_x(X_0 \in F; X_k \notin F \text{ for } k \ge 1)$ follows immediately that $r_F(x) = r_F(x) \mathbb{1}_F(x)$ for all x, proving the claim that r_F is supported by *F*.

From lemma 7.2.7, we know that $K(\cdot, \alpha)$ is *P*-superharmonic for all $\alpha \in \partial X_M$. Denote $M(x, \alpha) = \lim_{n\to\infty} P^n K(x, \alpha)$ its harmonic part, stemming from the Riesz decomposition theorem 5.2.6. Recall also from proposition 5.2.12 that, for an arbitrary subset $A \subseteq X$, the harmonic part in the Riesz decomposition of L^0_A is H^0_A .

Lemma 7.5.2. Let X be a transient $MC((X, \mathcal{X}), P, \mu)$. For an arbitrary subset $A \subseteq X$, there exists a measure v_A on $\mathcal{B}(\partial X_M)$ such that

$$H^0_A(x) = \int_{\overline{A} \cap \partial \mathbb{X}_M} M(x, \alpha) \nu_A(d\alpha).$$

^{3.} A fact we already knew from proposition 5.2.12.

Proof: If *A* is finite, transience of the chain shows that the claim is correct with $v_A = 0$. Consider thus the infinite case and let $(A_l)_l$ be an increasing sequence of measurable finite sets, exhausting *A*. Then by lemma 7.5.1, $L_{A_l}^0(x) = \int_{A_l} K(x, y) v_{A_l}(dy)$, where

$$v_{A_l}(\{y\}) = G^0(o, y)r_{A_l}(y)$$

with supp $(v_{A_l}) \subseteq A_l \subseteq A$. Now

$$v_{A_l}(\hat{\mathbb{X}}_M) = \sum_{y \in A_l} G^0(o, y) r_{A_l}(y) = L^0_{A_l}(o) = \mathbb{P}_o(\tau^0_{A_l} < \infty) \le 1.$$

Hence, there exists a weakly converging subsequence $w - \lim v_{A_{l_k}} = v_A$ on $\hat{\mathbb{X}}_M$. Moreover, $\tau_{A_l}^0 \downarrow \tau_A^0$. Hence,

$$L_A^0(x) = \mathbb{P}_x(\tau_A^0 < \infty) = \int_{\overline{A}} K(x, \alpha) \nu_A(d\alpha),$$

generalising thus lemma 7.5.1 for arbitrary sets *A*. We have thus, for all $x \in X$,

$$P^{n}L_{A}^{0}(x) = \mathbb{P}_{x}(X_{k} \in A, \text{ for some } k \ge n)$$
$$= \int_{\overline{A}} P^{n}K(x, \alpha)v_{A}(d\alpha)$$
$$\rightarrow H_{A}^{0}(x).$$

On the other hand, $P^n K(x, \alpha) \downarrow M(x, \alpha)$ for all $\alpha \in \hat{X}_M$, while $P^n K(x, y) \downarrow 0$ for all $y \in X$; the result follows immediately.

We shall introduce a convenient trick, known as **relativisation**, to modify the asymptotic behaviour of the chain at infinity. Let $h \in H_1^+(P)$ for an irreducible transient *P*. Since h(o) = 1, irreducibility of *P* implies that h(x) > 0 for all $x \in X$. Define henceforth $P^{(h)}(x, y) = \frac{1}{h(x)}P(x, y)h(y)$ that is obviously non-negative for all $x, y \in X$. Harmonicity of *h* implies that $\sum_{y \in X} P^{(h)}(x, y) = \frac{1}{h(x)}h(x) = 1$; hence $P^{(h)}$ is a Markov kernel.

Notation 7.5.3. For any $h \in H_1^+(P)$ denote by $P^{(h)}$ the **relativised Markov kernel** and by $\mathbb{P}_x^{(h)}$ the probability on the trajectory space induced by the kernel $P^{(h)}$ (with the same trajectories).

Exercise 7.5.4. (Relativised kernels) Let $h \in H_1^+(P)$.

- 1. $f \in H^+(P) \Leftrightarrow \frac{f}{h} \in H^+(P^{(h)}).$
- 2. If $K^{(h)}$ denotes the boundary kernel of $P^{(h)}$, then $K^{(h)}(x, y) = \frac{1}{h(x)}K(x, y)$.
- 3. Let $h \in H_1^+(P)$ and denote μ^h the unique measure on $\mathscr{B}(\partial_m X_M)$ representing h, i.e. $h(x) = \int_{\partial_m X_M} K(x, \alpha) \mu^h(d\alpha)$. Then μ^h represents the constant harmonic function 1 for the relativised kernel $K^{(h)}$.

The relativised chain follows the same trajectories as the original one; only probabilities are affected by the relativisation.

Proposition 7.5.5. Let (X_n) be a $MC((X, \mathcal{X}), P, \varepsilon_x)$, with P irreducible and transient. For every $B \in \mathscr{B}(\mathcal{X}^{\infty})$ we have

$$\mathbb{P}_{x}(B) = \int_{\partial_{m} \times_{M}} \mathbb{P}_{x}^{(h_{\alpha})}(B) K(x, \alpha) \mu^{1}(d\alpha),$$

where $h_{\alpha}(x) = K(x, \alpha)$ and $\mathbb{P}_{x}^{(h_{\alpha})}$ denotes the probability on the path space due to the relativised kernel. More generally, for every $h \in H_{1}^{+}(P)$,

$$\mathbb{P}_x^{(h)}(B) = \frac{1}{h(x)} \int_{\partial_m \times_M} \mathbb{P}_x^{(h_\alpha)}(B) K(x, \alpha) \mu^h(d\alpha).$$

Proof: It is enough to prove the formulae for the elementary cylindrical sets of the form $B = \{x_1\} \times \cdots \times \{x_n\} \times X \times X \times \cdots$. We have then

$$\mathbb{P}_{x}^{(h)}(B) = P^{(h)}(x, x_{1}) \cdots P^{(h)}(x_{n-1}, x_{n})$$

= $\frac{1}{h(x)} P(x, x_{1}) \cdots P(x_{n-1}, x_{n}) h(x_{n})$
= $\frac{1}{h(x)} \mathbb{E}_{x}(\mathbb{1}_{\{x_{1}, \dots, x_{n}\}}(X_{1}, \dots, X_{n}) h(X_{n}))$

In particular

$$\mathbb{P}_x^{(h_\alpha)}(B) = \frac{1}{K(x,\alpha)} \mathbb{E}_x(\mathbb{1}_{\{x_1,\dots,x_n\}}(X_1,\cdots,X_n)K(X_n,\alpha)).$$

Using the Poisson-Martin representation $h(x) = \int_{\partial_m X_M} K(x, \alpha) \mu^h(d\alpha)$, we conclude that

$$\mathbb{P}_x^{(h)}(B) = \frac{1}{h(x)} \int_{\partial_m \times_M} \mathbb{P}_x^{(h_\alpha)}(B) K(x, \alpha) \mu^h(d\alpha).$$

The first statement is obtained immediately by applying the previous formula to the constant harmonic function 1. $\hfill \Box$

Theorem 7.5.6. Let (X_n) be a $MC((X, \mathcal{X}), P, \varepsilon_x)$, where P is irreducible and transient. For all $A \in \mathscr{B}(\partial_m X_M)$,

$$\mathbb{P}_{x}(\lim_{n \to \infty} X_{n} = X_{\infty} \in A) = \int_{A} K(x, \alpha) \mu^{1}(d\alpha).$$

Proof: The event $\{\lim_{n\to\infty} X_n = X_\infty \in A\}$ is \mathscr{X}^∞ -measurable. From proposition 7.5.5, we conclude that

$$\mathbb{P}_{x}(\lim_{n\to\infty}X_{n}=X_{\infty}\in A)=\int_{\partial_{m}\times_{M}}\mathbb{P}_{x}^{(h_{\alpha})}(\lim_{n\to\infty}X_{n}=X_{\infty}\in A)K(x,\alpha)\mu^{1}(d\alpha),$$

where $h_{\alpha}(x) = K(x, \alpha) \in H_m^+(P)$.

It is enough to establish that $\mathbb{P}_x^{(h_\alpha)}(\lim_{n\to\infty} X_n = \alpha) = 1$ because then the r.h.s. of the previous formula reduces to $\int_A K(x, \alpha) \mu^1(d\alpha)$ which is precisely the claim of the theorem.

/Users/dp/a/ens/markov-bndry.tex 94 2015-10-16 • 18:25:17. Fix $\alpha \in \partial_m X_M$ and $\varepsilon > 0$ and let $A_{\varepsilon} = \{x \in X : \rho(x, \alpha) \ge \varepsilon\}$. Obviously, $\alpha \notin \overline{A_{\varepsilon}}$. On denoting $\mathbb{P}_x^{(h_{\alpha})}(X_n \in A_{\varepsilon} \text{ i.o.})$, we observe that if $H_{A_{\varepsilon}}^{(h_{\alpha})}(x) = 0$ for all $x \in X$ and all $\varepsilon > 0$ then $\mathbb{P}_x^{(h_{\alpha})}(X_n \in A_{\varepsilon}^c \text{ eventually}) = 1$, and since $\varepsilon > 0$ is arbitrary, the latter means $\mathbb{P}_x^{(h_{\alpha})}(\lim_{n\to\infty} X_n = \alpha) = 1$. Hence it is enough to prove $H_{A_{\varepsilon}}^{(h_{\alpha})}(x) = 0$ for all $x \in X$ and all $\varepsilon > 0$.

Let $f = H_{A_{\varepsilon}}^{(h_{\alpha})}$; we know (see exercise 7.5.4 on relativised kernels) that $f \in H^{+}(P^{h_{\alpha}}) \Leftrightarrow f(\cdot)K(\cdot, \alpha) \in H^{+}(P)$. Since $K(\cdot, \alpha) \in H_{m}^{+}(P)$, we conclude that any bounded $h \in H^{+}(P^{(h_{\alpha})})$ is constant. Hence (see exercise 7.4.6) $H_{A_{\varepsilon}}^{h_{\alpha}}(x) \in \{0, 1\}$ for all $x \in X$ and all $\varepsilon > 0$. It is therefore enough to exclude the possibility $H_{A_{\varepsilon}}^{h_{\alpha}}(x) \equiv 1$.

By lemma 7.5.2, there exists a measure $v_{A_{\varepsilon}}$ on $\mathscr{B}(\partial X_M)$ such that

$$\begin{split} 1 \geq H_{A_{\varepsilon}}^{(h_{\alpha})}(x) &= \int_{\overline{A_{\varepsilon}} \cap \partial \mathbb{X}_{M}} M^{(h_{\alpha})}(x,\beta) v_{A_{\varepsilon}}(d\beta) \\ &= \int_{\overline{A_{\varepsilon}} \cap \partial \mathbb{X}_{M}} \frac{M(x,\beta)}{K(x,\alpha)} v_{A_{\varepsilon}}(d\beta), \end{split}$$

implying that $\int_{\overline{A_{\varepsilon}}\cap\partial\mathbb{X}_{M}} M(x,\beta)v_{A_{\varepsilon}}(d\beta) \leq K(x,\alpha)$. Thus, for all Borel subsets $A \subseteq \overline{A_{\varepsilon}}\cap\partial\mathbb{X}_{M}$, we have $\int_{A} M(x,\beta)v_{A_{\varepsilon}}(d\beta) \leq K(x,\alpha)$. Recall that $M(\cdot,\beta) \in H^{+}(P)$ while $K(\cdot,\alpha) \in H^{+}_{m}(P)$. From the very definition of minimality, we conclude that $\int_{A} M(x,\beta)v_{A_{\varepsilon}}(d\beta) = C_{A}K(x,\alpha)$, and by applying this equality to x = o, we determine the constant $C_{A} = \int_{A} M(o,\beta)v_{A_{\varepsilon}}(d\beta)$, so that for all $x \in \mathbb{X}$,

$$M(x,\beta) = M(o,\beta)K(x,\alpha)$$
, for $v_{A_{\varepsilon}}$ -a.e. $\beta \in \overline{A_{\varepsilon}} \cap \partial \mathbb{X}_M$.

If $H_{A_{\varepsilon}}^{(h_{\alpha})}(x) \neq 0$ then the zero-one law implies that $H_{A_{\varepsilon}}^{(h_{\alpha})}(x) = 1$, therefore

$$h(o) = \int_{\overline{A}_{\varepsilon} \cap \partial_m \times_M} M(o, \beta) v_{A_{\varepsilon}}(d\beta) = 1,$$

hence

$$L^0_{A_{\varepsilon}}(x) = \mathbb{P}_o(\tau^0_{A_{\varepsilon}} < \infty) = \int_{\overline{A}_{\varepsilon}} K(o, \alpha) v_{A_{\varepsilon}}(d\alpha) \le 1$$

and $M(o, \beta) \le K(o, \beta) \le 1$. Consequently,

$$1 = h(o) = \int_{\overline{A}_{\varepsilon} \cap \partial_m \mathbb{X}_M} M(o, \beta) v_{A_{\varepsilon}}(d\beta) \leq 1,$$

implying that for all $x \in \mathbb{X}$ and $\alpha \in \partial_m \mathbb{X}_M$, $M(x, \beta) = K(x, \alpha)$, for $v_{A_{\varepsilon}}$ -a.e. $\beta \in \overline{A_{\varepsilon}} \cap \partial \mathbb{X}_M$.

Now, by the Riesz decomposition of *K*, we have

$$K(x,\beta) = M(x,\beta) + G^0 r_\beta(x),$$

where r_{β} is a non-negative charge. But $K(o,\beta) = M(o,\beta) = 1$ hence $G^0 r_{\beta}(o) = 0$. Therefore, $G^0 r_{\beta}(x) = 0$ for all x, so that $M(x,\beta) = K(x,\alpha) = K(x,\beta)$ for $v_{A_{\varepsilon}} - a.e.\beta \in \overline{A_{\varepsilon}} \cap \partial \mathbb{X}_M$. From the construction of the Martin boundary, if $K(x,\alpha) = K(x,\beta)$ for all $x \in \mathbb{X}$, then $\alpha = \beta$. Since $\alpha \notin \overline{A_{\varepsilon}}$, it follows that $v_{A_{\varepsilon}}(\overline{A_{\varepsilon}} \cap \partial \mathbb{X}_M) = 0$. Therefore $H_{A_{\varepsilon}}^{h_{\alpha}} \equiv 0$ for all $\varepsilon > 0$.

/Users/dp/a/ens/markov-bndry.tex 2015-10-16 • 18:25:17. **Exercise 7.5.7.** (Competition game [43]) Let (\mathbf{X}_n) be a MC(($(X, \mathscr{X}), P, \varepsilon_x$) with $X = \mathbb{Z}^2$ and Markov kernel *P* defined, for $x = (x_1, x_2)$ and $y = (y_1, y_2)$ elements of \mathbb{Z}^2 , by

$$P(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{1}{2} & y_1 = x_1, y_2 = x_2 + 1\\ \frac{1}{2} & y_1 = x_1 + 1, y_2 = x_2\\ 0 & \text{otherwise.} \end{cases}$$

- 1. The process is not irreducible.
- 2. Show that

$$G^{0}(\mathbf{x}, \mathbf{y}) = \begin{cases} C_{y_{1}-x_{1}+y_{2}-x_{2}}^{y_{1}-x_{1}}(\frac{1}{2})^{y_{1}-x_{1}+y_{2}-x_{2}} & y_{1} \le x_{1} \land y_{2} \le x_{2}, \\ 0 & y_{1} < x_{1} \lor y_{2} < x_{2}. \end{cases}$$

- 3. Show that $K(\mathbf{x}, \mathbf{y}) = 2^{x_1 + x_2} \left(\frac{y_1}{y_1 + y_2}\right)^{x_1} \left(\frac{y_2}{y_1 + y_2}\right)^{x_2} \left(1 + \mathcal{O}\left(\frac{x_1^2}{y_1}\right) + \mathcal{O}\left(\frac{x_2^2}{y_2}\right)\right)$.
- 4. Let $\mathbf{y}_k \to \infty$. Show that $\lim_k K(\mathbf{x}, \mathbf{y}_k)$ exists if and only if $\frac{y_{k,1}}{y_{k,1}+y_{k,2}} \to \alpha$ with $\alpha \in [0, 1]$. In that case, establish that

$$K(\mathbf{x}, \alpha) = 2^{x_1 + x_2} \alpha^{x_1} (1 - \alpha)^{x_2}.$$

5. Conclude that $h \in SH^+(P)$ on X if and only if there exists μ on $\mathscr{B}([0,1])$ such that

$$h(\mathbf{x}) = 2^{x_1 + x_2} \int_0^1 \alpha^{x_1} (1 - \alpha)^{x_2} \mu(d\alpha).$$

In particular, the functions $h(\mathbf{x}) = K(\mathbf{x}, \alpha)$ are harmonic.

- 6. Show that for all $\alpha \in [0, 1]$, the function $K(\cdot, \alpha) \in H_m^+(P)$.
- 7. Compute $K(\mathbf{x}, \frac{1}{2})$ and conlcude that if $h \in b \mathbb{H}^+(P)$ then *h* is constant.
- 8. Establish $\partial X_M = \partial_m X_M = [0, 1]$ while $\partial_P X_M = \{\frac{1}{2}\}$.

7.6 Markov chains on discrete groups, amenability and triviality of the boundary

In this section X will be a countably infinite group. Random walks on \mathbb{Z}^d provide a standard example of Markov chains on Abelian groups. However, the non Abelian case is also very interesting and will be provide us with non-trivial examples.

Definition 7.6.1. Let X be a countably infinite group (composition is denoted multiplicatively). The transition kernel is termed **group left invariant** if P(x, y) = P(gx, gy) for all $g \in X$. Right invariance is defined analogously.

Exercise 7.6.2. Let *P* be a transition kernel on the Abelian group $\mathbb{X} = \mathbb{Z}^d$ and μ an arbitrary probability on \mathbb{X} . Show that

— *P* defined by $P(x, y) = \mu(y - x)$ is group invariant,

- if *h* is *P*-harmonic, then so is the translated function $h_g(\cdot) := h(\cdot + g)$, for all $g \in X$,
- any harmonic function *h* can be expressed as a convex combination of its translates.

Theorem 7.6.3 (Choquet-Deny). Let *P* be a translation invariant and irreducible kernel on $\mathbb{X} = \mathbb{Z}^d$, and denote by $\Gamma_P = \{\beta \in \mathbb{R}^d : \sum_{y \in \mathbb{X}} P(0, y) \exp(\beta \cdot y) = 1\}$, where \cdot stands for the scalar product on \mathbb{R}^d . Then

- $h \in H_1^+(P) \text{ if, and only if, there exists a measure } \mu^h \text{ on } \mathscr{B}(\Gamma_P) \text{ such that} \\ h(x) = \int_{\Gamma_P} \exp(\alpha \cdot x) \mu^h(d\alpha),$
- $h \in H_m^+(P)$ if, and only if, there exists an $\alpha \in \Gamma_P$ such that $h(x) = \exp(\alpha \cdot x)$ i.e. μ^h degenerates into a Dirac mass on α .

Proof: If *P* is recurrent, then all $h \in H^+(P)$ are constant (see exercise 6.2.11), hence the theorem holds with $\mu^h(d\alpha) = \varepsilon_0(d\alpha)$. It is therefore enough to consider the case of transient *P*. Irreducibility of *P* implies that $\forall y \in X$, $\exists n := n_y \ge 0$ such that $P^n(0, y) > 0$. Let $h \in H_m^+(P)$.

$$h(x) = \sum_{z \in \mathbb{X}} P^{n_y}(x, z) h(z)$$

$$= \sum_{z \in \mathbb{X}} P^{n_y}(0, z - x) h(z)$$

$$= \sum_{z \in \mathbb{X}} P^{n_y}(0, z) h(x + z)$$

$$\ge P^{n_y}(0, y) h(x + y),$$

hence $h(x + y) \leq c_y h(x)$, where $c_y = \frac{1}{P^{n_y}(0,y)} < \infty$. Then for $h \in H_m^+(P)$, we get $h(x + y) = d_y h(x)$ and applying for x equal to the reference point o = 0 we get $d_y = h(y)$. Hence h(x + y) = h(x)h(y). Considering the case where x scans the set of basis elements of \mathbb{Z}^d , i.e. $x \in \{e_i, i = 1, ..., d\}$, we conclude that any multiplicative harmonic function must be of the form $h(x) = \exp(\alpha \cdot x)$. Additionally, if $\alpha \in \Gamma_P$ then such a function is necessarily normalised. If $h \in H_1^+(P)$ then the representation $h(x) = \int_{\Gamma_P} \exp(\alpha \cdot x) \mu^h(d\alpha)$ holds immediately.

Conversely, assuming that $h(x) = \exp(\beta \cdot x)$ for some $\beta \in \Gamma_P$, implies that $h \in H_1^+(P)$. If $f \in H_1^+(P)$ is such that $0 \le f(x) \le Ch(x)$ for all x, then $0 \le \int_{\Gamma_P} \exp(\alpha \cdot x)\mu^f(d\alpha) \le C\exp(\beta \cdot x)$. Now, in $x = (x_1, \dots, x_d)$ appearing in the previous inequalities, let $x_i \to \pm \infty$ for an $i \in \{1, \dots, d\}$, and keep fixed all other x_j , for $j \ne i$. We conclude that necessarily supp $\mu^f \subseteq \{\beta\}$ and consequently f(x) = Ch(x) showing that $h \in H_m^+(P)$.

Corollary 7.6.4. Let $X = (X_n)_n$ be an irreducible Markov chain on $\mathbb{X} = \mathbb{Z}^d$ with an invariant kernel *P*.

- If $\xi_{n+1} = X_{n+1} X_n$ has 0 mean, there do not exist non-trivial functions in $H^+(P)$.
- The constant function $h \equiv 1$ always belongs in $H_m^+(P)$.
- -- If for all $n \ge 0$, $\sum_{y \in \mathbb{X}} P(0, y) ||y||^n < \infty$ but $\sum_{y \in \mathbb{X}} P(0, y) \exp(\alpha \cdot x) = \infty$ for all $\alpha \ne 0$, then there do not exist non-trivial functions in $H^+(P)$.

/Users/dp/a/ens/markov-bndry.tex 97 2015-10-16 • 18:25:17.

Exercise 7.6.5. Prove the previous corollary 7.6.4.

Exercise 7.6.6. (Simple random walk on the homogeneous tree) Let $X = T_d$, with $d \ge 3$, where T_d is the group generated by the *d* free involutions, i.e. the non-Abelian group with presentation $T_d = \langle a_1, ..., a_d | a_1^2 = ... = a_d^2 = e \rangle$ where *e* stands for the neutral element. Every $x \in T_d$ can be written in a unique way as a reduced word $x = a_{i_1} \cdots a_{i_l}$, for some integer *l*, with the constraint $i_k \neq i_{k+1}$ for all k = 1, ..., l - 1. The integer l := l(x) := |x| is called the length of the word *x*. The inverse of *x* is immediately obtained as $x^{-1} = a_{i_1} \cdots a_{i_l}$. The Cayley graph of T_d is the graph (\mathbb{V} , \mathbb{A}) where the vertex set $\mathbb{V} = T_d$ and the edge set \mathbb{A} is the subset of $\mathbb{V} \times \mathbb{V}$ characterised by the condition $(x, y) \in \mathbb{A} \Leftrightarrow y = xa_i$, for some $i \in \{1, ..., d\}$. There exists an isomorphism between the Caley graph of T_d and the group T_d itself. Hence the group T_d can be metrised naturally by introducing the edge distance $\delta(x, y) = |x^{-1}y|$. The isotropic simple random walk on T_d is defined by the transition kernel

$$P(x, y) = \begin{cases} \frac{1}{d} & \text{if } (x, y) \in \mathbb{A}, \\ 0 & \text{otherwise.} \end{cases}$$

- 1. Write explicitly the condition for a function *h* to belong in $H^+(P)$.
- 2. Introduce the sequence $Y_n = |X_n|$, for $n \in \mathbb{N}$. Show that $Y = (Y_n)_n$ is a Markov chain on \mathbb{N} of transition kernel Q (determine Q).
- 3. Show that $\mathbb{P}_k(\lim \frac{Y_n}{n} = \frac{d_2}{d}) = 1$ for all $k \in \mathbb{N}$.
- 4. Conclude that $X = (X_n)_n$ is transient whenever $d \ge 3$.
- 5. Show that $L_y^0(x) = G^0(x, y)r(y)$ where $r(y) = \mathbb{P}_y(X_n \neq y, \forall n \ge 1)$. Argue that $\forall y \in \mathbb{X}, r(y) = r > 0$. Conclude that $G^0(x, y) = \frac{L_y^0(x)}{r}$.
- 6. Introducing the function $\phi(l) = \mathbb{P}_l(Y_n = 0, \text{ for some } n \ge 0)$ and the reference point o = e, establish that $K(x, y) = \frac{\phi(|y^{-1}x|)}{\phi(|y^{-1}|)}$.
- 7. Show that ϕ verifies $\phi(0) = 1$ and for $l \ge 1$,

$$\phi(l) = \frac{1}{d}\phi(l-1) + \frac{d-1}{d}\phi(l+1).$$

Show that a solution can be obtained in the form $\phi(l) = c_1 \lambda_1^l + c_2 \lambda_2^l$ where c_1, c_2 are constants and λ_1, λ_2 solutions of the quadratic equation $\lambda = \frac{1}{d} + \frac{d-1}{d}\lambda^2$. Conclude that $\phi(l) = (\frac{1}{d-1})^l$ for $l \ge 0$ and establish that $K(x, y) = (\frac{1}{d-1})^{|y^{-1}x| - |x|}$.

- 8. Let (y_n) be a sequence in \mathbb{X} such that $\lim_n |y_n| = \infty$. Determine under which conditions the limit $\lim_n [|x^{-1}y_n| |y_n|]$ exists for all $x \in \mathbb{X}$.
- 9. Let $A = \{\alpha = a_{i_1} a_{i_2} \cdots; i_k \in \{1, \dots, d\} \land (i_k \neq i_{k+1}) \forall k\}$ be the set of the leaves of the tree. For $x = a_{k_1} \cdots a_{k_{|x|}} \in \mathbb{X}$ and $\alpha = a_{i_1} a_{i_2} \cdots \in A$ written respectively as a finite and as an infinite reduced word, introduce $J : \mathbb{X} \times A \to \mathbb{N}$ by $J(x, \alpha) = |x| 2\max\{j \le |x| : k_n = i_n; 1 \le n \le j\}$. Show that $\lim K(x, y_n) = K(x, \alpha) = (\frac{1}{d-1})^{J(x,\alpha)}$.
- 10. $h \in H^+(P) \Leftrightarrow h(x) = \int_A (\frac{1}{d-1})^{J(x,\alpha)} \mu^h(d\alpha)$, where μ^h is a measure on A.
- 11. Show that $\partial X_M = \partial_m X_M = A$.

Thm Choquet-Deny, frontières pour groupoides et semigroupoides, movennabilité

/Users/dp/a/ens/markov-bndry.tex 2015-10-16 • 18:25:17.

98

8

Continuous time Markov chains on denumerable spaces

- 8.1 Embedded chain
- 8.2 Infinitesimal generator
- 8.3 Explosion
- 8.4 Semi-martingale techniques for explosion times

/Users/dp/a/ens/markov-irred.tex 100 2015-10-16 • 18:37:36.
9

Irreducibility on general spaces

In this chapter, methods for dealing with Markov chains on general spaces are developed. The material presented in this and the following chapters heavily relies on the original work of Döblin [10]; a more pedagogical and concise account of this work is [38] or [37]. More complete treatement of the subject, far beyond the scope of this semestrial course, remain [34, 49].

9.1 ϕ -irreducibility

For Markov chains on discrete spaces, irreducibility means that for all $x, y \in \mathbb{X}$, there exists $n = n(x, y) \in \mathbb{N}$ such that $P^n(x, y) > 0$ or, equivalently, $L_y(x) = \mathbb{P}_x(\tau_y < \infty) > 0$. In the continuous case however, it may happen that for any pair $x, y \in \mathbb{X}$, $L_y(x) = \mathbb{P}_x(\tau_y < \infty) = 0$.

Example 9.1.1. Let $(\xi_i)_i$ be a sequence of independent random variables on [-1,1] identically distributed according to the uniform law on [-1,1]. Then the sequence $(X_n)_n$ defined by $X_0 = x$ and $X_n = X_{n-1} + \xi_n$ for all $n \ge 1$ is a random walk on \mathbb{R} verifying $L_y(x) = \mathbb{P}_x(\tau_y < \infty) = 0$ for all $x, y \in \mathbb{R}$.

Definition 9.1.2. A measurable set $F \in \mathscr{X}$ is called (stochastically) **closed** if $F \neq \emptyset$ and P(x, F) = 1 for all $x \in F$. A closed set that cannot be partitioned into two closed sets is called **indecomposable**.

Definition 9.1.3. Let $\phi \in \mathcal{M}_+(\mathcal{X})$.

— The measure ϕ is called an **irreducibility measure** for the Markov chain *X* if

 $A \in \mathcal{X}, \phi(A) > 0 \Rightarrow \forall x \in \mathbb{X}, L_A(x) > 0.$

The chain is then called ϕ -**irreducible**.

— The chain is called ϕ -recurrent if

$$A \in \mathscr{X}, \phi(A) > 0 \Rightarrow \forall x \in \mathbb{X}, L_A(x) = 1.$$

— The chain is called Harris recurrent if

$$A \in \mathscr{X}, \phi(A) > 0 \Rightarrow \forall x \in \mathbb{X}, H_A(x) = 1.$$

Remark 9.1.4. If X is countable, the usual notions of irreducibility and recurrence are recovered on choosing for $\phi \in \mathcal{M}_+(\mathcal{X})$ the counting measure.

Given a probability $v \in \mathcal{M}_1(\mathcal{X})$ and a measure $\phi \in \mathcal{M}_+(\mathcal{X})$, we know that v has a unique decomposition into $v = v_{ac} + v_s$, where $v_{ac} \ll \phi$ is the absolutely continuous part (i.e. $\forall A \in \mathcal{X}, \phi(A) = 0 \Rightarrow v_{ac}(A) = 0$), and $v_s \perp \phi$ is the singular part (i.e. $\exists A \in \mathcal{X}, \phi(A) = 0$ and $v_s(A^c) = 0$). Moreover, the Radon-Nikodým theorem states that there exists a unique $f \in L^1(\mathbb{X}, \mathcal{X}, \phi)$ such that, for all $A \in \mathcal{X}, v_{ac}(A) = \int_A f(x)\phi(dx)$, where $f(x) = \frac{d\mu}{d\phi}(x)$ is the Radon-Nikodým derivative.

Now, if $\phi \in \mathcal{M}_+(\mathcal{X})$ is an irreducibility measure, noting that for all $x \in \mathbb{X}$ and $n \in \mathbb{N}$, $P^n(x, \cdot)$ is a probability on \mathcal{X} , we can decompose $P^n(x, \cdot) = P_{ac}^n(x, \cdot) + P_s^n(x, \cdot)$. On denoting by $p_n(x, y) = \frac{dP_{ac}^n(x, \cdot)}{d\phi}(y)$, we have $P_{ac}^n(x, A) = \int_A p_n(x, y)\phi(dy)$. As far as the singular part is concerned, for all $x \in \mathbb{X}$ and $n \in \mathbb{N}$, $P^n(x, \cdot) \perp \phi$ means that there exists a set $\mathbb{X}_{x,n} \in \mathcal{X}$ such that $\phi(\mathbb{X}_{x,n}) = 0$ and $P^n(x, P^n(x, \cdot)^c) = 0$. In summarising,

$$P^n(x,A) = \int_{A \cap \mathbb{X}_{x,n}^c} p_n(x,y)\phi(dy) + P_s^n(x,A \cap \mathbb{X}_{x,n}).$$

Remark 9.1.5. One can easily show that for all $x \in X$ and all $n \in \mathbb{N}$, the Radon-Nikodým density $p_n(x, \cdot)$ is measurable with respect to the second argument and similarly $p_n(\cdot, x)$ measurable with respect to the first argument. It is convenient to ensure that $p_n(\cdot, \cdot)$ is jointly measurable with respect to the two arguments.

Lemma 9.1.6. Let $\phi \in \mathcal{M}_+(\mathcal{X})$ be an irreducibility measure for the chain. Then, any probability $\mu \in \mathcal{M}_1(\mathcal{X})$ that is equivalent to ϕ is an irreducibility measure.

Proof: Since μ is equivalent to ϕ it follows that $\mu \ll \phi$ and $\phi \ll \mu$. Hence, for any $A \in \mathscr{X}$ either $\phi(A) = 0$ (and consequently $\mu(A) = 0$) or $\phi(A) > 0$ (and consequently $\mu(A) > 0$). Therefore, μ is also an irreducibility measure.

Proposition 9.1.7. Let $\phi \in \mathcal{M}_+(\mathcal{X})$ be an irreducibility measure for the chain. Then there exists an irreducibility measure $\psi \in \mathcal{M}_+(\mathcal{X})$ such any irreducibility measure $\phi' \in \mathcal{M}_+(\mathcal{X})$ is $\phi' \ll \psi$.

Proof: See exercise 9.1.9 below.

/Users/dp/a/ens/markov-irred.tex 102 2015-10-16 • 18:37:36. **Definition 9.1.8.** The measure ψ , whose existence is guaranteed by proposition 9.1.7, unique up to meausures that are equivalent, is called the **maximal irreducibility measure**.

Exercise 9.1.9. (Part of the paper given on December 2006) Let $\phi \in \mathcal{M}_+(\mathcal{X})$ be an irreducibility measure for the chain.

- 1. Is it possible, without loss of generality, to assume that ϕ is a probability?
- 2. Let ψ be a measure, defined for every $A \in \mathscr{X}$ by $\psi(A) = \int \phi(dx) G_{1/2}(x, A)$. Denote by $\mathbb{X}_k = \{x \in \mathbb{X} : \sum_{n=1}^k P^n(x, A) > 1/k\}$. If $\psi(A) > 0$ is it true that $\phi(\mathbb{X}_k) > 0$ for some $k \ge 1$?
- 3. Does ϕ -irreducibility imply ψ -irreducibility?
- 4. Let $\phi' \in \mathcal{M}_+(\mathcal{X})$. Is it true that ϕ' is an irreducibility measure if and only if $\phi' \ll \psi$?
- 5. Can we conclude that two maximal irreducibility measures are equivalent? (The ordering implicitly assumed here is the absolute continuity \ll .)
- 6. Let ϕ' be an arbitrary finite irreducibility measure. Define $\psi'(A) = \int \phi'(dx) G_{1/2}(x, A)$ for all $A \in \mathscr{X}$. Is it true that ψ and ψ' are equivalent?
- 7. If for some $A \in \mathcal{X}$, we have $\psi(A) = 0$, show that $\psi(\{x \in X : L_A(x) > 0\}) = 0$.

Exercise 9.1.10. Let (ξ_n) be a sequence of independent real-valued random variables, identically distributed according to the law v. Suppose that the measure v possesses an absolutely continuous part v_{ac} with respect to the Lebesgue measure λ on (\mathbb{R} , $\mathscr{B}(\mathbb{R})$), with density f. Suppose further there exist constants $\beta > 0$ and $\delta > 0$ such that for all $x \in \mathbb{R}$ with $|x| \le \beta$ we have $f(x) > \delta$. Construct a Markov chain (X_n) on (\mathbb{R} , $\mathscr{B}(\mathbb{R})$) by the recurrence $X_0 = x$ and $X_{n+1} = X_n + \xi_{n+1}$, for $n \in \mathbb{N}$. Denote by P the Markovian kernel of this chain.

- 1. Let $C = \{x \in \mathbb{R} : |x| \le \beta/2\}$. For an arbitrary Borel set $B \subseteq C$ and an arbitrary $x \in B$, minorise P(x, B).
- 2. Let $\phi \in \mathcal{M}_+(\mathscr{B}(\mathbb{R}))$ be defined by

$$\phi(A) = \begin{cases} \lambda(A) & \text{if } A \in \mathcal{B}(\mathbb{R}), A \subseteq C, \\ 0 & \text{if } A \in \mathcal{B}(\mathbb{R}), A \subseteq C^c. \end{cases}$$

Is the mesure ϕ an irreducibility measure for the chain (X_n) ?

Exercise 9.1.11. Let $\psi \in \mathcal{M}_+(\mathcal{X})$ be a maximal irreducibility measure for the chain. A set $A \in \mathcal{X}$ is called **full** if $\psi(A^c) = 0$.

- 1. Show that every stochastically closed set *F* is full.
- 2. Let $A \in \mathscr{X}$ be full and define $F := \{x \in X : G^0(x, A^c) = 0\}$.
 - Show that $F \subseteq A$.
 - Suppose that there exists $y \in F$ such that $P(y, A^c) > 0$. Show that this assumption contradicts the very definition of *F*.
 - Conclude that any full set contains a closed set.

Theorem 9.1.12. Let \mathscr{X} be separable. Then the densities $p_n(\cdot, \cdot)$ are jointly measurable.

Proof: By lemma 9.1.6, we can assume without loss of generality that ϕ is a probability. Since $P_{ac}^n(x, \cdot) \ll \phi(\cdot)$, it follows that for any $\varepsilon > 0$, there exists a $\delta > 0$ such that for every $A \in \mathcal{X}$ with $\phi(A) < \delta$ it follows that $P_{ac}^n(x, A) < \varepsilon$, for all $x \in \mathbb{X}$.

Since \mathscr{X} is separable, we proceed as in theorem B.2.1; there exists a sequence $(B_l)_{l \in \mathbb{N}}$ of sets $B_n \subseteq \mathbb{X}$ such that $\mathscr{X} = \sigma(B_l, l \in \mathbb{N})$. Denote $\mathscr{G}_k = \sigma(B_1, \ldots, B_k)$ for $k \in \mathbb{N}$. Every such σ -algebra is composed by $2^{r(k)}$ possible unions of atoms $A_{k,1}, \ldots, A_{k,r(k)}$ of \mathscr{G}_k . Every atom $A \in \mathscr{G}_k$ is of the form: $A = H_1 \cap \cdots \cap H_k$, each H_i being either B_i or B_i^c . For every $y \in \mathbb{X}$, there exists a unique atom $A \in \mathscr{G}_k$ such that $y \in A$; denote by $A_k(y)$ that particular atom. Define then

$$p_{n,k}(x, y) = \begin{cases} \frac{P^n(x, A_k(y))}{\phi(A_k(y))} & \text{if } \phi(A_k(y)) > 0\\ 0 & \text{if } \phi(A_k(y)) = 0 \end{cases}$$

Now, each $p_{n,k}(\cdot, \cdot)$ is jointly measurable. For every $A \in \mathcal{G}_k$ and every $t \in]0, 1]$, denote by $F_A = \{x \in \mathbb{X} : P^n(x, A) \le t\phi(A)\}$. Obviously $F_A \in \mathcal{X}$ because $P(\cdot, A) \in m\mathcal{X}$ for all $A \in \mathcal{X}$. The we compute

$$p_{n,k}^{-1}([0,t]) = \{(x,y) \in \mathbb{X}^2 : P^n(x,A(y)) \le t\phi(A(y))\}$$
$$= \bigcup_{A \in \mathcal{G}_k} \bigcup_{y \in A} \{(x,y) \in \mathbb{X}^2 : P^n(x,A) \le t\phi(A)\}$$
$$= \bigcup_{A \in \mathcal{G}_k} F_A \times A \in \mathcal{X} \otimes \mathcal{G}_k \subseteq \mathcal{X} \otimes \mathcal{X},$$

establishing the joint measurability of $p_{n,k}(\cdot, \cdot)$. Define $q_n(\cdot, \cdot) = \liminf_{k\to\infty} p_{n,k}(\cdot, \cdot)$ that will be obviously be jointly measurable as *limes infimum* of jointly measurable functions.

Moreover, $p_{n,k}(x, \cdot) \in \mathcal{L}^1(\mathbb{X}, \mathcal{G}_k, \phi)$ and for all $G \in \mathcal{G}_k$, we have $\int_G p_{n,k}(x, y)\phi(dy) = P_{ac}^n(x, G) \leq 1$. This equation implies that $(p_{n,k}(x, \cdot))_k$ is a positive uniformly integrable (\mathcal{G}_k) -martingale. Therefore, by theorem , $q_n(x, y) = \lim p_{n,k}(x, y)$ is a jointly measurable version of the Radon-Nikodým derivative

$$q_n(x, y) = \frac{dP_{\rm ac}^n(x, \cdot)}{d\phi(\cdot)}(y), \forall_{\phi} y \in \mathbb{X}.$$

Remark 9.1.13. If \mathscr{X} is not separable, the conclusion still holds (see [50, §14.13, pp. 147–149] for instance).

Proposition 9.1.14. There exist $\mathscr{X} \otimes \mathscr{X}$ -measurable versions of the densities p_n of the Radon-Nikodým derivatives satisfying, for all $n \ge 1$, all k with $1 \le k \le n$ and all $x, y \in \mathbb{X}$:

$$p_n(x, y) \geq \int_{\mathbb{X}} P^{n-k}(x, dz) p_k(z, y)$$

$$\geq \int_{\mathbb{X}} p_{n-k}(x, z) \phi(dz) p_k(z, y)$$

/Users/dp/a/ens/markov-irred.tex 2015-10-16 • 18:37:36. 104

Proof: For every *k*, let q_k be a $\mathscr{X} \otimes \mathscr{X}$ -measurable version of the density of P_{ac}^k (as established in theorem 9.1.12). Then we have for all $B \in \mathscr{X}$:

$$P^{n}(x,B) = \int_{\mathbb{X}} P^{n-k}(x,dy)P^{k}(y,B)$$

$$\geq \int_{\mathbb{X}} P^{n-k}(x,dy)\int_{B} q_{k}(y,z)\phi(dz)$$

$$= \int_{B} \left(\int_{\mathbb{X}} P^{n-k}(x,dy)q_{k}(y,z)\right)\phi(dz).$$

Apply this inequality to $B = A \setminus X_{x,n}$ for an arbitrary $A \in \mathcal{X}$. Then

$$P^{n}(x, A \setminus X_{x,n}) = \int_{A} q_{n}(x, z)\phi(dz) \quad (\text{because } \phi(X_{x,n}) = 0)$$

$$\geq \int_{A} \left(\int_{X} P^{n-k}(x, dy) q^{k}(y, z) \right) \phi(dz).$$

Hence $\forall_{\phi} z \in \mathbb{X}$,

$$q_n(x,z) \geq \int_{\mathbb{X}} P^{n-k}(x,dy)q_k(y,z)$$

$$\geq \int_{\mathbb{X}} q_{n-k}(x,dy)\phi(dy)q_k(y,z).$$

On defining recursively

$$p_1(x,z) = q_1(x,z)$$

$$p_n(x,z) = q_n(x,z) \vee \max_{1 \le k \le n} \int_{\mathbb{X}} P^{n-k}(x,dy) q_k(y,z), \text{ for } n \ge 2,$$

we se that the sequence $(p_n)_n$ fulfills the requirements of the proposition. \Box

9.2 *c*-sets

When X is countable, or more generally when a general space X possesses a special **regenerating** point *a* such that $L_{\{a\}}(x) > 0$ for all *x*, then the situation is quite simple since segments of the Markov chain between successive visits to *a* are independent.

Example 9.2.1. Let $(\xi_n)_n$ be a sequence of independent random variables identically distributed with uniform probability on [-1, 1] and consider the Markov chain on $\mathbb{X} = \mathbb{R}_+$ defined by $X_{n+1} = (X_n + \xi_{n+1})^+$. Then $0 \in \mathbb{X}$ is a regenerating point.

In the general case, such points may not exist; they are subtituted by *c*-sets, i.e. "small sets" visible by the absolutely continuous part of the kernel.

Definition 9.2.2. Let $C \in \mathscr{X}$ and $\phi \in \mathscr{M}_+(\mathscr{X})$. The set *C* is called a *c*-set relatively to the measure ϕ if

$$- \phi(C) > 0 \text{ and}$$

$$- \exists n \in \mathbb{N} : r(n, C) \equiv \inf_{(x, y) \in C \times C} p_n(x, y) > 0.$$

Remark 9.2.3. The claimed "smallness" of *c*-sets lies precisely on the last condition of the definition 9.2.2: the set must be sufficiently "small" so that $\inf_{(x,y)\in C\times C} p_n(x,y) > 0$ (if the infimum is taken over all $\mathbb{X} \times \mathbb{X}$ it is likely to be 0). On the other hand, the *c*-sets must be sufficiently large to be "visible" by ϕ .

Theorem 9.2.4. Suppose that \mathscr{X} is separable and ϕ an irreducibility measure. Suppose that $A \in \mathscr{X}$ verifies

- 1. $\phi(A) > 0$ and
- 2. $\forall B \in \mathcal{X}, B \subseteq A, \phi(B) > 0 \Rightarrow \forall x \in A, L_B(x) > 0.$

Then A contains a c-set.

The proof is long and tedious but without any conceptual difficulty, split for clarity into the two lemmata 9.2.5 an 9.2.6, proved below.

Denote by $\phi^2 = \phi \otimes \phi$ the measure on $\mathscr{X} \otimes \mathscr{X}$ induced by ϕ and for any $A \in \mathscr{X}$ by $A^2 = A \times A$ the corresponding rectangle. For any $U \subseteq \mathbb{X} \times \mathbb{X}$, we denote by

$$U_1(y) = \{x \in \mathbb{X} : (x, y) \in U\}, y \in \mathbb{X}$$
$$U_2(x) = \{y \in \mathbb{X} : (x, y) \in U\}, x \in \mathbb{X},$$

the horizontal section at ordinate y and the vertical section at abscissa x. Define

$$R^{(m,n)} = \{(x, y) \in A^2 : p_m(x, y) \ge \frac{1}{n}\}, \text{ and } R = \bigcup_{m \ge 1} \bigcup_{n \ge 1} R^{(m,n)}$$

Now

$$x \in A, y \in R_2(x) \Rightarrow \exists m \ge 1, \exists n \ge 1 : (x, y) \in R^{(m, n)}.$$

Thus, $R_2(x) = \bigcup_{m \ge 1} \bigcup_{n \ge 1} \{y \in A : p_m(x, y) \ge \frac{1}{n}\} \equiv B \subseteq A$.

Lemma 9.2.5. Let ϕ be an irreducibility measure. For all $x \in X$, $\phi(R_2(x)) > 0$.

Proof: Instantiate hypothesis 2) of the theorem to A = X.

$$\begin{split} \forall B \in \mathcal{X}, \phi(B) > 0 &\Rightarrow \quad \forall x \in \mathbb{X} : L_B(x) = \mathbb{P}_x(\tau_B < \infty) > 0 \\ &\Rightarrow \quad \forall x \in \mathbb{X} : \sum_{m \ge 1} \mathbb{P}_x(\tau_B = m) > 0 \\ &\Rightarrow \quad \forall x \in \mathbb{X} : \sum_{m \ge 1} P^m(x, B) > 0 \quad (*), \end{split}$$

because $\{X_m \in B\} = \{\tau_B = m\} \sqcup \{\tau_B < m, X_m \in B\}$ and consequently, $P^m(x, B) \ge \mathbb{P}_x(\tau_B = m)$. Now $P^m(x, B)$ differs from $\int_B p_m(x, y)\phi(dy)$ on $B \cap X_{x,m}$ (recall that $\phi(X_{x,m}) = 0$). On defining $X_x = \bigcup_{m \in \mathbb{N}} X_{x,m}$, we have that $\phi(X_x) = 0$. Thus, without loss of generality, we can limit ourselves to measurable sets $B \in \mathcal{X}$, with $\phi(B) > 0$

/Users/dp/a/ens/markov-irred.tex 106 2015-10-16 • 18:37:36. and $B \cap X_x = \emptyset$. These considerations imply that the inequality (*) above, reads now $\int_B (\sum_{m \ge 1} p_m(x, y)) \phi(dy) > 0$. Therefore,

$$\forall x \in \mathbb{X}, \forall_{\phi} y \in B \Rightarrow \sum_{m \ge 1} p_m(x, y) > 0$$

$$\Rightarrow \exists m \ge 1 : p_m(x, y) > 0$$

$$\Rightarrow \exists m \ge 1, \exists n \ge 1 : p_m(x, y) \ge \frac{1}{n}.$$

In summarising: $\forall x \in \mathbb{X}$: $\phi(\bigcup_{m \ge 1} \bigcup_{n \ge 1} \{(x, y) \in B^2 : p_m(x, y) \ge \frac{1}{n}\}) > 0$ hence $\phi(R_2(x)) > 0$.

Lemma 9.2.6. Let ϕ be an irreducibility measure.

$$\phi(\{y \in \mathbb{X} : \phi(R_1(y) > 0 \text{ and } \phi(R_2(y) > 0\}) > 0.$$

Proof: We know from lemma 9.2.5 that $\int \phi(R_2(x))\phi(dx) > 0$. Thus

$$0 < \int \phi(R_2(x))\phi(dx) = \int \int \mathbb{1}_{R_2(x)}(y)\phi(dy)$$
$$= \int \left(\int \mathbb{1}_R(x,y)\phi(dx)\right)\phi(dy) = \int \phi(R_1(y))\phi(dy),$$

proving that we have both $\int \phi(R_1(y))\phi(dy) > 0$ and $\int \phi(R_2(y))\phi(dy) > 0$. To finish the proof, we must show I > 0, where:

$$I \equiv \int \phi(R_1(y))\phi(R_2(y))\phi(dy)$$

=
$$\int \int \mathbb{1}_R(y,t)\phi(dt) \left(\int \mathbb{1}_R(s,y)\phi(ds)\right)\phi(dy)$$

=
$$\int \int \left(\int \mathbb{1}_R(s,y)\mathbb{1}_R(y,t)\phi(dy)\right)\phi(ds))\phi(dt)$$

Instantiating the previous lemma 9.2.5 for A = X yields $\phi(R_2(y)) > 0$, for all $y \in X$. Combined with the conclusion $\int \phi(R_1(y))\phi(dy) > 0$ obtained above, we conclude that I > 0.

Sketch of the proof of theorem 9.2.4: As was the case in the proof of lemma 9.2.6, ϕ -irreducibility guarantees that $\mathbb{1}_R(s, y)\mathbb{1}_R(y, t) > 0$ on a set of strictly positive measure: there exist m_1, n_1, m_2, n_2 such that $P^{m_1}(s, y) \ge \frac{1}{n_1}$ and $P^{m_2}(y, t) \ge \frac{1}{n_2}$. Define $F = R^{m_1,n_1}$ and $G = R^{m_2,n_2}$ and consider $(\Delta_n)_n$ be a sequence of finite \mathscr{X} measurable partitions of A such that for all n, the partition Δ_{n+1} is refinement of Δ_n , i.e. every element of Δ_{n+1} is a finite disjoint union of elements of Δ_n . Additionally, every such partition of A induces a partition of A^2 because if $A_{n,\alpha} \in \Delta_n$ and $A_{n,\beta} \in \Delta_n$, for $\alpha, \beta = 1, \dots, |\Delta_n|$, then the set $A_{n,\alpha} \times A_{n,\beta} \equiv A^2_{n,(\alpha,\beta)}$ will be an element of the induced partition. Now, for all $x \in A$, there exists a unique $\delta = \delta(n, x) \in \{1, \dots, |\Delta_n|\}$ such that $x \in A_{n,\delta}$. Denote by $\mathscr{G}_n = \sigma(A^2_{n,(\alpha,\beta)}, \alpha, \beta \in \{1, \dots, |\Delta_n|\})$ the σ -algebra on $\mathbb{X} \times \mathbb{X}$ generated by the partition of order n. As was the case in the proof of the proposition 9.1.14, it is enough to consider the case where ϕ is a probability. For every $n \ge 1$ and $x, y \in X$, the set $D \equiv A_{n,(\delta(n,x),\delta(n,y))}^2 \in \mathcal{G}_n$ and we have:

$$\int_D \frac{\phi^2(F \cap D)}{\phi^2(D)} \phi(dx) \phi(dy) = \int_D \mathbb{1}_F(x, y) \phi(dx) \phi(dy).$$

Since the sets of the form *D* are a π -system generating \mathscr{G}_n . Hence we shall have

$$\frac{\phi^2(F \cap D)}{\phi^2(D)} = \mathbb{E}(\mathbb{1}_F | \mathcal{G}_n), \text{ a.s.}$$

Now the sequence $(\mathbb{E}(\mathbb{1}_F | \mathscr{G}_n))_n$ is a uniformly integrable $(\mathscr{G}_n)_n$ -martingale converging almost surely ¹ to $\mathbb{1}_F$. Assuming that *F* is contained in the σ -algebra generated by the partitions, we have therefore,

$$\lim_{n \to \infty} \frac{\phi^2(F \cap A^2_{n,(\delta(n,x),\delta(n,y))})}{\phi^2(A^2_{n,(\delta(n,x),\delta(n,y))})} = \mathbb{1}_F(x,y), (x,y) \in A^2 \setminus N.$$

The same line of arguments leads to the conclusion that

$$\lim_{n \to \infty} \frac{\phi^2 (G \cap A_{n,(\delta(n,x),\delta(n,y))}^2)}{\phi^2 (A_{n,(\delta(n,x),\delta(n,y))}^2)} = \mathbb{1}_G(x,y), (x,y) \in A^2 \setminus N.$$

Since $\phi^2(N) = 0$, we have

$$\phi(\{y \in A : \phi(F_1(y)) > 0 \text{ and } \phi(G_2(y)) > 0\}) > 0,$$

meaning that

$$\phi(\{y \in A : \phi(F_1(y) \setminus N_1(y)) > 0; \phi(G_2(y) \setminus N_2(y)) > 0\}) > 0.$$

There exist therefore $s_0, y_0, t_0 \in A$ such that $s_0 \in F_1(y_0) \setminus N_1(y_0)$ and $t_0 \in G_2(y_0) \setminus N_2(y_0)$. For *n* sufficiently large denote by $\alpha = \delta(n, s_0), \beta = \delta(n, y_0)$, and $\gamma = \delta(n, t_0)$; since

$$\lim_{n \to \infty} \frac{\phi^2(F \cap A^2_{n,(\alpha,\beta)})}{\phi^2(A^2_{n,(\alpha,\beta)})} = \mathbb{1}_F,$$

when the right hand side does not vanish, there exists n_0 sufficiently large so that for $n \ge n_0$ we have

$$\phi^2(F \cap A_{n,(\alpha,\beta)}^2) \ge \frac{3}{4}\phi(A_{n,\alpha})\phi(A_{n,\beta})$$

and similarly

$$\phi^2(G \cap A_{n,(\alpha,\gamma)}^2) \ge \frac{3}{4}\phi(A_{n,\alpha})\phi(A_{n,\gamma}).$$

/Users/dp/a/ens/markov-irred.tex 2015-10-16 • 18:37:36.

^{1.} That means that for all $(x, y) \in A^2$ but, may be, for a negligible set *N*.

Left hand sides of the above equations read respectively $\int_{A_{n,\alpha}} \phi(F_2(s) \cap A_{n,\beta}) \phi(ds)$ and $\int_{A_{n,\gamma}} \phi(G_1(t) \cap A_{n,\beta}) \phi(dt)$. On defining

$$J = \{s \in A_{n,\alpha} : \phi(F_2(s) \cap A_{n,\beta}) \ge \frac{3}{4}\phi(A_{n,\beta})\}$$
$$K = \{t \in A_{n,\gamma} : \phi(G_1(t) \cap A_{n,\beta}) \ge \frac{3}{4}\phi(A_{n,\beta})\}$$

we conclude that $\phi(J) > 0$ and $\phi(K) > 0$. We can further show that for all $x \in J$ and all $z \in K$, $\phi(F_2(x) \cap G_1(z)) \ge \frac{1}{2}\phi(A_{n,\beta})$. Now, $y \in F_2(x) \cap G_1(z)$ means that $(x, y) \in F$ and $(y, z) \in G$. Recalling the definitions of *F* and *G* given at the beginning of the proof, we have:

$$p_{m_1+m_2}(x,z) \geq \int_{\mathbb{X}} p_{m_1}(x,y) p_{m_2}(y,z) \phi(dy)$$

$$\geq \int_{F_2(x)\cap G_1(z)} p_{m_1}(x,y) p_{m_2}(y,z) \phi(dy)$$

$$\geq \frac{\phi(A_{n,\beta})}{2n_1 n_2}$$

$$\equiv \lambda > 0.$$

By hypothesis, for all $x \in K$ there exists an $m \ge 1$ and an $\varepsilon > 0$ such that for $C = \{x \in K : P^m(x, J) > \varepsilon\}$ we have $\phi(C) > 0$. For $x, y \in C$ then,

$$p_{m+m_1+m_2}(x,y) \geq \int_J P^m(x,dz) p_{m+m_2}(z,y)$$

$$\geq \phi(J)\lambda\varepsilon > 0.$$

Therefore *C* is a *c*-set.

Corollary 9.2.7. If \mathscr{X} is separable and the chain is ϕ -irreducible, then all $A \in \mathscr{X}$ such that $\phi(A) > 0$ contain *c*-sets. In particular X contains *c*-sets.

Definition 9.2.8. Let $\phi \in \mathcal{M}_+(\mathcal{X})$ and *C* a *c*-set. Define

$$I(C) = \{n \ge 1 : r(n, C) \equiv \inf_{(x, y) \in C^2} p_n(x, y) > 0\}$$

and

$$d(C) = \gcd I(C).$$

Proposition 9.2.9. *Let C be a c-set with* d(C) = d*, for some* $d \in \mathbb{N}$ *.*

- 1. The set I(C) contains all the sufficiently large multiples of d.
- 2. If the chain is irreducible then all *c*-sets $C' \subseteq C$ verify d(C') = d.

Proof: Since I(C) is closed for addition, (1) is an immediate corollary of lemma 6.1.13.

Recall the notation $r(n, C) = \inf_{(x, y) \in C^2} p_n(x, y)$. To prove (2), note that

$$n \in I(C) \Leftrightarrow r(n,C) > 0,$$

 $n' \in I(C') \Leftrightarrow r(n',C') > 0.$

/Users/dp/a/ens/markov-irred.tex 2015-10-16 • 18:37:36.

109

Obviously $C' \subseteq C \Rightarrow I(C) \subseteq I(C') \Rightarrow d' = \gcd I(C') \leq d = \gcd I(C)$. Let $m_1, m_2 \in I(C), n' \in I(C'), x, y \in C$. Hence

$$p_{m_1+n'+m_2}(x,y) \geq \int_{C'\times C'} p_{m_1}(x,x') p_{n'}(x',y') p_{m_2}(y',y) \phi(dx') \phi(dy')$$

$$\geq r(m_1,C) r(n',C') r(m_2,C) (\phi(C'))^2$$

$$> 0.$$

Therefore, $m_1 + n' + m_2 \in I(C)$ and similarly we prove that $m_1 + 2n' + m_2 \in I(C)$. Therefore, *d* divides both $m_1 + 2n' + m_2$ and $m_1 + n' + m_2$, hence it divides their difference, i.e. n'. Hence *d* divides any integer in I(C'), therefore, $d \leq d'$.

9.3 Cycle decomposition

Proposition 9.3.1. Let $(\mathbb{Y}, \mathscr{Y}, (\mathscr{Y}_n)_{n \in \mathbb{N}}, \mathbb{P})$ be a filtered space, $\mathscr{Y}_{\infty} = \bigvee_{n \ge 1} \mathscr{Y}_n$, and $(A_i)_i$ a sequence of events such that $A_i \in \mathscr{Y}_{\infty}$ for all $i \ge 1$. Then

- 1. $\lim_{n\to\infty} \mathbb{P}(\bigcup_{i=n}^{\infty} A_i | \mathscr{Y}_n) = \mathbb{1}_{\bigcap_{m=1}^{\infty} \bigcup_{i=m}^{\infty} A_1} = \mathbb{1}_{\limsup_i A_i};$
- 2. $\lim_{n\to\infty} \mathbb{P}(\bigcap_{i=n}^{\infty} A_i | \mathscr{Y}_n) = \mathbb{1}_{\bigcup_{m=1}^{\infty} \bigcap_{i=m}^{\infty} A_1} = \mathbb{1}_{\liminf_i A_i}.$

Proof: The two assertions can be proved similarly; only proof of the first is given here. Note that for all $k \le n$:

$$X_n \equiv \mathbb{P}(\bigcup_{i=k}^{\infty} A_i | \mathscr{Y}_n) \ge \mathbb{P}(\bigcup_{i=n}^{\infty} A_i | \mathscr{Y}_n)$$
$$\ge \mathbb{P}(\bigcap_{m=1}^{\infty} \bigcup_{i=m}^{\infty} A_i | \mathscr{Y}_n) = \mathbb{E}(\mathbb{1}_{\limsup_i A_i} | \mathscr{Y}_n) \equiv Y_n.$$

Now, $(X_n)_n$ is a positive, uniformly integrable $(\mathscr{Y}_n)_n$ -martingale. As such it converges almost surely and in \mathscr{L}^1 towards $\mathbb{1}_{\bigcup_{i=k}^{\infty}A_i}$. So is $(Y_n)_n$, therefore $\lim_n Y_n = \mathbb{1}_{\limsup_i A_i}$. Exploiting the convergence of the martingales at both ends of the above inequality, yields

$$\begin{split} \mathbb{1}_{\bigcup_{i=k}^{\infty}A_{i}} &\geq \limsup_{n} \mathbb{P}(\bigcup_{i=n}^{\infty}A_{i}|\mathscr{Y}_{n}) \\ &\geq \liminf_{n} \mathbb{P}(\bigcup_{i=n}^{\infty}A_{i}|\mathscr{Y}_{n}) \\ &\geq \mathbb{1}_{\limsup_{i}A_{i}}. \end{split}$$

Finally, taking the $k \to \infty$ limit of the leftmost term in the above inequality, we get $\lim_{k\to\infty} \mathbb{1}_{\bigcup_{i\geq k}A_i} = \mathbb{1}_{\bigcap_{k\geq 1}\bigcup_{i\geq k}A_i} = \mathbb{1}_{\limsup_i A_i}$.

Recall (exercise 14 in §3.5) that $L_B(x) = \mathbb{P}_x(\bigcup_{n \ge 1} \{X_n \in B\})$ and $H_B(x) = \mathbb{P}_x(\bigcap_{n=1}^{\infty} \bigcup_{m \ge n} \{X_m \in B\})$.

Definition 9.3.2. Let $A \in \mathscr{X}$. The set *A* is called **unessential** if for all $x \in X$, we have $H_A(x) = 0$; otherwise, is called **essential**. If *A* is essential but can be written as a countable union of unessential sets, then is called **improperly essential**, otherwise **properly essential**.

/Users/dp/a/ens/markov-irred.tex 110 2015-10-16 • 18:37:36. **Remark 9.3.3.** The previous definition implicitly implies that a countable union of unessential sets is not necessarily unessential. To convince the reader that this is not a vain precaution, consider the following example: let $X = \mathbb{N}$ and suppose that for all $x \in X$, P(x, y) = 0 if y < x while P(x, x + 1) > 0 (for example P(x, x + 1) = 1). Then all states are unessential. However $X = \bigcup_{x \in X} \{x\}$ is necessarily essential.

Proposition 9.3.4. Let $F \in \mathscr{X}$ be a closed set and $F^{\circ} = \{x \in X : L_F(x) = 0\}$. Then $X \setminus (F \cup F^{\circ})$ cannot be properly essential.

Proof: Since *F* is closed, it follows that

$$F^{\circ} \equiv \{x \in \mathbb{X} : L_F(x) = 0\} = \{x \in F^c : L_F(x) = 0\}.$$

Thus, $(F^{\circ})^{c} = \{x \in F^{c} : L_{F}(x) > 0\} \cup F$ and

$$\mathbb{X} \setminus (F \cup F^{\circ}) = \{x \in F^{c} : L_{F}(x) > 0\} = \bigcup_{m \ge 1} G_{m},$$

where $G_m = \{x \in F^c : L_F(x) \ge \frac{1}{m}\}$. It is therefore enough to show that for all *m* the sets G_m are unessential.

From proposition 9.3.1 and Markov property, we conclude² that

$$L_F(X_n) = \mathbb{P}_x(\bigcup_{i\geq 0} \{X_{i+1} \circ \theta^n \in F\} | \mathscr{F}_n)$$

= $\mathbb{P}_x(\bigcup_{i\geq n} \{X_{i+1} \in F\} | \mathscr{F}_n)$
 $\rightarrow \mathbb{1}_{\limsup_n \{X_n \in F\}}.$

Thus $\lim_{n\to\infty} L_F(X_n) = \mathbb{1}_{\{X_n \in F \text{ i.o.}\}}$. On the set $\{X_n \in G_m \text{ i.o.}\}$ we have that for all $n \in \mathbb{N}$, there exists an integer $k_n \ge 1$ such that $X_{n+k_n} \in G_m$. Therefore, $L_F(X_{n+k_n}) \ge \inf_{y \in G_m} L_F(y) \ge 1/m$. Thus

$$\{0,1\} \ni \mathbb{1}_{\{X_n \in F \text{ i.o.}\}} = \lim_n L_F(X_n)$$
$$= \lim_n L_F(X_{n+k_n})$$
$$\ge 1/m.$$

i.e. $\mathbb{1}_{\{X_n \in F \text{ i.o.}\}} = 1$. This shows that on $\{X_n \in G_m \text{ i.o.}\}$, we have $\{X_n \in F \text{ i.o.}\}$. However, *F* is closed, hence absorbing: if $X_n \in F$ infinitely often, then there exists an integer *N* such that for all $n \ge N$ we have $X_n \in F$, i.e. if $X_n \in F$ infinitely often, then F^c cannot be visited but at most a finite number of times. This is in contradiction with the assumption $X_n \in G_m$ infinitely often.

Remark 9.3.5. It is worth quoting here a particularly vivid image used by Döblin [10] to explain the contradiction used in the above proof: *"Si un promeneur a, en traversant une rue, une probabilité* p > 0 *d'être écrasé par une voiture, il ne saurait la traverser indéfiniment car il sera tué avant (nous admettons qu'il ne puisse pas mourir autrement)".*

^{2.} Recall that this result was also obtained in proposition 5.2.12, by use of Riesz decomposition.

Definition 9.3.6. Let (C_0, \ldots, C_{d-1}) be a collection of d $(d \ge 1)$ disjoint measurable sets of \mathscr{X} . We say that (C_0, \ldots, C_{d-1}) is **cycle** (more precisely a *d*-cycle) for the stochastic kernel *P* if for all i = 0, ..., d-1 and all $x \in C_i$ we have $P(x, C_{i+1 \mod d}) =$ 1.

Theorem 9.3.7. Suppose that X is a ϕ -irreducible chain. Then there exists a d*cycle* $\mathscr{C} = (C_0, \dots, C_{d-1})$ *such that*

- The set $A = X \setminus \bigcup_{i=0}^{d-1} C_i$ is not properly essential and verifies $\phi(A) = 0$. If $\mathscr{C}' = (C'_0, \dots, C'_{d'-1})$ is a d'-cycle, then d' divides d and for all $i = 0, \dots, d' 1$ 1, the set C'_i differs from the union of d/d' members of the cycle \mathscr{C} by a ϕ negligible set that is not properly essential.

We shall prove this theorem only for the case of separable \mathscr{X} . The non-separable case is treated according the lines developed in [50, p. 147]. The proof is split into two elementary lemmata, lemma 9.3.9 and lemma 9.3.10 below. We start by stating a

Definition 9.3.8. Let $\phi \in \mathcal{M}_+(\mathcal{X})$ be an irreducibility measure and *d* a fixed integer and C a c-set. For an integer k with $1 \le k \le d$, a measurable set $A \in \mathcal{X}$ is called *k*-accessible (relatively to ϕ and *C*) if there exists a measurable set $B \subseteq C$ with $\phi(B) > 0$ such that $\mathbb{P}_x(\bigcup_{n=0}^{\infty} \{X_{nd+k} \in A\}) > 0$, for all $x \in B$. If there exists some integer k so that A is k-accessible, then A is called **accessible**.

It is evident that $A \in \mathcal{X}$ is k-accessible if and only if

$$\exists B \in \mathscr{X}, B \subseteq C, \phi(B) > 0 : \forall x \in B, \mathbb{P}_{x}(\tau_{A} \in \mathbb{L}_{k}) > 0,$$

where $\mathbb{L}_k = d\mathbb{N} + k$.

Lemma 9.3.9. Let ϕ be an irreducibility measure and C a c-set having periodicity d(C) = d. Then C is d-accessible.

Proof: By lemma 6.1.13, it follows that there exists an integer $N_0 \ge 1$ such that , for $n \ge N_0$ the integer *nd* is contained in the set $I(C) = \{n \in \mathbb{N} : \inf_{(x,y) \in C^2} p_n(x,y)\}$. Therefore, for all $x \in C$,

$$\begin{split} \mathbb{P}_x(\cup_{l=1}^{\infty}\{X_{ld+d} \in C\}) &\geq \mathbb{P}_x(\cup_{l=N_0}^{\infty}\{X_{ld+d} \in C\}) \\ &\geq r((N_0+1)d, C)\phi(C) \\ &> 0. \end{split}$$

Lemma 9.3.10. Let ϕ be an irreducibility measure and C a c-set having periodicity $d(C) = d \ge 2$. Then for any integer k with $1 \le k < d$, the set C cannot be k-accessible.

/Users/dp/a/ens/markov-irred.tex 112 2015-10-16 • 18:37:36.

Partial proof (under a simplifying hypothesis): Recall that since d = gcd(I(C)), there exists an integer $N_0 > 0$ such that I(C) contains all integers of the form nd for $n \ge N_0$. Suppose that there exists a k with $1 \le k < d$ such that C is k-accessible. Then,

$$\exists B \in \mathscr{X}, B \subseteq C, \phi(B) > 0 : \forall x \in B, \mathbb{P}_{x}(\bigcup_{k=0}^{\infty} \{X_{nd+k} \in C\}) > 0.$$

Now $\mathbb{P}_x(\bigcup_{k=0}^{\infty} \{X_{nd+k} \in C\}) > 0$ means that there exists $M \in \mathbb{N}$ such that $P^{Md+k}(x, C) > 0$. Without loss of generality, we can assume that $M \ge N_0$; otherwise, for all $n \in \mathbb{N}$, we have

$$P^{(n+M)d+k}(x,C) \ge \int_{B} p_{nd}(x,y)\phi(dy)P^{Md+k}(y,C)$$
$$\ge r(nd,C)\int_{B}\phi(dy)P^{Md+k}(y,C) > 0$$

We can thus choose an *n* so that $n + M \ge N_0$. We conclude the proof under the simplifying hypothesis that the Markov kernel has only absolutely continuous component. From the inequality $P^{nd+Md+k}(x, C) \ge \int_X p_{nd}(x, y)\phi(dy)P^{Md+k}(y, C)$, we conclude by proposition 9.1.14 that there exist versions of the Radon-Nikodým densities satisfying

$$p_{nd+Md+k}(x,y) \ge \int_{\mathbb{X}} p_{nd}(x,z)\phi(dz)p_{Md+k}(z,y)$$
$$\int_{C} p_{nd}(x,z)\phi(dz)p_{Md+k}(z,y) \ge r(nd,C)\int_{B}\phi(dz)p_{Md+k}(z,y) > 0.$$

We have thus r((n+M)d+k, C) > 0, meaning that both $(n+M)d+k \in I(C)$ and $(n+M)d \in I(C)$; therefore *k* must be divisible by *d* in contradiction with the definition of *d* as gcd I(C).

Sketch of the proof of theorem 9.3.7: Since the chain is ϕ -irreducible, there exists a *c*-set *C*. Let $d = d(C) = \gcd\{n \ge 1 : \inf_{(x,y) \in C^2} p_n(x,y) > 0\}$. For j = 1, ..., d, define: $\hat{C}_j = \{x \in \mathbb{X} : P^{nd-j}(x,C) > 0 \text{ for some } n \ge 1\}$. Since *C* is a *c*-set, it follows that $\phi(C) > 0$ and since the chain is ϕ -irreducible it follows that for all $B \in \mathscr{X}$: $\phi(B) > 0 \Rightarrow \forall x \in \mathbb{X}, L_B(x) > 0$. Every $x \in \mathbb{X}$ belongs to at least a \hat{C}_j for j = 1, ..., d. However, the sets \hat{C}_j are not necessarily mutually disjoint.

Lemmata 9.3.9 and 9.3.10 guarantee that *C* is *d*-accessible (relatively to ϕ and *C*) while cannot be *k*-accessible for any *k*, with $1 \le k < d$. We show similarly that for $1 \le i \ne j \le d$, $\hat{C}_i \cap \hat{C}_j$ is not accessible. (Exercise! Hint: follow the line of reasoning used within the proof of lemma 9.3.10.) Hence $A = \bigcup_{0 < i < j \le d} (\hat{C}_i \cap \hat{C}_j)$ is not accessible either. Consequently, $X \setminus A$ is closed. Define $C_i = \hat{C}_i \setminus A$, for i = 1, ..., d. It is then elementary to show that $A = X \setminus \bigcup_{i=1}^d C_i$. Since *A* is not accessible, ϕ -irreducibility implies that $\phi(A) = 0$. Applying proposition 9.3.4 to the closed set $X \setminus A$ implies that $X \setminus ((X \setminus A) \cup (X \setminus A)^\circ)$ is not properly essential. Now

$$(\mathbb{X} \setminus A)^{\circ} = \{ x \in \mathbb{X} : L_{\mathbb{X} \setminus A}(x) = 0 \}.$$

But $\phi(X \setminus A) > 0$ so that by ϕ -irreducibility, for all $x \in X$, we have that $L_{X \setminus A}(x) > 0$;

/Users/dp/a/ens/markov-irred.tex 113 2015-10-16 • 18:37:36. this implies $(X \setminus A)^\circ = \emptyset$. In summarising,

$$\mathbb{X} \setminus ((\mathbb{X} \setminus A) \cup (\mathbb{X} \setminus A)^{\circ}) = \mathbb{X} \setminus (\mathbb{X} \setminus A)$$
$$= A,$$

establishing thus that A is not properly essential.

The second assertion of the theorem is proved according to the same line of reasoning (exercise!). $\hfill \Box$

Proposition 9.3.11. Let $A \in \mathscr{X}$ be a non empty set. Denote by $A^{\infty} = \{x \in X : H_A(x) = 1\}$ and suppose that X is indecomposable and properly essential. Then the following are equivalent:

- 1. A is properly essential,
- 2. $A^\circ = \emptyset$,
- 3. $A^{\infty} \neq \emptyset$.

Proof: An exercise (10.1.3), postponed to the next chapter 10.

Exercise 9.3.12. Let X be indecomposable and F closed. Show that F^c cannot be properly essential. (Hint: Start by showing that $F \subseteq (F^c)^\circ$.)

10

Asymptotic behaviour for ϕ -recurrent chains

In this chapter we shall establish that the asymptotic σ -algebra, $\mathscr{T}_{\infty}^{\mathbb{P}_{\mu}}$, for a ϕ -recurrent chain is finite. If moreover the chain is aperiodic, the asymptotic σ -algebra is trivial.

10.1 Tail σ -algebras

Definition 10.1.1. For $A \in \mathcal{X}$, we denote by $\Lambda(A)$ the set

$$\Lambda(A) = \bigcap_{m=1}^{\infty} \bigcup_{i \ge m} \{X_i \in A\} = \{X_i \in A \text{ i.o.}\}.$$

Proposition 10.1.2. *Let* $A, B \in \mathcal{X}$ *.*

- 1. If $i_B(A) := \inf_{x \in A} L_B(x) > 0$, then, for all $\mu \in \mathcal{M}_1(\mathcal{X})$, we have $\Lambda(A) \subseteq \Lambda(B)$, \mathbb{P}_{μ} -a.s. Consequently $\mathbb{P}_{\mu}(\Lambda(A)) \leq \mathbb{P}_{\mu}(\Lambda(B))$.
- 2. If $s_B(A) := \sup_{x \in A} H_B(x) < 1$, then, for all $\mu \in \mathcal{M}_1(\mathcal{X})$, we have $\Lambda(A) \subseteq \Lambda^c(B)$, \mathbb{P}_{μ} -a.s. Consequently $\mathbb{P}_{\mu}(\Lambda(A) \cap \Lambda(B)) = 0$.

Proof: Let $A_i = \{X_{i+1} \in A\}$ and $B_i = \{X_{i+1} \in B\}$.

To prove (1) note that $L_B(X_n) = \mathbb{P}_{\mu}(\bigcup_{i \ge n} B_i | \mathscr{F}_n)$ and by proposition 9.3.1, $\lim_{n \to \infty} L_B(X_n) = \mathbb{1}_{\Lambda(B)}$, \mathbb{P}_{μ} -a.s. If $\omega \in \Lambda(A)$ then for all $m \ge 1$, there exists a $n \ge m$ such that $\omega \in \{X_n \in A\} \subseteq \{L_B(X_n) \ge i_B(A)\}$, the latter inclusion holding because $\inf_{x \in A} L_B(x) > 0$

(and $X_n \in A$). Hence, \mathbb{P}_{μ} -a.s.

$$\Lambda(A) \subseteq \limsup_{n} \{L_B(X_n) \ge i_B(A)\} = \{\inf_{m} \sup_{n \ge m} L_B(X_n) \ge i_B(A)\}$$

$$\subseteq \{\limsup_{n} L_B(X_n) > 0\} = \{\mathbb{1}_{\Lambda(B)} > 0\} = \{\mathbb{1}_{\Lambda(B)} = 1\} = \Lambda(B).$$

To prove (2) note that $H_B(X_n) = \mathbb{P}_{\mu}(\bigcap_{m \ge n} \bigcup_{k \ge m} B_k | \mathscr{F}_n)$ and by proposition 9.3.1, $\lim_{n \to \infty} H_B(X_n) = \mathbb{1}_{\Lambda(B)}$, \mathbb{P}_{μ} -a.s. If $\omega \in \Lambda(A)$ then for all $m \ge 1$, there exists a $n \ge m$ such that $\omega \in \{X_n \in A\} \subseteq \{H_B(X_n) \le s_B(A)\}$, the latter inclusion holding because $\sup_{x \in A} H_B(x) \ge s_B(A)$ (and $X_n \in A$). Hence, \mathbb{P}_{μ} -a.s.

$$\Lambda(A) \subseteq \limsup_{n} \{H_B(X_n) \le s_B(A)\}$$
$$\subseteq \{\liminf_{n} H_B(X_n) < 1\}$$
$$= \{\mathbb{1}_{\Lambda(B)} < 1\} = \{\mathbb{1}_{\Lambda(B)} = 0\} = \Lambda^c(B)$$

Exercise 10.1.3. (Proof of the proposition 9.3.11)

— For $n \ge 1$ define

$$A_n = \{x \in \mathbb{X} : H_A(x) < 1 - \frac{1}{n}; L_A(x) > \frac{1}{n}\}.$$

Express X in terms of A° , A^{∞} and the family $(A_n)_n$.

- Show that for all $n \ge 1$ the sets A_n cannot be properly essential. (Hint: use proposition 10.1.2 twice.)
- Determine $A^{\circ} \cap A^{\infty}$ and conclude that A^{∞} and $(X \setminus A) \cap A^{\circ}$ are disjoint.
- Show that A° and A^{∞} cannot be simultaneously non-empty, establishing thus the equivalence of statements 2 and 3 of the proposition. (Hint: show they are closed and use indecomposability of X.)
- Conlcude that either A° or A^{∞} is properly essential.
- Assume statement 3 of the proposition holds. Write $A = \bigcup_n B_n$ with all B_n unessential and $D_n = \{x \in A^\infty : L_{\bigcup_{k=1}^n B_k}(x) > \frac{1}{n}\}$. Show that for some indices *n* the sets D_n must be properly essential.
- Show that the previous results contradicts the statement that all B_n are unessential.
- Conclude that 3 implies 1.
- Conversely suppose that 1 holds and assume that $A^{\infty} = \emptyset$. Show that one can then decompose *A* into a countable union of unessential sets.

Corollary 10.1.4. *If* (X_n) *is a* ϕ *-recurrent chain then*

- 1. For all $B \in \mathcal{X}$, with $\phi(B) > 0$, we have $H_B(x) = 1$ for all $x \in X$.
- 2. Every bounded harmonic function is constant.

Proof: To show (1), recall that ϕ -recurrence means that for all $B \in \mathscr{X}$ with $\phi(B)$, we have $L_B(x) = 1$ for all $x \in \mathbb{X}$. Let $A = \mathbb{X}$ and $B \in \mathscr{X}$ as above; then $\inf_{x \in \mathbb{X}} L_B(x) > 0$.

Hence (1) of proposition 10.1.2 is verified. For $\mu = \varepsilon_x$, we get: $1 = \mathbb{P}_x(\Lambda(\mathbb{X})) = H_{\mathbb{X}}(x) \le \mathbb{P}_x(\Lambda(B)) = H_B(x) \le 1$. Summarising:

$$B \in \mathscr{X}, \phi(B) > 0 \Rightarrow \forall x \in \mathbb{X} : H_B(x) = 1.$$

To show (2), let $h \in b\mathcal{X}$ be harmonic. By theorem 5.4.1, there exists a bounded invariant function $\Xi \in b\mathcal{F}$ such that $\lim_n h(X_n) = \Xi$, \mathbb{P}_x -a.s. Define $\alpha_0 = \sup\{\alpha \in \mathbb{R} : \phi(\{x \in \mathbb{X} : h(x) > \alpha\}) > 0\}$. Since $h \in b\mathcal{X}$, it follows $\alpha_0 < \infty$. Therefore, for all $\alpha \in]0, \alpha_0[, \phi(\{x \in \mathbb{X} : h(x) \ge \alpha\}) > 0$. From (1) we get: $H_{\{x \in \mathbb{X} : h(x) \ge \alpha\}}(x) = 1$, for all $x \in \mathbb{X}$, meaning that $h(X_n) \ge \alpha$ for infinitely many indices. Consequently, $\Xi \ge \alpha$ \mathbb{P}_x -a.s. because $\Xi = \lim_n h(X_n)$. Similarly, for all $\alpha > \alpha_0$, we show that for $\alpha > \alpha_0$, w have $H_{\{x \in \mathbb{X} : h(x) \le \alpha\}}(x) = 1$, for all $x \in \mathbb{X}$ and consequently $\Xi \le \alpha_0 \mathbb{P}_x$ -a.s. Thus, finally, $\mathbb{P}_x(\Xi = \alpha_0) = 1$ meaning that $h(x) = \mathbb{E}_x(\Xi) = \alpha_0$.

10.2 Structure of the asymptotic σ -algebra

This section is devoted to the proof of the following

Theorem 10.2.1. Let $\mu \in \mathcal{M}_1(\mathcal{X})$ and (X_n) a ϕ -recurrent Markov chain.

- 1. If the chain is aperiodic, then $\mathcal{T}_{\infty}^{\mathbb{P}_{\mu}}$ is trivial.
- 2. If the chain has period d and $(C_1, ..., C_d)$ is a d-cycle of (X_n) , then $\mathcal{T}_{\infty}^{\mathbb{P}_{\mu}}$ is atomic and the atoms (modulo \mathbb{P}_{μ} -negligible events) are those of the events

 $E_i = \bigcup_{m \ge 1} \bigcap_{n \ge m} \{X_{nd+i} \in C_i\}, i = 1, ..., d$

that verify the condition $\mathbb{P}_{\mu}(E_i) > 0$.

Proof: Only the aperiodic case will be proved. To establish triviality of the $\mathcal{T}_{\infty}^{\mathbb{P}_{\mu}}$ σ -algebra, it is enough to show that all bounded harmonic spatio-temporal functions are constant because then, from corollary 5.4.2, it follows that the invariant σ -algebra for the spatio-temporal chain is trivial and proposition 5.3.7 guarantees further that the asymptotic events for the chain are the invariant events for the spatio-temporal chain. Let \tilde{h} be such a bounded harmonic spatio-temporal function. Define $\tilde{h}'(x, n) = \tilde{h}(x, n+1)$ for all $x \in \mathbb{X}$ and all $n \in \mathbb{N}$. Then \tilde{h}' is also a bounded harmonic spatio-temporal function. We shall establish in the sequel that $\tilde{h}' = \tilde{h}$ showing that \tilde{h} is independent of n, hence $\tilde{h}'(x, n) = h(x)$ for all x, where h will be a bounded harmonic, hence constant by (2) of previous corollary 10.1.4.

Suppose that there exists a $z_0 = (x_0, n_0)$ such that $\tilde{h}'(z_0) \neq \tilde{h}(z_0)$. Denote by $Z_n = (X_n, T_n)$ the spatio-temporal chain. The martingales $(\tilde{h}(Z_n))_n$ and $(\tilde{h}'(Z_n))_n$ converge respectively towards Ξ and Ξ' , $\tilde{\mathbb{P}}_{z_0}$ -a.s. Since we have supposed that $\tilde{h}'(z_0) \neq \tilde{h}(z_0)$, we have necessarily that $\tilde{\mathbb{P}}_{z_0}(\Xi \neq \Xi') > 0$. Assume that $\tilde{\mathbb{P}}_{z_0}(\Xi < Z_n)$

 Ξ') > 0 (the other case is treated similarly). Then there exist $a, b \in \mathbb{R}$ with a < b and $\delta > 0$ such that

$$\tilde{\mathbb{P}}_{z_0}(\Xi < a; \Xi' > b) = \delta > 0.$$

On denoting $A = \{z : \tilde{h}(z) < a\}$ and $B = \{z : \tilde{h}'(z) > b\}$, the previous relationship implies

$$\tilde{\mathbb{P}}_{z_0}(\cup_{m\geq 0}\cap_{n\geq m}\{Z_n\in A\cap B\})\geq \delta.$$

Let $g(z_0) = \tilde{\mathbb{P}}_{z_0} (\cap_{n \ge m} \{Z_n \in A \cap B\})$. Since

$$\lim_{n} g(Z_n) = \mathbb{1}_{\bigcup_{m \ge 0} \cap_{n \ge m} \{Z_n \in A \cap B\}}, \tilde{\mathbb{P}}_{z_0}\text{-a.s.},$$

appropriately choosing *z*, the value g(z) can be made arbitrarily close to 1 with strictly positive probability $\tilde{\mathbb{P}}_z$. Corollary 9.2.7 guarantees that any measurable set *A* with $\phi(A) > \text{contains a } C$ -set. Let *C* be such a set; there exist m > 0 and r(m, C) > 0 such that for all $x, y \in C$, we have both $p_m(x, y) \ge r(m, C)$ and $p_{m+1}(x, y) \ge r(m, C)$ (due to the aperiodicity and lemma 6.1.13). Now,

$$\phi(C) > 0 \stackrel{10.1.4}{\Rightarrow} H_C(x) = 1, \forall x \in \mathbb{X}$$
$$\Rightarrow \mathbb{P}_{x_0}(X_n \in C \text{ i.o.}) = 1$$
$$\Rightarrow \tilde{\mathbb{P}}_{z_0}(Z_n \in C \times \mathbb{N} \text{ i.o.}) = 1. \quad (*)$$

Observe also that

$$\begin{aligned} \{\lim_{n} g(Z_{n}) = 1\} &= \cap_{p \ge 1} \cup_{m \ge 0} \cap_{n \ge m} \{ |g(Z_{n}) - 1| < 1/p \} \\ &= \cap_{p \ge 1} A_{p}, \end{aligned}$$

where $A_p = \bigcup_{m \ge 0} \bigcap_{n \ge m} \{ |g(Z_n) - 1| < 1/p \}$. Therefore, the condition $\tilde{\mathbb{P}}_{z_0}(\lim_{n \to \infty} g(Z_n) = 1) > 0$ implies that for every $r \ge 1$, we have

$$\begin{split} \tilde{\mathbb{P}}_{z_0}(\cup_{m \ge 0} \cap_{n \ge m} \{ |g(Z_n) - 1| < 1/r \} &= \tilde{\mathbb{P}}_{z_0}(A_r) \\ &\ge \tilde{\mathbb{P}}_{z_0}(\cap_{p \ge 1} A_p) \\ &> 0. \ (**) \end{split}$$

In other words, there exists an increasing subsequence $(n_l)_l$, with $\lim_l n_l = \infty$ such that for every $\eta' > 0$, we have simultaneously for every l

$$\tilde{\mathbb{P}}_{z_0}(X_{n_l} \in C \text{ and } |g(Z_{n_l}) - 1| < \eta') > 0.$$

In fact, abbreviate $C_{n_l} = \{X_{n_l} \in C\}$ and $G_{n_l} = \{|g(Z_{n_l}) - 1| < \eta'\}$. Then the condition $\phi(C) > 0$ implies, by virtue of (*), that there exists a strictly increasing unbounded sequence of integers $(n_l)_l$ such that for all l, $\tilde{\mathbb{P}}_{z_0}(C_{n_l}) = 1$. Similarly, condition $\tilde{\mathbb{P}}_{z_0}(\lim_n g(Z_n) = 1) > 0$ implies, by virtue of (**) that there exists an integer N > 0 such that for all $n \ge N$, $\tilde{\mathbb{P}}_{z_0}(G_n) > 0$. Now

$$0 < \mathbb{P}_{z_0}(G_{n_l})$$

= $\tilde{\mathbb{P}}_{z_0}(C_{n_l} \cap G_{n_l}) + \tilde{\mathbb{P}}_{z_0}(C_{n_l}^c \cap G_{n_l})$
= $\tilde{\mathbb{P}}_{z_0}(C_{n_l} \cap G_{n_l}).$

/Users/dp/a/ens/markov-phire.tex 118 2015-10-15 • 23:01:40. Therefore, there must exist a point $z_1 = (x_1, n_1)$ with $x_1 \in C$ and $1 - g(z_1) < r(m, C)\phi(C)/4$. Let $C' = C \cap \{x \in X : (x, n_1 + m) \notin A \cap B\}$. We have then:

$$\mathbb{P}_{x_1}(X_m \in C') \ge \int_{C'} p_m(x_1, y)\phi(dy) \ge r(m, C)\phi(C')$$

and

$$\mathbb{P}_{x_1}(X_m \in C') \le \tilde{\mathbb{P}}_{z_1}(Z_m \not\in A \cap B) \le 1 - g(z_1) < \eta \phi(C)/4$$

Hence, $\phi(C') \leq \phi(C)/4$. We introduce similarly $C'' = C \cap \{x \in \mathbb{X} : (x, n_1 + m + 1) \notin A \cap B\}$ and establish that $\phi(C'') \leq \phi(C)/4$ and conclude that $\phi(C' \cup C'') \leq \phi(C)/2$. The latter implies that *C* contains a point *x* that does not belong to $C' \cup C''$; for that point *x*, we have $(x, n_1 + m) \in A \cap B$ and $(x, n_1 + m + 1) \in A \cap B$. Now, for $n = n_1 + m$, $(x, n) \in A \cap B \Rightarrow (x, n) \in B \Rightarrow \tilde{h}(x, n) = \tilde{h}'(x, n + 1) > b$, while $(x, n) \in A \cap B \Rightarrow (x, n) \in A \Rightarrow \tilde{h}(x, n) = \tilde{h}'(x, n + 1) < a$, a contradiction due to the hypothesis that $\tilde{h} \neq \tilde{h}'$.

The proof for the periodic case is based on theorem 9.3.7.

Corollary 10.2.2. Let (X_n) be a ϕ -recurrent chain and $\mu, \nu \in \mathcal{M}_1(\mathcal{X})$ with period $d \ge 1$. Then $\|\frac{1}{d} \lim_n \sum_{k=0}^{d-1} (\mu - \nu) P^{n+k}\| = 0$.

Proof: If the chain is aperiodic, ϕ -recurrence guarantees the triviality of $\mathscr{T}_{\infty}^{\mathbb{P}_{\mu}}$ by theorem 10.2.1, for all $\mu \in \mathscr{M}_1(\mathscr{X})$. We conclude then by theorem 5.4.4. If the chain is periodic, then $(X_{nd+r})_n$ is ϕ -irreducible and aperiodic on the set C_r of the cycle.

Exercise 10.2.3. (Weakening of the condition of ϕ **-recurrence)** A chain is called **weakly** ϕ **-recurrent** if $A \in \mathscr{X}$ and $\phi(A) > 0$ imply that $\forall_{\phi} x \in \mathbb{X}$, $H_A(x) = 1$. Consider a weakly ϕ -recurrent chain and chose $\Xi = \mathbb{1}_A$ where A is an invariant set. If we define $h(x) = \mathbb{E}_x(\Xi)$ then for all $\mu \in \mathscr{M}_1(\mathscr{X})$, $\lim_n h(X_n) = \Xi$, \mathbb{P}_{μ} -a.s.

- 1. If $0 < \alpha < 1$, show that the sets $B_1 = \{x \in X : h(x) > \alpha\}$ and $B_2 = \{x \in X : h(x) < \alpha\}$ cannot be simultaneously of strictly positive ϕ measure.
- 2. Conclude that $\forall_{\phi} y \in X$, either h(y) = 0 or h(y) = 1.
- 3. Let $\mu \in \mathcal{M}_+$ and $\mathbb{P}_{\mu}(\cdot) = \int \mu(dx) \mathbb{P}_x(\cdot)$ (even when μ is not a probability). Show that if $\mu \ll \phi$, for all $A \in \mathscr{J}_{\infty}^{\mathbb{P}_{\mu}}$, either $\mathbb{P}_{\mu}(A) = 0$ or $\mathbb{P}_{\mu}(A) = 1$.
- 4. Conclude that if $\mu \ll \phi$, weak ϕ -recurrence extends theorem 10.2.1 by guaranteeing the triviality of the σ -algebra $\mathscr{J}_{\infty}^{\mathbb{P}_{\mu}}$.

Uniform ϕ -recurrence

11.1 Exponential convergence to equilibrium

We introduce the notion of taboo probability kernel by

$$_{B}P^{m}(x,A) = \mathbb{P}_{x}(X_{m} \in A; X_{i} \notin B, \forall i = 1, \dots, m-1).$$

Definition 11.1.1. A chain (X_n) is **uniformly** ϕ -**recurrent** if for all $A \in \mathscr{X}$ with $\phi(A) > 0$, the following $\lim_{n \to \infty} \sum_{m=1}^{n} A^{p^m}(x, A) = 1$ holds *uniformly* in *x*.

Remark 11.1.2. Although elementary, it is worth stating explicitly for the sake of definiteness what is meant by uniformity in the previous definition:

$$\forall \varepsilon > 0, \exists N : \forall x \in \mathbb{X}, \forall n \ge N \Rightarrow \sum_{m=1}^{n} {}_{A}P^{m}(x, A) \ge 1 - \varepsilon.$$

Theorem 11.1.3. Let $(X_n)_n$ be a uniformly ϕ -recurrent chain. Then there exist constants $C < \infty$ and $\rho < 1$ such that for all $\mu, \nu \in \mathcal{M}_1(\mathcal{X})$, and all n,

1. if the chain is aperiodic,

$$\|(\mu - \nu)P^n\| \le C\rho^n \|\mu - \nu\|,$$

and

2. if the chain is d-periodic,

$$\|\frac{1}{n}\sum_{k=1}^{n}(\mu-\nu)P^{k}\| \leq C\rho^{n}\|\mu-\nu\|,$$

Proof: Only the aperiodic case will be treated in detail. Without loss of generality, we can always assume that ϕ is a finite measure. Denote $\sigma_n = (\mu - \nu)P^n$.

We first prove that the sequence $(\|\sigma_n\|)_n$ is decreasing: recall that $|\sigma_n| = \sigma_n^+ + \sigma_n^-$. Then $|\sigma_{n+1}| = |\sigma_n P| \le \sigma_n^+ P + \sigma_n^- P$. It follows that

$$\|\sigma_{n+1}\| = |\sigma_{n+1}|(\mathbb{X}) \le \sigma_n^+ P(\mathbb{X}) + \sigma_n^- P(\mathbb{X}) = \sigma_n^+(\mathbb{X}) + \sigma_n^-(\mathbb{X}) = \|\sigma_n\|$$

Suppose for the moment that there exist $n_1 \ge 1$ and $\rho_1 < 1$ such that

$$\|\sigma_{n_1}\| = \|(\mu - \nu)P^{n_1}\| \le \rho_1 \|\mu - \nu\| \quad (*)$$

holds. Iterating, we shall then have $\|\sigma_{n_1k}\| = \|(\mu - \nu)P^{n_1k}\| \le \rho_1^k \|\mu - \nu\|$ for all k. Therefore, the result holds for the subsequence $(\|\sigma_{n_1k}\|)_k$ and since the initial sequence is decreasing, the result will hold for any ρ with $\sqrt[n_1]{\rho_1} < \rho < 1$. To conclude, it is henceforth enough to establish (*).

Note that for every pair $\mu, \nu \in \mathcal{M}_1(\mathcal{X})$, there exist a pair of mutually singular finite measures $\mu', \nu' \in \mathcal{M}_+(\mathcal{X})$ such that $\mu - \nu = \mu' - \nu'$ with $\|\mu'\| = \|\nu'\| = \|\mu - \nu\|/2$. Then

$$\begin{split} \|(\mu-\nu)P^{n}\| &= \|(\mu'-\nu')P^{n}\| = \|\int \mu'(dx)\varepsilon_{x}P^{n} - \int \nu'(dy)\varepsilon_{y}P^{n}\| \\ &= \frac{1}{\|\mu'\|} \|\int \int \mu'(dx)\nu'(dx)(\varepsilon_{x}-\varepsilon_{y})P^{n}\| \\ &\leq \frac{1}{\|\mu'\|} \int \int \mu'(dx)\nu'(dx)\|(\varepsilon_{x}-\varepsilon_{y})P^{n}\|. \end{split}$$

Therefore, it is enough to show the claim for $\mu = \varepsilon_x$ and $\nu = \varepsilon_y$ with $x \neq y$.

The chain is aperiodic and ϕ -recurrent, therefore, since for all $\mu, \nu \in \mathcal{M}_1(\mathcal{X})$, the convergence $\lim_n \|(\mu - \nu)P^n\| = 0$ holds, for all $\delta > 0$, there exists a $n_0 \ge 1$ such that for $n \ge n_0$ we have $\|(\mu - \nu)P^n\| < \delta/4$. For fixed $x_0 \in \mathbb{X}$ and $\delta > 0$, we can find ¹ a $B \in \mathcal{X}$ with $\phi(B) > 0$ and a $n_0 \ge 1$ such that for $z \in B$ and $n \ge n_0$ we have $\|(\varepsilon_{x_0} - \varepsilon_z)P^n\| < \delta/4$.

The chain (X_n) is uniformly ϕ -recurrent, therefore for $B \in \mathscr{X}$ with $\phi(B) > 0$, there exists a n_1 such that $\sum_{k=1}^{n_1} {}_B P^k(y, B) > 1 - \frac{\delta}{4}$. For $n \ge \max(n_0, n_1)$, for all $A \in \mathscr{X}$ and all $y \in \mathbb{X}$:

$$a_{n} = |P^{n}(x_{0}, A) - P^{n}(y, A) - \sum_{k=1}^{n_{1}} \int_{B} B^{k}(y, dz) (P^{n}(x_{0}, A) - P^{n-k}(z, A))|$$

$$\leq P^{n}(x_{0}, A) (1 - \sum_{k=1}^{n_{1}} \int_{B} B^{k}(y, dz)) + |P^{n}(y, A) - \sum_{k=1}^{n_{1}} \int_{B} B^{k}(y, dz) P^{n-k}(z, A)|.$$

^{1.} To establish the existence of such a set with strictly positive measure, on has to use the Egorov's theorem A.2.1.

Now, for all $l \leq n$:

$$P^{n}(y,A) = \int_{\mathbb{X}} P^{l}(y,dz)P^{n-l}(z,A)$$

$$\geq \int_{B} P^{l}(y,dz)P^{n-l}(z,A)$$

$$\geq \sum_{k=1}^{n} \int_{B} P^{k}(y,dz)P^{n-k}(z,A)$$

Finally, a_n is majorised as

$$\begin{aligned} a_n &\leq (1 - (1 - \delta/4)) + |\sum_{k=n_1+1}^n \int_B P^k(y, dz) P^{n-k}(z, A)| \\ &\leq \delta/4 + \sum_{k=n_1+1}^\infty \int_B P^k(y, dz) \\ &\leq \delta/2. \end{aligned}$$

Consider now the remainder

$$b_{n} = \left|\sum_{k=1}^{n} \int_{B} P^{k}(y, dz) (P^{n}(x_{0}, A) - P^{n-k}(z, A))\right|$$

$$\leq \sum_{k=1}^{n} \int_{B} P^{k}(y, dz) |P^{n-k}(x_{0}, A) - P^{n-k}(z, A)| \quad (\equiv b_{n}^{1})$$

$$+ \sum_{k=1}^{n} \int_{B} P^{k}(y, dz) |P^{n}(x_{0}, A) - P^{n-k}(x_{0}, A)| \quad (\equiv b_{n}^{2})$$

From the choice of *B* as the support of the measure *v*, it follows that $\lim_{n} |P^{n-k}(x_0, A) - P^{n-k}(z, A)| = 0$, uniformly in *A*; consequently $\lim_{n} b_n^1 = 0$, uniformly in *A*. From corollary 10.2.2, it follows that for every fixed *k*, we have $||P^n(x_0, \cdot) - P^{n-k}(x_0, \cdot)|| = ||(\varepsilon_{x_0} - \varepsilon_{x_0}P^k)P^{n-k}|| \to 0$, hence $\lim_{n} b_n^2 = 0$, uniformly in *A*. Therefore, uniformly in *A* and *y*,

$$\lim_{n} |\sum_{k=1}^{n} \int_{B} {}_{B} P^{k}(y, dz) (P^{n}(x_{0}, A) - P^{n-k}(z, A))| = 0.$$

In conclusion,

$$|P^{n}(x_{0}, A) - P^{n}(y, A)| \le a_{n} + b_{n} \to 0,$$

uniformly in *A* and *y*. Since $|P^n(x, A) - P^n(y, A)| \le |P^n(x_0, A) - P^n(x, A)| + |P^n(x_0, A) - P^n(y, A)| \to 0$, there exists $\rho_1 < 1$ and an integer *N*, such that for all *x*, *y* and $\mu = \varepsilon_x$ and $\nu = \varepsilon_y$, we have $\|(\mu - \nu)P^N\| \le \rho_1 \|\mu - \nu\|$.

11.2 Embedded Markov chains

If for some $A \in \mathcal{X}$ and all $x \in X$ the condition $H_A(x) = 1$ holds, then $\mathbb{P}_x(\tau_A < \infty) = 1$. It is easy then to verify that the taboo potential kernel $_AG(x, B)$ is a Marko-

/Users/dp/a/ens/markov-uphir.tex 123 2015-10-16 • 18:41:29. vian kernel when restricted on (A, \mathscr{X}_A) , where $\mathscr{X}_A = \{B \in \mathscr{X} : B \subseteq A\}$:

$$AG(x, A) = \mathbb{E}_{x}\left(\sum_{k=1}^{\tau_{A}} \mathbb{1}_{A}(X_{k})\right)$$
$$= \sum_{n \ge 1} \mathbb{E}_{x}\left(\sum_{k=1}^{n} \mathbb{1}_{A}(X_{k}) | \tau_{A} = n\right) \mathbb{P}_{x}(\tau_{A} = n)$$
$$= \mathbb{P}_{x}(\tau_{A} < \infty)$$
$$= 1.$$

Definition 11.2.1. Suppose that $(X_n)_n$ is a $MC((X, \mathscr{X}), P, \mu)$ with $\mu = \varepsilon_x$ for some $x \in A$. Denote by $\tau_A^{(0)} = 0$ and recursively for $n \ge 1$,

$$\tau_A^{(n)} = \inf\{k > \tau_A^{(n-1)} : X_k \in A\}.$$

Then the process (Y_n) defined by $Y_n = X_{\tau_A^{(n)}}$ is a MC($(A, \mathscr{X}_A), P_A, \varepsilon_x$), where $P_A(x, B) = {}_A G(x, B)$, for all $x \in A$ and $B \in \mathscr{X}_A$. The Markov chain (Y_n) is called **embedded in** *A*.

Definition 11.2.2. Let *X* be a MC((X, \mathcal{X}), *P*, μ). A set $D \in \mathcal{X}$ is called a *d*-set if the chain embedded in *D* is uniformly ϕ -recurrent.

Proposition 11.2.3. *If the chain* (X_n) *on* (X, \mathcal{X}) *satisfies*

$$\forall A \in \mathcal{X}, \phi(A) > 0, \exists n > 0, \exists \varepsilon > 0 : \forall x \in \mathbb{X} : \sum_{k=1}^{n} {}_{A}P^{k}(x, A) > \varepsilon,$$

then the chain is uniformly ϕ -recurrent.

Proof: Observe that $\sum_{k=1}^{jn} {}_{A}P^{k}(x, A) = \sum_{k=1}^{jn} \mathbb{P}_{x}(X_{k} \in A; \tau_{A} > k-1)$. The hypothesis guarantees for all $x \in X$:

$$\sum_{k=1}^{n} {}_{A}P^{k}(x,A) = \sum_{k=1}^{n} \mathbb{P}_{x}(X_{k} \in A; \tau_{A} > k-1)$$

$$= \sum_{k=1}^{n} \mathbb{P}_{x}(X_{k} \in A; \tau_{A} = k)$$

$$= \sum_{k=1}^{n} \mathbb{P}_{x}(X_{k} \in A | \tau_{A} = k) \mathbb{P}_{x}(\tau_{A} = k)$$

$$= \mathbb{P}_{x}(\tau_{A} \le n)$$

$$\geq \varepsilon.$$

Hence $\sup_{x \in \mathbb{X}} \mathbb{P}_x(\tau_A > n) \le 1 - \varepsilon$. Therefore

$$\begin{split} \mathbb{P}_{x}(\tau_{A} > 2n) &= \mathbb{P}_{x}(\tau_{A} > n; X_{n+1} \not\in A; \dots; X_{2n} \not\in A) \\ &\leq \mathbb{P}_{x}(\tau_{A} > n) \mathbb{P}_{X_{n}}(\tau_{A} > n) \\ &\leq \mathbb{P}_{x}(\tau_{A} > n) \sup_{y \in \mathbb{X}} \mathbb{P}_{y}(\tau_{A} > n) \\ &\leq (1 - \varepsilon)^{2}. \end{split}$$

We conclude by noting that $\mathbb{P}_x(\tau_A > jn) \le (1-\varepsilon)^j$ and consequently that $\mathbb{P}_x(\tau_A \le jn) \ge 1 - (1-\varepsilon)^j \to 1$, uniformly in *x*.

/Users/dp/a/ens/markov-uphir.tex 124 2015-10-16 • 18:41:29.

11.3 Embedding of a general ϕ -recurrent chain

Theorem 11.3.1. Let (X_n) be a ϕ -recurrent chain. There exists an increasing sequence of measurable d-sets, $D_1 \subseteq D_2 \subseteq \cdots$, exhausting the space, i.e. $\cup_n D_n = \mathbb{X}$.

Proof: Since (X_n) is ϕ -recurrent, is also ϕ -irreducible. By corollary 9.2.7, we know that there exists a c-set C, i.e. $\phi(C) > 0$ and there exists a $n_0 \ge 1$ and a $r(n_0, C) > 0$ such that $\inf_{(x,y)\in C^2} p_{n_0}(x,y) \ge r(n_0,C) > 0$. Let $s(x) = \inf\{m \ge 1 : \mathbb{P}_x(\bigcup_{i=1}^m \{X_i \in C\} \ge \frac{1}{m}\}$. Since C is a c-set, it follows that $s(x) < +\infty$. Obviously, s is a \mathscr{X} -measurable function. Define for all $n \in \mathbb{N}$, the measurable sets $D_n = \{x \in \mathbb{X} : s(x) \le n_0 + n\}$. The sequence (D_n) is increasing and $D_n \uparrow \mathbb{X}$. To conclude, it remains to show that every D_n is a d-set.

Let $A \subseteq D_n$ with $\phi(A) > 0$. Now ϕ -recurrence of (X_n) implies that for all z, we have $L_A(z) = 1$. Therefore, for any $\varepsilon \in]0,1[$, there exist $n_1 \ge 1$, and $B \in \mathscr{X}$ with $B \subseteq C$ and $\phi(B) > 0$ such that for all $z \in B$, we have $\mathbb{P}_z(\bigcup_{k=1}^{n_1} \{X_k \in A\}) > \varepsilon$. Then, for all $x \in D_n$,

$$\begin{split} \mathbb{P}_{x}(\tau_{A} \leq n+n_{0}+n_{1}) &= \mathbb{P}_{x}(\cup_{k=1}^{n+n_{0}+n_{1}}\{X_{k} \in A\}) \\ &\geq \mathbb{P}_{x}(\cup_{k_{1}=1}^{n} \cup_{k_{2}=1}^{n_{0}+n_{1}}\{X_{k_{1}} \in C; X_{k_{1}+k_{2}} \in A\}) \\ &\geq \mathbb{P}_{x}(\{\tau_{C} \leq n\} \cap \cup_{k=1}^{n_{0}+n_{1}}\{X_{k_{1}} \in C; X_{\tau_{C}+k} \in A\}) \\ &= \mathbb{P}_{x}(\{\tau_{C} \leq n\})\mathbb{P}_{x}(\cup_{k=1}^{n_{0}+n_{1}}\{X_{\tau_{C}+k} \in A\} | \tau_{C} \leq n) \\ &\geq \frac{1}{n_{0}+n} \inf_{y \in C} \mathbb{P}_{y}(\cup_{k=1}^{n_{0}+n_{1}}\{X_{k} \in A\}). \end{split}$$

For all $y \in C$,

$$\begin{split} \mathbb{P}_{y}(\cup_{k=1}^{n_{0}+n_{1}}\{X_{k}\in A\}) &= \mathbb{P}_{y}(\tau_{A}\leq n_{0}+n_{1})\\ &\geq \mathbb{P}_{y}(\{\tau_{B}\leq n_{0}\}\cap \cup_{k=1}^{n_{1}}\{X_{\tau_{B}+k}\in A\})\\ &\geq \mathbb{P}_{y}(\{\tau_{B}\leq n_{0}\})\inf_{z\in B}\mathbb{P}_{z\in B}(\tau_{A}\leq n_{1})\\ &\geq \mathbb{P}_{y}(\{\tau_{B}\leq n_{0}\})\varepsilon\\ &\geq \mathbb{P}_{y}(X_{n_{0}}\in B)\varepsilon\\ &\geq r(n_{0},C)\phi(B)\varepsilon. \end{split}$$

In summarising, for all $x \in D_n$,

$$\begin{split} \mathbb{P}_{x}(\cup_{k=1}^{n+n_{0}+n_{1}}\{X_{k}\in A\}) &= \mathbb{P}_{x}(\tau_{A}\leq n+n_{0}+n_{1}) \\ &= \sum_{k=1}^{n+n_{0}+n_{1}}{}_{A}P^{k}(x,A) \\ &\geq \frac{1}{n_{0}+n}r(n_{0},C)\phi(B)\varepsilon. \end{split}$$

If $\hat{X}_k = X_{\tau_{D_n}^{(k)}}$ for $x \in D_n$, then (\hat{X}_k) is obviously a chain embedded in D_n . Denoting by $\hat{\cdot}$ quantities associated with the embedded chain, the previous property

/Users/dp/a/ens/markov-uphir.tex 125 2015-10-16 • 18:41:29. guarantees that

$$\hat{\mathbb{P}}_{x}(\hat{\tau}_{A} \le n + n_{0} + n_{1}) \ge \mathbb{P}_{x}(\bigcup_{k=1}^{n+n_{0}+n_{1}} \{X_{k} \in A\})$$

$$\ge \frac{1}{n_{0}+n} r(n_{0}, C)\phi(B)\varepsilon.$$

The latter establishes that the chain embedded in D_n is uniformly ϕ -recurrent. \Box

12

Invariant measures for ϕ -recurrent chains

12.1 Convergence to equilibrium

Definition 12.1.1. A measure $\pi \in \mathcal{M}_+(\mathcal{X})$ is called **invariant** for the kernel *P*, if $\pi = \pi P$. If additionally $\pi(\mathbb{X}) = 1$, then π is an **invariant probability**.

Theorem 12.1.2. Let *X* be a ϕ -recurrent Markov chain and $\mu \in \mathcal{M}_1(\mathcal{X})$.

- 1. If the chain admits an invariant probability π and is aperiodic, then $\lim_{n\to\infty} \|\mu P^n \pi\| = 0$; if the chain has period d, then $\lim_{n\to\infty} \|\frac{1}{d} \sum_{k=0}^{d-1} \mu P^{n+k} \pi\| = 0$.
- 2. X admits at most one invariant probability.
- 3. If X is additionally uniformly ϕ -recurrent, then X has an invariant probability π and there exist constants a > 0 and $\rho < 1$ such that for all $n \in \mathbb{N}$

$$\|(\mu - \pi)P^{n}\| \leq a\rho^{n} \text{ for the aperiodic case}$$
$$\|\frac{1}{d}\sum_{k=0}^{d-1}\mu P^{n+k} - \pi\| \leq a\rho^{n} \text{ for the } d\text{-periodic case.}$$

Proof: The statement "*X* is ϕ -recurrent" is equivalent to

$$\forall A \in \mathcal{X}, \phi(A) > 0 \Rightarrow \forall x \in \mathbb{X}, H_A(x) = 1.$$

Thanks to the corollary 10.1.4, the latter means that every bounded harmonic function is constant. The theorem 5.4.4 guarantees then the triviality of the σ -algebra $\mathcal{T}_{\infty}^{\mathbb{P}_{\mu}}$ and equivalently $\lim_{n\to\infty} ||(\mu-\pi)P^{n}|| = 0$ for all probability measures π . If π is further an invariant probability, statement 1 follows immediately.

Statement 2 follows from 1. As a matter of fact, if μP^n has a limit, this limit is necessarily π .

To prove statement 3 for the aperiodic case, note that uniform ϕ -recurrence implies that

$$\lim_{n \to \infty} \|\mu P^n - \mu P^{n+m}\| = \lim_{n \to \infty} \|(\mu - \mu P^m)P^n\| = 0$$

uniformly in *m*, thanks to the theorem 11.1.3 stating exponential convergence to equilibrium. We conclude then that, uniformly in $A \in \mathcal{X}$, the sequence $\mu P^n(A)$ converges towards $\pi(A)$ and that π is a probability. Now,

$$\mu P^{n+1}(A) = \int \mu(dx) \int P^n(x, dy) P(y, A).$$

Taking limits in both sides and using the uniformity guaranteed by the theorem 11.1.3, we get $\pi(A) = \int \pi(dy)P(y, A)$ showing the invariance of π .

12.2 Relationship between invariant and irreducibility measures

Theorem 12.2.1. Let X be a ϕ -recurrent chain. Then there exists a measure $\pi \in \mathcal{M}_+(\mathcal{X})$ such that

- 1. π is invariant.
- 2. For any $\pi' \in \mathcal{M}_+(\mathcal{X})$ that is invariant, there is a constant *c* such that $\pi' = c\pi$.
- 3. $\phi \ll \pi$.

Proof: Since *X* is ϕ -recurrent, theorem 11.3.1 guarantees the existence of *d*-sets. Let $A \in \mathcal{X}$, with $\phi(A) > 0$ such a *d*-set. By the very definition 11.3.1 of a *d*-set, the chain embedded in *A* will be uniformly ϕ -recurrent; theorem 12.1.2 then guarantees that it admits an invariant probability π_A . Define for all $B \in \mathcal{X}$ a measure (not necessarily a probability) by $\pi(B) = \int_A \pi_A(dx) P_A(x, B)$, where $P_A(x, B) = {}_A G(x, B)$. (Note that P_A is Markovian on *A* but not on X.)

For all $B \subseteq A$, the definition $\pi(B) = \int_A \pi_A(dx) P_A(x, B)$ yields $\pi(B) = \pi_A(B)$, because π_A is an invariant measure of P_A on (A, \mathscr{X}_A) where $\mathscr{X}_A = \{B \in \mathscr{X} : B \subseteq A\}$.

If the chain *X* is initiated with π_A , we have for all $B \in \mathcal{X}$ that

$$\pi(B) = \int_{A} \pi_{A}(dx) \sum_{k=1}^{\infty} {}_{A}P^{k}(x,B)$$
$$= \sum_{k=1}^{\infty} \mathbb{P}_{\pi_{A}}(X_{k} \in B, X_{i} \notin A, i = 1, \dots, k-1)$$
$$= \int \pi_{A}(dx) \sum_{k=1}^{\infty} \mathbb{P}_{x}(\{X_{k} \in B; \tau_{A} \ge k\}).$$

/Users/dp/a/ens/markov-invme.tex 128 2015-09-13 • 16:22:31. We shall show that π is σ -finite. For fixed $A \in \mathscr{X}$ with $\phi(A) > 0$ and $m, n \ge 1$, define $\mathbb{X}^{(m,n)} = \{x \in \mathbb{X} : P^m(x, A) \ge 1/n\}$. Since $\phi(A) > 0$ and the chain is ϕ -recurrent, it follows that $\bigcup_{m,n} \mathbb{X}^{(m,n)} = \{x \in \mathbb{X} : L_A(x) > 0\} = \mathbb{X}$. Recall that

$$\pi(\mathbb{X}^{(m,n)}) = \int \pi_A(dx) \mathbb{E}_x(\sum_{k=1}^{\tau_A} \mathbb{1}_{\mathbb{X}^{(m,n)}}(X_k)).$$

We have now

$$\mathbb{E}_{x}\left(\sum_{k=1}^{T_{A}} \mathbb{1}_{\mathbb{X}^{(m,n)}}(X_{k})\right) = \mathbb{E}_{x}\left(\sum_{k=\tau_{\mathbb{X}^{(m,n)}}}^{T_{A}} \mathbb{1}_{\mathbb{X}^{(m,n)}}(X_{k})\right) \mathbb{P}_{x}(\tau_{\mathbb{X}^{(m,n)}} \leq \tau_{A})$$

$$\leq \mathbb{E}_{x}(\tau_{A} - \tau_{\mathbb{X}^{(m,n)}}; \tau_{\mathbb{X}^{(m,n)}} \leq \tau_{A})$$

$$= \sum_{k=0}^{\infty} \mathbb{P}_{x}(\tau_{A} - \tau_{\mathbb{X}^{(m,n)}} > k; \tau_{\mathbb{X}^{(m,n)}} \leq \tau_{A})$$

$$\leq m \sum_{j=0}^{\infty} \mathbb{P}_{x}(\tau_{A} - \tau_{\mathbb{X}^{(m,n)}} > jm; \tau_{\mathbb{X}^{(m,n)}} \leq \tau_{A})$$

$$\leq m \sum_{j=1}^{\infty} (1 - \frac{1}{n})^{j}$$

$$< +\infty.$$

Therefore, $\pi(X^{(m,n)}) < +\infty$, establishing the σ -finiteness of π .

To prove invariance of π , write

$$\int \pi(dx)P(x,B) = \int_A \pi_A(dx)P(x,B) + \int_{A^c} \pi(dy)P(y,B)$$

= $\int_A \pi_A(dx)P(x,B) + \int_{A^c} \int_A \pi_A(dx)P_A(x,dy)P(y,B)$
= $\int_A \pi_A(dx)[P(x,B) + \int_{A^c} P_A(x,dy)P(y,B)]$
= $\int_A \pi_A(dx)P_A(x,B)$
= $\pi(B).$

This remark concludes the proof of statement 1.

To prove 2, let $\pi \in \mathcal{M}_+(\mathcal{X})$ be an arbitrary invariant measure. Let $A \in \mathcal{X}$ be such that $\pi(A) = 1$ and denote by $\pi_A = \pi \upharpoonright_{\mathcal{X}_A}$. Remark that $\pi_A(B) = \pi(B)$ for all $B \in \mathcal{X}_A$. We must show that the latter equals $\pi_A(dx)P_A(x, B)$ for all $B \in \mathcal{X}_A$ that will be sufficient in showing invariance of π_A for the chain embedded in A. We shall establish, by recurrence, that

$$\pi(B) = \sum_{k=1}^{n} \int_{A} \pi(dx)_{A} P^{k}(x, B) + \int_{A^{c}} \pi(dx)_{A} P^{n}(x, B). \quad (*)$$

Since for n = 1, we have ${}_{A}P^{k}(x, B) = P(x, B)$, the above equality is true for n = 1.

/Users/dp/a/ens/markov-invme.tex 129 2015-09-13 • 16:22:31. Suppose that it remains true for *n*. The last term of (*) reads:

$$\begin{split} \int_{A^c} \pi(dx)_A P^n(x,B) &= \int \pi(dy) \int_{A^c} P(y,dx)_A P^n(x,B) \\ &= \int_A \pi(dy) \int_{A^c} P(y,dx)_A P^n(x,B) + \int_{A^c} \pi(dy) \int_{A^c} P(y,dx)_A P^n(x,B) \\ &= \int_A \pi(dy)_A P^{n+1}(y,B) + \int_{A^c} \pi(dy)_A P^{n+1}(y,B). \end{split}$$

Using the recurrence hypothesis up to *n*, we get

$$\pi(B) = \sum_{k=1}^{n+1} \int_A \pi(dx)_A P^k(x, B) + \int_{A^c} \pi(dx)_A P^{n+1}(x, B)$$

Using thus (*), that is proved true for all *n*, we get:

$$\pi(B) \geq \int_A \pi_A(dx) P_A(x,B), \ \forall B \in \mathcal{X}.$$

Let $F \in \mathscr{X}$ be a subset of *A*. The previous inequality is true for both B = F and $B = A \setminus F$. Now

$$1 = \pi(A)$$

$$= \pi(F) + \pi(A \setminus F)$$

$$\geq \int_{A} \pi_{A}(dx)P_{A}(x,F) + \int_{A} \pi_{A}(dx)P_{A}(x,A \setminus F)$$

$$= \int_{A} \pi_{A}(dx)P_{A}(x,A)$$

$$= \int_{A} \pi_{A}(dx)\hat{\mathbb{P}}_{x}(\hat{\tau}_{A} = 1)$$

$$= 1,$$

where $\hat{\cdot}$ refers to the chain embedded in *A*. We conclude ¹ that

$$\pi(F) = \int_A \pi_A(dx) P_A(x,F).$$

Consequently, if $\pi, \pi' \in \mathcal{M}_+(\mathcal{X})$ are non-trivial invariant measures and $A \in \mathcal{X}$ is such that $0 < \pi(A) < \infty$ and $0 < \pi'(A) < \infty$, then the measures $\frac{\pi}{\pi(A)}$ and $\frac{\pi'}{\pi'(A)}$ coincide on *A* with the unique invariant probability of the chain embedded in *A* (see exercise 12.2.3 below proving that it is as a matter of fact possible to choose an *A* such that $\pi(A) > 0$). Therefore, they must coincide everywhere thanks to the above arguments. This remarks proves statement 2.

To show statement 3, consider an invariant measure $\pi \in \mathcal{M}_+(\mathcal{X})$. For all $B \in \mathcal{X}$ and all $n \in \mathbb{N}$,

$$\pi(B) = \int \pi(dx) P(x, B) = \ldots = \int \pi(dx) P^n(x, B)$$

Now, if $\pi(B) = 0$, then, for all $n \in \mathbb{N}$, the function $P^n(\cdot, B) = 0 \pi$ -a.e. However, if $\phi(B) > 0$ then $L_B(x) > 0$, i.e. $\sum_n P^n(x, B) > 0$ for all x, by ϕ -recurrence. This leads to a contradiction. Therefore, $\phi \ll \pi$.

1. Use the trivial statement $[0 \le a' \le a \le 1; 0 \le b' \le b \le 1; 1 = a + b = a' + b'] \Rightarrow [a = a'; b = b'].$

Corollary 12.2.2. Let X be a ϕ -recurrent chain and $\pi \in \mathcal{M}_+(\mathcal{X})$ a non-trivial invariant measure of X. Then X is π -recurrent. Additionally, for $B \in \mathcal{X}$, there is equivalence among

- 1. $\pi(B) > 0$,
- $2. \quad \forall x \in \mathbb{X} : L_B(x) > 0,$
- 3. $\forall x \in \mathbb{X} : H_B(x) = 1$.

Proof: The existence of a non-trivial invariant measure π , is guaranteed by the previous theorem. We show first the implication $3 \Rightarrow 2$; for arbitrary $x \in X$,

$$X: H_B(x) = 1 \quad \Leftrightarrow \quad \mathbb{P}_x(\{X_n \in B \text{ i.o. }\}) = 1$$
$$\Rightarrow \quad \mathbb{P}_x(\bigcup_n \{X_n \in B\}) > 0$$
$$\Leftrightarrow \quad L_B(x) > 0.$$

Next, we show the implication $2 \Rightarrow 1$:

$$L_B(x) > 0 \quad \Leftrightarrow \quad \mathbb{P}_x(\bigcup_n \{X_n \in B\}) > 0$$

$$\Leftrightarrow \quad \sum_n P^n(x, B) > 0$$

$$\Leftrightarrow \quad \sum_n t^n P^n(x, B) > 0, \forall t \in]0, 1[.$$

Recalling that we denote by $G_t(x, B) = \sum_{n \ge 1} t^n P^n(x, B)$, $t \in]0, 1[$, we remark that $G_t(x, \mathbb{X}) = \frac{t}{1-t}$. Therefore $M_t(x, B) = \frac{1-t}{t}G_t(x, B)$ is a Markov kernel for all every $t \in]0, 1[$. Additionally, $L_B(x) > 0 \Leftrightarrow M_t(x, B) > 0$ for all $t \in]0, 1[$. Now, it π is an invariant measure for P, then, for all $A \in \mathcal{X}$, we have:

$$\int \pi(dx) M_t(x,A) = \frac{1-t}{t} \sum_{n \ge 1} t^n \int \pi(dx) P^n(x,A) = \pi(A).$$

Therefore, π is also invariant for M_t . Moreover, $L_B(x) > 0 \Leftrightarrow M_t(x, B) > 0$; subsequently, $\pi(B) = \int \pi(dx) M_t(x, B) > 0$, establishing thus 1.

Next we show the implication $1 \Rightarrow 3$. Let $F \in \mathscr{X}$ be an arbitrary closed set with $\phi(F) > 0$ and let $\mu \in \mathscr{M}_+(\mathscr{X})$ be a measure defined by

$$\mu = \begin{cases} \pi & \text{on} \quad \mathscr{X}_F = \{B \in \mathscr{X} : B \subseteq F\} \\ 0 & \text{on} \quad \mathscr{X}_{F^c} = \{B \in \mathscr{X} : B \subseteq F^c\} \end{cases}$$

where π is an arbitrary invariant measure of the chain. First we observe that

$$\begin{aligned} \int \mu(dx) P(x,A) &= \int_F \mu(dx) P(x,A) + \int_{F^c} \mu(dx) P(x,A) \\ &= \int_F \pi(dx) P(x,A). \end{aligned}$$

Now,

/Users/dp/a/ens/markov-invme.tex 131 2015-09-13 • 16:22:31.

- if $A \subseteq F^c$, since *F* is closed, it follows that $\int_F \pi(dx)P(x, A) \le \int_F \pi(dx)P(x, F^c) = 0 = \mu(A)$.
- if A = F, then $\int_F \pi(dx)P(x, F) = \pi(F) = \mu(F)$.
- if $A \subseteq F$, then $\int_F \pi(dx)P(x, A) \leq \int_X \pi(dx)P(x, A) = \pi(A) = \mu(A)$, so that $\int_X \mu(dx)P(x, A) \leq \mu(A)$. Now when $A \subseteq F$, it is also true that $F \setminus A \subseteq F$. Hence $\int_X \mu(dx)P(x, F \setminus A) \leq \mu(F \setminus A)$. Subsequently², since $\mu(F) = \int_X \mu(dx)P(x, A) + \int_X \mu(dx)P(x, F \setminus A) \leq \mu(A) + \mu(F \setminus A) = \mu(F)$, it follows, in particular, that $\int_X \mu(dx)P(x, A) = \mu(A)$.

The above observations establish thus the invariance of $\mu \in \mathcal{M}_+(\mathcal{X})$. Statement 2 of the theorem 12.2.1 guarantees that $\mu = c\pi$ for some constant *c*. Since, by definition $\mu(F^c) = 0$ it follows that $\pi(F^c) = 0$.

Suppose now that $B \in \mathcal{X}$ is such that $\pi(B) > 0$. Denote by $B^{\circ} = \{x \in X : L_B(x) = 0\}$ and suppose that $B^{\circ} \neq \emptyset$. Define $F = B^{\circ} \cap B^c = \{x \in B^c : L_B(x) = 0\}$. For every $x \in F$, we have

$$L_B(x) = 0 \quad \Leftrightarrow \quad \forall n \in \mathbb{N} : P^n(x, B) = 0$$
$$\Leftrightarrow \quad G(x, B) = 0$$
$$\Leftrightarrow \quad \forall n \in \mathbb{N} : P^n(x, B^c) = 1$$
$$\Leftrightarrow \quad G(x, B^c) > 0.$$

Now $B^c = F \sqcup F'$ where $F' = \{x \in B^c : L_B(x) > 0\}$. Therefore, for all *n*, we have:

 $1 = P^{n}(x, B^{c}) = P^{n}(x, F) + P^{n}(x, F').$

Suppose that there exists an integer n_1 such that $P^{n_1}(x, F') > 0$. Then

$$G(x,B) \geq \sum_{n \in \mathbb{N}} P^{n+n_1}(x,B)$$

=
$$\int_{\mathbb{X}} P^{n_1}(x,dy)G(y,B)$$

$$\geq \int_{F'} P^{n_1}(x,dy)G(y,B)$$

> 0,

because F' is equivalently $F' = \{y \in B^c : G(y, B) > 0\}$. Hence $L_B(x) > 0$, in contradiction with $x \in F$. It follows that for all $x \in F$ and all $n \in \mathbb{N}$, we have $P^n(x, F) = 1$, meaning that F is closed.

Since $F = B^{\circ} \cap B^{c}$ is closed, applying the previous result, we get that $\pi(F^{c}) = 0$. Now $F^{c} = \{x \in B^{c} : L_{B}(x) > 0\} \cup B$, therefore the sequence of inequalities $0 = \pi(F^{c}) \ge \pi(B) > 0$ leads to a contradiction, due to the assumption that $B^{\circ} \neq \emptyset$. Therefore, $B^{\circ} = \emptyset$, meaning that for all $x \in X$, we have $L_{B}(x) > 0$. Subsequently, there exists $A \in \mathscr{X}$ with $\phi(A) > 0$ such that $\inf_{x \in A} L_{B}(x) > 0$. Applying proposition 10.1.2, we get $\Lambda(A) \subseteq \Lambda(B)$ and by ϕ -recurrence, that for all $x \in X$, $1 = H_{A}(x) \le H_{B}(x)$. The latter shows the implication

$$[\pi(B) > 0] \Rightarrow [\forall x \in \mathbb{X} : H_B(x) = 1],$$

^{2.} Use the elementary observations: $[0 \le a \le b \text{ and } 0 \le a' \le b' \text{ and } b + b' = a + a' \le b + b'] \Rightarrow [b - a = a' - b'] \Rightarrow [a = b \text{ and } a' = b'].$

implying π -recurrence and establishing the implication of statement 3 out of 1. \Box

Exercise 12.2.3. Let $\phi \in \mathcal{M}_+(\mathcal{X})$ be a non-trivial measure and (X_n) a ϕ -recurrent chain with invariant measure $\pi \in \mathcal{M}_+(\mathcal{X})$. The purpose of this exercise is to show that it is possible to choose a measurable set *A* such that $0 < \pi(A) < \infty$

- 1. Argue why it is always possible to find a measurable set *A* such that $\phi(A) > 0$.
- 2. Choose a fixed measurable set *A* with $\phi(A) > 0$. Introduce the Markovian kernel M_t for $t \in]0, 1[$ defined by

$$M_t = \frac{1-t}{t} \sum_{t=1}^n t^n P^n.$$

Show that for all $x \in X$, $M_t(x, A) > 0$.

- 3. Conclude that $\pi(A) > 0$.
- 4. Introduce the family of sets $\mathbb{X}^{(m,n)} = \{x \in \mathbb{X} : P^m(x,A) \ge \frac{1}{n}\}$ for $m, n \ge 1$ and $\mathbb{Y}^{(M,N)} = \bigcup_{m=1}^{M} \bigcup_{n=1}^{N} \mathbb{X}^{(m,n)}$. Show that $\lim_{M,N} \mathbb{Y}^{(M,N)} = \mathbb{X}$ (see proof of theorem 12.2.1).
- 5. Conclude that there exist integers M_0 and N_0 such that $\phi(A \cap \mathbb{Y}^{(M_0,N_0)}) > \phi(A)/2$.
- 6. Conclude that $A' = A \cap \mathbb{Y}^{(M_0, N_0)}$ satisfies the sought conditions.

Theorem 12.2.4. Let (X_n) be a $MC((X, \mathcal{X}), P, \mu)$ with \mathcal{X} separable and $\pi \in \mathcal{M}_+(\mathcal{X})$ an invariant measure for P. Suppose further that

- $-\pi(\mathbb{X}) = \infty$, and
- (X_n) is π -recurrent.

Then for all $\delta > 0$ *and all* $x \in X$ *,*

$$\lim_{n \to \infty} \frac{P^n(x, A)}{\pi(A) + \delta} = 0, \text{ uniformly in } A \in \mathcal{X}.$$

Proof: : Given in exercise 12.2.5.

Exercise 12.2.5. (Proof of the theorem 12.2.4)

Show that if the conclusion were false one could find δ₀ > 0, x₀ ∈ X, θ₀ > 0, a strictly increasing sequence of integers (n_k)_{k∈ℕ}, and a sequence of measurable sets (A_k)_{k∈ℕ}, such that

$$\frac{P^{n_k}(x_0, A_k)}{\pi(A_k) + \delta_0} \ge \theta_0, \forall k \in \mathbb{N}.$$

2. Use corollary 10.2.2 and the extension of Egorov's theorem A.2.2, to establish that it is possible to choose $B \in \mathcal{X}$ with $\pi(B) > \frac{1}{\theta_0}$ such that for all $y \in B$,

$$|P^{n_k}(x_0, A_k) - P^{n_k}(y, A_k)| \le \delta_0 \theta_0/2.$$

3. Use previous results to establish that

$$\pi(A_k) \ge \theta_0(\pi(A_k) + \frac{\delta_0}{2})\pi(B).$$

4. Conclude ad absurdum.

/Users/dp/a/ens/markov-invme.tex 133 2015-09-13 • 16:22:31.

12.3 Ergodic properties

Quantum Markov chains

/Users/dp/a/ens/markov-appen.tex 136 2015-10-15 • 20:50:13.
A

Complements in measure theory

A.1 Monotone class theorems

On general sets, σ -algebras are technically complicated objects. However, they are fundamental in the definition of a measure. To prove for instance that two measures coïncide, we must show that they charge equally every set of the σ -algebra. To palliate this difficulty, it is often possible to show equality of measures on some easier object than the σ -algebra itself, typically a monotone class.

A.1.1 Set systems

Definition A.1.1. Let Ω be an arbitrary non-empty universal set and $\mathscr{A} \subseteq \mathscr{P}(\Omega)$ a given class of subsets of Ω . Then \mathscr{A} is a π -system, a semi-algebra, an algebra, or a σ -algebra if the following conditions hold:

<i>π</i> -system	semi-algebra	algebra	σ -algebra
	$\Omega\in\mathscr{A}$	$\Omega \in \mathscr{A}$	$\Omega\in\mathscr{A}$
<i>A</i> stable in finite intersections	A stable in finite intersections	A stable in finite intersections	A stable in countable intersections
	For $A \in \mathscr{A}$ there exists a finite family of mutually disjoint sets (A_1, \dots, A_n) such that $A^c = \bigsqcup_{i=1}^n A_i$	$A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$	$A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$

Exercise A.1.2. 1. Show that σ -algebra \Rightarrow algebra \Rightarrow semi-algebra $\Rightarrow \pi$ -system.

- 2. Provide some explicit examples for each class of sets in the previous definition.
- 3. Let $\mathscr{A}_1 = \{A \in \mathscr{P}(\Omega) : A \text{ countable or } A^c \text{ countable } \}$ and $\mathscr{A}_2 = \{A \in \mathscr{P}(\Omega) : A \text{ finite or } A^c \text{ finite } \}$. Which class do they belong to?

Definition A.1.3. Let Ω be an arbitrary non-empty universal set and $\mathscr{A} \subseteq \mathscr{P}(\Omega)$ a given class of subsets of Ω and $(A_n)_n$ a sequence of sets of \mathscr{A} . Then \mathscr{A} is **a monotone classe, a Dynkin system, or a** λ **-system** if the following conditions hold:

monotone class	Dynkin system	λ-system
	$\Omega \in \mathscr{A}$	$\Omega \in \mathscr{A}$
$A_n \uparrow A \Rightarrow A \in \mathscr{A}$	$A_1 \subseteq A_2 \Rightarrow A_2 \setminus A_1 \in \mathscr{A}$	$A \in \mathscr{A} \Rightarrow A^c \in \mathscr{A}$
$A_n \downarrow A \Rightarrow A \in \mathscr{A}$	\mathscr{A} is a monotone class	(A_n) mutually disjoint
		$\Rightarrow \cup_n A_n \in \mathscr{A}$

Exercise A.1.4. Let Ω be a universal set and \mathscr{J} an arbitrary non-empty indexing set of a collection of set systems $(\mathscr{A}_j)_{j \in \mathscr{J}}$, with $\mathscr{A}_j \in \mathscr{P}(\Omega)$ for every $j \in \mathscr{J}$. If for all $j \in \mathscr{J}$, the system \mathscr{A}_j is of one of the types: algebra, σ -algebra, monotone class, Dynkin system, π -system, so is the system $\cap_{j \in \mathscr{J}} \mathscr{A}_j$.

Definition A.1.5. Let $\mathscr{E} \subseteq \mathscr{P}(\Omega)$ be an arbitrary non-empty collection of subsets of a universal set Ω . We call **closure** of type γ , for $\gamma \in \{\alpha, \sigma, m, \mathcal{D}, \lambda\}$, and denote by $\gamma(\mathscr{E})$, the sets

- $\alpha(\mathscr{E}) = \cap \{\mathscr{A} : \mathscr{E} \subseteq \mathscr{A} \subseteq \mathscr{P}(\Omega); \mathscr{A} \text{ is an algebra} \},\$
- $\sigma(\mathscr{E}) = \cap \{\mathscr{A} : \mathscr{E} \subseteq \mathscr{A} \subseteq \mathscr{P}(\Omega); \mathscr{A} \text{ is a } \sigma\text{-algebra}\},\$
- $--m(\mathcal{E})=\cap\{\mathcal{A}:\mathcal{E}\subseteq\mathcal{A}\subseteq\mathcal{P}(\Omega);\mathcal{A}\text{ is a monotone class}\},$
- $-\mathscr{D}(\mathscr{E}) = \cap \{\mathscr{A} : \mathscr{E} \subseteq \mathscr{A} \subseteq \mathscr{P}(\Omega); \mathscr{A} \text{ is a Dynkin system} \},\$
- $\lambda(\mathscr{E}) = \cap \{\mathscr{A} : \mathscr{E} \subseteq \mathscr{A} \subseteq \mathscr{P}(\Omega); \mathscr{A} \text{ is a } \lambda \text{-system} \}.$

Exercise A.1.6. Let γ be the closure operator defined above and $\mathscr{E} \subseteq \mathscr{P}(\Omega)$ for some universal set Ω . Then

/Users/dp/a/ens/markov-appen.tex 138 2015-10-15 • 20:50:13.

- 1. γ is isotone,
- 2. if \mathscr{E} is an algebra, then $\sigma(\mathscr{E}) = m(\mathscr{E})$,
- 3. if \mathscr{E} is a π -system, then $\sigma(\mathscr{E}) = \mathscr{D}(\mathscr{E})$,
- 4. if \mathscr{E} is a π -system, then $\sigma(\mathscr{E}) = \lambda(\mathscr{E})$,
- 5. if \mathscr{E} is a π -system and a λ -system then \mathscr{E} is a σ -algebra.

A.1.2 Set functions and their extensions

Definition A.1.7. Let Ω be an arbitrary non-empty universal set and $\mathscr{A} \subseteq \mathscr{P}(\Omega)$ a given class of subsets of Ω . A set function $\mu : \mathscr{A} \to \mathbb{R}_+ \cup \{+\infty\}$ is **a content**¹, **a pre-measure, a measure, or a probability** if the following conditions hold:

Set function type	properties of \mathcal{A}	properties of μ
Content	semi-algebra	finitely additive
Pre-measure	semi-algebra	σ -additive
Measure	σ -algebra	σ -additive
Probability	σ -algebra	σ -additive and $\mu(\Omega) = 1$

Exercise A.1.8. Let $\mu : \mathscr{A} \to \mathbb{R}_+ \cup \{+\infty\}$ be a content. For sequences $(A_n)_{n \in \mathbb{N}}$ of sets in \mathscr{A} , consider the following statements:

- 1. μ is a pre-measure.
- 2. μ is sequentially continuous for increasing sequences, i.e. if $A_n \uparrow A$ then $\mu(A_n) \uparrow \mu(A)$.
- 3. μ is sequentially continuous for decreasing sequences of sets of finite content, i.e. if $A_n \downarrow A$ and $\mu(A_1) < +\infty$, then $\mu(A_n) \downarrow \mu(A)$.
- 4. μ is sequentially continuous for sequences of sets decreasing to \emptyset of finite content, i.e. if $A_n \downarrow \emptyset$ and $\mu(A_1) < +\infty$, then $\mu(A_n) \downarrow 0$.

Then, $1 \Leftrightarrow 2 \Rightarrow 3 \Rightarrow 4$. If, additionally, $\mu(\Omega) < +\infty$ then all statements are equivalent.

Exercise A.1.9. Let $\mu : \mathscr{A} \to \mathbb{R}_+ \cup \{+\infty\}$ be a set function defined on some class \mathscr{A} of sets.

- 1. If \mathscr{A} is a semi-algebra and μ is finitely additive, then there exists a content $\hat{\mu}$ on $\alpha(\mathscr{A})$ such that $\hat{\mu}(A) = \mu(A)$ for all $A \in \mathscr{A}$. Moreover, $\hat{\mu}$ is a premeasure on $\alpha(\mathscr{A})$.
- 2. If \mathscr{A} is an algebra and μ is a pre-measure, then there exists a measure $\hat{\mu}$ on $\sigma(\mathscr{A})$ such that $\hat{\mu}(A) = \mu(A)$ for all $A \in \mathscr{A}$.

Exercise A.1.10. Let $\mathscr{A} \subseteq \mathscr{P}(\Omega)$ be a π -system generating a σ -algebra \mathscr{F} , i.e. $\sigma(\mathscr{A}) = \mathscr{F}$. Suppose that \mathbb{P} and \mathbb{P}' are two probabilities on \mathscr{F} coinciding on \mathscr{A} . Then $\mathbb{P} = \mathbb{P}'$, i.e. they coincide on \mathscr{F} .

^{1.} The term **content** is very often called **charge** in the literature. In these notes, we reserve the term charge in the context of harmonic analysis and potential theory to denote a very specific quantity related to the Green's operator of the Markov operator (see definition 5.1.1).

A.2 Uniformity induced by Egorov's theorem and its extension

Recall first the elementary version of Egorov's theorem

Theorem A.2.1 (Egorov's theorem). Let (X, \mathscr{X}) be a measurable space and $\phi \in \mathcal{M}_+(\mathscr{X})$ a finite measure. Suppose (f_n) be a sequence of functions such that, for all n, the function f_n is \mathscr{X} -measurable and ϕ -a.e. finite and that f is a finite \mathscr{X} -measurable function. If $\lim_n f_n = f \phi$ -a.e. Then, for every $\varepsilon > 0$ there exist a set $B \in \mathscr{X}$, with $\phi(B) < \varepsilon$, such that $\lim_n f_n = f$ uniformly on $X \setminus B$.

The conclusion is in general false if ϕ is not finite. Therefore, the following generalisation, valid for the case of infinite total mass, is non trivial.

Theorem A.2.2 (Extension of Egorov's theorem). Let (X, \mathscr{X}) be a measurable space and $\phi \in \mathscr{M}_+(\mathscr{X})$ (not necessarily of finite mass). Suppose (f_n) be a sequence of functions such that, for all n, the function f_n is \mathscr{X} -measurable and ϕ -a.e. finite and that f is a finite \mathscr{X} -measurable function. If $\lim_n f_n = f \phi$ -a.e., then there exists a sequence of measurable sets (B_k) such that $\phi(X \setminus \bigcup_{k=0}^{\infty} B_k) = 0$ and $\lim_n f_n = f$, uniformly on every B_k .

Proof: See Halmos [19] p. 90.

B

Some classical martingale results

B.1 Uniformly integrable martingales

It is an elementary result that for every $\xi \in \mathscr{L}^1(\Omega, \mathscr{F}, \mathbb{P}; \mathbb{R})$ and every $\varepsilon > 0$ we can chose a $\delta = \delta(\xi, \varepsilon) > 0$ such that for every $F \in \mathscr{F}, \mathbb{P}(F) \le \delta \Rightarrow \int_F |\xi(\omega)| \mathbb{P}(d\omega) < \varepsilon$. Otherwise stated, for every $\varepsilon > 0$, there exists $K = K(\xi, \varepsilon) \in [0, \infty[$ such that $\int_{\{|\xi| > K\}} |\xi(\omega)| \mathbb{P}(d\omega) < \varepsilon$. For the sake of clarity, we recall the following

Definition B.1.1. A class $\mathscr{E} \subseteq \mathscr{L}^1(\Omega, \mathscr{F}, \mathbb{P}; \mathbb{R})$ is called **uniformly integrable** if for all $\varepsilon > 0$, there exists a constant $K = K(\varepsilon) \ge 0$ such that for all $\xi \in \mathscr{E}$ we have $\int_{\{|\xi| > K\}} |\xi(\omega)| \mathbb{P}(d\omega) < \varepsilon$.

Remark: A uniformly integrable class is bounded in L^1 . The converse is in general false. Therefore the following lemma provides us with two useful sufficient conditions of uniform integrability.

Lemma B.1.2. Let $\mathscr{E} \subseteq \mathscr{L}^1(\Omega, \mathscr{F}, \mathbb{P}; \mathbb{R})$.

- If there exists p > 1 such that $\mathbb{E}(|\xi|^p) < \infty$ for all $\xi \in \mathcal{E}$, then \mathcal{E} is uniformly integrable.
- If there exists $\zeta \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}_+)$ such that $|\xi| \leq \zeta$ for all $\xi \in \mathcal{E}$, then \mathcal{E} is uniformly integrable.

Lemma B.1.3. Let $\xi \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R})$. Then the class of random variables $\mathcal{E} = \{\mathbb{E}(\xi|\mathcal{G}), \mathcal{G} \text{ sub-}\sigma\text{-algebra of } \mathcal{F}\}$ is uniformly integrable.

The main result on uniform martingales needed in this course is the following

Theorem B.1.4. Let $(\Omega, \mathscr{F}, (\mathscr{F}_n), \mathbb{P})$ be a filtered space and (M_n) a (\mathscr{F}_n) -martingale such that the class $\mathscr{E} = \{M_n, n \in \mathbb{N}\}$ is uniformly integrable. Then, $M_{\infty} = \lim M_n$ exists almost surely and in L^1 . Additionally, the martingale is **closed**, i.e. $M_n = \mathbb{E}(M_{\infty}|\mathscr{F}_n)$ for all n (so that $M_{\infty} = \lim \mathbb{E}(M_{\infty}|\mathscr{F}_n)$).

Proof: See [51].

B.2 Martingale proof of Radon-Nikodým theorem

Theorem B.2.1. Let $(\Omega, \mathcal{G}, \phi)$ be a probability space and suppose that \mathcal{G} is separable. Let ψ be a finite measure on (Ω, \mathcal{G}) that is absolutely continuous with respect to ϕ . Then there exist a random variable $D \in \mathcal{L}^1(\Omega, \mathcal{G}, \phi)$ such that $\psi = D\phi$. The random variable D is called (a version of) the **Radon-Nikodým derivative** of ψ with respect to ϕ , denoted $D = \frac{d\psi}{d\phi}$.

Proof: For all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$G \in \mathscr{G}; \phi(G) < \delta \Rightarrow \psi(G) < \varepsilon.$$

Since \mathscr{G} is separable, there exists a sequence (G_n) generating \mathscr{G} . Define the filtration $\mathscr{G}_n = \sigma(G_1, ..., G_n)$ for $n \ge 1$. Obviously, \mathscr{G}_n is composed of $2^{r(n)}$ possible unions of atoms $A_{n,j}$, j = 1, ..., r(n) of \mathscr{G}_n . Note that every atom is of the form $H_1 \cap \cdots \cap H_n$ where $H_i = G_i$ or $H_i = G_i^c$. Since for every $\omega \in \Omega$ there exists precisely one atom containing it, we can define for every $n \ge 1$ the function $D_n : \Omega \to \mathbb{R}_+$ just by its restriction on atoms, namely:

$$A_{n,k} \ni \omega \mapsto D_n(\omega) = \begin{cases} \frac{\psi(A_{n,k})}{\phi(A_{n,k})} & \text{if } \phi(A_{n,k}) > 0\\ 0 & \text{otherwise.} \end{cases}$$

Decomposing an arbitrary $G \in \mathcal{G}_n$ in its constituting atoms: $G = A_{n,i_1} \sqcup \ldots \sqcup A_{n,i_l}$, we compute

$$\int_{G} D_{n} d\phi = \sum_{j=1}^{l} \int_{A_{n,i_{j}}} D_{n} d\phi = \sum_{j=1}^{l} \psi(A_{n,i_{j}}) = \psi(G)$$

Thus, D_n is a version of the Radon-Nikodým derivative on \mathscr{G}_n . The previous equalities guarantee similarly that (D_n) is positive (\mathscr{G}_n) -martingale; therefore $D_{\infty} = \lim_n D_n$ exists almost surely. The measure ψ being of positive mass, there always exists constant *K* such that $\psi(\Omega)/K < \delta$, for the δ determined in the beginning of the proof. Now Markov inequality reads:

$$\phi(D_n > K) \leq \frac{1}{K} \int_{\Omega} D_n d\phi = \frac{1}{K} \psi(\Omega) < \delta.$$

The set $\{D_n > K\}$ being \mathcal{G} measurable, the sequence (D_n) becomes uniformly integrable since

$$\int_{\{D_n>K\}} D_n d\phi = \psi(\{D_n>K\}) < \varepsilon.$$

/Users/dp/a/ens/markov-appen.tex 142 2015-10-15 • 20:50:13. Consequently, the convergence $D_n \to D_\infty$ takes places also in \mathscr{L}^1 . Therefore, the set functions $\mathscr{G} \to \mathbb{R}_+$ defined by

$$\begin{array}{rcl} G & \mapsto & \psi(G) \\ G & \mapsto & \int_G D_\infty d\phi = \lim_n \int_G D_n d\phi, \end{array}$$

coincide on the π -system $\cup \mathscr{G}_n$ and consequently on the generated σ -algebra \mathscr{G} , by virtue of exercise A.1.10.

B.3 Reverse martingales

We only need elementary results concerning reverse martingales, as they can be found in chapter 1 of [18].

Definition B.3.1. Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space $(Z_n)_{n \in \mathbb{N}}$ a sequence of realvalued random variables defined it and $(\mathcal{T}_n)_{n \in \mathbb{N}}$ a sequence of decreasing sub- σ algebras of \mathscr{F} . The sequence (Z_n) is called a (\mathcal{T}_n) -**reverse martingale** or **backwards martingale** if for all $n \in \mathbb{N}$,

$$- Z_n \in m\mathcal{T}_n, - \mathbb{E}|Z_n| < \infty, \text{ and} - \mathbb{E}(Z_n|\mathcal{T}_m) = Z_m, \text{ for all } m \ge n.$$

Theorem B.3.2. If (Z_n) is a (\mathcal{T}_n) -reverse martingale, then Z_n converges almost surely to finite limit Z_{∞} .

Proof: See [18], p. 18.

Remark: (Z_n) is a (\mathcal{T}_n) -reverse martingale if, and only if, (Z_{n-i+1}) is a (\mathcal{T}_{n-i+1}) -martingale for $1 \le i \le n$.

C

Semi-martingale techniques

We regroup here some results, effectively used [14] in the constructive theory of Markov chains, to obtain sharp criteria for recurrence/transience or precise estimate of the existing moments of the recurrence time.

C.1 Integrability of the passage time

Theorem C.1.1. Let $(\Omega, \mathscr{F}, (\mathscr{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ be a filtered probability space and $(Z_n)_{n \in \mathbb{N}}$ a \mathbb{R}_+ valued $(\mathscr{F}_n)_{n \in \mathbb{N}}$ -adapted sequence of random variables defined on it. For c > 0 we denote by $\sigma_c = \inf\{n \ge 1 : Z_n \le c\}$. We assume that $\mathbb{P}(Z_0 = z) = 1$ for some z > 0. If z > c and there exists $\varepsilon > 0$ such that for all $n \ge 0$:

$$\mathbb{E}(Z_{(n+1)\wedge\sigma_c} - Z_{n\wedge\sigma_c}|\mathscr{F}_n) \leq -\varepsilon \mathbb{1}_{\{\sigma_c > n\}},$$

then $\mathbb{E}(\sigma_c) < \infty$.

Proof: Taking expectations on both sides of the strong supermartingale condition yields:

$$\mathbb{E}(Z_{(n+1)\wedge\sigma_c} - Z_{n\wedge\sigma_c}) \leq -\varepsilon \mathbb{P}(\sigma_c > n).$$

Using telescopic cancellation to perform the summation over *n* and taking into account the positivity of the random variables we get:

$$0 \leq \mathbb{E}(Z_{(n+1)\wedge\sigma_c}) \leq -\varepsilon \sum_{k=0}^n \mathbb{P}(\sigma_c > k) + z.$$

The latter inequalities imply

$$\mathbb{E}(\sigma_c) = \lim_{n \to \infty} \sum_{k=0}^n \mathbb{P}(\sigma_c > k) < \frac{z}{\varepsilon} < \infty.$$

Bibliography

- [1] Charalambos D. Aliprantis and Kim C. Border. *Infinite dimensional analysis*. Springer, Berlin, third edition, 2006. A hitchhiker's guide. 40
- [2] S. Aspandiiarov, R. Iasnogorodski, and M. Menshikov. Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant. *Ann. Probab.*, 24(2):932–960, 1996. 81
- [3] Sheldon Axler, Paul Bourdon, and Wade Ramey. *Harmonic function theory*, volume 137 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 2001. 83
- [4] Heinz Bauer. Maß- und Integrationstheorie. de Gruyter Lehrbuch. [de Gruyter Textbook]. Walter de Gruyter & Co., Berlin, second edition, 1992.
 16
- [5] Claude Berge. *Topological spaces*. Dover Publications Inc., Mineola, NY, 1997. Including a treatment of multi-valued functions, vector spaces and convexity, Translated from the French original by E. M. Patterson, Reprint of the 1963 translation. 34
- [6] Alberto Berretti and Alan D. Sokal. New Monte Carlo method for the selfavoiding walk. J. Statist. Phys., 40(3-4):483–531, 1985. 46
- [7] Patrick Billingsley. *Probability and measure*. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, third edition, 1995. A Wiley-Interscience Publication. 60
- [8] Ph. de Forcrand, F. Koukiou, and D. Petritis. Self-avoiding random walks on the hexagonal lattice. *J. Statist. Phys.*, 45(3-4):459–470, 1986. 46
- [9] Persi Diaconis, Susan Holmes, and Richard Montgomery. Dynamical bias in the coin toss. *SIAM Rev.*, 49(2):211–235, 2007. 14
- [10] W. Doblin. Éléments d'une théorie générale des chaînes simples constantes de Markoff. Ann. École Norm. (3), 57:61–111, 1940. 101, 111
- [11] Joseph L. Doob. Classical potential theory and its probabilistic counterpart. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1984 edition. 84
- [12] James Dugundji. *Topology*. Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978. Reprinting of the 1966 original, Allyn and Bacon Series in Advanced Mathematics. 40

- [13] Nelson Dunford and Jacob T. Schwartz. *Linear operators. Part I.* Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication. 32, 33
- [14] Guy Fayolle, Vadim A. Malyshev, and Mikhail V. Menshikov. Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge, 1995. 63, 76, 145
- [15] F. G. Foster. On the stochastic matrices associated with certain queuing processes. Ann. Math. Statistics, 24:355–360, 1953. 77
- [16] Peter G\u00e4nssler and Winfried Stute. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, 1977. 16
- [17] Hans-Otto Georgii. *Gibbs measures and phase transitions*, volume 9 of *de Gruyter Studies in Mathematics*. Walter de Gruyter & Co., Berlin, 1988. 19
- [18] P. Hall and C. C. Heyde. *Martingale limit theory and its application*. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980. Probability and Mathematical Statistics. 143
- [19] Paul R. Halmos. *Measure Theory*. D. Van Nostrand Company, Inc., New York, N. Y., 1950. 140
- [20] W. K. Hastings. Monte Carlo sampling methods using markov chains and their applications. *Biometrika*, 57(1):97–109, 1970. 44
- [21] Hubert Hennion and Loïc Hervé. *Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness*, volume 1766 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 2001. **3**
- [22] C. T. Ionescu Tulcea. Mesures dans les espaces produits. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 7:208–211 (1950), 1949. 16
- [23] Marius Iosifescu. *Finite Markov processes and their applications*. John Wiley & Sons Ltd., Chichester, 1980. Wiley Series in Probability and Mathematical Statistics. 29
- [24] Hisashi Ito. A new statement about the theorem determining the region of eigenvalues of stochastic matrices. *Linear Algebra Appl.*, 267:241–246, 1997.
 42
- [25] Vadim A. Kaimanovich. Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy. In *Harmonic analysis and discrete potential theory* (*Frascati, 1991*), pages 145–180. Plenum, New York, 1992b. 84
- [26] F.I. Karpelevich. On the characteristic roots of matrices with nonnegative elements. *Izv. Akad. Nauk SSSR Ser. Mat.*, 15:361–383, 1951. 42, 43
- [27] Joseph B. Keller. The probability of heads. *Amer. Math. Monthly*, 93(3):191– 197, 1986. 14
- [28] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp. *Denumerable Markov chains*. Springer-Verlag, New York, second edition, 1976. With a chapter on Markov random fields, by David Griffeath, Graduate Texts in Mathematics, No. 40. 84

- [29] Andrei Nikolaevich Kolmogorov. Foundations of the theory of probability. Chelsea Publishing Co., New York, 1956. Translation edited by Nathan Morrison of the original Grundbegriffe der Wahrscheinlichkeitsrechnung published in 1933, with an added bibliography by A. T. Bharucha-Reid. 13, 14
- [30] L. H. Loomis. The lattice theoretic background of the dimension theory of operator algebras. *Mem. Amer. Math. Soc.*, 1955(18):36, 1955. 14
- [31] A. M. Lyapunov. *The general problem of the stability of motion*. Taylor & Francis, Ltd., London, 1992. Translated from Edouard Davaux's French translation (1907) of the 1892 Russian original and edited by A. T. Fuller, With an introduction and preface by Fuller, a biography of Lyapunov by V. I. Smirnov, and a bibliography of Lyapunov's works compiled by J. F. Barrett, Lyapunov centenary issue, Reprint of Internat. J. Control 55 (1992), no. 3 [MR1154209 (93e:01035)], With a foreword by Ian Stewart. 76
- [32] Mikhail Menshikov and Dimitri Petritis. Explosion, implosion, and moments of passage times for continuous-time Markov chains: a semimartingale approach. *Stochastic Processes and their Applications*, 124(7):2388 2414, 2014. 81
- [33] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A Teller, and E. Teller. Equation of state calculations by fast computing machines. *J. Chem. Phys.*, 21:1087–1092, 1953. 44
- [34] S. P. Meyn and R. L. Tweedie. *Markov chains and stochastic stability*. Communications and Control Engineering Series. Springer-Verlag London Ltd., London, 1993. 101
- [35] Jacques Neveu. Bases mathématiques du calcul des probabilités. Préface de R. Fortet. Deuxième édition, revue et corrigée. Masson et Cie, Éditeurs, Paris, 1970. 5, 16
- [36] J. R. Norris. Markov chains, volume 2 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.
 Reprint of 1997 original. 63
- [37] Esa Nummelin. General irreducible Markov chains and nonnegative operators, volume 83 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1984. 101
- [38] Steven Orey. Lecture notes on limit theorems for Markov chain transition probabilities. Van Nostrand Reinhold Co., London, 1971. Van Nostrand Reinhold Mathematical Studies, No. 34. 101
- [39] Dimitri Petritis. Mathematical foundations of quantum mechanics and applications, 2014. 43
- [40] Dimitri Petritis. Probabilités pour la thórie de l'information, 2015. Notes de cours pour le master de cryptographie - version préliminaire, Université de Rennes 1. 44
- [41] D. Revuz. Markov chains, volume 11 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second edition, 1984. 5
- [42] Walter Rudin. *Real and complex analysis*. McGraw-Hill Book Co., New York, third edition, 1987. 42

/Users/dp/a/ens/markov.bbl 2015-10-16 • 18:42:23.

- [43] Stanley A. Sawyer. Martin boundaries and random walks. In *Harmonic functions on trees and buildings (New York, 1995)*, volume 206 of *Contemp. Math.*, pages 17–44. Amer. Math. Soc., Providence, RI, 1997. 84, 96
- [44] Helmut H. Schaefer. Banach lattices and positive operators. Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. 38
- [45] Denis Serre. Matrices, volume 216 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. Theory and applications, Translated from the 2001 French original. 30
- [46] Roman Sikorski. Boolean algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 25. Springer-Verlag, Berlin, 1960. 14
- [47] Karlheinz Spindler. *Abstract algebra with applications. Vol. I.* Marcel Dekker Inc., New York, 1994. Vector spaces and groups. **30**
- [48] Karlheinz Spindler. *Abstract algebra with applications. Vol. I.* Marcel Dekker Inc., New York, 1994a. Vector spaces and groups. 32
- [49] Daniel W. Stroock. An introduction to Markov processes, volume 230 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2005. 101
- [50] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. 104, 112
- [51] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. 142
- [52] Wolfgang Woess. Random walks on infinite graphs and groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000. 84

Index of symbols

 $b\mathcal{M}(\mathcal{X}), \mathcal{M}_1(\mathcal{X}), 6$ $b\mathscr{X}$, 5 D, Df, 77 $Dom(P), Dom_+(P), 77$ $\eta^{\flat}(F)$, 23 $G^{\flat}(x,A),$ 49 H_B^{\flat} , 55 $\mathscr{J}^{\mathbb{P}}_{\infty}$, 57 \mathcal{J}_{∞} , 57 L_B^\flat , 55 $\mathcal{M}(\mathcal{X}), \mathcal{M}_+(\mathcal{X}), 6$ $m\mathscr{X}, 5$ $N, (\mathbb{X}, \mathscr{X}) \stackrel{N}{\rightsquigarrow} (\mathbb{X}', \mathscr{X}'), 7$ *P_n*, 19 $\mathscr{T}^{\mathbb{P}}_{\infty}$, 57 \mathcal{T}_{∞} , 57 $\tau^0, \tau^1, 23$ $(\mathbb{X}, \mathscr{X}), 5$

Index of terms and notions

almost closed set, 68 asymptotic event, 57 random variable, 57 σ -algebra, 57 boundary Martin, 85 minimal, 91 Poisson, 91 c-set, 106 canonical realisation, 20 chain irreducible, 64 recurrent, 68 tending to ∞ , 68 transient, 68 charge function, 50, 54 measure, 50, 54 class communicating, 64 compactification Martin, 85 cone, 55 convex set, 55 coordinate mapping, 20 cycle, 112 decomposition, 74 cyclic class, 74 cylinder set, 16 dynamical system, 11 eigenvalue, 30 semisimple, 32 simple, 32 eigenvalue multiplicity algebraic, 31 generalised, 31 geometric, 31 eignspace

generalised right, 30 equation Dirichlet, 52 Poisson, 50 function Lyapunov, 76 minimal harmonic, 88 normalised harmonic, 88 normalised superharmonic, 88 (*P*, *t*)-harmonic, 88 (*P*, *t*)-superharmonic, 88 generating functional, 49 Gershgorin disk, 38 graph combinatorial path, 25 weighed directed, 25 harmonic function, 26, 50, 54, 55, 58 measure, 50, 54 invariant event, 57 random variable, 57, 58 σ -algebra, 57 kernel boundary, 84 bounded, 6 deterministic, 11 group invariant, 96 integral, 8 Markovian, 12 Martin, 86 positive, 6 potential, 49 proper, 6 σ -finite, 6 sub-Markovian, 12 transition, 6 Kolmogorov compatibility, 18 lattice, 55

/Users/dp/a/ens/markov.tex 2015-10-16 • 17:50:14.

Markov chain, 19, 22 Poisson-Martin representation, 87 convergence theorem for finite chains, potential 37 function, 50 hidden, 26 measure, 50 homogeneous, 20 projection, 16 inhomogeneous, 20 projective of order k, 26 limit, 17 Markov property system, 17 strong, 24 random walk, 10, 25 weak, 21, 22 recurrence Markov-chain null, 68 ϕ -irreducible, 102 positive, 68 ϕ -recurrent, 102 recurrent Harris recurrent, 102 chain, 68 Martin set, 68 boundary, 85 relativisation, 93 compactification, 86 resolution of identity, 32 kernel, 86 resolvent, 32, 49 martingale Riesz backwards, 143 decomposition, 54, 55 closed, 142 space, 55 reverse, 143 uniformly integrable, 142 self-avoiding random walk, 45 matrix set cyclic, 36 absorbing, 64 irreducible, 34 accessible, 112 positive, 33 almost closed, 68 primitive, 36 closed, 101 reducible, 34 closed (stochastically), 64 stochastic, 8 essential, 110 strictly positive, 33 full, 103 maximum principle, 51 improperly essential, 110 measure indecomposable, 101 equilibrium, 69 properly essential, 110 invariant, 69, 127 recurrent, 68 irreducibility, 101 transient, 68 maximal irreducibility, 103 unessential, 110 occupation, 23 σ -algebra σ -finite, 6 asymptotic, 57, 115 stationary, 69 invariant, 57 total variation, 6 separable, 5 minimal polynomial, 31 tail, 57 Monte Carlo simulation, 43 trace, 22 period, 65 trivial, 57 Poisson space-time process, 57 boundary, 91 spectral

decomposition, 2 projection, 32 radius, 33 spectrum, 31 contracting, 37 peripheral, 37 state accessible, 64 aperiodic, 65 essential, 64 recurrent, 66 transient, 66 states communicating, 64 unessential, 64 stochastic kernel, 3 matrix, 1 process, 19 superharmonic function, 27, 50, 54, 55 measure, 50, 54 tending to ∞ chain, 68 theorem Brower (fixed point), 34 Carathéodory (convexity), 40 Egorov, 140 ergodic, 75 Ionescu Tulcea, 17 Karpelevich, 42 Martin compactification, 85 Perron-Frobenius (strong form), 35 Perron-Frobenius (weak form), 34 Poisson-Martin representation, 87 time death, 23 hitting, 23 occupation, 23 passage, 23 stopping, 22 trajectory space, 3, 16 transient chain, 68 set, 68

uniformly integrable, 141 vector space lattice, 55 ordered, 55 zero-one law, 91