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1
Introduction

1.1 Motivating example

The simplest non-trivial example of a Markov chain is the following model.
LetX= {0,1} (heads 1, tails 0) and consider two coins, one honest and one biased
giving tails with probability 2/3. Let

Xn+1 =
{

outcome of biased coin if Xn = 0
outcome of honest coin if Xn = 1.

For y ∈X and πn(y) =P(Xn = y), we have

πn+1(y) =P(Xn+1 = y |honest)P(honest)+P(Xn+1 = y |biased)P(biased),

yielding

(πn+1(0),πn+1(1)) = (πn(0),πn(1))

(
P00 P01

P10 P11

)
,

with P00 = 2/3, P01 = 1/3, and P10 = P11 = 1/2.

Iterating, we get

πn =π0P n

whereπ0 must be determined ad hoc (for instance by π0(x) = δ0x for x ∈X).

In this formulation, the probabilistic problem is translated into a purely alge-
braic problem of determining the asymptotic behaviour of πn in terms of the
asymptotic behaviour of P n , where P = (Px y )x,y∈X is a stochastic matrix (i.e.

1



1.1. Motivating example

Figure 1.1 – Gray lines represent all possible and imaginable trajectories of heads and
tails trials. Full line represents a particular realisation of such a sequence of trials. Note
that only integer points have a significance, they are joined by line segments only for
visualisation purposes.

Px y ≥ 0 for all x and y and
∑

y∈XPx y = 1). Although the solution of this prob-
lem is an elementary exercise in linear algebra, it is instructive to give some de-

tails. Suppose we are in the non-degenerate case where P =
(
1−a a

b 1−b

)
with

0 < a,b < 1. Compute the spectrum of P and left and right eigenvectors:

ut P = λut

Pv = λv.

Since the matrix P is not necessarily normal, the left (resp. right) eigenvectors
corresponding to different eigenvalues are not orthogonal. However we can al-
ways normalise ut

λ
vλ′ = δλλ′ . Under this normalisation, and denoting by Eλ =

vλ⊗ut
λ

, we get

λ uλ vλ Eλ

λ1 = 1

(
b
a

) (
1
1

)
1

a+b

(
b a
b a

)
λ2 = 1− (a +b)

(
1
−1

) (
a
−b

)
1

a+b

(
a −a
−b b

)

We observe that for λ and λ′ being eigenvalues, EλEλ′ = δλλ′Eλ, i.e. Eλ are spec-
tral projectors. The matrix P admits the spectral decomposition

P = ∑
λ∈specP

λEλ,

where specP = {1,1− (a + b)} = {λ ∈ C : λI −P is not invertible}. Now Eλ being
orthogonal projectors, we compute immediately, for all positive integers n,

P n = ∑
λ∈specP

λnEλ =λn
1 Eλ1 +λn

2 Eλ2

and since λ1 = 1 while |λ2| < 1, we get that limn→∞ P n = Eλ1 .

Applying this formula for the numerical values of the example, we get that
limn→∞πn = (0.6,0.4).

/Users/dp/a/ens/markov-intro.tex
2015-09-13 • 15:59:47.
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Introduction

1.2 Observations and questions

— In the previous example, a prominent role is played by the stochastic ma-
trix P . In the general case, P is replaced by an operator, known as stochas-
tic kernel that will be introduced and studied in chapter 2.

— An important question, that has been eluded in this elementary introduc-
tion, is whether exists a probability space (Ω,F ,P) sufficiently large as to
carry the whole sequence of random variables (Xn)n∈N. This question will
be positively answered by the Ionescu Tulcea theorem and the construc-
tion of the trajectory space of the process in chapter 3.

— In the finite case, motivated in this chapter and fully studied in chapter 4,
the asymptotic behaviour of the sequence (Xn) is fully determined by the
spectrum of P , a purely algebraic object. In the general case (countable or
uncountable), the spectrum is an algebraic and topological object defined
as

specP = {λ ∈C :λI −P is not invertible}.

This approach exploits the topological structure of measurable functions
onX; a thorough study of the general case is performed, following the line
of spectral theory of quasi-compact operators, in [21]. Although we don’t
follow this approach here, we refer the reader to the previously mentioned
monograph for further study.

— Without using results from the theory of quasi-compact operators, we can
study the formal power series (I−P )−1 =∑∞

n=0 P n (compare with the above
definition of the spectrum). This series can be given both a probabilis-
tic and an analytic significance realising a profound connection between
harmonic analysis, martingale theory, and Markov chains. It is this latter
approach that will be developed in chapter 5.

— Quantum Markov chains are objects defined on a quantum probability
space. Now, quantum probability can be thought as a non-commutative
extension of classical probability where real random variables are replaced
by self-adjoint operators acting on a Hilbert space. Thus, once again the
spectrum plays an important rôle in this context.

Exercise 1.2.1. (Part of the paper of December 2006) Let (Xn) be the Markov
chain defined in the example of section 1.1, withX= {0,1}. Letη0

n(A) =∑n−1
k=01A(Xk )

for A ⊆X.

1. Compute Eexp(i
∑

x∈X txη
0
n({x})) as a product of matrices and vectors, for

tx ∈R.

2. What is the probabilistic significance of the previous expectation?

3. Establish a central limit theorem for η0
n({0}).

4. Let f : X → R. Express Sn( f ) = ∑n−1
k=0 f (Xk ) with the help of η0

n(A), with
A ⊆X.

/Users/dp/a/ens/markov-intro.tex
2015-09-13 • 15:59:47.
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1.2. Observations and questions
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2
Kernels

This chapter deals mainly with the general theory of kernels. The most com-
plete reference for this chapter is the book [41]. Several useful results can be
found in [35].

2.1 Notation

In the sequel, (X,X ) will be an arbitrary measurable space; most often the
σ-algebra will be considered separable or countably generated (i.e. we assume
that there exists a sequence (Fn)n∈N of measurable sets Fn ∈ X , for all n, such
that σ(Fn ,n ∈ N) = X ). A closely related notion for a measure space (X,X ,µ) is
the µ-separability of the σ-algebra X meaning that there exists a separable σ-
subalgebra X0 of X such that for every A ∈ X there exists a A′ ∈ X0 verifying
µ(A4A′) = 0. We shall denote by mX the set

of real (resp. complex) (X ,B(R)))- (resp. (X ,B(C)))-measurable functions
defined on X. For f ∈ mX , we introduce the norm ‖ f ‖∞ = supx∈X | f (x)|. Simi-
larly, bX will denote the set of bounded measurable functions and mX+ the set
of positive measurable functions.

Exercise 2.1.1. The space (bX ,‖ ·‖∞) is Banach.

Similar definitions apply by duality to the set of measures. Recall that a mea-
sure is a σ-additive function defined on X and taking values in ]−∞,∞]. It is
called positive if its set of values is [0,∞] and bounded if sup{|µ(F )|,F ∈X } <∞.

5



2.2. Transition kernels

For every measure µ and every measurable set F , we can define positive and neg-
ative parts by

µ+(F ) = sup{µ(G),G ∈X ,G ⊆ F }

and
µ−(F ) = sup{−µ(G),G ∈X ,G ⊆ F }.

Note that µ= µ+−µ−. The total variation of µ is the measure |µ| = µ++µ−. The
total variation is bounded iff |µ| is bounded; we denote by ‖µ‖1 = |µ|(X).

We denote by M (X ) the set of σ-finite measures on X (i.e. measures µ for
which there is an increasing sequence (Fn)n∈N of measurable sets Fn such that
|µ|(Fn) <∞ for all n and X = ∪↑Fn .) Similarly, we introduce the set of bounded
measures bM (X ) = {µ ∈ M (X ) : sup{|µ(A)|, A ∈ X } <∞}. The sets M+(X ) and
bM+(X ) are defined analogously for positive measures. The set M1(X ) denotes
the set of probability measures on X .

Exercise 2.1.2. The space (bM (X ),‖ ·‖1) is Banach.

Let µ ∈ M (X ) and f ∈ L 1(X,X ,µ). We denote in-distinctively,
∫
X f dµ =∫

X f (x)µ(d x) = ∫
Xµ(d x) f (x) = µ( f ) = 〈µ, f 〉. As usual the space L1(X,X ,µ) is the

quotient of L 1(X,X ,µ) by equality holding µ-almost everywhere. There exists
a canonical isometry between L1(X,X ,µ) and M (X ) defined by the two map-
pings:

f 7→µ f : µ f (A) =
∫

A
f (x)µ(d x), for f ∈ L1

ν 7→ fν : fν(x) = dν

dµ
(x), for ν¿µ.

2.2 Transition kernels

Definition 2.2.1. Let (X,X ) and (X′,X ′) be two measurable spaces. A mapping
N :X×X ′ →]−∞,+∞] such that

— ∀x ∈X, N (x, ·) is a measure on X ′ and
— ∀A ∈X ′, N (·, A) is a X -measurable function,

is called a transition kernel between X and X′. We denote (X,X )
N
 (X′,X ′).

The kernel is termed
— positive if its image is [0,+∞],
— σ-finite if for all x ∈X, N (x, ·) ∈M (X ′),
— proper if there exists an increasing exhausting sequence (An)n of X ′-measurable

sets such that, for all n ∈N, the function N (·, An) is bounded on X, and
— bounded if its image is bounded.

Exercise 2.2.2. For a kernel, bounded implies proper implies σ-finite. A positive
kernel is bounded if and only if the function N (·,X) is bounded.

/Users/dp/a/ens/markov-kerne.tex
2015-10-15 • 21:21:45.
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Kernels

Henceforth, we shall consider positive kernels (even when Markovian this
qualifying adjective is omitted).

Definition 2.2.3. Let N be a positive transition kernel (X,X )
N
 (X′,X ′). For

f ∈ mX ′+, we define a function on mX+, denoted by N f , by the formula:

∀x ∈X, N f (x) =
∫
X′

N (x,d x ′) f (x ′) = 〈N (x, ·), f 〉.

Remark 2.2.4. f ∈ mX+ is not necessarily integrable with respect to the mea-
sure N (x, ·). The function N f is defined with values in [0,+∞] by approximat-
ing by step functions. The definition can be extended to f ∈ mX ′ by defining
N f = N f +−N f − provided that the functions N f + and N f − do not take simul-
taneously infinite values.

Definition 2.2.5. Let (X,X )
N
 (X′,X ′) be a positive kernel. For µ ∈M+(X ), we

define a measure of M+(X ′), denoted by µN , by the formula:

∀A ∈X ′, µN (A) =
∫
X
µ(d x)N (x, A) = 〈µ, N (·, A)〉.

Remark 2.2.6. The definition can be extended to M (X ) by µN =µ+N −µ−N .

Remark 2.2.7. We have the expression N (x, A) = N1A(x) for all x ∈ X and all
A ∈X ′. Similarly, N (x, A) = εx N (A) where εx is the Dirac mass on x.

Remark 2.2.8. Note that the transition kernel (X,X )
N
 (X′,X ′) acts contravari-

antly on functions and covariantly on measures. In the language of categories,
the whole picture reads:

M (X ) M (X ′)

(X,X ) (X′,X ′)

bX bX ′

M (N ) := N

N

b(N ) := N

M M

b b

2.3 Examples-exercises

2.3.1 Integral kernels

Letλ ∈M+(X ′) and n :X×X′ →R+ be a X ⊗X ′-measurable function. Define
for all x ∈X and all A ∈X ′

N (x, A) =
∫
X

n(x, x ′)1A(x ′)λ(d x ′).

/Users/dp/a/ens/markov-kerne.tex
2015-10-15 • 21:21:45.
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2.3. Examples-exercises

Then N is a positive transition kernel (X,X )
N
 (X′,X ′), termed integral kernel.

For f ∈ mX ′+, µ ∈M+(c =X ), A ∈X ′ and x ∈Xwe have:

N f (x) =
∫
X

n(x, x ′) f (x ′)λ(d x ′)

µN (A) =
∫
X

∫
X′
µ(d x)n(x, x ′)(1Aλ)(d x ′),

where 1Aλ is a measure absolutely continuous with respect to λ having Radon-
Nikodým density 1A.

Some remarkable particular integral kernels are given below:

1. Let X=X′ be countable (finite or infinite) sets, X =X ′ =P (X), and λ be
the counting measure, defined by λ(x) = 1 for all x ∈X. Then the integral
kernel N is defined, for f ∈ mX , µ ∈M (X ), by

N f (x) = ∑
y∈X

n(x, y) f (y), for all x ∈X

µN (A) = ∑
x∈X;y∈A

µ(x)n(x, y), for all A ∈X .

In this discrete case, N (x, {y}) ≡ N (x, y) ≡ n(x, y) are the elements of finite
or infinite matrix whose columns are functions and rows are measures.
If we impose further N (x, ·) to be a probability, then

∑
y∈Xn(x, y) = 1 as

was the case in the motivating example of chapter 3.1. In that case, the
operator N = (n(x, y))x,y∈X is a matrix whose rows sum up to one, termed
stochastic matrix .

2. Let X = X′ = Rd with d ≥ 3, X = X ′ = B(Rd ), and λ be the Lebesgue
measure in dimension d . The function given by the formula n(x, x ′) =
‖x−x ′‖−d+2 for x 6= x ′ defines the so-called Newtonian kernel. It allows ex-
pressing the electrostatic (or gravitational) potential U at x due to a charge
(or mass) density ρ via the integral formula:

U (x) = c
∫
Rd

n(x, x ′)ρ(x ′)λ(d x ′).

The function U is solution of the Poisson differenital equation 1
2∆U (x) =

−ρ(x). The Newtonian kernel can be thought as the “inverse” operator of
the Laplacian. We shall return to this “inverting” procedure in chapter 5.

3. Let X=X′, X =X ′, and λ ∈M (X ) be arbitrary. Let a,b ∈ bX and define
n(x, x ′) = a(x)b(x ′). Then the integral kernel N is defined by

N f (x) = a(x)〈bλ, f 〉
µN (A) = 〈µ, a〉(bλ)(A).

In other words the kernel N = a ⊗bλ is of the form function⊗measure (to
be compared with the form 1 Eλ = vλ⊗ut

λ
introduced in chapter 1).

1. Recall that functions are identified with vectors, measures with linear forms.

/Users/dp/a/ens/markov-kerne.tex
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Kernels

2.3.2 Convolution kernels

Let G be a topological semigroup (i.e. composition is associative and contin-
uous) whose composition · is denoted multiplicatively. Assume that G is metris-
able (i.e. there is a distance on G generating its topology) and locally compact
(i.e. every point x ∈ G is contained in an open set whose closure is compact).
Denote by G the Borel σ-algebra on G. Define the convolution of two measures
µ and ν by duality on continuous functions of compact support f ∈ CK (G) by
〈µ?ν, f 〉 = ∫

G

∫
Gµ(d x)ν(d y) f (x · y).

Let now X = X′ = G, X = X ′ = G , and λ be a fixed positive Radon measure
(i.e. λ(K ) < ∞ for all compact measurable sets K ) and define N by the formula

N (x, A) = (λ?εx)(A). Then N is a transtion kernel (G,G )
N
 (G,G ), called convo-

lution kernel, whose action is given by

N f (x) = 〈λ?εx , f 〉
=

∫
G

∫
G
λ(d y)εx(d z) f (y · z)

=
∫
G
λ(d y) f (y · x).

In particular, N (x, A) = 〈λ?εx ,1A〉 =
∫
Gλ(d y)1A(y · x) yielding for the left action

on measures µN (A) = 〈λ?µ,1A〉.

Suppose now that G instead of being merely a semigroup, is henceforth a
group. Then the above formula becomes N (x, A) =λ(Ax−1) and consequently

〈µN , f 〉 = 〈λ?µ, f 〉,
yielding 2 µN =λ?µ. This provides us with another reminding that N transforms
differently arguments of functions and measures.

Definition 2.3.1. LetV be a topological space and V it Borelσ-algebra; the group
G operates on V (we say that V is a G-space), if there exists a continuous map
α :G×V 3 (x, v) 7→α(x, v) ≡ x ◦ v ∈V, verifying (x1 · x2)◦ v = x1 ◦ (x2 ◦ v).

With any fixed measure λ ∈ M+(G ) we associate a kernel (V,V )
K
 (V,V ) by

its action on functions f ∈ mV+ and measures µ ∈M (V ):

K f (v) =
∫
G
λ(d x) f (x ◦ v), for any v ∈V

µK (A) =
∫
G
λ(d x)

∫
V
µ(d v)1A(x ◦ v), for any A ∈ V .

When V = G in the above formulae and identifying the operation ◦ with the
group composition ·, we say that the group operates (from the left) on itself. In

2. Note however, that N f 6= λ ? f because the convolution λ ? f (x) = ∫
Gλ(d y) f (y−1x).

Hence on defining λ∗ as the image of λ under the transformation x 7→ x−1, we have N f (x) =∫
Gλ(d y) f (y−1x) =λ∗? f (x).
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2.3. Examples-exercises

that case, we recover the convolution kernel of the beginning of this section as a
particular case of the action on G-spaces.

Some remarkable particular convolution kernels are given below:

1. Let G be the Abelian group Z, whose composition is denoted additively.
Let λ be the probability measure charging solely the singletons −1 and 1
with probability 1/2. Then the convolution kernel N acts on measurable
functions and measures by:

N f (x) = 1

2

(
f (x +1)+ f (x −1)

)
µN (A) = 1

2

(
µ(A−1)+µ(A+1)

)
.

This kernel corresponds to the transition matrix

n(x, y) =
{

1/2 if y −x =±1
0 otherwise,

corresponding to the simple symmetric random walk on Z.

More generally, if G=Zd and λ is a probability measure whose support is
a generating set of the group, the transition kernel defines a random walk
on Zd .

2. The same holds more generally for non Abelian groups. For example, let
G = {a,b} be a set of free generators and G the group generated by G via
successive applications of the group operations. Then G is the so-called
free group on two generators, denoted by F2. It is isomorphic with the
homogeneous tree of degree 4. If λ is a probability supported by G and
G−1, then the convolution kernel corresponds to a random walk on F2.

3. Let G be the semigroup of d ×d matrices with strictly positive elements
and V = RP d−1 be the real projective space 3. If RP d−1 is thought as em-
bedded inRd , the latter being equipped with a norm ‖·‖, define the action
of a matrix x ∈G on a vector v ∈RP d−1 by x ◦v = xv

‖xv‖ . Let λ be a probabil-
ity measure on G. Then the kernel K defined by K f (v) = ∫

Gλ(d x) f (x ◦ v)
induces a random walk on the space V.

2.3.3 Point transformation kernels

Let (X,X ) and (Y,Y ) be two measurable spaces and θ : X → Y a measur-
able function. Then, the function N defined on X×Y by N (x, A) ≡ 1A(θ(x)) =

3. The real projective space RP n is defined as the space of all lines through the origin in Rn+1.
Each such line is determined as a nonzero vector of Rn+1, unique up to scalar multiplication, and
RP n is topologised as the quotient space of Rn+1 \ {0} under the equivalence relation v ' αv for
scalars α 6= 0. We can restrict ourselves to vectors of length 1, so that RP n is also the quotient
space Sn/v '−v of the sphere with antipodal points identified.
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Kernels

1θ−1(A)(x) = εθ(x)(A) for x ∈ X and A ∈ Y defines a transition kernel (X,X )
N
 

(Y,Y ), termed point transformation kernel or deterministic kernel. Its action
on functions and measures reads:

N f (x) =
∫
Y

N (x,d y) f (y) =
∫
Y
εθ(x)(d y) f (y)

= f (θ(x)) = f ◦θ(x)

µN (A) =
∫
X
µ(d x)1θ−1(A)(x)

=µ(θ−1(A)) = θ∗(µ)(A),

where θ∗ denotes the pullback on measures.

Remark 2.3.2. (Please stop here for a moment’s thought!) The function θ is as
a matter of fact a random variable on (X,X ) taking values in (Y,Y ). If the initial
space is endowed with a probability µ, then µN is the law of θ! IfY=R equipped
with its Borel σ-algebra, what is the significance the function N idY, where idY is
the identify function on Y?

Example 2.3.3. LetX=Y= [0,1], X =Y =B([0,1]) and θ the mapping given by
the formula θ(x) = 4x(1− x). The iterates of θ applied on a given point x ∈ [0,1]
describe the trajectory of x under the dynamical system defined by the map. The
corresponding kernel is deterministic.

Exercise 2.3.4. Determine the explicit form of the kernel in the previous exam-
ple.

2.4 Markovian kernels

Definition 2.4.1. (Kernel composition) Let M and N be positive transition ker-

nels (X,X )
M
 (X′,X ′) and (X′,X ′) N

 (X′′,X ′′). Then by M N we shall denote the

positive kernel (X,X )
M N
 (X′′,X ′′) defined, for all x ∈X and all A ∈X ′′ by

M N (x, A) =
∫
X′

M(x,d y)N (y, A).

Exercise 2.4.2. The composition of positive kernels is associative.

Remark 2.4.3. If N is a positive kernel (X,X )
N
 (X,X ) then N n is defined for

all n ∈ N by N 0 = I , where I is the identity kernel (X,X )
I
 (X,X ) defined by

I (x, A) = εx(A) and recursively for n > 0 by N n = N N n−1.

Definition 2.4.4. (Kernel ordering) Let M and N be two positive kernels (X,X )
M
 

(Y,Y ) and (X,X )
M
 (Y,Y ). We say M ≤ N if ∀ f ∈ Y+, the inequality M f ≤ N f

holds (point-wise).

Definition 2.4.5. (Markovian kernels) Let N be a positive kernel (X,X )
N
 (X,X ).
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2.5. Further exercises

— The kernel N is termed sub-Markovian or a transition probability if N (x, A) ≤
1 holds for all x ∈X and all A ∈X .

— The kernel N is termed Markovian if N (x,X) = 1 holds for all x ∈X.

Remark 2.4.6. It may sound awkward to term a sub-Markovian kernel, for which
the strict inequality N (x,X) < 1 may hold, transition probability. The reason for
this terminology is that it is always possible to extend the space X to X̂ =X∪ {∂}
by adjoining a particular point ∂ 6∈X, called cemetery. The σ-algebra is extended
analogously to X̂ = σ(X , {∂}). The kernel is subsequently extended to a Marko-
vian kernel N̂ defined by N̂ (x, A) = N (x, A) for all A ∈ X and all x ∈X, assigning
the missing mass to the cemetery by N̂ (x, {∂}) = 1−N (x,X) for all x ∈X, and triv-
ialising the additional point by imposing N̂ (∂, {∂}) = 1. It is trivially verified that
N̂ is now Markovian. Moreover, if N is already Markovian, obviously N̂ (x, {∂}) = 0
for all x ∈X. Functions f ∈ mX are also extended to f̂ ∈ mX̂ coinciding with f
on X and verifying f̂ ({∂}) = 0.

We use henceforth the reserved symbol P to denote positive kernels that are
transition probabilities. Without loss of generality, we can always assume that
P are Markovian kernels, possibly at the expense of adjoining a cemetery point
to the space (X,X ) according the previous remark, although the ˆ symbol will be
omitted.

Exercise 2.4.7. Markovian kernels, as linear operators acting to the right on the
Banach space (bX ,‖ · ‖∞) or to the left on (bM (X ),‖ · ‖1), are positive contrac-
tions.

2.5 Further exercises

1. Let (X,X ) be a measurable space, g ∈ mX+, ν ∈ M+(X ), and (X,X )
M
 

(X,X ) an arbitrary positive kernel. Define N = g ⊗ν and compute N M
and M N .

2. Let P be a Markovian kernel and define G0 =∑∞
n=0 P n .

— Show that G0 is a positive kernel not necessarily finite on compact sets.
— Show that G0 = I +PG0 = I +G0P .

3. Let P be a Markovian kernel and a,b arbitrary sequences of positive num-
bers such that

∑∞
n=0 an ≤ 1 and

∑∞
n=0 bn ≤ 1. Define G0

(a) =
∑∞

n=0 anP n and

compute G0
(a)G

0
(b)(x, A).

4. Let P be a Markovian kernel. For every z ∈C define G0
z =

∑∞
n=0 znP n .

— Show that G0
z is a finite kernel for all complex z with |z| < 1.

— Is the linear operator zI −P invertible for z in some subset of the com-
plex plane?
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3
Trajectory spaces

In this chapter a minimal construction of a general probability space is per-
formed on which lives a general Markov chain.

3.1 Motivation

Let (X,X ) be a measurable space. In the well known framework of the Kol-
mogorov axiomatisation of probability theory, to deal with a X-valued random
variable X we need an ad hoc probability space (Ω,F ,P) on which the the ran-
dom variable is defined as a (F ,X )-measurable function. The law of X is the
probability measure PX on (X,X ), image of P under X , i.e. PX (A) = P({ω ∈ Ω :
X (ω) ∈ A} = X∗(P)(A) = PNX (A) for all A ∈ X , where NX (ω, A) = εX (ω)(A) is the
point kernel associated with the random variable X .

What is much less often stressed in the various accounts of probability theory
is the profound significance of this framework. As put by Kolmogorov himself in
[29, page 1]:

“. . . the field of probabilities is defined as a system of [sub]sets [of a
universal set] which satisfy certain conditions. What the elements
of this [universal] set represent is of no importance . . . ".

Example 3.1.1. (Heads and tails) Let X = {0,1} and p ∈ [0,1]. Modelling the
outcomes X of a coin giving tails with probability p is equivalent to specifying
PX = pε0 + (1−p)ε1.

Several remarks are necessary:

13



3.1. Motivation

1. All information experimentally pertinent to the above example is encoded
into the probability space (X,X ,PX ).

2. The choice of the probability space (Ω,F ,P), on which the random vari-
able X =“the coin outcome” is defined, is not unique. Every possible choice
corresponds to a possible physical realisation used to model the random
experiment. This idea clearly appears in the classical text [29].

3. According to Kolmogorov, in any random experiment, the only funda-
mental object is (X,X ,PX ); with every such probability space, we can as-
sociate infinitely many pairs composed of an auxiliary probability space
(Ω,F ,P) and a measurable mapping X :Ω→X such that PX is the image
of P under X .

4. This picture was further completed later by Loomis [30] and Sikorski [46]:
in the auxiliary space (Ω,F ,P), the only important object is F since for
every abstract σ-algebra F , there exists a universal setΩ such that F can
be realised as a σ-algebra of subsets ofΩ (Loomis-Sikorski theorem).

Example 3.1.2. (Heads and tails revisited by the layman) When one tosses a
coin on a table (approximated as an infinitely extending plane and very plastic),
the space Ω = (R+×R2)×R3 ×R3 ×S2 is used. This space encodes position R of
the centre of the mass, velocity V, angular momentum M and orientation N of the
normal to the head face of the coin. The σ-algebra F =B(Ω) and P corresponds
to some probability of compact support (initial conditions of the mechanical sys-
tem). Newton equations govern the time evolution of the system and due to the
large plasticity of the table, the coin does not bounce when it touches the table.
Introduce the random time T (ω) = inf{t > 0 : R3(t ) = 0;V(t ) = 0,M(t ) = 0} and the
random variable

X (ω) =
{

0 if N(T (ω)) ·e3 =−1
1 if N(T (ω)) ·e3 = 1,

where e3 is the unit vector parallel to the vertical axis. A tremendously compli-
cated modelling indeed! The randomness of the outcome is due to the fine strat-
ification of the space Ω. This mechanical systems is mathematically studied in
detail in [27, 9]. Under the simplifying assumption that the rotation of the coin
is around the normal axis of the vertical plane containing the vertical motion of
the centre of the mass, the phase space is stratified as in the figure 3.1.

Example 3.1.3. (Heads and tails revisited by the Monte Carlo simulator) Let
Ω = [0,1], F = B([0,1]) and P be the Lebesgue measure on [0,1]. Then the out-
come of a honest coin is modelled by the random variable

X (ω) =
{

0 if ω< 1/2
1 if ω> 1/2.

A simpler modelling but still needing a Borel σ-algebra on an uncountable set!

Example 3.1.4. (Heads and tails revisited by the mathematician) LetΩ= {0,1},
F =P (Ω) and P= 1

2ε0 + 1
2ε1. Then the outcome of a honest coin is modelled by

the random variable X = id. Note further that PX =P. Such a realisation is called
minimal.
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Trajectory spaces

v

M

Figure 3.1 – The (v, M) phase space, where v denotes the vertical speed and M the
angular momentum, is stratified into red and blue regions corresponding to the two
different possible outcomes (heads and tails). Only the first layers of the stratification
are shown but as a matter of fact it extends indefinitely to cover the whole quadrant.

Exercise 3.1.5. (Your turn to toss coins! Please work out this exercise before
reading §3.2) Construct a minimal probability space carrying the outcomes for
two honest coins.

Let (X,X ) be an arbitrary measurable space and X = (Xn)n∈N a countable
family of X-valued random variables. Two natural questions arise:

1. What is the significance of PX ?
2. Does there exist a minimal probability space (Ω,F ,P) carrying the whole

family of random variables?

3.2 Construction of the trajectory space

3.2.1 Notation

Let (Xk ,X k )k∈N be a family of measurable spaces. For n ∈ N∪ {∞}, denote
Xn = ×n

k=0Xk and X n = ⊗n
k=0Xk . Beware of the difference between subscripts

and superscripts in the previous notation!

Definition 3.2.1. Let (Xk ,X k )k∈N be a family of measurable spaces. The set

X∞ = {x = (x0, x1, x2, . . .) : xk ∈Xk ,∀k ∈N}
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3.2. Construction of the trajectory space

is called the trajectory space on the family (Xk )k∈N.

Remark 3.2.2. The trajectory space, X∞, can be thought as the subset of all infi-
nite sequences {x :N→∪k∈NXk } that are admissible, in the sense that necessar-
ily for all k, xk ∈Xk . When all spaces of the family are equal, i.e. Xk =X for all k,
then the space of admissible sequences trivially reduces to the set of sequences,
i.e. X∞ =XN.

Definition 3.2.3. Let 0 ≤ m ≤ n. Denote by pn
m :Xn →Xm the projection defined

by the formula:
pn

m(x0, . . . , xm , . . . , xn) = (x0, . . . , xm).

We simplify notation to pm ≡ p∞m for the projection form X∞ to Xm . More gener-
ally, let ; 6= S ⊆N be an arbitrary subset of the indexing set. Denote by$S :X∞ →
×k∈SXk the projection defined for any x ∈ X∞ by $S(x) = (xk )k∈S . If S = {n}, we
write $n instead of ${n}.

Remark 3.2.4. Obvsiously, pm =${0,...,m}.

Definition 3.2.5. Let (Xk ,X k )k∈N be a family of measurable spaces.

1. We call family of rectangular sets over the trajectory space the collection

R = {×k∈NAk : Ak ∈Xk ,∀k ∈N and ]{k ∈N : Ak 6=Xk } <∞
= {×k∈NAk : Ak ∈Xk ,∀k ∈N and ∃N : k ≥ N ⇒ Ak =Xk }

= ∪N∈NRN ,

where RN =×N
k=0Xk ××k>NXk

∼=×N
k=0Xk .

2. We call family of cylinder sets over the trajectory space the collection

C =∪N∈N{F × (×k>NXk ) : F ∈X N }.

The cylinder set F × (×k>NXk ) will be occasionally denoted [F ]N .

Definition 3.2.6. Theσ-algebra onX∞ generated by the sequence of projections
($k )k∈N is denoted by X ∞; i.e. X ∞ =⊗k∈NXk =σ(∪k∈N$−1

k (Xk )).

Exercise 3.2.7. R is a semi-algebra with σ(R) =X ∞, while C is an algebra with
σ(C ) =X ∞. (See A.1.1 for the definitions of various set systems).

3.2.2 The Ionescu Tulcea theorem

The theorem of Ionescu Tulcea is a classical result [22] (see also[35, 4, 16] for
more easily accessible references) of existence and unicity of a probability mea-
sure on the space (X∞,X ∞) constructed out of finite dimensional marginals.
There exist formulations of this result assuming some topological structure (out
of which the measurable structure is derived); in that case the space X∞ is as-
sumed to be Polish (metrisable, separable and complete). The result given here
is very general, with minimal assumptions on the spaceX, requiring only that the
space (X,X ) be measurable. We follow the exposition of [35].
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Trajectory spaces

Theorem 3.2.8 (Ionescu Tulcea). Let (Xn ,X n)n∈N be a sequence of measurable
spaces, (X∞,X ∞) the corresponding trajectory space, (Nn+1)n∈N a sequence of tran-

sition probabilities 1 (Xn ,X n)
Nn+1 (Xn+1,X n+1), and µ a probability on (X0,X 0).

Define, for n ≥ 0, a sequence of probabilities P(n)
µ on (Xn ,X n) by initialising P(0)

µ =
µ and recursively, for n ∈N, by

P(n+1)
µ (F ) =

∫
X0×···×Xn+1

P(n)
µ (d x0×·· ·×d xn)Nn+1((x0, . . . , xn);d xn+1)1F (x0, . . . , xn+1),

for F ∈X n+1. Then there exists a unique probability Pµ on (X∞,X ∞) such that for
all n we have

(pn)∗(Pµ) =P(n)
µ ,

(i.e. (pn)∗(Pµ)(G) ≡Pµ(p−1
n (G)) =P(n)

µ (G) for all G ∈X n).

Before proving the theorem, note that for F = A0 × ·· · × An ∈ X n , the term
appearing in the last equality in the theorem 3.2.8 reads:

Pµ(p−1
n (F )) =Pµ(A0 ×·· ·× An ×Xn+1 ×Xn+2 × . . .)

i.e. Pµ is the unique probability on the trajectory space (X∞,X ∞) admitting

(P(n)
µ )n∈N as sequence of n-dimensional marginal probabilities.

A sequence (P(n)
µ ,pn)n∈N as in theorem 3.2.8 is called a projective system. The

unique probability Pµ on the trajectory space, is called the projective limit of the
projective system, and is denoted

Pµ = lim←−−
n→∞

(P(n)
µ ,pn).

The essential ingredient in the proof of existence of the projective limit is the
following observation: since, for 0 ≤ m ≤ n, the following diagram commutes

X∞

Xn Xm

pn

pn
m

pm

in other words, pm = pn
m ◦pn , it follows that pulling back on the probabilities, the

following diagram must also commute

M1(X ∞)

M1(X n) M1(X m)

(pn)∗

(pn
m)∗

(pm)∗

1. Beware of superscripts and subscripts
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3.2. Construction of the trajectory space

in other words the following equalityP(m)
µ = (pn

m)∗(P(n)
µ ), called Kolmogorov com-

patibility condition, holds for arbitrary 0 ≤ m ≤ n. The proof relies also heav-
ily on standard results of the “monotone class type”; for the convenience of the
reader, the main results of this type are reminded in the Appendix.

Proof of theorem 3.2.8: Denote by Cn = p−1
n (X n). Obviously, C =∪n∈NCn . Since

for m ≤ n we have Cm ⊆Cn , the collection C is an algebra on X∞. In fact,
— Obviously X∞ ∈C .
— For all C1,C2 ∈ C there exist integers N1 and N2 such that C1 ∈ CN1 and

C2 ∈ CN2 ; hence, choosing N = max(N1, N2), we see that the collection C

is closed for finite intersections.
— Similarly, for every C ∈C there exists an integer N such that C ∈CN ; hence

C c ∈CN ⊆C , because CN is a σ-algebra.
However, C is not aσ-algebra but it generates the fullσ-algebra X ∞ (see exercise
3.2.7).

Next we show that if a probability Pµ exists, then it is necessarily unique. In
fact, for every C ∈ C there exists an integer N and a set F ∈ X N such that C =
p−1

N (F ). Therefore, Pµ(C ) = Pµ(p−1
N (F )) = P

(N )
µ (F ). If another such measure P′

µ

exists (i.e. satisfying the same compatibility properties) we shall have similarly
P′
µ(C ) =P(N )

µ (F ) =Pµ(C ), hence Pµ =P′
µ on C . Define for a fixed C ∈C such that

Pµ(C ) =P′
µ(C ),

ΛC = {A ∈X ∞ :Pµ(C ∩ A) =P′
µ(C ∩ A)} ⊆X ∞.

Next we show thatΛC is a λ-system (see definition A.1.3). In fact
— Obviously X∞ ∈ΛC .
— If B ∈ΛC then

Pµ(C ∩B c ) = Pµ(C \ (C ∩B))

= Pµ(C )−Pµ(C ∩B)

= P′
µ(C )−P′

µ(C ∩B)

= P′
µ(C ∩B c ).

Hence B c ∈ΛC .
— Suppose now that (Bn)n∈N is a disjoint family of sets inΛC . Thenσ-additivity

establishes that

Pµ((tn∈NBn)∩C ) = ∑
n∈N

Pµ(Bn ∩C ) = ∑
n∈N

P′
µ(Bn ∩C ) =P′

µ(((tn∈NBn)∩C ).

Hence tn∈NBn ∈ΛC establishing thus thatΛC is a λ-system.
Now stability of C under finite intersections implies that σ(C ) = λ(C ) ⊆ΛC (see
exercise A.1.6); consequently σ(C ) ⊆ ΛC ⊆ X ∞. But σ(C ) = X ∞. Hence for all
C ∈ C , we have ΛC = X ∞. Consequently, for all A ∈ X ∞ we have Pµ(C ∩ A) =
P′
µ(C ∩ A). Choose now an increasing sequence of cylinders (Cn)n∈N such that

Cn ↑X∞. Monotone continuity of Pµ yields then Pµ =P′
µ, proving unicity of Pµ.

To establish existence of Pµ verifying the projective condition, it suffices to
show that Pµ is a premeasure (see definition A.1.2) on the algebra C . For an
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Trajectory spaces

arbitrary C ∈ C , chose an integer N and a set F ∈ X N such that C = p−1
N (F ).

On defining κ(C ) = P
(N )
µ (F ), we note that κ is well defined on C and is a con-

tent. Further κ(X∞) = P(p−1
N (XN )) = P(N )

µ (XN ) = 1. To show that κ is a premea-
sure, it remains to show continuity at ; (see exercise A.1.8), i.e. for any sequence
of cylinders (Cn) such that Cn ↓ ;, we must have κ(Cn) ↓ 0, or, equivalently, if
infn κ(Cn) > 0, then ∩nCn 6= ;. Let (Cn) be a decreasing sequence of cylinders
such that infκ(Cn) > 0. Without loss of generality, we can represent these cylin-
ders for all n by Cn = F × (×k>nXk ) and F ∈ X n . For any x0 ∈ X0, consider the
sequence of functions

f (0)
n (x0) =

∫
X1

N1(x0,d x1)
∫
X2

N2(x0x1,d x2) . . .
∫
Xn

Nn(x0 · · ·xn−1,d xn)1F (x0 . . . xn).

Obviously, for all n, f (0)
n+1(x0) ≤ f (0)

n (x0) (why?). Monotone convergence yields
then: ∫

X0

inf
n

f (0)
n (x0)µ(d x0) = inf

n

∫
X0

f (0)
n (x0)µ(d x0) = inf

n
κ(Cn) > 0.

Consequently, there exists a x0 ∈X0 such that infn f (0)
n (x0) > 0. We can introduce

similarly a decreasing sequence of two variables

f (1)
n (x0, x1) =

∫
X2

N2(x0x1,d x2) . . .
∫
Xn

Nn(x0x1 · · ·xn−1,d xn)1F ((x0 . . . xn)

and show that∫
X1

inf
n

f (1)
n (x0, x1)N1(x0,d x1) = inf

n

∫
X1

f (1)
n (x0, x1)N1(x0,d x1) > 0.

There exists then a x1 ∈X1 such that infn f (1)
n (x0, x1) > 0. By recurrence, we show

then that there exists x = (x0, x1, . . .) ∈X∞ such that for all k we have infn f (k)
n (x0, . . . , xk ) >

0. Therefore, x ∈∩nCn implying that ∩nCn 6= ;. ä
Remark 3.2.9. There are several other possibilities of defining a probability on
the trajectory space out of a sequence of finite dimensional data, for instance by
fixing the sequence of conditional probabilities verifying the so called Dobrushin-
Lanford-Ruelle (DLR) compatibility conditions instead of Komogorov compati-
biltiy conditions for marginal probabilities (see [17] for instance). This construc-
tion naturally arises in Statistical Mechanics and is less rigid than the Kolmogorov
condition: the projective system may fail to converge, can have a unique limit or
have several convergent subsequences. Limiting probabilities are called Gibbs
measures of a DLR projective system. If there are several different Gibbs mea-
sures, the system is said undergoing a phase transition.

Definition 3.2.10. A (discrete-time) stochastic process is the sequence of prob-
abilities (P(n)

µ )n∈N appearing in Ionescu-Tulcea existence theorem.

Definition 3.2.11. Suppose that for every n, the kernel (Xn ,X n)
Nn+1 (Xn+1,X n+1)

is a Markovian kernel depending merely on xn (instead of the complete depen-

dence on (x0, . . . , xn)), i.e. for all n ∈N, there exists a Markovian kernel (Xn ,X n)
Pn+1 

(Xn+1,X n+1) such that Nn+1((x0, . . . , xn); An+1) = Pn+1(xn ; An+1) for all x0, . . . , xn ∈
Xn and all An+1 ∈Xn+1. Then the stochastic process is termed a Markov chain.
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3.2. Construction of the trajectory space

LetΩ=X∞, F =X ∞, and (Xn ,X n)
Pn+1 (Xn+1,X n+1) be a sequence of Marko-

vian kernels as in definition 3.2.11. Then theorem 3.2.8 guarantees, for every
probability µ ∈ M1(X0), the existence of a unique probability Pµ on (X∞,X ∞).
Let C = p−1

N (A0 × . . .× AN ), for some integer N > 0, be a cylinder set. Then,

Pµ(C ) = Pµ(A0 ×·· ·× AN ×XN+1 ×XN+2 ×·· · )
= Pµ(p−1

N (A0 ×·· ·× AN ))

= pN (Pµ)(A0 ×·· ·× AN )

= P(N )
µ (A0 ×·· ·× AN )

=
∫

A0×···×AN−1

P(N−1)
µ (d x0 ×·· ·×d xN−1)PN (xN−1; AN )

...

=
∫

A0×···×AN

µ(d x0)P1(x0,d x1) · · ·PN (xN−1,d xN ).

On defining X :Ω→X∞ by Xn(ω) =ωn for all n ∈N. we have on the other hand,

Pµ(C ) = P(N )
µ (A0 ×·· ·× AN )

= Pµ({ω ∈Ω : X0(ω) ∈ A0, . . . XN (ω) ∈ AN }).

The coordinate mappings Xn(ω) =ωn , for n ∈N, defined in the above framework
provide the canonical (minimal) realisation of the sequence X = (Xn)n∈N.

Remark 3.2.12. If µ = εx for some x ∈ X, we write simply Px or P(N )
x instead of

Pεx or P(N )
εx

. Note further that for every µ ∈M1(X0) we have Pµ =
∫
X0
µ(d x)Px .

Remark 3.2.13. Giving
— the sequence of measurable spaces (Xn ,Xn)n∈N,

— the sequence (Pn+1)n∈N of the Markovian kernels (Xn ,X n)
Pn+1 (Xn+1,X n+1),

and
— the initial probability µ ∈M1(X0),

uniquely determines
— the trajectory space (X∞,X ∞),
— a unique probability Pµ ∈ M1(X ∞), projective limit of the sequence of

finite dimensional marginals, and
— upon identifying (Ω,F ) = (X∞,X ∞), this construction also provides the

canonical realisation of the sequence X = (Xn)n∈N through the standard
coordinate mappings.

Under these conditions, we say that X is an (inhomogeneous) Markov chain,
and more precisely a MC((Xn ,Xn)n∈N, (Pn+1)n∈N,µ)). If for all n ∈ N, we have
Xn =X, Xn = X , and Pn = P , for some measurable space (X,X ) and Markovian

kernel (X,X )
P
 (X,X ), then we have a (homogeneous) Markov chain and more

precisely a MC((X,X ),P,µ).
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Trajectory spaces

3.3 Weak Markov property

Proposition 3.3.1 (Weak Markov property). Let X be a MC((X,X ),P,µ). For all
f ∈ bX and all n ∈N,

Eµ( f (Xn+1)|X n) = P f (Xn) a.s.

Proof: By the definition of conditional expectation, we must show that for all n ∈
N and F ∈X n , the measures α and β, defined by

α(F ) =
∫

F
f (Xn+1(ω))Pµ(dω)

β(F ) =
∫

F
P f (Xn(ω))Pµ(dω)

coincide on X n . Let

An ≡×n
k=0Xk = {A0 ×·· ·× An , Ak ∈Xk ,0 ≤ k ≤ n}.

Now, it is immediate that for all n, the family An is a π-system while σ(An) =Xn .
It is therefore enough to check equality of the two measures on An . On any F ∈
An , of the form F = A0 × . . .× An , with Ai ∈X ,

α(F ) =
∫
Pµ({ω : X0(ω) ∈ A0, . . . , Xn(ω) ∈ An , Xn+1(ω) ∈ d xn+1, Xn+2(ω) ∈X, . . .}) f (xn+1).

Hence

α(F ) =
∫
Pµ(p−1

n+1(A0, . . . , An ,d xn+1)) f (xn+1)

=
∫
Pn+1
µ (F ×d xn+1) f (xn+1).

Developing the right hand side of the above expression, we get

α(F ) =
∫

A0×···×An×X
µ(d x0)P (x0,d x1) · · ·P (xn ,d xn+1) f (xn+1)

= β(F ).

ä
Remark 3.3.2. The previous proof is an example of the use of some version of
“monotone class theorems”. An equivalent way to prove the weak Markov prop-
erty should be to use the following conditional equality for all f0, . . . , fn , f ∈ bX :

Eµ( f0(X0) . . . fn(Xn) f (Xn+1)) = Eµ( f0(X0) . . . fn(Xn)Eµ( f (Xn+1)|X n))

= Eµ( f0(X0) . . . fn(Xn)P f (Xn)).

Privileging measure formulation or integral formulation is purely a matter of taste.

/Users/dp/a/ens/markov-traje.tex
2015-10-15 • 21:25:00.

21



3.4. Strong Markov property

The following statement can be used as an alternative definition of the Markov
chain.

Definition 3.3.3. Let (Ω,F , (F )n∈N,P) be a filtered probability space, X = (Xn)n∈N
a sequence of (X,X )-valued random variables defined on the probability space

(Ω,F ,P) and (X,X )
P
 (X,X ) a Markovian kernel. We say that X is a MC((X,X ),P,µ)

if

1. (Xn) is adapted to the filtration (Fn),
2. Law(X0) =µ, and
3. for all f ∈ bX , the equality E( f (Xn+1)|Fn) = P f (Xn) holds almost surely.

We assume henceforth, unless stated differently, thatΩ=X∞, F =X ∞, Xn(ω) =
ωn while Fn ' X n . The last statement in the definition 3.3.3 implicitly implies
that the conditional probability P( f (Xn+1) ∈ A|Fn) admits a regular version.

Let X be a MC((X,X ),P,µ). Distinguish artificially the (identical) probability
spaces (Ω,F ,Pµ) and (X∞,X ∞,PX

µ ); equip further those spaces with filtrations
(Fn) and (X n) respectively. Assume that X : Ω → X∞ is the canonical repre-
sentation of X (i.e. X = 1). Let G ∈ mX ∞+ and Γ = G ◦ X : Ω→ R+ be a random
variable (note that Γ = G !). Define the right shift θ : Ω→ Ω for ω = (ω0,ω1, . . .)
by θ(ω) = (ω1,ω2, . . .) and powers of θ by θ0 = 1 and recursively for n > 0 by
θn = θ ◦θn−1.

Theorem 3.3.4. The weak Markov property is equivalent to the equality

Eµ(Γ◦θn |Fn) = EXn (Γ), on the set {Xn 6= ∂},

holding for all µ ∈M1(X ), all n ∈N, and all Γ ∈ mF+.

Remark 3.3.5. Define γ(y) = Ey (Γ) for all y ∈ X. The meaning of the right hand
side of the above equation is EXn (Γ) ≡ γ(Xn).

Exercise 3.3.6. Prove the theorem 3.3.4.

3.4 Strong Markov property

Definition 3.4.1. Let (Ω,F , (Fn)n) be a filtered space.
— A generalised random variable T :Ω→N∪ {+∞} is called a stopping time

(more precisely a (Fn)-stopping time) if for all n ∈ N we have {ω ∈ Ω :
T (ω) = n} ∈Fn .

— Let T be a stopping time. The collection of events

FT = {A ∈F : ∀n ∈N, {T = n}∩ A ∈Fn}

is the trace σ-algebra.

Definition 3.4.2. Let X be a MC((X,X ),P,µ) and A ∈X .
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— The hitting time of A is the stopping time τ1
A = inf{n > 0 : Xn ∈ A}.

— The passage time at A is the stopping time τ0
A = inf{n ≥ 0 : Xn ∈ A}.

— The death time of X is the stopping time ζ≡ τ0
{∂} = inf{n ≥ 0 : Xn = ∂}.

The symbols τ[A, for [ ∈ {0,1} and ζ are reserved.

Remark 3.4.3. Note the difference between τ0
A and τ1

A.

Remark 3.4.4. Suppose that the Markov chain starts with initial probability µ=
εx for some x ∈ X . If x ∈ A, then τ0

A = 0, while τ1
A may be arbitrary, even ∞. If

x 6∈ A, then τ0
A = τ1

A. If the transition probability of the chain is sub-Markovian,
the space is extended to include {∂} that can be visited with strictly positive prob-
ability. If the transition probability is already Markovian, we can always extend
the state spaceX to contain {∂}, the latter being a negligible event; the death time
is then ζ=∞ a.s.

Remark 3.4.5. Another quantity, defined for all F ∈X and [ ∈ {0,1} byT

η[(F ) = ∑
n≥[

1F (Xn),

bears often the name “occupation time” in the literature. We definitely prefer the
term occupation measure than occupation time because it is a (random) mea-
sure on X . The symbol η[(·) will be reserved in the sequel.

Exercise 3.4.6. Is the occupation measure a stopping time?

Let T be a stopping time. Then

XT (ω) =
{

Xn(ω) on {T = n}
∂ on {T =∞}

= ∑
n∈N

Xn1{T=n} +∂1{T=∞},

establishing the (FT ,X )-measurability of XT .

We already know that the right shift θ verifies Xn◦θm(ω) = Xn(θm(ω)) = Xn+m(ω) =
ωn+m . On defining

θT (ω) =
{
θn(ω) on {T = n}
ω∂ on {T =∞}

where ω∂ = (∂,∂, . . .), we see that θT ∈FT and

Xn+T (ω) = Xn ◦θT (ω)

= Xn(θT (ω))

=
{

Xn+m(ω) on {T = m}
∂ on {T =∞}

= ∑
m∈N

Xn+m1{T=m} +∂1{T=∞}

= Xn+T1{T <∞}+∂1{T=∞}.
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3.5. Examples-exercises

Theorem 3.4.7 (Strong Markov property). Let µ ∈M1(X ) be an arbitrary proba-
bility and Γ a bounded random variable defined on (Ω,F ,Pµ). For every stopping
time T we have:

Eµ(Γ◦θT |FT ) = EXT (Γ),

with the two members of the above equality vanishing on {XT = ∂}.

Proof: Define γ(y) = Ey (Γ) for y ∈ X. We must show that for all A ∈ FT , we have
on {XT 6= ∂}: ∫

A
Γ◦θT (ω)Pµ(dω) =

∫
A
γ(XT (ω))Pµ(dω).

Now,
A = [tn∈N(A∪ {T = n})]t [A∪ {T =∞}].

On {T =∞}, we have {XT = ∂}. Hence on {XT 6= ∂}, the above partition reduces to
A =tn∈N(A∪ {T = n}). Hence, the sought left hand side reads:

l.h.s. = ∑
n∈N

∫
A∩{T=n}

Γ◦θT (ω)Pµ(dω)

= ∑
n∈N

∫
A∩{T=n}

Γ◦θn(ω)Pµ(dω)

= ∑
n∈N

∫
A∩{T=n}

γ(Xn(ω))Pµ(dω),

the last equality being a consequence of the weak Markov property because A ∩
{T = n} ∈Fn . ä

3.5 Examples-exercises

1. Let Tn = σ(Xn , Xn+1, . . .) for all n ∈ N and recall that Fn = σ(X0, . . . , Xn).
Prove that for all A ∈ Fn and all B ∈ Tn , past and future become condi-
tionally independent of present, i.e.

Pµ(A∩B |σ(Xn)) =Pµ(A|σ(Xn))Pµ(B |σ(Xn)).

2. Let X = (Xn)n∈N be a sequence of independent (X,X )-valued random
variables identically distributed according to the law ν. Show that X is
MC((X,X ),P,µ) with P (x, A) = ν(A) for all x ∈X and all A ∈X .

3. Let (X,X ) be a measurable space, f ∈ bX , and x a point in X. Define a
sequence X = (Xn)n∈N by X0 = x and recursively Xn+1 = f (Xn) for n ∈ N;
the trajectory of point x under the dynamical system f . Show that X is a
MC((X,X ),P,µ) with µ = εx and P (y, A) = εy ( f −1(A)) for all y ∈ Y and all
A ∈X .

4. Consider again the heads and tails example presented in chapter 1. Show
that the sequence of outcomes is a MC((X,X ),P,µ) with X = {0,1} and P

the kernel defined by P (x, {y}) ≡ P (x, y) where P = (P (x, y))x,y∈X =
(
1−a a

b 1−b

)
,

with 0 ≤ a,b ≤ 1.
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5. Let X be a MC((X,X ),P,µ) on a discrete (finite or countable) set X.
— Show that the kernel P can be uniquely represented as a weighed di-

rected graph havingA0 =X as vertex set andA1 = {(x, y) ∈X2 : P (x, y) >
0} as set of directed edges; any edge (x, y) is assigned a weight P (x, y).

— For every edge a ∈ A1 define two mappings s, t : A1 → A0, the source
and terminal maps defined by

A1 3 a = (x, y) 7→ s(a) = x ∈A0,

A1 3 a = (x, y) 7→ t (a) = y ∈A0.

Let 2 A2 = {ab ∈ A1 ×A1 : s(b) = t (a)} be the set of composable edges
(paths of length 2). Letα=α1 · · ·αn be a sequence of n edges such that
for all i ,0 ≤ i < n, subsequent edges are composable, i.e. αiαi+1 ∈A2.
Such anα is termed combinatorial path of length n; the set of all paths
of length n is denoted by An . Finally, define the space of combinato-
rial paths of indefinite length by A∗ = ∪∞

n=0A
n . Show that A∗ has a

natural forest structure composed of rooted trees.
— Let α ∈A∗, denote by |α| the length of the skeleton α, and by v(α) the

sequence of vertices appearing in α. Show that the cylinder set [v(α)]
has probability

Pµ([v(α)]) = µ(s(α1))×P (s(α1), t (α1))

×·· ·×P (s(α|α|), t (α|α|)).

6. Let ξ= (ξn)n be a sequence of (Y,Y )-valued i.i.d. random variables, such
that Law(ξ0) = ν. Let X0 a (X,X )-valued random variable, independent of
ξ such that Law(X0) =µ, and f :X×Y→X be a bounded measurable func-
tion. Define for n ≥ 0 Xn+1 = f (Xn ,ξn+1). Show that X is a MC((X,X ),P,µ)
with Markovian kernel given by

P (x, A) = ν({y ∈Y : f (x, y) ∈ A}),

for all x ∈X and all A ∈X .
7. Let X be the Abelian group Zd ; Γ = {±e1, . . . ,±ed } a (minimal) generating

set (i.e. 〈Γ〉 = Zd ), and ν a probability on Γ. Let (ξi )i∈N be a sequence of
independent Γ-valued random variables identically distributed according
to ν. Define, for x ∈X and n ≥ 0, the sequence Xn = x +∑

i=0ξi . Show that
X is a Markov chain on Zd ; determine its Markovian kernel and initial
probability. (This Markov chain is termed a nearest-neighbour random
walk on Zd , anchored at x.)

8. Let X=R and X =B(Rd ), ν ∈M+(X ), and (ξi )i∈N be a sequence of inde-
pendent X-valued random variables identically distributed according to
ν. Define, for x ∈X and n ≥ 0, the sequence Xn = x +∑

i=0ξi . Show that X
is a Markov chain on Rd ; determine its Markovian kernel and initial prob-
ability. (This Markov chain is termed a random walk on Rd , anchored at
x.)

2. Note that A2 is not in general the Cartesian product A1 ×A1. The graph is not in general a
group; it has merely a semi-groupoid structure (A0,A1, s, t ).
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3.5. Examples-exercises

9. Let (ξi )i∈N be a sequence of independentR-valued random variables iden-
tically distributed according to ν. Define, for x ∈ R+ and n ≥ 0, the se-
quence X = (Xn), by X0 = x and recursively Xn+1 = (Xn + ξn+1)+. Show
that X is a Markov chain on an appropriate space, determine its Marko-
vian kernel and its initial probability.

10. Let (G,G ) be a topological locally compact group with composition de-
noted multiplicatively, ν ∈M+(G ), and (ξi )i∈N a sequence of independent
(G,G )-valued random variables identically distributed according to ν. De-
fine, for x ∈R+ and n ≥ 0, the sequence X = (Xn), by X0 = x and recursively
Xn+1 = ξn+1Xn . Show that X is a Markov chain on (G,G ); determine its
Markovian kernel and initial probability.

11. Let X = Rd , X = B(Rd ), ν ∈ M+(X ), and (ξi )i∈N a sequence of indepen-
dent (X,X )-valued random variables identically distributed according to
ν. Define Ξ0 = 0 and, for n ≥ 1, Ξn = ∑n

i=1ξi . Let x ∈ X and define X0 = 0
and, for n ≥ 1, Xn = x +∑n

i=1Ξi .
— Show that X is not a Markov chain.

— Let Yn =
(

Xn+1

Xn

)
, for n ∈ N. Show that Y is a Markov chain (on the

appropriate space that will be determined); determine its Markovian
kernel and initial probability.

— When Y defined as above is proved to be a Markov chain, the initial
process X is termed Markov chain of order 2. Give a plausible defini-
tion of a Markov chain of order k, for k ≥ 2.

12. Let Z = (Zn)n , with Zn = (Xn ,Yn) for n ∈N, be a CM((X×Y), (X ⊗Y )),P,µ).
Show that neither X = (Xn)n nor Y = (Yn)n are in general Markov chains.
They are termed hidden Markov chains. Justify this terminology.

13. We have defined in the exercise section 2.5 the potential kernel G0 asso-
ciated with any Markov kernel P . Consistently with our notation conven-
tion, we define G ≡G1 =∑∞

n=1 P n . Show that for all x ∈X and all F ∈X ,

G(x,F ) = Ex(η1(F )).

14. We define for [ ∈ {0,1}

L[F (x) = Px(τ[F <∞)

H [
F (x) = Px(η[(F ) =∞).

— How H 0
F compares with H 1

F ?
— Does the same comparison hold for L0

F and L1
F ?

— Are the quantities H [ and L[ kernels? If yes, are they associatively com-
posable?

— Show that L[F (x) =Px(∪n≥[{Xn ∈ F }).
— Show that H 0

F (x) =Px(∩m≥0 ∪n≥m {Xn ∈ F }).
15. Let X be a MC((X,X ),P,µ).

— Suppose that f ∈ bX+ is a right eigenvector of P associated with the
eigenvalue 1. Such a function is called bounded harmonic function
for the kernel P . Show that the sequence ( f (Xn))n∈N is a (Fn)n∈N-
martingale.
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— Any f ∈ mX+ verifying point-wise P f ≤ f is called superharmonic.
Show that the sequence ( f (Xn))n∈N is a (Fn)n∈N-supermartingale.
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4
Markov chains on finite sets

Although the study of Markov chains on finite sets is totally elementary and
can be reduced to the study of powers of finite-dimensional stochastic matrices,
it is instructive to give the convergence theorem 4.3.17 thus obtained as a result
of the spectral theorem — a purely algebraic result in finite dimension — of the
Markovian kernel. This chapter greatly relies on [23]. Spectral methods can as a
matter of fact be applied to more general contexts at the expense of more a so-
phisticated approach to spectral properties of the kernel. In the case the Markov
kernel is a compact operator on a general state space, the formulation of the con-
vergence theorem 4.3.17 remains valid almost verbatim. Another important rea-
son for studying Markov chains on finite state spaces is their usefulness to the
theory of stochastic simulations.

4.1 Basic construction

LetX be a discrete finite set of cardinality d ; without loss of generality, we can
always identify X = {0, . . . ,d − 1}. The set X will always be considered equipped
with X =P (X). A Markovian kernel P = (P (x, y))x,y∈X onXwill be a d ×d matrix
of positive elements — where we denote P (x, y) ≡ P (x, {y}) — that verifies, for all
x ∈ X,

∑
y∈XP (x, y) = 1. Choosing εx , with some x ∈ X, as starting measure, the

theorem 3.2.8 guarantees that there is a unique probability measure Px on the
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4.2. Some standard results from linear algebra

standard trajectory space (Ω,F ) verifying

Px(p−1
n (A0 ×·· ·× An)) = Px(X0 ∈ A0 . . . Xn ∈ An)

= ∑
x0∈A0

...
xn∈An

P (x0, x1) · · ·P (xn−1, xn).

In particular

Px(Xn = y) = P n(x, y)

Pµ(Xn = y) = ∑
x∈X

µ(x)P n(x, y).

As was the case in chapter 1, the asymptotic behaviour of the chain is totally
determined by the spectral properties of the matrix P . However, we must now
consider the general situation, not only the case of simple eigenvalues.

4.2 Some standard results from linear algebra

This section includes some elementary results from linear algebra as they can
be found in [45, 47]. Denote byMd (C) the set of d×d matrix with complex entries.
With every matrix A ∈Md (C) and λ ∈C associate the spaces

Dλ(A) = {v ∈Cd : Av =λv}

= ker(A−λId )

Dλ(A) = {v ∈Cd : (A−λId )k v = 0, for some k ∈N}

= ∪k∈Nker(A−λId )k ,

termed respectively right and generalised right eigenspace associated with the
value λ. Obviously Dλ(A) ⊆ Dλ(A) and if Dλ(A) 6= {0} then λ is an eigenvalue of
A.

Proposition 4.2.1. For any A ∈Md (C), the following statements are equivalent:

1. λ is an eigenvalue of A,

2. Dλ(A) 6= {0},

3. Dλ(A) 6= {0},

4. rank(A−λId ) < d

5. χA(λ) ≡ det(A−λId ) = b(λ1−λ)a1 · · · (λs−λ)as = 0 for some integer s, 0 < s ≤
d and some positive integers a1, . . . , as , called the algebraic multiplicities
of the eigenvalues λ1, . . . ,λs .

Proof: Equivalence of 1 and 2 is just the definition of the eigenvalue. The im-
plication 2 ⇒ 3 is trivial since Dλ(A) ⊆ Dλ(A). To prove equivalence, suppose
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Markov chains on finite sets

conversely that a vector v 6= 0 lies in Dλ(A); let k ≥ 1 be the smallest integer such
that (A −λId )k v = 0. Then the vector w = (D −λId )v is a non-zero element of
Dλ(A). To prove the equivalence of 4 and 5, note that by the equivalence of 1 and
2, λ is an eigenvalue if and only if ker(A −λId ) contains a non-zero element, i.e.
A −λId is not injective which happens if and only if it is not invertible. The last
statement is then equivalent to 4 and 5. ä

We call spectrum of A the set spec(A) = {λ1, . . . ,λs} = {λ ∈C : A−λId is not invertible}.
Forλ ∈ spec(A), we call geometric multiplicity ofλ the dimension gλ = dimDλ(A).

Proposition 4.2.2. Let A ∈Md (C).

1. There exists a unique polynomial mA ∈ C[x], of minimal degree and lead-
ing numerical coefficient equal to 1 such that mA(A) = 0. This polynomial
is termed minimal polynomial of A.

2. mA divides any polynomial p ∈ C[x] such that p(A) = 0. In particular, it
divides the characteristic polynomial χA.

3. The polynomials χA and mA have the same roots (possibly with different
multiplicities).

4. If λ is a r -uple root of mA then Dλ(A) = ker(A −λId )r . In that case, cλ = r
is the generalised multiplicity of λ, while the algebraic multiplicity is ex-
pressed as aλ = dimDλ(A) = dimker(A −λId )cλ and the minimal polyno-
mial reads mA(λ) = (λ1 −λ)cλ1 · · · (λs −λ)cλs .

Proof: To prove 1 and 2, note that there exists a polynomial p ∈ C[x] such that
p(A) = 0 (for instance consider the characteristic polynomial). Hence there exists
also a polynomial of minimal degree m. Now, if p(A) = 0 perform division of p
by m to write p = qm+r , where r is either the zero polynomial or has degree less
than the degree of m. Now r (A) = p(A)−q(A)m(A) = 0−q(A)0 = 0 and since m
was chosen of minimal degree, then r = 0. Thus every polynomial vanisihing on
A is divisible by m. In particular if m and m′ are both minimal polynomials, they
can differ only by a scalar factor. Fixing the leading coefficient of m to 1, uniquely
determines m ≡ mA.

To prove 3 note that ifλ is a root ofχA, i.e. is an eigenvalue of A, then there is a
non-zero vector v with Av =λv . Hence 0 = mA(A)v = m(λ)v , implying m(λ) = 0.
Conversely, every root of mA is a root of χA because mA divides the characteristic
polynomial.

To conclude, suppose that there is a vector v ∈ Dλ(A) such that w = (A −
λId )r v 6= 0. Write mA(x) = q(x)(x−λ)r . Then q and (x−λ)n−r are coprime; hence
there are polynomials f and g with f (x)q(x)+ g (x)(x −λ)n−r = 1. Consequently,

w = f (A)q(A)w + g (A)(A−λId )n−r w

= f (A)m(A)v + g (A)(A−λId )n v

= f (A)0+ g (A)0

= 0,
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which is a contradiction. ä

Another possible characterisation of cλ is cλ = min{n ∈ N : ker(A −λId )n =
ker(A−λId )n+1}. Moreover, the vector space Cd decomposes into the direct sum
(see [48, 9.21(d), p. 184] for instance):

Cd =⊕λ∈spec(A)D
λ(A) =⊕λ∈spec(A) ker(A−λId )cλ .

Definition 4.2.3. Let A ∈Md (C) and λ ∈ spec(A).
— If cλ = 1 (i.e. Dλ = Dλ) then the eigenvalue λ is called semisimple.
— If aλ = 1 = dimDλ then the eigenvalue λ is called simple.

Example 4.2.4. — Let A =
(
0 1
0 0

)
. Then spec(A) = {0} and a0 = c0 = 2 while

g0 = 1.

— Let B =

b
. . .

b

 ∈Md (C). Then spec(B) = {b} and ab = d ,cb = 1 while

gb = d .

— Let C =


b 1

. . . . . .
. . . 1

b

 ∈ Md (C). Then spec(C ) = {b} and ab = cb = d

while gb = 1.

Denote by Eλ the spectral projector on Dλ. Since the space admits the direct
sum decomposition Cd =⊕λ∈spec(A)D

λ it follows that spectral projections form a
resolution of the identity Id =∑

λ∈spec(A) Eλ.

Theorem 4.2.5. Let A ∈Md (C) and U an open set inC (not necessarily connected),
containing spec(A). Denote by Cω(A) the set of analytic functions on U (i.e. indefi-
nitely differentiable functions developable in Taylor series around any point of U )
and let f ∈Cω

A . Then,

f (A) = ∑
λ∈spec(A)

cλ−1∑
i=0

(A−λId )i

i !
f (i )(λ)Eλ.

Proof: See [13, pp. 555–559]. ä
Exercise 4.2.6. Choose any circuit B in U not passing through any point of the
spectrum. Use analyticity of f , extended to matrices, to write by virtue of the
residue theorem:

f (A) = 1

2πi

∮
B

f (λ)(λId − A)−1dλ.

The operator RA(λ) = (λId − A)−1, defined for λ in an open domain of C, is called
resolvent of A.
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Remark: Suppose that all the eigenvalues of a matrix A are semisimple (cλ = 1 for
allλ ∈ spec(A)), then f (A) =∑

λ∈spec(A) f (λ)Eλ. In particular, Ak =∑
λ∈spec(A)λ

k Eλ.

Lemma 4.2.7. Suppose ( fn)n∈N is a sequence of analytic functions in Cω(A). The
sequence of matrices ( fn(A))n∈N converges if and only if, for all λ ∈ spec(A) and
all integers k with 0 ≤ k ≤ cλ−1, the numerical sequences ( f (k)

n (λ))n∈N converge.
If f ∈ Cω(A), then limn→∞ fn(A) = f (A) if and only if, for all λ ∈ spec(A) and all
integers k with 0 ≤ k ≤ cλ−1, we have limn→∞ f (k)

n (λ) = f (k)(λ).

Proof: See [13, pp. 559–560]. ä
Proposition 4.2.8. Let A ∈Md (C). The sequence of matrices ( 1

n

∑n
p=1 Ap )n∈N cov-

erges if and only if limn→∞ An

n = 0.

Proof: Define for all n ≥ 1 and z ∈ C, fn(z) = 1
n

∑n
p=1 zp and gn(z) = zn

n . We ob-
serve that the sequence ( fn(λ))n∈N converges if and only if |λ| ≤ 1, the latter being
equivalent to limn→∞ gn(λ) = 0. For k > 0, the sequence ( f (k)

n (λ))n∈N converges if
and only if |λ| < 1, the latter being equivalent to limn→∞ g (k)

n (λ) = 0. We conclude
by theorem 4.2.5 and lemma 4.2.7. ä
Definition 4.2.9. Let A ∈Md (C). We call spectral radius of A, the quantity de-
noted by sr(A) and defined by

sr(A) = max{|λ| :λ ∈ spec(A)}.

Corollary 4.2.10. For all A ∈Md (C), limn→∞ An

n = 0 if and only if the two follow-
ing conditions are fulfilled:

— sr(A) ≤ 1, and
— all peripheral eigenvalues of A, i.e. all λ ∈ spec(A) with |λ| = 1, are semi-

simple.

4.3 Positive matrices

Definition 4.3.1. Let x ∈ Rd and A ∈Md (R). The vector x is called positive, and
denoted x ≥ 0, if for all i = 1, . . . ,d , xi ≥ 0. It is called strictly positive if for all
i = 1, . . . ,d , xi > 0. The matrix A is called positive (resp. strictly positive) if viewed
as a vector of Rd 2

is positive (resp. strictly positive). For arbitrary x ∈ Rd and
A ∈Md (R), we denote by |x| and |A| the vector and matrix whose elements are
given by |x|i = |xi | and |A|i j = |Ai j |.

Remark: The above positivity of elements must not be confused with positivity of

quadratic forms associated with symmetric matrices. For example A =
(
0 1
1 0

)
≥ 0

(in the sense of the definition 4.3.1) but there exist x ∈R2 such that (x, Ax) 6≥ 0.
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Proposition 4.3.2.

A ≥ 0 ⇔ [x ≥ 0 ⇒ Ax ≥ 0]

A > 0 ⇔ [x ≥ 0 and x 6= 0 ⇒ Ax ≥ 0].

Exercise 4.3.3. Prove the previous proposition.

Definition 4.3.4. A matrix A is reducible if there exists a permutation 1 matrix S

such that S AS−1 =
(
B C
0 D

)
. Otherwise, A is called irreducible.

Proposition 4.3.5. For a positive matrix A ∈Md (R), the following statements are
equivalent:

— A is irreducible,
— (Id + A)d−1 > 0, and
— for all pairs of integers (i , j ) with 1 ≤ i , j ≤ d, there exists an integer k =

k(i , j ) such that (Ak )i j > 0.

Exercise 4.3.6. Prove the previous proposition.

Theorem 4.3.7 (Brower’s fixed point theorem). Let C ⊆Rd be a non-empty, closed,
bounded,and convex set, and let f : C →C be continuous. Then, there exists a x ∈C
such that f (x) = x.

Proof: See [5, p. 176] for instance. ä
Theorem 4.3.8 (Weak Perron-Frobenius theorem). Let A ∈Md (R) be a positive
matrix. Then sr(A) is an eigenvalue of A associated with a positive eigenvector v.

Proof: Let λ be an eigenvalue of maximal modulus, i.e. with |λ| = sr(A). We can
always normalise the eigenvector v of λ so that ‖v‖1 = 1. Then,

sr(A)|v | = |λv | = |Av | ≤ A|v |.

If

C = {x ∈Rd : x ≥ 0,
d∑

i=1
xi = 1, Ax ≥ sr(A)x},

then C is closed, convex, non-empty (since it contains |v |), and bounded (since
0 ≤ x j ≤ 1 for all i = 1, . . . ,d). We distinguish two cases:

1. There exists a x ∈C such that Ax = 0. Then sr(A)x ≤ Ax = 0; consequently
sr(A) = 0 and the theorem is proved.

2. For all x ∈ C , Ax 6= 0. Define then f : C → Rd by f (x) = 1
‖Ax‖1

Ax. We ob-
serve that
— For all x ∈C , f (x) ≥ 0, ‖ f (x)‖1 = 1 and f continuous.
— A f (x) = 1

‖Ax‖1
A Ax ≥ sr(A)

‖Ax‖1
Ax = sr(A) f (x). Therefore f (C ) ⊆C .

— The theorem 4.3.7 ensures that there exists y ∈C : f (y) = y .

1. If we apply the same permutation on the indices of columns and rows.
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— y ≥ 0 (since y ∈ C ) and f (y) = y , therefore, y is an eigenvector associ-
ated with the eigenvalue r = ‖Ay‖1.

— Hence Ay = r y ≥ sr(A)y , the last inequality holding since y ∈C . There-
fore r ≥ sr(A).

— Hence r = sr(A).

ä

For r ≥ 0 denote by

Cr = {x ∈Rd : x ≥ 0,‖x‖1 = 1, Ax ≥ r x}.

Obviously every Cr is a convex and compact set.

Lemma 4.3.9. Let A ∈Md (R) be a positive irreducible matrix; let r ≥ 0 and x ∈Rd ,
with x ≥ 0, be such that Ax ≥ r x and Ax 6= r x. Then there exists r ′ > r such that
Cr ′ 6= ;.

Proof: Let y = (Id + A)d−1x. Since the matrix A is irreducible and x ≥ 0, thanks
to the proposition 4.3.5, we get y > 0. For the same reason, Ay − r y = (Id +
A)d−1(Ax − r x) > 0. On defining r ′ = min j

(Ay) j

y j
we get r ′ > r . But then Ay ≥ r ′y

so that Cr ′ contains the vector y/‖y‖1. ä

Lemma 4.3.10. Let A ∈ Md (R) be a positive irreducible matrix. If x ∈ R is an
eigenvector of A and x ≥ 0 then x > 0.

Proof: Given such a vector x with Ax =λx, we have thatλ≥ 0. Then x = 1
(1+λ)n−1 (Id+

A)d−1x > 0, thanks to the proposition 4.3.5. ä

Lemma 4.3.11. Let A,B ∈ Md (R) be matrices, with A irreducible and |B | ≤ A.
Then sr(B) ≤ sr(A). In the case of equality of the spectral radii, we have further:

— |B | = A, and
— for every eigenvector x of B associated with an eigenvalue of modulus sr(A),

the vector |x| is an eigenvector of A associated with sr(A).

Proof: If λ is an eigenvalue of B of modulus sr(B) and x is the corresponding
normalised eigenvector, then sr(B)|x| ≤ |B ||x| ≤ A|x|, so that Csr(B) 6= ;. Hence,
sr(B) ≤ R = sr(A).

In case of equality honding, then |x| ∈Csr(A) and |x| is an eigenvector: A|x| =
sr(A)|x| = sr(B)|x| ≤ |B ||x| Hence, (A − |B |)[x[≤ 0, but since |x| > 0, from lemma
4.3.10, and A−|B | ≥ 0, the equality |B | = A follows. ä

Theorem 4.3.12 (Strong Perron-Frobenius theorem). Let A ∈Md (R) be a positive
irreducible matrix. Then sr(A) is a simple eigenvalue of A associated with a strictly
positive eigenvector v. Moreover sr(A) > 0.
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Proof: If λ is an eigenvalue associated with an eigenvectors v of unit norm, then
|v | is a vector of C|λ|; in particular, the set Csr(A) is non-empty. Conversely, if Cr is
non-empty, then for v ∈Cr :

r = r‖v‖1 ≤ ‖Av‖1 ≤ ‖A‖1‖v‖1 = ‖A‖1,

and therefore r ≤ ‖A‖1. Further, the map r 7→ Cr is non-increasing with respect
to inclusions and is “left continuous”, in the sense Cr = ∩s<r Cs . Define then
R = sup{r : Cr 6= ;}; subsequently, R ∈ [sr(A),‖A‖1]. Decreasing with respect to
inclusions implies that r < R ⇒Cr 6= ;.

If x > 0 of norm 1, then Ax ≥ 0 and Ax 6= 0 since A ≥ 0 and irreducible. From
lemma 4.3.9 follows that R > 0; consequently, the set CR being the intersection
of a totally ordered family of non-empty compact sets is non-empty. For x ∈CR ,
the lemma 4.3.9 guarantees then that x is an eigenvector of A associated with the
eigenvalue R. Observing that R ≥ sr(A) implies then that R = sr(A), showing that
sr(A) is the eigenvalue associated with the eigenvector x, and sr(A) > 0. Lemma
4.3.10 guarantees then that x > 0.

It remains to show simplicity of the eigenvalue sr(A). The characteristic poly-
nomial χA(λ) is seen as the composition of a d-linear form (the determinant)
with polynomial vector valued functions (the columns of λId − A). Now, if φ is
a p-linear form and if V1(λ), . . . ,Vp (λ) are p polynomial vector-valued functions,
then the polynomial p(λ) =φ(V1(λ), . . . ,Vp (λ)) has derivative:

p ′(λ) =φ(V ′
1(λ), . . . ,Vp (λ))+ . . .+φ(V1(λ), . . . ,V ′

p (λ)).

Denoting (e1, . . . ,ed ) the canonical basis of Rd and writing A in terms of its col-
umn vectors A = [a1, . . . , ad ], one obtains:

χ′A(λ) = det([e1, a2, . . . , ad ])+det([a1,e2, . . . , ad ])+ . . .+det([a1, a2, . . . ,ed ])

=
d∑

j=1
χA j (λ),

where A j ∈Md−1(R) is the matrix obtained from A be deleting the j -th comumn
and row. (This formula is obtained by developing the determinants with respect
the j -th column.)

Denote by B j ∈Md (R) the matrix obtained from A by replacing the j -th row
and column by zeroes. This matrix is block-diagonal with two non-zero blocks
and a block 0 ∈ M1(R). The two non-zero blocks can be put together by per-
mutation of rows and columns to reconstruct A j . Hence the eigenvalues of B j

are those of A j and 0; therefore sr(B j ) = sr(A j ). Further |B j | ≥ A but |B j | 6= A
because A is irreducible while B j is block-diagonal, hence reducible. It follows
by lemma 4.3.11 that sr(B j ) < sr(A). Hence χA j (sr(A)) 6= 0 with the same sign as
limt→∞χA j (t ) > 0. Therefore, χ′A(sr(A)) > 0 showing that sr(A) is a simple root. ä

Let A ∈Md (R) be a positive irreducible matrix. Denote by λ1, · · ·λs the eigen-
values of modulus sr(A). If s = 1, the matrix is called primitive, else cyclic of order
s.
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Exercise 4.3.13. Show that A > 0 implies that A is primitive.

Exercise 4.3.14. (Characterisation of the peripheral spectrum) A ∈Md (R) be a
positive matrix. If p = ]{λ ∈ spec(A) : |λ| = sr(A)}, then {λ ∈ spec(A) : |λ| = sr(A)} =
sr(A)Up , where Up is the group of pth roots of unity. Hint: Associate the periph-
eral spectrum of A with its periodicity properties.

The spectrum of any matrix A decomposes into three disjoint components:

spec(A) =Σ�tΣ¯tΣ<,

where Σ� = {sr(A)} is the maximal eigenvalue spectrum, Σ¯ = {λ ∈ spec(A) : |λ| =
sr(A)} \ {sr(A)} is the peripheral spectrum and Σ< = {λ ∈ spec(A) : |λ| < sr(A)} is
the contracting spectrum. With the exception of Σ� the other parts of the spec-
trum can be empty.

Lemma 4.3.15. If P is a stochastic matrix, then sr(P ) = 1.

Exercise 4.3.16. Prove the previous lemma.

Theorem 4.3.17 (Convergence theorem for Markov chains). Let P be a stochastic
matrix and E1 the spectral projector to the eigenspace associated with the eigen-
value 1.

1. There exists a positive real constant K1 such that for all n ≥ 1,

‖ 1

n

n−1∑
k=0

P k −E1‖ ≤ K1

n

and, for every µ ∈M1(X ) (thought as a row vector),

‖ 1

n

n−1∑
k=0

µP k −µE1‖ ≤ K1

n
.

2. If Σ¯ =;, then there exist constants K2 <∞ and 0 < r < 1 such that for all
n ∈N,

‖P n −E1‖ ≤ K2r n .

3. If the eigenvalue 1 is simple, then E1 defines a unique invariant probability
π (i.e. verifying πP =π) by E1 f =π( f )1 for all f ∈ bX .

Proof: We only give the main idea of the proof, technical details are tedious but
without any particular difficulty.

Since P is stochastic, by lemma 4.3.15 we have that sr(P ) = 1. Now ‖P‖∞ =
maxx∈X

∑
y∈XPx y = 1 and ‖P n‖∞ = 1, for all n. Hence limn→∞ P n

n = 0. Therefore,
by corollary 4.2.10 the peripheral values are semi-simple.
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Let us prove first assertion 2. Since Σ¯ = ;, it follows that r ′ = max{|λ| : λ ∈
spec(A),λ 6= 1} < 1. For every r in the spectral gap, i.e. r ′ < r < 1, we have from
theorem 4.2.5, that

‖ ∑
λ∈Σ<

cλ−1∑
i=0

(P −λId )i

i !

d i

dλi
(λn)Eλ‖ ≤ K1r n .

Hence ‖P n −E1‖∞ ≤ K1r n .

Prove now assertion 1. For all λ ∈ Σ¯ there exists a θ = θ(λ) ∈]0,π[ such that
λ = exp(iθ). Then ε = min{|θ(λ)| : λ ∈ Σ¯} > 0. Therefore, |∑n−1

k=0λ
k | ≤ 1

sin(ε/2) .
Consequently,

‖ 1

n

n−1∑
k=0

P k −E1‖∞ ≤ 1

n sin(ε/2)

∑
λ∈Σ<

‖Eλ‖∞+ K ′
1

n

n−1∑
k=0

r k .

To prove 3, just remark that E1 is a projector onto an one-dimensional space,
hence it is a stable matrix (i.e. all its rows are equal) its row summing up to 1. ä

4.4 Some complements on spectral properties

The previous results establish that the spectrum of the stochastic matrix is
contained in the unit disk of C, the value 1 always being an eigenvalue. On the
other hand, finer knowledge of the spectral values can be used to improve the
speed of convergence that has been established in theorem 4.3.17. Besides, the
study of the locus of the spectral values of an arbitrary stochastic matrix con-
stitutes an interesting mathematical problem first posed by Kolmogorov. As an
experimental fact stemming from numerical simulations, we know that the spec-
tral values of stochastic matrices concentrate on a set strictly contained in the
unit disk. It is therefore important to have better estimates of the localisation of
the spectrum of the stochastic matrix within the unit disk.

4.4.1 Spectral constraints stemming from algebraic properties
of the stochastic matrix

The next results [44] improve the localisation properties of the eigenvalues.

Proposition 4.4.1 (Gershgorin disks). Let A ∈Md (R+) and define ax =∑
y∈X:y 6=x Ax y

for x ∈ X. Then, each eigenvalue of A is contained in at least one of the circular
disks

Dx = {ζ ∈C : |ζ− Axx | ≤ ax}, x ∈X.
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Proof: Let λ ∈ spec(A). Then λv = Av for some vector v 6= 0 with ‖v‖∞ = 1. Let
x ∈ X be such that |vx | = 1. Since |vy | ≤ 1 for all y ∈ X, it follows that |λ− Axx | =
|(λ− Axx)vx | = |∑y :y 6=x Ax y vy | ≤∑

y :y 6=x Ax y |vy | ≤ ax . ä

In the sequel we denote by SMd the set of d ×d stochastic matrices.

Corollary 4.4.2. If P ∈ SMd , then each eigenvalue of P is contained in at least one
of circular disks

Di = {ζ ∈C : |ζ− Axx | ≤ 1− Axx} x ∈X.

Proposition 4.4.3. Suppose the matrix A ∈Md (R+) has spectral radius sr(A) = r ;
assume further that the eigenvalue r corresponds to the left eigenvector u (it will
have necessarily strictly positive components: ux > 0, for all x ∈X). Denote by e the
vector with unit components, S = {w ∈ Rd+ : 〈u |w 〉 = 1}, T = {v ∈ Rd+ : 〈v |e 〉 = 1},
and H = S ×T . Let

m = inf
(w,v)∈H

〈v | Aw 〉 and M = sup
(w,v)∈H

〈v | Aw 〉.

Then, each eigenvalue λ 6= r satisfies

|λ| ≤ min(M − r,r −m).

If further m > 0 (which occurs if and only if the matrix A has all its elements strictly
positive) then the previous bound implies

|λ| ≤ M −m

M +m
r.

Proof: Define the matrices B = A −me ⊗ut and C = Me ⊗ut − A. They are both
positive since

〈v |B w 〉 = 〈v | Aw 〉−m〈v |e ⊗ut w 〉 = 〈v | Aw 〉−m〈v |e 〉〈u |w 〉 ≥ 0,

and similarly for C . Let λ 6= r be an eigenvalue of A and z the corresponding right
eigenvector, therefore 〈u |w 〉 = 0. Now

B z = Az −me ⊗ut w = Aw −m〈u |w 〉e = Aw =λw,

and similarly C w =−λw . Hence, w is also an eigenvector of B and C correspond-
ing respectively to the eigenvalues λ and −λ. On the other hand

ut B = ut A−mut e ⊗ut = r ut −m〈u |e 〉ut = (r −m)ut ,

and similarly utC = (M − r )ut . Since the eigenvector u has all its components
strictly positive, it follows that r − m = sr(B) and M − r = sr(C ). Hence |λ| ≤
min(M − r,r −m). Now, if m > 0, two cases can occur:

— Either M − r ≥ r −m, implying M +m ≥ 2r and

|λ| ≤ r −m = 2r −m −M

2
+ M −m

2
.

Hence |λ| ≤ (M−m)/2
1+M+m−2r

2|λ|
and, since |λ| < r , finally

|λ| ≤ (M −m)/2

1+ M+m−2r
2r

= r
M −m

M +m
.
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— Or M − r < r −m hence M +m < 2r , implying that

|λ| ≤ M − r < M − r

2
+ r −m

2
= M −m

2
= M −m

2r
r < M −m

M +m
r.

ä

Note finally, the trivial observation that the spectrum of a stochastic matrix is
symmetric around the real axis since the characteristic polynomial has only real
coefficients.

4.4.2 Spectral constraints stemming from convexity properties
of the stochastic matrix

Let us first recall some standard results concerning convex sets (see [1, 12] for
instance).

Definition 4.4.4. Let A ⊆V be an arbitrary subset of a vector space V. The con-
vex hull of A, denoted by coA, is the smallest convex set containing A, i.e. the
intersection of all convex sets covering A.

Exercise 4.4.5. Let V be a vector space. For any finite subset F ⊂V, denote by

OS(F ) = {v ∈V : ∃(λx)x∈F ,λx > 0,
∑
x∈F

λx = 1, s.t. v = ∑
x∈F

λx x}

the open simplex spanned by F . Show that for any subset A ∈V,

co(A) =∪F⊂A;F finiteOS(F ).

Theorem 4.4.6 (Carathéodory’s convexity theorem). In an n-dimensional affine
linear space, every vector in the convex hull of a nonempty set A can be written as
a convex combination using no more than n +1 vectors from A.

Exercise 4.4.7. Prove theorem 4.4.6. Hint: assume on the contrary that k > n +1
vectors are needed to express vectors in the convex hull and arrive in a contra-
diction.

Example 4.4.8. Let PVd = {p ∈ Rd+ :
∑d

i=1 pi = 1}; obviously any element of PVd

defines a probability measure on a finite set of cardinality d . The set PVd is con-
vex and although is defined as a subset ofRd+, the condition

∑d
i=1 pi = 1 constrains

this set to be a subset of an affine linear space of dimension d −1; therefore its
dimension is d −1. The set of the d canonical unit vectors extr(PVd ) = {e1, . . . ,ed }
of Rd contains (the sole) elements of PVd that cannot be written as a non-trivial
convex combinations of others; they are the extremal elements of PVd . All other
elements of PVd can be written as convex combinations p =∑d

i=1 pi ei , therefore
PVd = co(extr(PVd )). The latter means that the convex set PVd is in fact a sim-
plex, i.e. coincides with the convex hull of its extremal points.
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LetX be a finite set with cardX = d ; denote by SMd = {P ∈Md (R) :
∑

y∈XPx y =
1,∀x ∈ X} the set of stochastic matrices. The stochastic matrices of DMd = {P ∈
Md ({0,1}) :

∑
y∈XPx y = 1,∀x ∈X} ⊆ SMd are called deterministic transition ma-

trices. The reason for this terminology is obvious: deterministic transition matri-
ces have precisely one 1 in every row, i.e. for every D ∈DMd and every x ∈X, there
exists exactly one yD,x ∈X such that Dx y = δy,yD,x . Therefore, there exists a bijec-
tion between DM and the set of functions {β : X→ X}, established by choosing
for every D the map βD (x) = yD,x .

Proposition 4.4.9. The set SMd is convex. Its extremal points are the deterministic
matrices extr(SMd ) =DMd . The set SMd is not a simplex.

Proof: Since SMd = PVd
d , convexity of SMd follows from the convexity of every

one of its rows. Moreover dimSMd = d(d −1).

To prove extremality of deterministic matrices, suppose on the contrary that
for every D ∈DMd there exist P,Q ∈ SMd and λ ∈]0,1[ such that D =λP+(1−λ)Q.
Since D is deterministic,

1 = λPx,βD (x) + (1−λ)Qx,βD (x),∀x ∈X
0 = λPx y + (1−λ)Qx y ∀x ∈X,∀y ∈X\ {βD (x)}.

Since Px y ,Qx y ∈ [0,1] for all x, y and λ, (1−λ) ∈]0,1[, the above equations have a
solution if and only if P =Q = D .

Finally since cardDMd = d d > d(d −1)+1, it follows that SMd 6= co(DMd ). ä

A stochastic matrix is called bi-stochastic if both all its row- and column-
sums equal 1; the set of d ×d bistochastic matrices is denoted by BMd .

It is worth noting that the map βD is bijective if and only if D is a permutation
matrix, i.e. has exactly one 1 in every row and every column. Therefore permu-
tation matrices are deterministic bi-stochastic transition matrices. It is easy to
show that the spectrum of deterministic transition matrices is contained in the
set {0}∪ {ζ ∈ C : |ζ| = 1}. (Hint: As a matter of fact, if D is a permutation matrix
and the permutation has a cycle of lenght l , then the l roots of unity are in its
spectrum. If D is a general deterministic transition matrix, the space Cd can be
decomposed into a direct sum F ⊕F ′ so that D�F is a permutation, while D�F ′ is
non-invertible.)

The extemal points of the set SMd admit also a purely algebraic description.
To describe it, we need a definition.

Definition 4.4.10. A linear map A : Cd → Cd is called a lattice homomorphism
if |Av | = A|v | for all v ∈ Cd , where |v | = (|vi |)i=1,...,d . It is called a lattice isomor-
phism if A−1 exists and both A and A−1 are lattice homomorphisms.

Proposition 4.4.11. A stochastic matrix P ∈ SMd is a lattice homomorphism if
and only if P ∈ extr(SMd ) =DMd .
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4.4. Some complements on spectral properties

Proof: Exercise. ä

Let Zk = {exp( i lπ
k ), l = 0, . . . ,k − 1} denote the k-th roots of unity, for k ∈ N∗.

A first estimate of the spectrum of an arbitrary stochastic matrix is given by the
following

Proposition 4.4.12. For every P ∈ SMd , its spectrum verifies spec(P ) ⊆ co(∪d
k=2Zk ).

Remark: Although the above result is not optimal, its proof is quite tricky in gen-
eral. We give it below only in the simpler case where P is bistochastic since then
the extremal points are the permutation matrices.

Partial proof: Every permutation matrix D is normal because D t D = Id . Now
for any normal matrix N , it is known ([42] for instance) that the numerical range
{〈v |N v 〉, v ∈ Cd ,‖v‖2 = 1} equals co(spec(N )). On the other hand, the spectrum
of d-dimensional permutation matrices is contained in ∪d

k=2Zk . Since permu-
tation matrices are extremal points of the set of bistochastic matrices, any bis-
tochastic matrix P admits a convex decomposition P =∑

D∈BMd∩DMd
αD D where

α= (αD ) is a probability on the set of permutation matrices 2. Suppose now that
λ ∈ spec(P ) is an eigenvalue corresponding to the eigenvector u. Normalising v
so that ‖v‖2 = 1, we have

λ=λ〈v |v 〉 = 〈v |P v 〉 = ∑
D∈BMd∩DMd

αD〈v |Dv 〉,

which implies that spec(P ) ⊆ co(∪d
k=2Zk ). ä

Nevertheless, the numerical simulation, depicted in figure 4.1 below, demon-
strates that the convex hull of the roots of unity provide us with an overestimate
of the spectral set. An optimal estimate of the spectrum is given by a very tricky
result obtained by Karpelevich [26], answering definitely the question asked by
Kolmogorov. We present below the statement of the Karpelevich theorem in a
shortened form due to Ito [24] and shown by this same author to be equivalent
to the original formulation of [26].

Theorem 4.4.13 (Karpelevich [26], Ito [24]). There exists a region Md ⊆ C verify-
ing:

— Md is symmetric with respect to the real axis and contained in the unit disk.
— Md intersects the unit circle at the points exp(2iπm/n) where m,n run over

the relatively prime integers satisfying 0 ≤ m ≤ n ≤ d.
— The boundary of Md consists of these points and of curvilinear arcs con-

necting them in circular order.
— Let the endpoints of an arc be exp(2πi m1/n1) and exp(2πi m2/n2) (with

n1 ≤ n2). Each of these arcs is given by the following parametric equation:

λn2 (λn1 − s)[d/n1] = (1− s)[d/n1]λn1[d/n2],

where the real parameter s runs over the interval [0,1].

2. Since the set of stochastic matrices is not a simplex, this decomposition is by no means
unique.
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Then for any P ∈ SMd , we have spec(P ) ⊆ Md .

Figure 4.1 – Distribution of spectral values for 3000 stochastic matrices of size d ,
randomly chosen in SMd : a) Distribution for d = 3. The dotted lines depict the boundary
of co(Z2 ∪ Z3); obviously, this set overestimates the locus of spectral values. b) Same
picture for d = 4; again we observe the overestimate. The optimal boundary of the locus,
stemming from Karpelevich theorem [26], is curved and depicted as a thick curve in the
figure; the locus of the spectral values is not convex any longer.

Exercise 4.4.14. The figure 4.1 is produced by “randomly choosing” 3000 matri-
ces P ∈ SMd .

— What do you understand by the term “randomly choosen”?
— Propose an algorithm to “randomly chose” a P ∈ SMd . (Hint: can you con-

struct a uniform probability measure on SMd ?)

Exercise 4.4.15. Since SMd is convex and extr(SMd ) = DMd , every stochastic
matrix P admits a (not necessarily) unique convex decomposition P =∑

D∈DMd
αD D

where (αD )D is a probability vector over DMd .
— Using this decomposition and the deterministic mapping βD : X → X,

uniquely defined from every D , express the matrix elementsP n
x y , for n ∈N

and x, y ∈X.
— Express the Markov evolution as an evolution of a random automaton (see

[39] for details on automata and Turing machines).

4.5 Application to Monte Carlo simulations

Beyond the possibility to obtain very precise results on Markov chains with
finite state space by using solely elementary methods, the finite case has also an
intrinsic interest for stochastic simulations, also known under the vocable Monte
Carlo simulations. Since every stochastic simulation is performed on a real com-
puter, it concerns a finite state space. If the original problem is modelled by an
infinite space, it must be approximated by a finite-size problem to be simulated
on a computer.

The practical problem we have to solve is how to implement numerically a
Markov chain on some space X that although finite is huge (typical cardinalities
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4.5. Application to Monte Carlo simulations

ofX lie in 2104 −2106
) having an unknown invariant probability π in some general

class. Typically, the sought invariant probabilities are in the class of Gibbs mea-
sures on X. Now, a fundamental theorem in information theory is that if the en-
tropy of the measure does not saturate its absolute bound (log2 cardX), then typi-
cal configurations, supporting almost all of the mass of π are a tiny proportion of
the total space, often hundreds or thousends orders of magnitude smaller than
X. (For an elementary statement and proof of this result, see [40]). Therefore, the
problem reduces into simulating an arbitrarily long trajectory of a Markov chain
having π as invariant probability.

4.5.1 The Metropolis-Hastings algorithm

The algorithm has been introduced in [33] and further developed in [20] in
order to produce (effectively, on a computer) arbitrarily long trajectories of a
Markov chain on a huge state space X and admitting a invariant probability π.
The crux of the effectivity of the method is that the transition matrix P of the
chain — having the prohibitively large size |X|× |X| — is not stored on the com-
puter; the algorithm describes precisely how to chose the next step of the chain
by computing the matrix elements afresh at every transition.

We start by a mathematical problem and its solution (as presented essentially
in [20]). Let π be a probability measure on X. How to construct an irreducible
stochastic matrix (P (x, y))(x,y)∈X×X admitting π as invariant probability, i.e. πP =
π. All over this section, we demand irreducibility of P .

In order to construct P , we start from an auxiliary irreducible stochastic ma-
trix Q also of size |X|×|X| and for any x ∈X, we denote byAx = {y ∈X : Q(x, y) > 0}
the set of immediately accessible states from x by a Markov chain having transi-
tion matrix Q. Additionally, we require that Q(x, y) > 0 for some pair (x, y) entails
that Q(y, x) > 0 as well. The point is that Q can be chosen in such a manner to
have |Ax | very small (several orders of magnitude smaller than |X|), while the cor-
responding quantity for a Markov chain evolving with P should be of the order
|X|. The matrix Q is termed tentative stochastic matrix since it serves to pro-
pose possible moves of the Markov chain from state x according to the probabil-
ity Q(x, ·) (having support onAx). The algorithm also gives a method to compute
elements A(x, y) ∈]0,1] of another matrix A called acceptance matrix. Moves
x → y , tentatively proposed by Q, will be accepted with probability A(x, y) and
rejected with probability 1− A(x, y). Let P be a matrix defined for x, y ∈X as fol-
lows:

P (x, y) =


A(x, y)Q(x, y) if y ∈Ax \ {x},

Q(x, x)+∑
z∈Ax \{x}(1− A(x, y))Q(x, y) if y = x,

0 otherwise.

Lemma 4.5.1. The matrix P defined above is stochastic and irreducible. Moreover,
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if the elements of the acceptance matrix A satisfy

A(x, y)

A(y, x)
= π(y)Q(y, x)

π(x)Q(x, y)
,∀x ∈X,∀y ∈Ax \ {x},

then π satisfies the detailed balance condition π(x)P (x, y) = π(y)P (y, x) for all
x, y ∈X.

Proof: Matrix elements of P are obviously non-negative. For every x ∈Xwe have∑
y∈X

P (x, y) = P (x, x)+ ∑
y∈Ax \{x}

P (x, y)

=Q(x, x)+ ∑
y∈Ax \{x}

A(x, y)Q(x, y)+ ∑
z∈Ax \{x}

(1− A(x, z))Q(x, z)

= ∑
y∈Ax

Q(x, y) = 1,

which proves stochasticity of P . Irreducibility of P follows from the assumed ir-
reducibility of Q and the fact that A(x, y) > 0.

Now, for given x ∈X and every y ∈A\ {x}, we get

π(x)P (x, y) =π(x)A(x, y)Q(x, y) =π(x)
π(y)Q(y, x)

π(x)Q(x, y)
Q(x, y)A(y, x)

=π(y)Q(y, x)A(y, x) =π(y)P (y, x),

proving thus detailed balance.

The condition of detailed balance, π(x)P (x, y) = π(y)P (y, x) for all x, y ∈X, is
stronger than invariance of π since the latter follows by summing over all y in
the previous condition. It remains to appropriately determine the acceptance
matrix. This is done in the next

Lemma 4.5.2. Let F : [0,+∞] → [0,1] be a function verifying F (z)
F (1/z) = z, for all

z ∈ [0,+∞]. If for all x ∈X and all y ∈A\ {x}, we have

A(x, y) = F

(
π(x)Q(x, y)

π(y)Q(y, x)

)
,

then the matrix elements of A satisfy A(x,y)
A(y,x) =

π(y)Q(y,x)
π(x)Q(x,y) .

Proof: Evident.

4.5.2 Simulating self-avoiding random walks

Self-avoiding random walks are mathematical models of polymers, i.e. macro-
molecules composed by repetitions of the same (usually organic) structural unit
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Figure 4.2 – An example of self-avoiding trajectory of length 436 in dimension 2.

a big number of times (typically 50000–100000). The joining of the structural
units is made by loose chemical bonds so that every newly added bond can ro-
tate almost freely as a generatrix of the lateral surface of a cone with fixed api-
cal angle. Such structures could be efficiently modelled by trajectories of simple
random walks in dimension d ≥ 2 save for non self-intersections of those trajec-
tories.

Now, if the global constraint of non self-intersection is imposed on the trajec-
tory of a simple random walk, then it cannot be obtained as a sum of indepen-
dent random variables; the Markovian character is lost because all the previous
trajectory must be taken into account so that self-intersection condition be sat-
isfied in the next step. The figure 4.2 shows an example of a short (of length 436)
self-avoiding trajectory in dimension 2.

It is a challenging problem to simulate such trajectories. Algorithmically, it is
a very bad idea to start by simulating trajectories of simple random walks of the
same length and throwing away all those that do not fulfil the self-avoidance con-
dition. As a matter of fact the proportion of self-avoiding trajectories in the set
of ordinary trajectories decays like (µd

2d )N for large N with µd taking approximate
values µ2 ' 2.64 [6] and µ3 ' 4.68 [8]. The probability of getting a self-avoiding
trajectory in the set of uniformly distributed trajectories of length 436 in dimen-
sion 2 is 2×10−79.

The idea is to simulate a Markov chain taking values in the set Xd ,N of self-
avoiding trajectories of length N in dimension d , having the uniform probability
on this set as invariant measure. More precisely, let Ed = {±e1, . . . ,±ed } be the set
of unit vectors (and of their inverses) of Zd and denote byNN = {0, . . . , N } define

Xd ,N = {x :NN →Zd |x(i+1)−x(i ) ∈ Ed , i = 0, . . . , N−1, x(i ) 6= x( j ) for 0 ≤ i < j ≤ N },

with fixed origin x(0) ∈Zd . The condition of self-avoidance is very strong in d = 1,
whereX1,N has only 2 elements for any N ≥ 1, to become negligible when d →∞.
In dimension 2 or 3, it is nevertheless sufficiently strong to make the asymptotic
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(for large N ) cardinality card(Xd ,N ) behave like µN
d — with the numerical values

of µd cited above — substantially deviating from the corresponding cardinality
for ordinary random walk trajectories. It is worth noting that the cardinality of
Xd ,N is unknown; even the asymptotic values of µd quoted above are obtained
numerically. We must thus generate a uniform probability on a set of unknown
cardinality!

Let Gd be the discrete subgroup of the orthogonal transformations ofRd leav-
ing the set Zd invariant. For instance, in d = 2, we have

G2 = {I ,±π/2,π,Rx ,Ry ,RD1 ,RD2 },

where I denotes the identity, Rx and Ry the reflections with respect to Ox and O y
axes, and RD1 and RD2 the reflections with respect to the two principal diagonals.

We shall make Gd act on Xd ,N in some very simple way. Let k be any integer
with 0 < k < N , g any element of Gd \ I , and x = (x(0), . . . , x(N )) any trajectory of
Xd ,N . We define

(k, g ) · x = (x(0), . . . , x(k), x(k)+ g (x(k +1)−x(k)), x(k)+ g (x(N )−x(k))),

to be the transformation which transforms with g the N − k last nodes of the
trajectory, leaving the first k+1 unchanged. Choosing k and g will play the role of
tentative matrix for the algorithm. The proposed transformation will be accepted
if it satisfies self-avoidance condition and rejected otherwise.

Algorithm 1 Self-avoiding walk

1: procedure SAW(N ,Gd , x)
2: k ← UNIFRANDOMGENERATOR({1, . . . , N −1})
3: g ← UNIFRANDOMGENERATOR(Gd \ {I })
4: y ← (k, g ) ·x
5: if y fulfils self-avoidance then y
6: else x
7: end if
8: end procedure

Denote rd = card(Gd \ I ). At every step, the algorithm SAW, on an input x,
either returns a new self-avoiding trajectory y , or the input trajectory x. The
Markov chain it generates is a sequence (Xn) taking values in Xd ,N with transi-
tion matrix

P (x, y) =P(Xn+1 = y |Xn = x) =
{

1
N rd

if y = SAW(N ,Gd , x)

0 otherwise.

Proposition 4.5.3. The previously defined Markov chain inXd ,N has the uniform
probability on Xd ,N as invariant measure.
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x(k −1) x(k) x(k +1) x(k −1) x(k)

x(k +1)

Figure 4.3 – Possible local configurations of a trajectory x around its kth vertex (up to
symmetries), in dimension 2. Even we ignore other possible obstacles preventing moves
violating the self-avoidance condition, we check that, even locally, choosing g =π for the
first or g =π/2 for the second (what will arise with positive probability) we end up with
a configuration (k, g ) · x that is not self-avoiding.

Proof: Since N and d are kept fixed, denote simply X :=Xd ,N and r := rd .

The matrix P is stochastic.∑
z∈X

P (x, z) = P (x, x)+ ∑
z∈X\{x}

P (x, z)

= 1

N r

∑
k,g
1Xc ((k, g ) · x)+ 1

N r

∑
k,g
1X((k, g ) ·x) = 1.

The matrix P is aperiodic. It is enough to establish that diagonal elements
P (x, x) do not vanish. As a matter of fact for an element P (x, x) to vanish,
for all (k, g ) the proposed configurations (k, g ) · x have to be always self-
avoiding. Now, this cannot happen. Consider in fact local configurations
around the chosen node k. Up to symmetries, the only possibilities (in
d = 2) are those depicted in figure 4.3. Obviously, there always exists an
element of Gd \ {I }, chosen with probability 1/r , that will lead to a non
self-avoiding trajectory.

The matrix P is irreducible. For every trajectory x ∈ X (if it is not a straight
segment), there exists a finite sequence (k1, g1), . . . , (km , gm) of possible
choices allowing to “unfold” x into a straight segment. Therefore, for every
(x, y) ∈X2 there exists a n such that P n(x, y) > 0.

The matrix P is bistochastic. If y = (k, g ) ·x for some (k, g ), then x = (k, g−1) ·
y . Hence, ∀y ∈X,

∑
x P (x, y) = 1.

Therefore, P has an invariant measure ν. We verify that the uniform measure is
in fact invariant. Since the matrix is bistochastic, normalising ν = 1

cardX , gives a
uniform probability on X. ä
Remark 4.5.4. T he practical implementation means that we start with an ini-
tialising self-avoiding trajectory X0 = x ∈X, apply repeatedly the procedure SAW,
ignore the first M0 iterates (to allow approximate convergence to equilibrium
Px(XM0 ∈ A) ' ν(A)), and subsequently sample the generated sequence Yn =
XM0+nM1 every M1 iterates. In that way we get an almost uncorrelated sequence
of uniformly distributed self-avoiding trajectories. The parameter M0 is associ-
ated with the second largest (in modulus) eigenvalue of P , while M1 is also de-
pending on another spectral property of P , known under the name “decorrela-
tion length”.
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5
Potential theory

In the case of finite state space, we have obtained precious information on
the convergence properties of the sequence of kernels P n by studying properties
of the resolvent RP (λ) = (λI −P )−1 through the spectral representation of P and
theorem 4.2.5. In this chapter, we pursue a different approach, stemming in the
development of the resolvent, RP (λ), into a formal power series

RP (λ) = (λI −P )−1 = 1

λ
(I +

∞∑
n=1

P n

λn
),

in the case where P is a Markovian kernel acting on a general measurable space
(X,X ).

5.1 Notation and motivation

We recollect here notation, largely already introduced in the previous chap-
ters but scattered through the text.

Definition 5.1.1. Let P be a Markovian kernel (X,X )
P
 (X,X ).

1. For [ ∈ {0,1}, x ∈X and A ∈X , the potential kernel is the quantity

G[(x, A) = ∑
n≥[

P n(x, A).

2. For z ∈C, the generating functional of the sequence (P n)n is given by the
formal power series

G[
z(x, A) = ∑

n≥[
znP n(x, A).
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3. Let f ∈ mX+. This function is called harmonic if P f = f , superharmonic
if P f ≤ f , potential if there exists another function r ∈ mX+ such that
f =G0r ; the function r is then called a charge for f .

4. Let φ ∈ M+(X ). This measure is called harmonic if φP = φ, superhar-
monic if φP ≤φ, potential if there exists another measure ρ ∈ mX+ such
that φ= ρG0; the measure ρ is then called a charge for φ.

Remark 5.1.2. It is worth noting once again that the potential kernel G may be
infinite even on finite sets.

Proposition 5.1.3. Let g ∈ mX+ and Sg (Poisson) the set of solutions of the Pois-
son equation g = (I −P ) f , i.e.

Sg (Poisson) = { f ∈ mX+ : g = (I −P ) f }.

If G0g is finite, then it is the smallest element of Sg (Poisson).

Proof: First show that h =G0g is an element of Sg (Poisson). In fact,

Ph + g = P
∞∑

n=0
P n g + g =

∞∑
n=1

P n g + g =G0g = h.

Therefore (I −P )h = g , hence h ∈Sg (Poisson).

Suppose now that f ∈Sg (Poisson). Observe that equalities

g +P f = f

P g +P 2 f = P f
...

P n g +P n+1 f = P n f

imply f = ∑n
k=0 P k g +P n+1 f , for all n. Due to the positivity of both f and P , we

have that liminfn P n+1 f ≥ 0. The latter implies f ≥G0g = h. ä

A few comments are necessary to justify the terminology. Consider first a
simple symmetric random walk on Z. Then, if f is additionally bounded,

(I −P ) f (x) = f (x)− 1

2
[ f (x +1)+ f (x −1)]

' −1

2
[ f ′(x +1/2)− f ′(x −1/2)]

' −1

2
∆ f (x).

This approximate formula holds also for the simple symmetric random on Zd

almost unchanged: (I −P ) f (x) '− 1
2d∆ f (x).

Consider now the Maxwell equations for electric fields in dimension 3. The
electric vector field E is expressed as the gradient of a potential scalar field f
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through: E = −∇ f . Additionally its divergence is proportional to the electric
charge density r through: ∇·E = cr where c is a physical constant. Hence, −∆ f =
cr . It is a well known result of electromagnetic theory that the electric poten-
tial field is expressed in terms of the charge density through Coulomb formula:
f (x) = c ′

∫
R3

r (y)
‖x−y‖d 3 y (provided that the function 1

‖x−y‖ is integrable with respect
to the measure whose density with respect to the Lebesgue 3-dimensional mea-
sure is r . In this case, we have f = G0r where G is the integral kernel G0(x, A) =∫

A g (x, y)d 3 y , with g (x, y) = 1
‖x−y‖ . Now comparing the two equations:

−∆ f = r

f =G0r

we conclude that the operator G “inverts” the operator −∆.

Come now back to proposition 5.1.3 applied to the random walk case: g =
(I −P ) f ' −∆ f . Inverting formally, we get f = G0g . We can then “verify” that
−∆G0g = (I −P )

∑∞
n=0 P n g = g .

Of course at this level of presentation all computations are purely formal. The
purpose of this chapter is to show that all these formal results can be given a
precise mathematical meaning and moreover provide us with a valuable tool for
the study of Markov chains on general state spaces.

5.2 Martingale solution to Dirichlet’s problem

Proposition 5.2.1 (The maximum principle). Let f , g ∈ mX+ and a ∈R+.

1. If G0 f ≤ G0g + a holds on {x ∈ X : f (x) > 0} then holds everywhere (i.e. on
X).

2. For all x, y ∈X, G0(x, y) =Px(τ0
y <∞)G0(y, y).

3. For all x ∈X and B ∈X , G0(x,B) ≤ supz∈B G0(z,B).

Remark 5.2.2. In the previous proposition = Px(τy < ∞) can vanish. In this
situation the term G0(x, y) also vanishes.

Proof: of proposition 5.2.1.
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5.2. Martingale solution to Dirichlet’s problem

1. Let A = { f > 0} ∈X .

G0 f (x) = Ex(
∞∑

n=0
f (Xn))

= Ex(
∞∑

n=0
f (Xn)1{τ0

A<∞})+Ex(
∞∑

n=0
f (Xn)1{τ0

A=∞})

= Ex(
∞∑

n=0
f (Xn)1{τ0

A<∞}) (because f = 0 on Ac )

= Ex(
∞∑

n=τ0
A

f (Xn)1{τ0
A<∞}) = Ex(

∞∑
n=0

f (Xn ◦θτ0
A )1{τ0

A<∞})

= Ex(E(
∞∑

n=0
f (Xn)◦θτ0

A1{τ0
A<∞}|Fτ0

A
)) = Ex(1{τ0

A<∞}EX
τ0

A
(
∞∑

n=0
f (Xn)))

= Ex(1{τ0
A<∞}G

0 f (Xτ0
A

))) ≤ Ex(1{τ0
A<∞}G

0g (Xτ0
A

))+aPx(τ0
A <∞).

Now compute explicitly the expectations appearing in the previous for-
mula to get

G0 f (x) ≤
∞∑

n=0
Ex(

∑
k∈N

1{τ0
A=k}

∫
B

P k (x,d y)P n(y,d z)g (z))+a

≤ ∑
n∈N

P n(x,d z)g (z)+a =G0g (x)+a.

2. Apply the previous formula to f =1{y}.
3. Apply the previous formula to f =1B .

Proposition 5.2.3. Let B ∈ X be such that supx∈B G0(x,B) <∞ and A = {x ∈ X :
Px(τB < ∞) > 0}. Then A is a countable union of sets An,k for n,k ∈ N such that
G(x, An,k ) is bounded on X for all n,k ∈N.

Proof: Define for n ≥ 0 and k ≥ 1:

An,k = {x ∈X : P n(x,B) > 1/k}.

For all x ∈X and m,n ∈N, we have:

P m+n(x,B) =
∫
X

P m(x,d y)P n(y,B) ≥
∫

An,k

P m(x,d y)P n(y,B) ≥ 1

k
P n(x, An,k ),

establishing that kG0(x,B) ≥ G0(x, An,k ). Using now the maximum principle we
show further for all x ∈ X that G0(x, An,k ) ≤ kG0(x,B) ≤ k supx∈B G0(x,B) < +∞.
Moreover A =∪n,k An,k . ä
Theorem 5.2.4 (Dirichlet’s problem). Let B ∈ X and g ∈ mX+. The set of solu-
tions to the Dirichlet’s problem is the set

Sg (Dirichlet) = { f ∈ mX+ : P f = f on B c and f = g on B}.

The smallest element of Sg (Dirichlet) is the function h(x) = Ex(1{τ0
B<∞}g (Xτ0

B
)).
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Proof: If x ∈ B then τ0
B = 0 and consequently h(x) = g (x), else τ0

B ≥ 1 and h(x) =
Ex(

∑∞
k=11{τ0

B=k}g (Xk )).

Ph(x) =
∫
X

P (x,d y)h(y) =
∫

B
P (x,d y)g (y)+

∫
B c

P (x,d y)h(y)

=
∫

B
P (x,d y)g (y)+

∞∑
k=1

∫
B c

P (x,d y)Ey (1{τ0
B=k}g (Xk ))

= Ex(1{τ0
B=1}g (X1))+

∞∑
k=1

Ex(1{τ0
B=k+1}g (Xk+1))

= Ex(1{τ0
B=1}g (X1))+

∞∑
k=2

Ex(1{τ0
B=k}g (Xk )) = h(x).

This establishes that h ∈Sg (Dirichlet).

Suppose now that f is another element of Sg (Dirichlet). Define for all n:

Zn = f (Xτ0
B∧n) =

n−1∑
k=0

1{τ0
B=k} f (Xk )+1{τ0

B≥n} f (Xn)

and Fn =σ(X0, . . . , Xn). Then,

E(Zn+1|Fn) =
n∑

k=0
1{τ0

B=k} f (Xk )+1{τ0
B>n}E( f (Xn+1)|Fn)

=
n∑

k=0
1{τ0

B=k} f (Xk )+1{τ0
B>n}P f (Xn)

=
n∑

k=0
1{τ0

B=k} f (Xk )+1{τ0
B>n} f (Xn) = Zn ,

the penultimate line of the above equality holding because on τ0
B > n ⇒ Xn 6∈ B ⇒

P f (Xn) = f (Xn). Thus (Zn)n is a positive (Fn)n-martingale. Therefore it con-
verges almost surely to some random variable Z∞. On {τ0

B <∞}, Zn → f (Xτ0
B

) =
g (Xτ0

B
). On {τ0

B =∞}, Zn → Z∞ and consequently by Fatou inequality: Ex(Z∞) ≤
liminfn Ex Zn . We have finally:

h(x) = Ex(1{τ0
B<∞}g (Xτ0

B
)) = Ex(1{τ0

B<∞} lim
n

Zn)

≤ Ex(lim
n

Zn) ≤ liminf
n

Ex(Zn) = Ex(Z0) = f (x).

ä

Remark 5.2.5. The main interest of this formula is theoretical: if ν denotes the
boundary measure, i.e. ν(C ) = Px(Xτ0

B
∈ C ), for C a measurable subset of the

boundary, then any harmonic function h can be disintegrated with respect to
the surface density as h(x) = ∫

∂B c ν(d z)g (z). It maintains nevertheless some al-
gorithmic interest since it solves the Dirichlet problem in a finite domain without
any smoothness condition on the shape of the boundary.
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5.2. Martingale solution to Dirichlet’s problem

Theorem 5.2.6 (Riesz decomposition). Let f be a finite superharmonic function.
Then there exists a unique harmonic function h and a unique charge r ∈ mX+

such that f = h +G0r .

Proof: For any N ∈N:
∑N

k=0(P k f −P k+1 f ) = f −P N+1 f . Now 0 ≤ P f ≤ f ⇒ f −P f ≥
0. It follows that 0 ≤∑N

k=0 P k ( f −P f ) = f −P N+1 f is an increasing sequence of N
implying that P N f is decreasing (and obviously minorised by 0), thus converg-
ing; let h = limn P n f . Now Ph = P (limn P n f ) = limn P n+1 f = h proving that h is
harmonic.

On the other hand, 0 ≤ f −h = limN
∑N

k=0 P k ( f −P f ) = G0( f −P f ), showing
that f −h is the finite potential due to the positive charge r = f −P f . Thus the
decomposition f = h +G0r is established.

To show unicity, suppose that h′ and r ′ are another such pair satisfying

f = h +G0r = h′+G0r ′.

Then

P f = P (h +G0r ) = h +G0r − r = f − r

= P (h′+G0r ′) = h′+G0r ′− r ′ = f − r ′

Consequently r = r ′ and therefore h = h′. ä
Corollary 5.2.7. A finite superharmonic function f is a potential if limn P n f = 0.
If a finite superharmonic function is bounded from above by a finite potential,
then its harmonic part is 0.

Exercise 5.2.8. Let φ ∈ M+(X ) be a superharmonic measure. Then there exists
a unique harmonic measure α and a unique charge ρ ∈ M+(X ) such that φ =
α+ρG0.

Lemma 5.2.9. 1. If s is P-superharmonic, then s is a potential if and only if
limn P n s = 0.

2. If 0 ≤ s ≤ v, s is P-superharmonic, and v a potential, then s is also a poten-
tial.

3. If s and s′ are P-superharmonic, then w = s ∧ s′ is also P-superharmonic.

Proof:

1. By theorem 5.2.6, s can be uniquely decomposed into s = h +G0r , where
h = limn P n s is the harmonic part of the Riesz decomposition. If this term
vanishes, then s is a potential and conversely, if s is a potential then the
harmonic part must vanish.

2. Since for every n, the inequality 0 ≤ P n s ≤ P n v holds and v is a potential,
it follows from 1. that limn P n v = 0. Hence limn P n s = 0, and from 1. s is a
potential.
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3. We have P w ≤ Ps ≤ s and P w ≤ Ps′ ≤ s′; hence P w ≤ s ∧ s′ = w .

ä

Exercise 5.2.10. First recall some definitions:
— A partially ordered set (Y,¹) is a lattice if any for any pair of points x, y ∈Y

there exists a supremum s = x ∨ y ∈Y.
— An R-vector space Y is ordered if is equipped with a partial order ¹ com-

patible with the operations of the vector space, i.e. for all x, y ∈Y

x ¹ y ⇒ ∀z ∈Y, x + z ¹ y + z

x ¹ y ⇒ ∀λ ∈R+,λx ¹λy.

— An ordered R-vector space Y, such that (Y,¹) is a lattice, is called a Riesz
space or vector lattice.

— A subset C of a vector space is called a cone if for all λ ∈R+, λC ⊆C .
— A subset C of a vector space is said convex if C +C ⊆C .

After this recollection of definitions, show that

1. the set of of superharmonic functions of mX+ is a lattice and a convex
cone,

2. the set of harmonic functions of mX+ is a Riesz space,
3. the set of bounded harmonic functions of mX+ is a subspace of the Ba-

nach space (X,‖ ·‖∞).

Recall the notation previously defined in the exercise section 3.5.

Definition 5.2.11. For B ∈X and [ ∈ {0,1}, we define

L[B (x) =Px(τ[B <∞) and H [
B (x) =Px(η[(B) =∞).

When B is a singleton B = {y}, we write usually L[y and H [
y , instead of L[{y} and

H [
{y}.

Proposition 5.2.12. The function L0
B is finite superharmonic. Its harmonic part

in the Riesz decomposition is H 0
B . Moreover, limn→∞ L0

B (Xn) = limn→∞ H 0
B (Xn) =

1{η0(B)=∞} almost surely.

Proof: Obviously L0
B (x) ≤ 1 for all x. To apply Riesz decomposition, we must es-

tablish its superharmonicity. Define τk
B = inf{n ≥ k : Xn ∈ B} and observe that

1{τk
B<∞} =1{τ0

B<∞} ◦θk . Strong Markov property yields then:

P k L0
B (x) = Ex(L0

B (Xk )) = Ex(PXk (τ0
B <∞))

= Ex(Ex(1{τ0
B<∞} ◦θk |Fk )) =Px(τk

B <∞)

≤Px(τ0
B <∞) = L0

B (x).
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5.2. Martingale solution to Dirichlet’s problem

Since L0
B is shown to be finite superharmonic, repeating the reasoning ap-

pearing in the proof of theorem 5.2.6, we establish

P nL0
B (x) =Px(τn

B <∞) ↓ lim
n→∞

↓Px(τn
B <∞)

=Px(∩n∈N{τn
B <∞}) =Px(η0(B) =∞) (∗)

= H 0
B (x) ≤ 1,

the statement (∗) above holding because on defining A =∪n∈N{τn
B =∞} and C =

{η0(B) <∞}, we have:

[ω ∈ A] ⇒ [∃N : τN
B (ω) =∞] ⇒ [η0(B)(ω) ≤ N ]

and
[ω ∈C ] ⇒ [∃N : η0(B)(ω) ≤ N ][⇒ [∃M = M(N ) : τM

B (ω) =∞].

Thus it is established that H 0
B is the harmonic part of L0

B (and is moreover finite).

Now, the previous conclusions imply that the sequences defined by Sn = L0
B (Xn)

(resp. Mn = H 0
B (Xn)) are positive supermartingale (resp. martingale). As such,

they converge almost surely to S∞ (resp. M∞). Additionally, both are bounded by
1, therefore they are uniformly integrable, establishing thus their convergence in
L1 and, for (Mn) we have the closure property:

Mn = E(M∞|Fn).

Note that for all n ∈N
1{η0(B)=∞} =1{η0(B)=∞} ◦θn .

Consequently,

Mn = H 0
B (Xn) = EXn (1{η0(B) =∞})

= Ex(1{η0(B) =∞}◦θn |Fn) = Ex(1{η0(B) =∞}|Fn)

−−−−→
n→∞ 1{η0(B)=∞} by uniform integrability

= M∞.

Consider now the supermartingale (Sn)n . Note that almost surely

S∞ = lim
n→∞L0

B (Xn) ≥ lim
n→∞H 0

B (Xn) = M∞.

On the other hand

Ex(S∞) = lim
n→∞Ex(L0

B (Xn)) = lim
n→∞P nL0

B (x) = H 0
B (x)

= Ex(H 0
B (Xn)), for all n (because H 0

B (Xn) is a martingale)

= Ex( lim
n→∞H 0

B (Xn))

= Ex(M∞) because of the convergence in L 1.

Thus S∞ = M∞ almost surely. ä
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5.3 Asymptotic and invariant σ-algebras

Definition 5.3.1. Let X be a MC((X,X ),P,µ) and Tn =σ(Xm ,m ≥ n), for n ∈N.
— The σ-algebra T∞ =∩n∈NTn is called tail σ-algebra for the sequence X .
— A random variable Y on the path space (X∞,X ∞,P) is called asymptotic

if there exists a sequence ( fn)n of measurable mappings fn : X∞ → R for
n ∈N, such that Y = fn(Xn , Xn+1, . . .) for all n ∈N.

— If Y =1A for some event A ∈X ∞, then A is called asymptotic event.
— The class of all asymptotic events generates aσ-algebra, called the asymp-

totic σ-algebra, that is isomorphic to T∞.

Exercise 5.3.2. Let X be a MC((X,X ),P,µ), g : X→ R+ a measurable function,
and (Fn)n a fixed sequence of measurable sets in X . Determine which of the
following events (if any) are asymptotic:

1. {Xn ∈ Fn , infinitely often},
2. {Xn ∈ Fn , for all n ≥ k}, for some fixed k,
3. {

∑
n≥k 1B (Xn) =∞}, for fixed B ∈X and k ∈N,

4. {
∑

n≥k 1B (Xn) <∞}, for fixed B ∈X and k ∈N,
5. {

∑
n≥k 1B (Xn) = l }, for fixed B ∈X and k, l ∈N,

6. {
∑

n≥k g (Xn) =∞}, for fixed k ∈N,
7. {

∑
n≥k g (Xn) <∞}, for fixed k ∈N,

8. {
∑

n≥k 1B (Xn) = c}, for fixed k ∈N and c ∈R+.

Definition 5.3.3. Let X be a MC((X,X ),P,µ).
— A random variable Y on the path space (X∞,X ∞,P) is called invariant if

there exists a measurable mapping f :X∞ →R, such that Y = f (Xn , Xn+1, . . .)
for all n ∈N.

— If Y =1A for some event A ∈X ∞, then A is called invariant event.
— The class of all invariant events generates a σ-subalgebra of T∞, called

the invariant σ-algebra, denoted by J∞.

Exercise 5.3.4. Which among the events defined in exercise 5.3.2 are elements
of J∞?

Remark 5.3.5. T he probability Pµ on the path space does not intervene in the
definitions of either asymptotic or invariant events. On identifying random vari-
ables on X∞ that coincide P-almost surely, we determine a class of events that
generate the so-called P-asymptotic or P-invariant σ-algebras, denoted respec-
tively by T P∞ or J P∞. Recall that a σ-algebra containing just two sets is called
trivial. Criteria establishing triviality of the asymptotic σ-algebras are sought in
the sequel since they will play an important role in establishing convergence re-
sults for Markov chains.

Definition 5.3.6. Let X be a MC((X,X ),P,µ) and denote by N = P (N). The
process (Xn ,Tn)n taking values in the measurable space (X×N,X ⊗N ) with
Tn+1 = Tn +1, is called the spacetime process associated with X .

Proposition 5.3.7. Let (Xn ,Tn)n be a spacetime process with T0 = k for some k ∈
N. An event A is asymptotic for (Xn)n if and only if is invariant for (Xn ,Tn)n .
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5.4. Triviality of the asymptotic σ-algebra

Proof: Let Y =1A.
(⇒) Since A is asymptotic for (Xn)n , there exists a sequence ( fn)n in mX ∞

such that Y = fn(Xn , Xn+1, . . .) for all n. Let (nl )l∈N be a sequence of in-
tegers with n0 ≥ k and nl+1 = nl +1 for all l . Define f̃ : (X×N)∞ → R by
f̃ ((x0,n0), (x1,n1), . . .) = fn0−k (x0, x1, . . .). It follows then immediately that
Y = f̃ ((Xn ,Tn), (Xn+1,Tn+1), . . .).

(⇐) Since A is invariant for (Xn ,Tn)n , from the last equality, we obtain on
defining fn(x0, x1, . . .) = f̃ (x0,n +k), (x1,n +k +1), . . .) for every n that Y =
fn(Xn , Xn+1, . . .).

ä

5.4 Triviality of the asymptotic σ-algebra

Since with any X a MC((X,X ),P,µ) is associated a spacetime chain, we use
the tilde notational convention to denote quantities referring to the latter. Thus
the kernel P :X×X → [0,1] induces a kernel P̃ (X×N)× (X ⊗N ) → [0,1] by the
formula

P̃ ((x,n),F × {n′}) = δn+1,n′P (x,F ),∀x ∈X,∀F ∈X ,∀n ∈N.

The path space X̃∞ = (X×N)∞ will be identified with Ω̃= {ω̃ :N→X×N}. Similarly
the spacetime process (X̃n)n = (Xn ,Tn)n will be defined through its coordinate 1

representation: X̃n(ω̃) = ω̃n = (Xn(ω̃),Tn(ω̃)). Finally, we use the tilde convention
to extend notions defined on functions f in mX to notions defined o functions
f̃ in m(X ⊗N ). For example, if h is an harmonic function for P , h̃ will be an
harmonic function for P̃ , verifying: h̃(x,n) = ∫

XP (x,d y)h̃(y,n +1).

A random variable Ξ : Ω→ R, defined on the probability space (Ω,F ,P), is
invariant if and only if Ξ ◦ θ = Ξ. With any Ξ ∈ bF is associated a h ∈ bX by
h(x) = Ex(Ξ).

Theorem 5.4.1. — LetΞ ∈ bF+ be invariant. Then h ∈ bX , defined by h(x) =
Ex(Ξ), is harmonic. Additionally, h ≡ 0 ⇔Px(Ξ= 0) = 1.

— Let h ∈ bX be harmonic. Then the random variable Ξ = liminfn h(Xn)
verifies Ex(Ξ) = h(x) for all x.

Proof: For all n:

h(Xn) = EXn (Ξ) = Ex(Ξ◦θn |Fn) by Markov property

= Ex(Ξ|Fn) by invariance.

For n ≥ 1 the previous equality yields

Ex(h(Xn)|Fn−1) = Ex(Ex(Ξ|Fn)|Fn−1) = h(Xn−1),

1. Note the trivial modification on the coordinate representation of the process (Xn)n that is
necessary.
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establishing that (h(Xn))n is a martingale. Applying to n = 1:

Ex(h(X1)) = h(x) = Ex(EX1 (Ξ))

=
∫
X

P (x,d y)Ey (Ξ) =
∫
X

P (x,d y)h(y),

proving the harmonicity of h. Since Ξ ∈ bF , this martingale is uniformly inte-
grable, hence closed, meaning that limn→∞ h(Xn) =Ξ, Px-a.s. and for arbitrarily
chosen x. The latter proves the equivalence h ≡ 0 ⇔ Px(Ξ = 0) = 1. The second
statement of the theorem is just a consequence of the unicity of the limit. ä
Corollary 5.4.2. The following two conditions are equivalent:

1. All bounded harmonic functions are constant.

2. For every µ ∈M1(X ), the J
Pµ
∞ is trivial.

Proof: The theorem 5.4.1 guarantees 1⇒2. To prove the converse, suppose that
there exists a bounded harmonic function h and there exist x, y ∈ X, with x 6= y ,
such that h(x) 6= h(y). The theorem 5.4.1 guarantees the existence of an invari-
ant random variable Ξ ∈ bF , such that h(z) = Ez(Ξ). Let µ = 1

2 (εx + εy ). Then
Eµ(Ξ|X0 = x) = h(x) 6= h(y) = Eµ(Ξ|X0 = y), thus Ξ is not almost surely constant.
ä
Theorem 5.4.3. A Markov chain X satisfies the condition

lim
n→∞ sup

A∈Tn

|P(A∩B)−P(A)P(B)| = 0, ∀B ∈F ,

if and only if the σ-algebra T P∞ is trivial.

Proof:
(⇒) Suppose the limit vanishes. For any B ∈ T∞ ⊆ F , and A = B , we get

P(B)2 = P(B). It follows that either P(B) = 0 or P(B) = 1. Therefore, up to
P-negligible events, the asymptotic σ-algebra T∞ is trivial.

(⇐) For B ∈F , A ∈Tn :

|P(A∩B)−P(A)P(B)| =
∣∣∣∣∫

A
(P(B |Tn)−P(B))dP

∣∣∣∣
≤

∫
X

∣∣∣∣∫
X

(P(B |Tn)−P(B))dP

∣∣∣∣ .

Now, (P(B |Tn))n is a reverse martingale; as such it converges almost surely
to P(B |T∞). If the σ-algebra T P∞ is trivial, P(B |T∞) =P(B).

ä
Theorem 5.4.4. Let X be a MC((X,X ),P,µ) and X̃ the corresponding spacetime
chain MC((X×N,X ⊗N ), P̃ , µ̃). The following are equivalent:

1. For any µ̃ ∈ M1(X ⊗N ) such that µ̃(X× {k}) = 1 for some k ∈ N, the σ-

algebra J̃
P̃µ̃
∞ is trivial.
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2. For any µ ∈M1(X ), the σ-algebra T
Pµ
∞ is trivial.

3. For any µ,ν ∈M1(X ), we have limn→∞ ‖µP n −νP n‖ = 0.
4. The only bounded harmonic spacetime functions are the constants.

Proof:
1 ⇒ 2 This follows from the equivalence established in proposition 5.3.7.
2 ⇒ 3 Let x, y ∈X, x 6= y , µ= 1

2 (εx +εy ), and A = {X0 = x} ∈F . For any F ∈X ,
we have {Xn ∈ F } ∈Tn and by theorem 5.4.3,

lim
n→∞ |Pµ(A∩ {Xn ∈ F })−Pµ(A)Pµ({Xn ∈ F })| = 0.

Now,

Pµ(A∩ {Xn ∈ F }) = Pµ({Xn ∈ F }|A)Pµ(A)

= P n(x,F )× 1

2

and

Pµ(A)Pµ(Xn ∈ F ) = 1

2
(Px(Xn ∈ F )+Py (Xn ∈ F ))

= 1

4
Pµ(A)(P n(x,F )+P n(y,F )),

yielding |Pµ(A∩{Xn ∈ F })−Pµ(A)Pµ(Xn ∈ F )| = 1
4 |(P n(x,F )−P n(y,F )| −−−−→

n→∞
0, uniformly in F ∈ X . Now for any two probabilities µ,ν ∈ M1(X ), the
measure σn = µP n −νP n is a signed measure in M (X ). For any additive
set function (hence for signed measures also) we have the Hahn decom-
position (see [7], p. 441): For every n, there is a partition of X into dis-
joint sets X = X−

n tX+
n such that σn(F ) ≤ 0 for all F ⊆ X−

n and σn(F ) ≥ 0
for all F ⊆ X+

n . Therefore, for all F ∈ X , we define σ+
n (F ) ≡ σn(F ∩X+

n )
and σ−

n (F ) ≡ −σn(F ∩X−
n ), so that σn(F ) = σ+

n (F ) −σ−
n (F ) for two posi-

tive measures σ+
n and σ−

n of disjoint support. Now, for all G ∈ X , with
G ⊆ F : σn(G) ≤ σ+

n (G) ≤ σ+
n (F ) with equality holding if G = F ∩X+

n . Thus,
σ+

n (F ) = supG∈X ;G⊆F σn(G). Similarly, σ−
n (F ) = − infG∈X ;G⊆F σn(G). More-

over, σ+
n (G)+σ−

n (G) = |σn |(G) and ‖σn‖1 = supF∈X |σn |(F ) = |σn |(X).
Use the explicit form of the measure σn to write:

σn(X+
n ) = (

µP n −νP n)
(X+

n )

=
∫
X×X

µ(d x)ν(d y)
(
P n(x,X+

n )−P n(y,X+
n )

)
≤

∫
X×X

µ(d x)ν(d y) sup
F∈X

|P n(x,F )−P n(y,F )|.

Now, supF∈X |P n(x,F )−P n(y,F )| −→ 0 and |P n(x,F )−P n(y,F )| ≤ 2; domi-
nated convergence theorem guarantees thatσn(X+

n ) −−−−→
n→∞ 0. Similarly, we

prove that σn(X−
n ) −−−−→

n→∞ 0. Thus,

‖σn‖1 = ‖µP n −νP n‖1 =σ+
n (X)+σ−

n (X) −−−−→
n→∞ 0.
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3 ⇒ 4 Let h̃ be an harmonic spacetime function that is bounded, i.e. there ex-
ists some constant K ≤∞, such that for all x ∈X and all m ∈N: |h̃(x,m)| ≤
K . For any x, y ∈X and any m,n ∈N:

|h̃(x,n)− h̃(y,n)| =
∣∣∣∣∫
X

(P m(x,d z)−P m(y,d z))h(z,m +n)

∣∣∣∣
≤ K

∥∥P m(x, ·)−P m(y, ·)∥∥1

−−−−→
m→∞ 0 by (3),

implying that h̃ is, as a matter of fact, a function merely of the second
argument, i.e. there exists a function g :N→ R such that for all x ∈X and
all n ∈N, g (n) = h̃(x,n). Using harmonicity of h̃, we get, for all n ∈N:

g (n) = h̃(x,n), ∀x ∈X=
∫
X

P (x,d y)h̃(y,n +1)

=
∫
X

P (x,d y)g (n +1) = g (n +1).

Thus h̃ is in fact a constant.
4 ⇒ 1 Applying corollary 5.4.2 to the spacetime chain we conclude that J̃

P̃µ̃
∞

is trivial.
ä

Remark: The main interest of this result is that we only need to check harmonic-
ity of merely local functions i.e. in mX instead of global properties of the whole
sequence X .
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5.4. Triviality of the asymptotic σ-algebra
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6
Markov chains on denumerably

infinite sets

Here the state space is a denumerably infinite set X. Note however that most
of the results stated in this chapter remain valid (as a matter of fact they are even
easier) for denumerably finite sets. Since the approach developed here is dif-
ferent from the spectral methods developed in chapter 4, they provide another
possible approach of the finite case. Conversely, most of the spectral methods
can be adapted (with considerable effort however) to the denumerably infinite
case. We can, without loss of generality, assume that X = P (X). Recall also the
notation introduced earlier for [ ∈N.

L[B (x) = Px(τ[B <∞)

H [
B (x) = Px(η[(B) =∞) =Px(η0(B) =∞).

The standard reference for a first approach to Markov chains on denumerably
infinite sets is [36]. This chapter concludes with some more advanced topics on
the study of recurrence/transience with the help of Lyapunov functions, pertain-
ing to the constructive theory of Markov chains [14].

6.1 Classification of states

We use the notation introduced in definition 5.2.11.

Definition 6.1.1. Let X be a MC((X,X ),P,µ). The directed graph (X,A) with ver-
tex set X and oriented edge setA= {(x, y) ∈X×X : P (x, y) > 0} is called the graph
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6.1. Classification of states

of the Markov chain.

Definition 6.1.2. Let x, y ∈X.
— We say y is accessible from x, and write x → y , if L1

y (x) > 0.
— We say x and y communicate, and write x ↔ y , if x → y and y → x.

Remark 6.1.3. Accessibility of y from x means that there exists an integer n =
n(x, y) such that P n(x, y) > 0, i.e. the graph of the Markov chain contains a finite
path of directed edges leading from x to y .

Definition 6.1.4. A state x ∈X is called essential if for each y ∈X such that x → y
follows that y → x. We write Xe for the set of essential states.

Proposition 6.1.5. Let P be a Markov transition matrix on X.

1. For all x ∈X, there exists y ∈X accessible from x.
2. Accessibility is transitive.
3. If x ∈Xe then x ↔ x.
4. If x ∈Xe and x → y then y ∈Xe and x ↔ y.
5. Restricted on Xe , communication is an equivalence relationship.

Proof: The proof of all items is left as an exercise; we only prove item 4. Since
x ∈Xe and x → y , then y → x; therefore x ↔ y . Suppose that z is such that y → z.
We must show that z → y . Now, since x → y and y → z, transitivity implies that
x → z. But x ∈Xe , hence z → x. Therefore, z → x and x → y . Transitivity implies
z → y . ä
Corollary 6.1.6. We have the decomposition

X= (t[x]∈K [x])tXu ,

where K = Xe / ↔ is the set of communicating classes K 3 [x] = {y ∈ Xe : x ↔ y}
and Xu is the set of unessential states.

Definition 6.1.7. A subset A ⊆X is called absorbing or (stochastically) closed if
A 6= ; and for all x ∈ A,

∑
y∈A Px y = 1. If for some x ∈X, we have [x] =X, then the

chain (or equivalently the transition kernel) is called irreducible.

Example 6.1.8. 1. For the “ruin problem” with total fortune L, the set of es-
sential states is Xe = {0,L} = [0] t [L] and the set of unessential ones is
Xu = {1, . . . ,L−1}.

2. For the simple symmetric random walk on Z, the set of essential states is
Xe =Z= [0]. The chain is irreducible.

Theorem 6.1.9. Let B ⊆ X and mx(B) = Ex(τ0
B ) = R+∪ {+∞}. Then the function

m·(B) is the minimal positive solution of the system

mx(B) = 0 if x ∈ B

mx(B) = 1+ ∑
y∈B c

Px y my (B) if x 6∈ B.
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Markov chains on denumerably infinite sets

Proof: Exercise. (Hint, use proposition 5.2.12). ä
Definition 6.1.10. Let x ∈ X be such that Px(τx <∞) > 0. The period dx of x is
defined as

dx = gcd{n ≥ 1 :Px(Xn = x) > 0}.

If dx = 1, then the state x is called aperiodic.

Remark 6.1.11. We always have: 1 ≤ dx ≤ inf{n ≥ 1 :Px(Xn = x) > 0}.

Proposition 6.1.12. Period is a class property, i.e.

∀x ∈X,∀y ∈ [x] : dx = dy .

Proof: Since

[x ↔ y] ⇔ [x → y and y → x]

⇔ [∃n1 ≥ 1 :Px(Xn1 = y) =α> 0 and ∃n2 ≥ 1 :Py (Xn2 = x) =β> 0],

it follows that Px(Xn1+n2 = x) ≥ αβ > 0. Therefore, dx is a divisor of n1 +n2. If
Py (Xn = y) > 0, then Px(Xn1+n+n2 = x) ≥ αβPy (Xn = y) > 0, hence dx is a divisor
of n1 +n +n2. Consequently, dx is a divisor of n because it is already a divisor of
n1 +n2. Therefore, dx is a divisor of all n ≥ 1 such that Py (Xn = y) > 0, or

dx ≤ dy = gcd{n ≥ 1 :Py (Xn = y) > 0}.

Exchanging the roles of x and y , we get the reverse inequality, hence dx = dy . ä
Lemma 6.1.13. Let I be a non-empty set of strictly positive integers that is closed
for addition (i.e. for all x, y ∈ I we have x + y ∈ I ) and d = gcd I . Then, the set I
contains all the sufficiently large multiples of d.

Remark 6.1.14. In particular, if d = 1, then there exists an integer n0 = n0(I ) such
that n ≥ n0 ⇒ n ∈ I .

Proof: Since d = gcd I , there exists necessarily a finite set of integers {a1, . . . , ak } ⊆
I such that d = gcd{a1, . . . , ak }. If c is divisible by d then Bezout theorem (stat-
ing that for all a and b strictly positive integers, there exist u, v ∈ Z such that
gcd(a,b) = au+bv) implies that there exist u1, . . . ,uk ∈Z such that c = a1u1+. . .+
ak uk . For all i = 2, . . . ,k the Euclidean division by a1 yields ui = vi a1 + ri with
vi ∈Z and ri ∈Nwith 0 ≤ ri < a1. Hence,

c = a1(u1 +a2v2 + . . .+ak vk )+ (a2r2 + . . .+ak rk ),

where the first parenthesis is in Z and the second in N. Therefore, on dividing
both members by a1, we get

Z 3 (u1 +a2v2 + . . .+ak vk ) = c

a1
− (a2

r2

a1
+ . . .+ak

rk

a1
)

≥ c

a1
− (a2 + . . .+ak ).

For c sufficiently large, the left hand side becomes strictly positive, hence c ∈ I .
ä
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6.2. Recurrence and transience

Lemma 6.1.15. Let P be irreducible and possessing an aperiodic state x (i.e. dx =
1). Then for every pair of states y, z ∈ X, there exists an integer n0 = n0(y, z) ≥ 0
such that for all n ≥ n0, we have P n(y, z) > 0. In particular, all states are aperiodic.

Proof: Let Ix = {n ≥ 1 : Px(Xn = x) > 0}. Then Ix is closed for addition because,
if m,n ∈ Ix then Px(Xn+m = x) ≥ Px(Xn = x)Px(Xm = x) > 0. Hence, by previous
lemma 6.1.13, the set Ix contains all integers larger than a certain n0 (because
dx = 1). Irreducibility means that for arbitrary states y, z there exist integers m1

and m2 such that P m1 (y, x) > 0 and P m2 (x, z) > 0. Hence, for all n ≥ n0, we have

P m1+n+m2 (y, z) ≥ P m1 (z, y)P n(x, x)P m2 (x, z) > 0.

ä
Exercise 6.1.16. Let µ ∈M1(Z) and (ξn)n be a sequence of independent random
variables identically distributed with law µ. Denote by r =∑−1

z=−∞µ({z}) and con-
sider the Markov chain MC((X,X ),P,µ) with X = N and X = P (N) defined by
X0 = x ∈X and Xn+1 = (Xn +ξn+1)+ for all n ≥ 0.

1. Determine P .
2. Using a simple probabilistic argument, show that, depending on the value

of r , the state 0 is
— either accessible,
— or inaccessible.

3. Suppose that µ charges all even integers and only them. Consider the par-
tition of the space X into X0 = 2N and X1 = 2N+1.
— Are the sets X0, X1 accessible from any point x ∈X? Are they (stochas-

tically) closed?
— Are the sets X0, X1 composed of essential states?

6.2 Recurrence and transience

Definition 6.2.1. Let x ∈X. We say the state x is
— recurrent if Px(Xn = x i.o) = 1,
— transient if Px(Xn = x i.o) = 0.

Exercise 6.2.2. Let X be a MC((X,X ),P,µ) and T a stopping time. Conditionally
on T <∞ and XT = y the sequence X̃ = (XT+n)n∈N is a MC((X,X ),P,εy ).

For x ∈X, define the sequence (τ(n)
x )n∈N of random times 1 recursively by

τ(1)
x = τ1

x

τ(n+1)
x = inf{k > τ(n)

x : Xk = x} on the set {τ(n)
x <∞},

1. Beware of the difference between the symbol τ(n)
x , defined here, and the symbol τn

x =
inf{k ≥ n : Xk = x}, defined in proposition 5.2.12.
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Markov chains on denumerably infinite sets

and

T n+1
x =

{
τ(n+1)

x −τ(n)
x if τ(n)

x <∞,
0 otherwise.

Lemma 6.2.3. For n ∈ N∗, conditionally on τ(n)
x <∞, the time T n+1

x is indepen-
dent of F

τ(n)
x

and

P(T n+1
x = k|τ(n)

x <∞) =Px(τ1
x = k),

for all k.

Proof: For x and n fixed, denote by σ= τ(n)
x . Then, σ is a stopping time such that

Xσ = x on {σ < ∞}. On that set, the sequence (Xσ+n)n∈N is a MC((X,X ),P,εx),
independent of X0, . . . , Xσ. ä

Recall the notation for the occupation measureη0(x) := η0({x}) :=∑∞
n=01{x}(Xn).

Consequently,

Ex(η0(x)) = ∑
n∈N

Px(Xn = x) = ∑
n∈N

P n
xx =G0

xx = ∑
n∈N

Px(η0(x) > n),

and L1
x(x) := L{x}(x) =Px(τ1

x <∞).

Lemma 6.2.4. For n = 0,1,2, . . ., we have Px(η0(x) > n) = (Lx(x))n .

Proof: If X0 = x, then for all n ∈N, we have: {η0(x) > n} = {τ(n)
x <∞}. For n = 1 the

claim Px(η0(x) > n) = Lx(x)n is true. Suppose that it remains true for n. Then

Px(η0(x) > n +1) = Px(τ(n+1)
x <∞)

= Px(τ(n)
x <∞ and T n+1

x <∞)

= Px(T n+1
x <∞|τ(n)

x <∞)Px(τ(n)
x <∞)

= Lx(x)(Lx(x))n .

ä
Theorem 6.2.5 (Recurrence/transience dichotomy). For a MC((X,X ),P,εx) the
following dichotomy holds:

1. Either Px(τ1
x <∞) = 1, implying that the state x is recurrent and G0(x, x) =

+∞,
2. or Px(τ1

x <∞) < 1, implying that the state x is transient and G0(x, x) <+∞.

In particular, every x ∈X is either recurrent or transient.

Proof:

1. Obviously, Px(τ1
x <∞) = Lx(x) = 1. The previous lemma 6.2.4 yields

Px(η0(x) =∞) = lim
r→∞Px(η0(x) > r ) = lim

r→∞(Lx(x))r = 1.

Hence x is recurrent and

G0(x, x) = ∑
n∈N

P n(x, x) = Ex(η0(x)) =∞.
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6.2. Recurrence and transience

2. If Lx(x) =Px(τx <∞) < 1, then

G0(x, x) = ∑
n∈N

P n(x, x) = Ex(η0(x))

= ∑
r≥0

Px(η0(x) > r ) = ∑
r≥0

(Lx(x))r = 1

1−Lx(x)
<∞,

implying that Px(η0(x) =∞) = 0 (since otherwise Ex(η0(x)) diverges) that
x is transient. ä

Remark 6.2.6. Recurrence is equivalent to almost sure finiteness of return time.
However, it may happen that Px(τx <∞) = 1 and mx(x) = Ex(τx) =∞; we say that
x is null recurrent. If, on the contrary mx(x) = Ex(τx) <∞ occurs, we say that x
is positive recurrent.

Exercise 6.2.7. Recurrence and transience are class properties.

In summarising, we have the following equivalences for x ∈X:

x recurrent ⇔ Lx(x) = 1 ⇔Px(Xn = x i.o.) = 1

⇔ Px(η0(x) =∞) = 1 ⇔ Hx(x) = 1 ⇔G0(x, x) =∞
x transient ⇔ Lx(x) < 1 ⇔Px(Xn = x i.o.) = 0

⇔ Px(η0(x) <∞) = 1 ⇔ Hx(x) = 0 ⇔G0(x, x) <∞.

Definition 6.2.8. Let (Xn) be a Markov chain on a denumerably infinite set and
B ∈X . The set B is called

— transient if HB (x) :=Px(limsupn{Xn ∈ B}) = 0 for all x ∈ B ,
— almost closed if 0 <Px(liminfn{Xn ∈ B}) =Px(limsupn{Xn ∈ B}),
— recurrent if B is a communicating class and LB (x) = 1 for all x ∈ B .

The chain is called
— recurrent if for all x ∈X, [x] =X and x is recurrent,
— transient if all its recurrent classes are absorbing,
— tending to infinity if for every finite F ∈X , we have Px(τF c <∞) = 1.

Exercise 6.2.9. 1. Every recurrent class is stochastically closed.
2. All stochastically closed equivalence classes consisting of finitely many

states are recurrent.

Exercise 6.2.10. If the chain is irreducible and transient, then every finite set
F ∈X is transient.

Exercise 6.2.11. If the chain is irreducible and recurrent then all bounded (or
non-negative) harmonic functions on X are constant. (Therefore, if there exist a
non-constant bounded (or non-negative) harmonic function, the chain is tran-
sient.)
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a

b

c

d e

Figure 6.1 – The figure illustrates the phenomenon of an absorbing recurrent class in a
transient overall setting in a finite space state.

6.3 Invariant measures

In this section, we consider a Markov chain X on (X,X ) associated with the
Markov operator P . We denote by (Fn) the natural filtration of the chain.

Definition 6.3.1. A measureµ ∈M+(X ) is said invariant, or stationary, or equi-
librium , if it is P-harmonic, i.e. µP =µ.

Remark 6.3.2. Any P-harmonic measure µ is invariant and vice-versa. If µ is not
a probability measure, we extend the notion of standard Markov chain MC((X,X ),P,µ)
by introducing the measure Pµ on the trajectory space defined by its disintegra-
tion Pµ =

∫
Xµ(d x)Px into its probability components Px .

Theorem 6.3.3. Let A ∈ X ; define the average occupation measure between ex-
cursions νx(A) = Ex(

∑τx−1
n=0 1A(Xn)). If P is irreducible and recurrent then

1. νx(x) = 1, for all x ∈X,
2. νxP = νx ,
3. 0 < νx(y) <∞, for all y ∈X.

Proof:

1. It is evident that between times 0 and τx − 1, the chain X is at x only at
instant 0.

2. For n ≥ 1, {τx ≥ n} = {τx < n}c = {τx ≤ n − 1} ∈ Fn−1. Thus for y and z
different from x:

Px(Xn−1 = y, Xn = z,τx ≥ n) = Px(Xn−1 = y |Xn = z,τx ≥ n)Px(Xn = z,τx ≥ n)

= Px(Xn−1 = y,τx ≥ n)P (y, z).
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Since P is recurrent, we have Px(τx <∞, Xτx = x) = 1. For z 6= x:

νx(z) = Ex(
τx−1∑
n=0

1{z}(Xn)) = Ex(
τx∑

n=1
1{z}(Xn))

=
∞∑

n=1
Px(Xn = z,n ≤ τx)

= ∑
y∈X

∞∑
n=1

Px(Xn = z, Xn−1 = y,n ≤ τx)

= ∑
y∈X

∞∑
n=1

Ex(1Xn−1=y1n≤τxP(Xn = z|Fn−1))

= ∑
y∈X

∞∑
n=1

Ex(P (Xn−1, z)1Xn−1=y1n≤τx )

= ∑
y∈X

∞∑
n=0

Px(Xn−1 = y,n ≤ τx)P (y, z)

= ∑
y∈X

Ex(
τx−1∑
n=0

1{y}(Xn = y))P (y, z)

= ∑
y∈X

νx(y)P (y, z).

3. Irreducibility of P implies that for all x, y ∈X, there exist integers n,m ≥ 0,
depending on x, y such that P n(x, y) > 0 and P m(y, x) > 0. Hence

νx(y) = ∑
x ′∈X

νx(x ′)P n(x ′, y) ≥ νx(x)P n(x, y) = P n(x, y) > 0.

Similarly, νx(y)P m(y, x) ≤ νx(x) = 1, implying that νx(y) ≤ 1
P m (y,x) <∞.

ä

Remark 6.3.4. Thus, νx is a σ-finite measure that is harmonic for P .

Theorem 6.3.5. Let P be irreducible and µ ∈M+(X ) such that
— µ is P-harmonic, and
— µ(x) = 1 for some x ∈X.

Then µ≥ νx . If P is further recurrent, then µ= νx .
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Proof: Harmonicity of µ means that for all z ∈X, we have:

µ(z) = ∑
y0∈X

µ(y0)P (y0, z)

= µ(x)P (x, z)+ ∑
y0 6=x

µ(y0)P (y0, z)

= P (x, z)+ ∑
y0 6=x

(
∑

y1∈X
µ(y1)P (y1, y0))P (y0, z)

= P (x, z)+ ∑
y0 6=x

P (x, y0)P (y0, z)+ ∑
y0,y1 6=x

µ(y1)P (y1, y0)P (y0, z)

...

= P (x, z)+ ∑
y0 6=x

P (x, y0)P (y0, z)+ . . .+ ∑
y0,...,yn−1 6=x

P (x, y0) · · ·P (yn−1, yn−1P (yn−1, z)

+ ∑
y0,...,yn−1 6=x,yn∈X

µ(yn)P (yn , yn−1) · · ·P (y0, z)

≥ P (x, z)+ ∑
y0 6=x

P (x, y0)P (y0, z)+ . . .+ ∑
y0,...,yn−1 6=x

P (x, y0) · · ·P (yn−1, yn−1P (yn−1, z)

= Px(X1 = z,τx ≥ 1)+ . . .+Px(Xn = z,τx ≥ n)

−→
n→∞ Ex(

∞∑
n=1

1{Xn=z;τx≥n})

= νx(z).

If P is additionally recurrent, then νx is harmonic by theorem 6.3.3 and κ = µ−
νx ≥ 0 by the previous result and further κ is harmonic as a difference of two
harmonic measures. Irreducibility of P implies that for every z ∈ X, there exists
an integer n such that P n(z, x) > 0. Now, harmonicity of κ reads:

κ(x) =µ(x)−νx(x) = 1−1 = 0 = ∑
z ′∈X

κ(z ′)P n(z ′, x) ≥ κ(z)P n(z, x),

implying that 0 ≤ κ(z) ≤ κ(x)
P n (z,x) = 0. ä

Theorem 6.3.6. Let P be irreducible. The following are equivalent:

1. All states are positive recurrent.
2. There exists a positive recurrent state.
3. Let π ∈ M+(X ) be defined by π(x) = 1

mx (x) , for all x ∈ X. Then π is a P-
harmonic probability measure.

Proof:
1 ⇒ 2: Obvious.
2 ⇒ 3: Suppose that the state x is positive recurrent, hence recurrent. Irre-

ducibility of P implies then recurrence of P . The theorem 6.3.3 guarantees
then that νx is P-harmonic. Now,

νx(X) = ∑
y∈X

νx(y) = Ex

(
τx−1∑
n=0

1X(Xn)

)
= Exτx = mx(x) <∞,

hence π = νx
νx (X) = νx

mx (x) is a P-harmonic probability measure, verifying

further π(x) = νx (x)
mx (x) = 1

mx (x) .
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3 ⇒ 1: For every x, y ∈X, irreducibility of P implies the existence of an integer
n such that P n(x, y) > 0. Invariance of π reads: π(y) =∑

z∈Xπ(z)P n(z, y) ≥
π(x)P n(x, y) > 0. Sinceπ is a probability,π(X) =∑

y∈Xπ(y) = 1, on defining

λ(y) = π(y)
π(x) yields λ(x) = 1 and harmonicity of λ. By virtue of theorem

6.3.5, λ≥ νx . Consequently,

mx(x) = νx(X) = ∑
y∈X

≤
∑

y∈Xπ(y)

π(x)
= π(X)

π(x)
= 1

π(x)
<∞,

implying positive recurrence of x, hence recurrence. Since P is irreducible
and x is arbitrary P itself is recurrent and the previous inequality is as a
matter of fact an equality. Therefore, each x is positive recurrent.

ä
Exercise 6.3.7. Let X be a simple symmetric random walk on Z. Show that

— the kernel P is irreducible and recurrent;
— the counting measure κ on Z is invariant;
— every other invariant measure for P is a scalar multiple of κ;
— the chain is null recurrent.

Exercise 6.3.8. Recurrence combined with irreducibility guarantees the exis-
tence of an invariant measure. Give an example showing that the converse is
in general false if the invariant measure is not a probability.

6.4 Convergence to equilibrium

Although direct spectral methods, very much comparable to the finite case
exist to prove convergence to equilibrium for chains on denumerably infinite
spaces, we give here a purely probabilistic method, based on the idea of cou-
pling.

Theorem 6.4.1. Let X be a MC((X,X ),P, ·) and suppose that P is irreducible and
aperiodic and possesses an invariant probability π. Then for every initial µ ∈
M1(X ) we have

lim
n→∞Pµ(Xn = y) =π(y), ∀y ∈X.

In particular limn→∞ P n(x, y) =π(y), for all x, y ∈X.

Proof: Let Y be a MC((X,X ),P,π) independent of X . Considering simultane-
ously both chains, requires extending the trajectory space. Thus the sequence
of pairs (Xn ,Yn)n∈N is a MC((X×X,X ⊗X ), P̂ ,µ⊗π), where P̂ ((x, y), (x ′, y ′)) =
P (x, x ′)P (y, y ′). On the underlying abstract probability space (Ω,F ,P) (extended
if necessary to hold the sequence (Xn ,Yn)n∈N), we define, for an arbitrary fixed
state z0 ∈X, the random time T = inf{n ≥ 1 : Xn = Yn = z0}.

First step: establishing Pµ⊗π(T <∞) = 1. Aperiodicity and irreducibility of P im-
plies that there exists a sufficiently large integer n such that P̂ n((x, y), (x ′, y ′)) > 0,
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for all x, x ′, y, y ′ ∈ X. Therefore, P̂ is irreducible. Obviously P̂ verifies the invari-
ance condition (π⊗π)P̂ =π⊗πwith an invariant probability π⊗π ∈M1(X ⊗X );
consequently, P̂ is positive reurrent. As such, it verifies P̂µ̂(τ̂(z0,z0) <∞) = 1. Now,
it is immediately seen that T = τ̂(z0,z0), establishing thus that the two independent
chains X and Y will meet at point z0 in an almost surely finite time.

Second step: coupling. Define new (X,X )-valued processes (Zn)n∈N and (Z ′
n)n∈N

as follows:

Zn =
{

Xn if n < T
Yn if n ≥ T,

Z ′
n =

{
Yn if n < T
Xn if n ≥ T.

These processes allow introducing new (X×X,X ⊗X ) processes W and W ′ by
defining Wn = (Xn ,Yn) and W ′

n = (Zn , Z ′
n), for all n ∈N. Now strong Markov prop-

erty implies that the translated chain (WT+n)n∈N is a MC((X×X,X⊗X ), P̂ ,ε(z0,z0)),
independent of (X0,Y0), . . . , (XT−1,YT−1). Similarly, (W ′

n)n∈N is a MC((X×X,X ⊗
X ), P̂ ,µ⊗π), while (Zn)n∈N is a MC((X,X ),P,µ).

Third step: establishing convergence to equilibrium. By virtue of the definition of
(Zn), we have:

P̂µ⊗π(Zn = y) = P̂µ⊗π(Xn = y ;n < T )+ P̂µ⊗π(Yn = y ;n ≥ T ).

Now

|Pµ(Xn = x)−π(x)| = |P̂µ⊗π(Zn = x)−π(x)|
= |P̂µ⊗π(Zn = x)−Pπ(Yn = x)|
= |P̂µ⊗π(Zn = x;n < T )− P̂µ⊗π(Z ′

n = x;n < T )|
≤ P̂µ⊗π(n < T )
−→

n→∞ 0,

the last line holding because T <∞ almost surely. ä
Proposition 6.4.2. Let P be irreducible. Then, there exist an integer d ≥ 1 and a
partition X=X0 t . . .tXd−1 such that

1. if x ∈Xi and y ∈X j , then P n(x, y) = 0 unless n−( j −i ) is divisible by d, and
2. for all r ∈ {0, . . . ,d −1}, for all x, y ∈ Xr , there exists n0 = n0(x, y) such that

for all n ≥ n0 we have P nd (x, y) > 0.

Proof: Let d = dx for some x ∈X. Since the chain is irreducible, it is composed of
a single communicating class, say [x] =X. Hence, for all y ∈X, dy = d . Let m1 be
such that Px(Xm1 = y) > 0 and m2 such that Py (Xm2 = x) > 0. Then, Py (Xm1+m2 =
y) ≥ Py (Xm2 = x)Px(Xm1 = y) > 0, therefore m1 +m2 is divisible by d . If Px(Xn =
y) > 0, then Py (Xn+m2 = y) > 0; hence n+m2 is divisible by d . Combined with the
divisibility of m1 +m2 yields n −m1 divisible by d ; otherwise stated, there exists
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6.5. Ergodic theorem

an integer k ≥ 0 such that n = kd +m1. But for the same reason, m1 = l d + r with
some integer l ≥ 0 and some r ∈ {0, . . . ,d −1}. Thus, n = (k+ l )d +r , with k+ l ≥ 0,
yielding P n(x, y) > 0 only if n = j d + r . Chose an arbitrary a ∈X and define

Xr = {y ∈X :Pa(Xmd+r = y) > 0, for an m ≥ 0}.

If x ∈Xi , y ∈X j , and P n(x, y) > 0, then there exists m0 ≥ 0 such that Pa(Xm0d+i =
x) > 0, hence Pa(Xm0d+i+n = y) > 0. Therefore, n +m0d + i = kd + j for some
k ≥ 0, showing that n − ( j − i ) is a multiple of d .

The second claim is evident. ä
Remark 6.4.3. When Xn ∈Xr implies Xn+1 ∈Xr+1 mod d , we say that (Xr )r=0,...,d−1

are the cyclic classes of the chain. The corresponding partition is the cycle de-
composition of the state space.

Proposition 6.4.4. Let P be irreducible with period d ≥ 1, X0, . . . ,Xd−1 its cyclic
classes, and µ ∈ M1(X ) an arbitary probability such that µ(X0) = 1. Then for all
r ∈ {0, . . . ,d −1} and all y ∈Xr ,

lim
n→∞Pµ(Xnd+r = y) = d

my (y)
.

In particular, for all x ∈X0, we have limn→∞ P nd+r (x, y) = d
my (y) .

Proof: On defining ν= µP r , we see that ν(Xr ) = 1, by virtue of the previous theo-
rem. Now the process (X̃n)n∈N defined by X̃n = Xnd+r is a MC(Xr ,Xr ),P n ,ν) that
is irreducible and aperiodic on Xr . For τ̃y = inf{n ≥ 1 : X̃n = y}, we have for all

y ∈Xr : Ey (τ̃y ) = my (y)
d . Hence Pµ(Xnd+r = y) = P̃ν(X̃n = y) → my (y)

d . ä
Remark 6.4.5. If my (y) =∞ (i.e. the state — hence the chain — is either transient
or null recurrent), then limn→∞ P nd+r (x, y) = 0, for all x. We say that the mass
escapes at infinity.

6.5 Ergodic theorem

The archetype of ergodic 2 theorems in probability is the strong law of large
numbers, stating that for a sequence of independent identically distributed ran-
dom variables (ξn) with Eξ1 = m ∈ [0,∞], the “time” average ξ1+...+ξn

n converges

2. The term “ergodic” has been coined by the Austrian physicist Ludwig Boltzmann. In its ini-
tial formulation it applied to macroscopic physical systems and gave, for the first time, an expla-
nation why physical systems macroscopically evolve irreversibly towards equilibrium although
microscopically they are governed by time-reversible physical laws. Boltzmann also proved, un-
der the so called ergodic hypothesis, that if physical quantities are averaged over large times,
statistical fluctuations disappear so that they attain a deterministic value. Nowadays, ergodic
theory is an independent branch of mathematics, at the (common!) frontier of measure theory,
geometry, group theory, operator algebras, stochastic processes, etc.
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almost surely to the “space” average m. This theorem has several extensions to
variables that are neither independent nor identically distributed. For Markov
chains it reads:

Theorem 6.5.1 (Ergodic theorem for Markov chains). Let P be irreducible and
µ ∈M1(X ). Then,

1. the empirical occupation probability 3 converges almost surely, more pre-
cisely

lim
n→∞

η0
n(x)

n
= 1

mx(x)
,Pµ-a.s.;

2. if additionally, the chain is positive recurrent, then for all f ∈ bX , the tra-
jectory averages of f converge almost surely to the integral of f with respect
to the invariant measure, more precisely

lim
n→∞

1

n

n−1∑
k=0

f (Xk ) = f :=
∫
X
π(d x) f (x) = ∑

x∈X
π(x) f (x),

where π is the unique invariant probability of the chain.

Proof:

1. If P is transient then every state is visited only finitely many times, so that
η0(x) <∞ almost surely. Thus

η0
n(x)

n
≤ η0(x)

n
→ 0 = 1

mx(x)

and the claim is proved.
Suppose therefore that P is recurrent and let x ∈ X be fixed. Recurrence
of x entails τx < ∞ almost surely. Thus the process X̃ defined, for all n,
by X̃n = Xτx+n is a MC(X,X ),P,εx) independent of X0, . . . , Xτx . Thus, for

n > τx , we have: η0
n(x) = η0

τx
(x)+ η̃0

n−τx
(x). Since

η0
τx (x)

n ≤ τx
n → 0 (because

Px(τx <∞) = 1), it is enough to consider µ= εx .
Recall that we have introduced the sequence of random times T r+1

x = τ(r+1)
x −

τ(r )
x as the time span between two successive returns to x and shown in

lemma 6.2.3 thatPx(T (r+1)
x = n|τ(r )

x <∞) =Px(τx = n). Therefore, Ex(T (r )
x ) =

mx(x) for all r . Now, T (1)
x +. . .+T

(η0
n (x)−1)

x ≤ n−1 while T (1)
x +. . .+T

(η0
n (x))

x ≥ n,
so that

T (1)
x + . . .+T

(η0
n (x)−1)

x

η0
n(x)

≤ n

η0
n(x)

≤ T (1)
x + . . .+T

(η0
n (x))

x

η0
n(x)

.

Since the random variables T (r )
x are independent and identically distributed,

the strong law of large numbers guarantees that limn→∞
T (1)

x +...+T (n)
x

n = mx(x)
almost surely. On the other hand, recurrence of P guarantees that limn→∞η0

n(x) =
∞. Combining these two results with the above inequalities implies that
limn→∞ n

η0
n (x)

= 1
mx (x) .

3. We recall that the occupation measure up to time n reads η0
n(x) =∑n−1

k=0 1{x}(Xk ).
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2. If P possesses an invariant probability π, then

| 1

n

n−1∑
k=0

f (Xk )− f | = | ∑
x∈X

(
η0

n(x)

n
−π(x)) f (x)|.

Since f ∈ bX , we can without loss of generality assume that | f |∞ ≤ 1, so
that for any subsetY⊆X the right hand side of the above equation can be
majorised by

| 1

n

n−1∑
k=0

f (Xk )− f | ≤ | ∑
x∈Y

(
η0

n(x)

n
−π(x)) f (x)|+ | ∑

x∈Yc
(
η0

n(x)

n
−π(x)) f (x)|

≤ | ∑
x∈Y

η0
n(x)

n
−π(x)|+ ∑

x∈Yc
(
η0

n(x)

n
+π(x))

≤ 2
∑
x∈Y

|η
0
n(x)

n
−π(x)|+2

∑
y∈Yc

π(x).

Now, π(X) = 1, hence for all ε > 0, there exists a finite Y ⊆ X such that

π(Yc ) < ε/4. Since, on the other hand, Pµ
(
η0

n (x)
n →π(x), for all x ∈X

)
= 1,

for that ε we can chose N = N (ω,ε) such that for n ≥ N ,
∑

y∈Y |η
0
n (x)
n −

π(x)| < ε/4. Thus, finally, | 1
n

∑n−1
k=0 f (Xk )− f | < ε.

ä

6.6 Semi-martingale techniques for denumerable Markov
chains

The general setting in this section will be that of a X = (Xn)n∈N. The chain
will be of MC((X,X ),P,εx); however, the underlying abstract probability space
(Ω,F ,P) will also be tacitly considered, either as identified with the trajectory
space or larger than it. Measurable functions f : X→ R+ will be also considered
throughout the section verifying some conditions; applied on the chain, they
transform it into a semi-martingale process Zn = f (Xn). The asymptotic prop-
erties of the chain are obtained as stability properties of the process obtained
by transformation. The functions f allowing such a study are termed Lyapunov
functions. They constitute an essential component of the constructive theory of
Markov chains [14].

6.6.1 Some historical remarks on Lyapunov method

Introduction
historique de
fonctions de
Lyapunov pour
équa-diff [31]

Introduction
historique de
fonctions de
Lyapunov pour
équa-diff [31]
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6.6.2 Foster’s criteria

In [15], Foster established criteria for recurrence/transience of Markov chains.
Here we give a slightly more general form of these criteria. Since for every x ∈X,
the P (x, ·) is a probability on X , it is meaningful to ask integrability with respect
to this measure. We denote by

Dom(P ) = { f ∈ mX : ∀x ∈X,
∫
X

P (x,d y) f (y) <∞},

and analogously Dom+(P ) for non-negative functions. For a f ∈Dom(P ), we de-
fine D f (x) = (P − I ) f (x) = ∫

XP (x,d y) f (y)− f (x).

Theorem 6.6.1 (Foster’s criterion for positive recurrence). Let X be an irreducible
MC((X,X ),P,µ). The following are equivalent:

1. X is positive recurrent.
2. There exists a triple (V ,F,ε), where V ∈Dom+(P ), ε> 0, and F ∈ X a finite

set, such that: DV (y) ≤−ε for all y 6∈ F .

Proof:
1 ⇒ 2: Let x ∈X be fixed, F = {x}, and τF = inf{n ≥ 1 : Xn ∈ F }. Positive recur-

rence entails that for every Ey (τF ) <∞ for all y ∈ F . Define subsequently:

V (y) =
{

0 if y ∈ F,
Ey (τF ) if y 6∈ F.

Now, for y 6∈ F :

DV (y) = E(V (Xn+1)−V (Xn)|Xn = y) = ∑
z∈X

Py zV (z)−V (y)

= ∑
z∈F c

Py zEz(τF )+ ∑
z∈F c

Py z ·0−Ey (τF ) = Ey (τF −1)−Ey (τF ) =−1,

the last line following from the observation, valid for all y ∈ F ,

∑
z∈F c

Py zEz(τF ) = ∑
z∈F c

Py z

∞∑
k=1

kPz(τF = k) =
∞∑

k=1
kPy (τF = k +1)

=
∞∑

k=1
kPy (τF −1 = k) = Ey (τF −1).

This observation establishes claim DV (y) ≤ −ε with ε = 1. Additionally,
the last equation is equivalent to stating:

∞> Ey (τF )−1 = ∑
z∈F c

Py zEz(τF ) = ∑
z∈F c

Py zV (z) = E(V (Xn+1)|Xn = y),

establishing thus claim V ∈Dom+(P ).
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2 ⇒ 1: For n ≥ 0, define Fn = σ(X0, . . . , Xn), Wn = V (Xn), and τF = inf{n ≥ 1 :
Xn ∈ F }. Then, the strict supermartingale condition entails

E(W(n+1)∧τF −Wn∧τF |Xn = y) ≤−ε1τF>n .

Note that τF > n means, in particuar, that y 6∈ F . For y 6∈ F , the last in-

equality and theorem C.1.1 imply Ey (τF ) ≤ Ey (τF )
ε

= V (y)
ε

<∞. Now, since
for all y we have:

Ey (τF ) = 1+ ∑
z∈F c

Py zEz(τF ) ≤ 1+ 1

ε

∑
z∈F c

Py zV (z)

≤ 1+ 1

ε

∑
z∈X

Py zV (z) = 1

ε
E(V (Xn+1)|Xn = y) <∞.

In all situations, we have for all z ∈X, Ez(τF ) <∞, implying positive recur-
rence of the chain because for one z, hence for all (due to irreducibility),
Ez(τz) <∞.

ä
Theorem 6.6.2. Let X be an irreducible MC((X,X ),P,µ), where cardX = ℵ0. The
following are equivalent:

1. X is transient.
2. There exists a pair (V , A) where V ∈Dom+(P ) and A ∈X such that:

(a) DV (y) ≤ 0, for y 6∈ A and
(b) there exists y 6∈ A such that V (y) < infz∈A V (z).

Proof:
2 ⇒ 1: Define Wn = V (Xn∧τA ) for n ≥ 0. Then, claim a) guarantees that (Wn)

is a positive supermartingale. For arbitrary x ∈X, we have

ExWn = ExW0 +
n−1∑
k=0

Ex(Wk+1 −Wk ).

On the event {τA ≤ n} the summand on the right hand side of the above
equality is 0 while on {τA > n} is negative. Therefore, in all siutations,
ExWn ≤ ExW0 =V (x). Suppose that the chain is not transient. ThenPx(τA <
∞) = 1. Since Wn → W∞ almost surely, by vitrue of the supermartingale
convergence theorem, we have equivalently: V (Xn∧τA ) → V (XτA ), almost
surely. Fatou’s lemma yields:

Ex(V (XτA )) = Ex(liminf
n

Wn) ≤ liminf
n

ExWn ≤ ExW0 =V (x),

which contradicts claim b) (because XτA ∈ A). We conclude ad absurdum
that the chain must be transient.

1 ⇒ 2: Fix some x ∈X and define A = {x} and f :X→R+ by

V (y) =
{

1 if y ∈ A
Py (τA <∞) if y 6∈ A.
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Then, for y 6∈ A:

DV (y) = E(V (Xn+1)−V (Xn)|Xn = y)

= ∑
z∈X

Py zV (z)−V (y) = Py x +
∑

z∈Ac
Py zV (z)−V (y)

=Py (τA = 1)+ ∑
z∈Ac

Py z

∞∑
N=1

Pz(τA = N )−
∞∑

N=1
Py (τA = N ) = 0,

guaranteeing thus a). If the chain is transient, then for all y 6= x:

V (y) =Py (τA <∞) < 1 =V (x) = inf
z∈A

V (z).

ä

Since the state space X is not necessarily ordered, we need the following

Definition 6.6.3. On a denumerably infinite set X, we say a function f :X→ R+
tends to infinity, and write f →∞, if for every n ∈N, the set Xn = {x ∈X : f (x) ≤
n} is finite.

Theorem 6.6.4. Let X be an irreducible MC((X,X ),P,µ), the set X being denu-
merably infinite. The following are equivalent:

1. X is recurrent.
2. There exists a positive measurable function V ∈Dom+(P ) tending to infin-

ity, and a finite set F ∈X such that DV (y) ≤ 0, for all y 6∈ F.

Proof:
2 ⇒ 1: Let Wn = V (Xn∧τF ), for n ≥ 0. From b) follows that (Wn) is a super-

martingale; therefore, W∞ = limn Wn exists almost surely. Fatou’s lemma
implies that

Ex(W∞) ≤ liminf
n

Ex(Wn) ≤ Ex(W0) =V (x).

Suppose now that X is transient. Irreducibility implies then that the finite
set F ∈ X is transient, so that Px(τF =∞) = sx > 0. Irreducibility implies
that not only F but every finite set F ′ ∈ X is transient, i.e. η0(F ′) <∞ al-
most surely. Denote by KF ′ = sup{V (x), x ∈ F ′}. It is then obvious (why?)
that

{η0(F ′) <∞} ⊆ {liminfV (Xn) ≥ KF ′}.

For all a ≥ 0, let Fa = {x ∈X : V (x) ≤ a}. Then, for c ≥ KF , the set Fc is finite
and contains F . Since Fc is finite, it follows thatPx(η0(Fc ) <∞) = 1. Hence

Ex(W∞) = Ex(liminfWn) ≥ Ex(liminfWn1{τF=∞}1{η0(Fc )<∞})

≥ cPx(η0(Fc ) <∞;τF =∞) ≥ csx > 0.

Since c is arbitrary, it follows that Ex(W∞) =∞, in contradiction with Ex(W∞) ≤
V (x). We conclude ad absurdum that X is recurrent.
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1 ⇒ 2: Since the setX is denumerably infinite, there exists a bijection b :X→
N. Introduce a new chain X̂ on X evolving with the transition matrix P̂
defined by

P̂x y =
{

1 if b(x) = b(y) = 0
Px y if b(x) ≥ 1.

Denote also by XN = {b ≥ N }, T (N ) := τ̂XN , and define, for arbitrary x ∈X
and N ∈N,

φx(N ) =
{

1 if x ∈XN ,
P̂x(T (N ) <∞) if x 6∈XN .

Since for all a ∈R+, the set Fa = { f ≤ a} is finite, irreducibility of the chain
implies that all Fa will be transient, i.e. η0(Fa) <∞ almost surely. Denote
KFa = inf{V (x), x 6∈ Fa}. Obviously KFa ≤ a. Moreover, φb−1(0)(N ) = 0 for all
N > 0. It is also a simple observation (exercise 4) that limN→∞φx(N ) = 0
for all x ∈X. Therefore, for all k ≥ 1, there exists an integer Nk (with (Nk )
an increasing sequence), such that φx(Nk ) < 1/2k for all x ∈ {b ≤ k}.

First step: Fix some N and start by defining V (x) =φx(N ) and F = {b−1(0)}.
Then, for x 6∈ F :

DV (y) = E(V (Xn+1)−V (Xn)|Xn = x) = ∑
y∈X

Px yV (y)−V (x)

= ∑
y∈{b≤N−1}

Px yV (y)+ ∑
y∈{b≥N }

Px yV (y)−V (x)

= ∑
y∈{b≤N−1}

Px yφy (N )+ ∑
y∈{b≥N }

Px y 1−V (x)

=
∞∑

k=1

∑
y∈{b≤N−1}

Px yPy (T (N ) = k)+Py (T (N ) = 1)−V (x)

=
∞∑

k=1

∑
y∈{b≤N−1}

Px yPy (T (N ) = k)+Px(T (N ) = 1)−V (x)

=Px(T (N ) <∞)−V (x) ≤ 0.

Therefore, 2) is verified for this particular V .

Second step: Define now V (x) =∑∞
k=1φx(Nk ) <∞ (becauseφx(Nk ) < 1/2k ).

Since every individual term of the series defining f verifies 2), it follows
that f also does. It remains to show that f tends to infinity. Consider
V (b−1(i )) =∑∞

k=1φb−1(i )(Nk ) <∞. On the other hand, limi→∞φb−1(i )(Nk ) =
1 for all k. Therefore

∞=
∞∑

k=1
1 =

∞∑
k=1

liminf
i

φb−1(i )(Nk ) ≤ liminf
i

∞∑
k=1

φb−1(i )(Nk ) = liminf
i

V (b−1(i )),

by Fatou’s lemma. This remark concludes the proof.

4. The idea of the proof is the following: since X is recurrent, the chain starting at x returns to
x in a finite time. Therefore the number of sites visited between two successive visits at x is finite.
We conclude by choosing N sufficiently large, e.g. N > sup{b(Xn) : n = 0, . . . ,τ0

x }.
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ä
Exercise 6.6.5. Let X be a simple random walk onNwith transition kernel

Px y =


1 if x = 0, y = 1;
p if x > 0, y = x −1;
1−p if x > 0, y = x +1;
0 otherwise;

where p ∈]0,1[. Let λ= ln p
1−p . Show that

1. The chain is positive recurrent if, and only if, λ> 0.
2. The chain is null recurrent if, and only if, λ= 0.
3. The chain is transient if, and only if, λ< 0.

Exercise 6.6.6. Let (px)x∈N be a sequence of independent and identically dis-
tributed [0,1]-valued random variables whose law has not atoms in 0 or 1. Let X
be a simple random walk in the random environment (px) on N with transition
kernel

Px y =


1 if x = 0, y = 1;
px if x > 0, y = x −1;
1−px if x > 0, y = x +1;
0 otherwise.

Let λ= E(ln p1
1−p1

). Show that

1. The chain is positive recurrent if, and only if, λ> 0.
2. The chain is null recurrent if, and only if, λ= 0.
3. The chain is transient if, and only if, λ< 0.

6.6.3 Moments of passage times

Compléter [2,
32].
Compléter [2,
32].

6.7 Time reversal

Renversement du temps, reversibilité, lien avec l’existence d’une probabilité
invariante, lien avec les frontières (chapitre suivant).
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7
Boundary theory for transient chains

on denumerably infinite sets

7.1 Motivation

From the theory of harmonic functions in R2, we know (see [3] for instance)
that every h :R2 →R+ that is harmonic (∆h = 0) in the open unit diskD= B(0,1) is
in one-to-one correspondence with a Borel measure µh on ∂D = S1 through the
Poisson kernel (recall also remark 5.2.5). In polar coordinates, this correspon-
dence is defined through

h(r exp(iθ)) =
∫
∂D

K (r,θ,φ)µh(dφ),

where the Poisson kernel reads

K (r,θ,φ) = K ((r,θ); (1,φ)) := 1− r 2

1−2r cos(θ−φ)+ r 2
.

The purpose of this section is to provide, in the case of a transient P , an ana-
logue of the previous formula for P-harmonic, non-negative functions h :X→R+
through an integral Martin-Poisson representation

h(x) =
∫
∂X

K (x,α)µh(dα).

Obviously, not only the boundary kernel K must be defined but also the meaning
of the boundary of the state space ∂X and the measure µh . This representation
will be useful in studying the asymptotic behaviour of the chain.
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7.2. Martin boundary

Several comments are necessary at this level. The first concerns the abstract
space ∂X playing the role of the boundary. It will turn out that this space (more
precisely a subset of this space) will be identified to the set of P-harmonic func-
tions. Secondly, the mere notion of compactification implies the definition of
a topology on the space that will defined in terms of the boundary kernel K ;
the corresponding boundary space is termed the Martin boundary. As for the
convexity considerations, the aforementioned representation goes beyond the
Krein-Milman theorem 1 to propose a Choquet decomposition 2 of the set of har-
monic functions. Finally, a measure-theoretic notion of boundary can be intro-
duced (the Poisson boundary), indexed by bounded harmonic functions, that is
conceptually simpler than the topological one.

Boundary theory for transient Markov chains is far from being trivial; a cer-
tain number of important ramifications to other mathematical fields can be ob-
tained as a by-product of this study. For this reason, only an elementary approach
to the boundary theory of transient chains on denumerably infinite state spaces
is given here. This chapter heavily relies on more complete original references as
[11, 25, 52] or more pedagogical ones [28, 43].

7.2 Martin boundary

In the sequel, we assume that the chain is transient, i.e. for all x, y ∈ X, we
have G0(x, y) <∞; for most results irreducibility must also be assumed, although
this latter condition can be slightly relaxed for some specific results where can be
replaced by accessibility of all states from a reference point o ∈X.

Definition 7.2.1. (Boundary kernel) Suppose that there exists o ∈ X such that
G0(o, y) > 0 for all y ∈X. Define the boundary kernel K by

K (x, y) = G0(x, y)

G0(o, y)
.

Lemma 7.2.2. Assume that there exists a state o ∈X from which all other states are
accessible i.e. ∀y ∈X : G0(o, y) > 0. Then there exist constants Cx > 0 (independent
of y) such that

K (x, y) ≤Cx ,∀y ∈X.

1. It is recalled that the Krein-Milman theorem states: Let C be a non-empty compact convex
subset of a topological vector space. Then C = co(Extr(C )).

2. It is recalled that the Choquet theorem states: Let C be a non-empty compact convex subset
of a topological vector spaceY. Then for every y ∈C there exists a measure ν on B(Extr(C )) such
that y = ∫

Extr(C )ν(α)α.
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Boundary theory for transient chains on denumerably infinite sets

Proof: We have ∑
z∈X

P m(x, z)G0(z, y) = ∑
z∈X

∞∑
n=0

P m(x, z)P n(z, y)

=
∞∑

n=m
P n(x, y)

= G0(x, y)−
m−1∑
n=0

P n(x, y).

Since ∀x ∈X, the potential kernel verifies G0(o, x) > 0, it follows that there exists
an integer m ≥ 0 such that P m(o, x) > 0. Therefore G0(o, y) ≥∑

z∈XP m(o, z)G0(z, y) ≥
P m(o, x)G0(x, y), hence K (x, y) ≤ 1

P m (o,x) :=Cx <∞. ä
Theorem 7.2.3 (Martin compactification). For a Markov chain MC((X,X ),P,µ)
which is irreducible and transient, there exist a compact metric space (X̂M ,ρ) and
a homeomorphic embedding ι :X→ X̂M .

Definition 7.2.4. (Martin boundary) For a Markov chain as in theorem 7.2.3
above, the set ∂XM = X̂M \X is called the Martin boundary of the chain.

Proof of theorem 7.2.3: For the denumerable family of constants C = (Cx)x∈X, as
in lemma 7.2.2, and an arbitrary sequence w = (wx)x∈X ∈ `1(X) of strictly positive
real constants wx > 0, set

ρ(x, y) := ∑
z∈X

wz
|K (z, x)−K (z, y)|+ |δzx −δz y |

Cz +1
, for x, y ∈X.

The condition w ∈ `1(X) guarantees that the series defining ρ converges uni-
formly in x, y . Additionally, ρ(x, y) ≥ 0 for all x, y and ρ(x, x) = 0 for all x; more-
over, if x 6= y then ρ(x, y) > 0. Finally, for all w, x, y ∈X, the triangular inequality
ρ(w, y) ≤ ρ(w, x)+ρ(x, y) holds. Hence ρ is a distance on X. Recall that for a se-
quence (yn)n∈N of points inX, we write limn→∞ yn =∞ if the sequence eventually
leaves any finite set F ⊂ X and never returns (converges within X̂ = X∪ {∞}, the
one-point compactification ofX). Consequently, a sequence (yn)n∈N is a Cauchy
sequence in the metric space (X,ρ) when

— either there exist y ∈X and n0 such that for all n ≥ n0: yn = y (so that (yn)
converges within X);

— or else limn→∞ yn =∞ and limn→∞ K (x, yn) exists for every x.
Now the metric space (X,ρ) is embedded as usual into a complete metric

space (X̂M ,ρ) by considering equivalence classes of Cauchy sequences. Consider
now an arbitrary sequence (yn)n∈N of elements of X. Either there exists a finite
subset F ⊆X visited infinitely often by the sequence (yn), or the sequence leaves
any finite set and (eventually) never returns. Consider these two cases separately:

— If (yn)n returns infinitely often in F , then we can extract a subsequence
(ynk )k always remaining in F . Consequently, there exists a point y ∈ F that
is visited infinitely often by (ynk )k , i.e. there exists a subsequence (ynkl

)l∈N
such that ynkl

= y for all l hence, according to the first condition above,
this subsequence is Cauchy.
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7.2. Martin boundary

— If (yn) eventually leaves any finite set and never returns, the sequence of
numbers κn = K (z, yn) ≤ supy∈XK (z, y) ≤ Cz < ∞ is bounded. Since the
interval [0,Cz] is compact in R, the sequence (κn) has a converging subse-
quence κnk = K (z, ynk ), for k ∈ N, i.e. limk→∞ K (z, ynk ) exists. Hence, ac-
cording to the second condition above, the subsequence (ynk ) is Cauchy.

Since the space (X̂M ,ρ) is complete, we conclude that in both cases, from every
sequence of X (hence of X̂) we can extract a converging subsequence. Hence the
space (X̂M ,ρ) is compact.

Since X is discrete, the boundary kernel K (x, y) is a continuous function in y
for each fixed x ∈X. By the definition of ρ it follows that

|K (x, y)−K (x, z)| ≤ Cx +1

wx
ρ(y, z).

Thus, for each x ∈X, the function K (x, ·) has a unique extension to X̂M as a con-
tinuous function of its second argument. Since K (o, y) = 1 for every y ∈X, it fol-
lows that K (o,α) = 1 for all α ∈ X̂M . The complete compact metric space (X̂M ,ρ)
is the Martin compactification of X. It obviously depends on P and possibly on
the reference point o. ä

Definition 7.2.5. For a transient Markov chain MC((X,X ),P,µ) and X̂M the Mar-
tin compactification defined in theorem 7.2.3, the function K : X× X̂M → R+ is
called the Martin kernel corresponding to the transition kernel P and the refer-
ence point o.

Corollary 7.2.6. Let K be the Martin kernel corresponding to the transient Markov
kernel P and reference point o. Then

— for all α ∈ ∂XM , K (o,α) = 1,
— for all x ∈X, there exists Cx > 0 such that: K (x,α) ≤Cx ,∀α ∈ ∂XM .

Remark: The terms δzx and δz y in the definition of ρ in the previous proof are

not necessary to make ρ a metric. If ρ′(x, y) :=∑
z∈Xwz

|K (z,x)−K (z,y)|
Cz+1 , for x, y ∈X,

then ρ′(x, y) = 0 still implies x = y (why?). The raison d’être of these terms is more
profound. Suppose that we had a sequence (yn) of elements of X — eventually
leaving any finite set (i.e. such that yn →∞) — and a y ′ ∈X such that for all x ∈X,
limn→∞ K (x, yn) = K (x, y ′) implying that limn→∞ρ′(yn , y ′) = 0. Therefore what
should be a non-convergent Cauchy sequence (yn) converges actually to y ′ ∈X.
The result should be that the setXwould non be open in the completion X̂M and
the boundary ∂XM = X̂M \Xwould not be closed in X̂M . Using ρ instead prevents
this phenomenon from occurring, since then ρ(yn , y ′) ≥ wz

Cz+1 > 0 whenever yn 6=
y ′.

Lemma 7.2.7. Let the boundary kernel K be defined as in definition 7.2.1. Then
the function K (·,α) is P-superharmonic for all α ∈ ∂XM .
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Proof: Fix an arbitrary y ∈X and define r (y ′) = 1{y}(y ′)
G0(o,y ′) . Then

G0r (x) = ∑
n∈N

∑
y ′∈X

P n(x, y ′)r (y ′) = ∑
n∈N

P n(x, y)

G0(o, y)
= K (x, y),

showing that K (·, y) is a potential — hence P-superharmonic — for every y ∈X.
If yn →α ∈ ∂XM , by Fatou’s lemma∑
z∈X

P (x, z)K (z,α) = ∑
z∈X

P (x, z) lim
n→∞K (z, yn) ≤ lim

n→∞
∑
z∈X

P (x, z)K (z, yn) ≤ lim
n→∞K (x, yn) = K (x,α).

ä

Since the boundary ∂XM inherits the metric topology with which the set X̂M is
endowed, it is meaningful to speak about the Borelσ-algebra B(∂XM ) =B(X̂M )∩
∂XM .

Exercise 7.2.8. Let ν ∈M1(B(∂XM )) and P a transient kernel. Then the function
s :X→R+, defined by s(x) = ∫

X̂M
K (x,α)ν(dα), is finite P-superharmonic.

Theorem 7.2.9 (Poisson-Martin representation theorem). Let P be a stochastic
kernel on the denumerably infinite setX, equipped with the exhaustiveσ-algbebra
X . Assume that

1. for all x, y ∈X, G0(x, y) <∞, and

2. there exists o ∈X such that for all y ∈X, G0(o, y) > 0.

Define the boundary kernel K as in definition 7.2.1 and the Martin boundary ∂XM

as in definition 7.2.4. Then for any P-harmonic non-negative function h, there
exists a measure µh on B(∂XM ) such that

h(x) =
∫
∂XM

K (x,α)µh(dα).

Proof: Since X is countably infinite, there exists a sequence (Xn)n∈N of finite sets
such that Xn ↑ X. Define wn = nG01Xn and hn(x) = h(x)∧wn(x). Obviously wn

is a potential, therefore hn is a potential by lemma 5.2.9 (claims 2 and 3). Thus,
there exists a positive charge rn such that

hn(x) = ∑
y∈X

G0(x, y)rn(y) = ∑
y∈X

G0(x, y)

G0(o, y)
G0(o, y)rn(y) =

∫
X

K (x, y)µh
n(d y),

where µh
n({y}) =G0(o, y)rn(y). Recall that K (o, y) = 1 for all y ∈X, so that µh

n(X) =
hn(o) ≤ h(o); subsequently, the sequence (µh

n) extends to a sequence of bounded
measures on the compact metric space X̂M , so that a subsequence (µh

nk
)k con-

verges weakly limk→∞µh
nk

= µh over continuous functions of X̂M . Now, for every

fixed x ∈X, the function K (x, ·) is continuous on X̂M , hence

h(x) = lim
n

∫
X̂M

K (x,α)µh
n(dα)

=
∫
X̂M

K (x,α)µh(dα)

= ∑
y∈X

G0(x, y)
µh({y})

G0(o, y)
+

∫
∂XM

K (x,α)µh(dα).
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P-harmonicity of h reads

0 = h(x)−Ph(x) = µh({x})

G0(o, x)
+

∫
∂X̂M

(K −PK )(x,α)µh(dα),∀x ∈X.

Since by the previous lemma 7.2.7, K (·,α) is P-superharmonic for all α ∈ ∂X̂M ,
vanishing of the r.h.s. implies simultaneously that µ(X) = 0 — showing thus that
µh is concentrated on ∂X̂M — and moreover, the measure µh is concentrated on
the subset of α ∈ ∂XM on which K (·,α) is P-harmonic (as a function of x). ä

Remark: It is worth noting that the measure µh occurring in the previous rep-
resentation is not unique. To ensure uniqueness, the integral must be further
restricted on a smaller susbet of ∂XM called the minimal boundary (see section
7.4).

Corollary 7.2.10. Let K be the Martin kernel corresponding to a transient Markov
kernel P and a reference point o. Let h be a non-negative P-harmonic function
and µh a measure occurring in the Martin representation 7.2.9 of h. Then

— µh(∂XM ) = h(o) <∞, and
— the integral representing h converges whenever µh(∂XM ) <∞.

Corollary 7.2.11. Let s be P-superharmonic on X and s(x) ≥ 0 for all x ∈X. Then
under the same assumptions as for the theorem 7.2.9, there exists a non-negative
measure µ on X̂M such that

s(x) =
∫
X̂M

K (x,α)µ(dα),∀x ∈X.

7.3 Convexity properties of sets of superharmonic func-
tions

It is convenient to extend slightly the notion of superharmonicity. Recall that
the space X contains a reference point o.

Definition 7.3.1. Let P be a Markov kernel and t > 0.
— A function s : X→ R+ is called (non-negative) (P, t )-superharmonic if it

verifies Ps ≤ t s. The set of (non-negative) (P, t )-superharmonic functions
is denoted SH+(P, t ). When t = 1, we write SH+(P ).

— A function h :X→R+ is called (non-negative) (P, t )-harmonic if it verifies
Ps = t s. The set of (non-negative) (P, t )-harmonic functions is denoted
H+(P, t ). When t = 1, we write H+(P ).

— A function f : X→ R+ is called a normalised if f (o) = 1. The set of nor-
malised harmonic (resp. superharmonic) functions is denotedH+

1 (P, t ) (resp.
SH+

1 (P, t )).
— A P-harmonic function (with t = 1) is called minimal if for every other

P-harmonic function h1, verifying 0 ≤ h1 ≤ h, we have h1 = ch for some
constant c. We denote by H+

m(P ) the set of minimal and normalised P-
harmonic functions.
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Lemma 7.3.2. Let P be an irreducible Markov kernel and t > 0. If SH+
1 (P, t ) 6= ;,

then SH+
1 (P, t ) is compact in the topology of pointwise convergence and SH+(P, t )

is a convex cone with compact base.

Proof: Let (sn) be a sequence in SH+
1 (P, t ) converging simply towards s. We have

Ps = P limn sn = P liminfn sn ≤ liminfn Psn ≤ t liminfn sn = t s by Fatou lemma.
Additionally, s(o) = 1 by pointwise convergence. Hence s ∈ SH+

1 (P, t ), showing
that SH+

1 (P, t ) is closed.

From the irreducibility of P follows that for every x ∈ X, there exists nx ∈ N
such that P nx (o, x) > 0. Define thus cx = t nx

P nx (o,x) <∞. For s ∈ SH+
1 we have

P nx (o, x)s(x) ≤ P nx s(o) ≤ t nx s(o),

so that s(x) ≤ cx . Since for every x ∈ X, the set [0,cx] is compact in the usual
topology of R, the set ×x∈X[0,cx] is compact by Tychonoff’s theorem. Further
SH+

1 (P, t ) ⊆×x∈X[0,cx], hence compact as closed subset of a compact space.

Convexity of SH+(P, t ) is trivial. Any s ∈ SH+(P, t ) can be written s = βb with
b ∈ SH+

1 (P, t ) by chosingβ= s(o). HenceSH+(P, t ) is a convex cone of baseSH+
1 (P, t ).

ä
Proposition 7.3.3. Let P be a transient irreducible kernel and K the corresponding
boundary kernel associated with the reference point o. Then

Extr(SH+
1 (P )) = {K (·, y), y ∈X}∪H+

m(P ).

Proof: Let b ∈ SH+
1 (P ) and assume that b is extremal. Extremality of b means that

its Riesz decomposition is either purely harmonic or purely potential.

Consider first the purely potential case, i.e. there exists a non-negative, non
identically 0 charge r such that

b(x) = ∑
y∈X

G0(x, y)r (y)

= ∑
y∈X

G0(x, y)

G0(o, y)
G0(o, y)r (y)

= ∑
y∈suppr

K (x, y)cy ,

where cy =G0(o, y)r (y). Note also that
∑

y∈X cy =∑
y∈suppr cy =∑

y∈XG0(o, y)r (y) =
G0r (o) = b(o) = 1. Hence, on suppr , we have cy > 0 and

∑
y∈suppr cy = 1. Since

PK (x, y) = K (x, y)− δx,y

G0(o,y)
, it follows that K (·, y) is harmonic onX\ {y} and strictly

superharmonic on {y}. Now, the above expression b(x) =∑
y∈suppr K (x, y)cy pro-

vides a convex superposition of b in terms of superharmonic functions. Extremal-
ity of b implies that cardsuppr = 1, meaning that there exists some y ∈X such that
b(·) = K (·, y).
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Consider now the case of b being purely harmonic. Every convex combina-
tion of harmonic functions is still harmonic; extremality of b means then mini-
mal harmonicity. We have thus established so far that Extr(SH+

1 (P )) ⊆ {K (·, y), y ∈
X}∪H+

m(P ).

To establish the converse inclusion, consider first the case of a function K (·, y)
for some y ∈X. We know that K (·, y) ∈ SH+(P ) and since K (o, y) = 1 for all y , that
K belongs to the base of the cone: K (·, y) ∈ SH+

1 (P ). Assume now that K (·, y) =
λb1(·)+(1−λ)b2(·), with λ ∈]0,1[ and b1,b2 ∈ SH+

1 (P ). Then PK (x, y) =λPb1(x)+
(1−λ)Pb2(x) ≤ K (x, y). Since further b(·) = λb1(·)+ (1−λ)b2(·) is bounded from
above by the potential K (·, y) the harmonic part in its Riesz decomposition must
be 0. Hence both b1 and b2 are potentials: bi = G0ri , i = 1,2. Since K (·, y)
is harmonic in X \ {y}, the same holds true for both bi and the latter can oc-
cur only if suppri = {y}. Now, degeneracy of the supports of ri to the single-
ton {y} means that b1/b2 is a constant and this constant can only be 1 since
both bi are normalised. Hence, we conclude that b1 = b2 = b and consequently
K (·, y) ∈Extr(SH+

1 (P )).

Similarly, if h ∈ H+
m(P ) we can always decompose into h = λb1 + (1 −λ)b2

with bi ∈ SH+
1 (P ). Now, harmonicity of h implies that bi ∈ H+

1 (P ) and minimal-
ity of h implies extremality b1 = b2 = h and consequently the inclusion H+

m(P ) ⊆
Extr(SH+

1 (P )). ä

7.4 Minimal and Poisson boundaries

The theorem 7.2.9 guarantees that for every P-harmonic function h there ex-
ists a measure µ representing it through the Martin representation. This section
deals with the questions that remain still unsettled:

— is the measure µh unique?
— is the Martin kernel K (·,α), for fixed α ∈ ∂XM , always harmonic so that

for every probability µ on ∂XM , the integral
∫
∂XM

K (x,α)µ(dα) defines a
harmonic function on X?

It will be shown in this section that the measure µh is unique (and defines a
harmonic function whenever µh(∂XM ) <∞) provided that is restricted to a sub-
set ∂mXM ⊆ ∂XM .

Theorem 7.4.1. Let P be an irreducible transient kernel. If h ∈ H+
m(P ) then the

measure µh occurring in its Poisson-Martin representation is
— unique and
— a point mass.

Proof: We have
∫
∂XM

µh(dα) = ∫
∂XM

K (o,α)µh(dα) = h(o) = 1, hence µh is a prob-

ability. Assume there exists B ∈ B(∂XM ) such that 0 < µh(B) < 1; define then
hB (x) = 1

µh (B)

∫
B K (x,α)µh(dα). We have then the non-trivial convex decompo-

sition h = µh(B)hB + (1−µh(B))hB c . Minimal harmonicity of h implies that h =
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hB = hB c , hence, for all x ∈X and all B ∈B(∂XM ):∫
B

h(x)µh(dα) = hB (x)µh(B) =
∫

B
K (x,α)µh(dα).

(Note that the above equalities hold trivially if µh(B) ∈ {0,1}.) Therefore K (x, ·) =
h(x) holds, for every x ∈ X, µh-a.s. Let A = {α ∈ ∂XM : h(x) = K (x,α),∀x ∈ X}.
Since X is countable, we have µh(A) = 1, implying in particular that A 6= ;. We
conclude that there existsα ∈ ∂XM such that for all x, h(x) = K (x,α). Further, this
α must be unique since by construction K (·,α) 6= K (·,α′) if α 6=α′. Consequently,
µh is a Dirac mass on some α ∈ ∂XM . ä
Definition 7.4.2. (Minimal boundary) The set

∂mXM = {α ∈ ∂XM : K (·,α) is minimal P-harmonic}

is called the minimal boundary.

Corollary 7.4.3. The set ∂mXM is a Borel subset of ∂XM . For every h ∈ H+(P ),
there exists a unique µh on B(∂XM ) such that µh(∂XM \ ∂mXM ) = 0 and h(x) =∫
∂XM

K (x,α)µh(dα).

Exercise 7.4.4. Prove the previous corollary 7.4.3.

Suppose now that h, f ∈ H+(P ) and 0 ≤ h ≤ f holds; then obvisously g =
f −h ∈ H+(P ). Using the uniqueness of the representing measures supported
by the minimal boundary ∂mXM , we have µ f = µh + µ f −h , implying that the
inequality µh ≤ µ f holds for the representing measures as well. Now suppose
that for all x, h(x) ≤ M , where M > 0 is a given constant, i.e. h is bounded P-
harmonic. We denote bH+(P ) the set of bounded P-harmonic functions. The
inequality 0 ≤ h(x) ≤ M , holding for all x ∈X implies that µh(B) ≤ Mµ1(B) holds
for all B ∈ B(∂mXM ) as well, where µ1 is the representing measure of the con-
stant harmonic function 1. Therefore the measure µh is absolutely continuous

with respect to µ1; the Radon-Nikodým derivative reads ph(α) = dµh

dµ1 (α).

Definition 7.4.5. (Poisson boundary) Let µ1 be the unique measure represent-
ing the constant normalised P-harmonic function 1. We call Poisson boundary
the set ∂PXM = suppµ1. For all h ∈ bH+(P ), we have the Poisson representation

h(x) =
∫
∂PXM

K (x,α)ph(α)µ1(dα),

where ph(α) = dµh

dµ1 (α).

Exercise 7.4.6. (Zero-one law) Let h1 ≡ 1 (obviously in H+
1 (P )). Show that

1. h1 ∈H+
m(P ) ⇔ [∀h ∈ bH+(P ) ⇒ h ≡ const], and

2. conclude that, if h1 ∈H+
m(P ), then for all x ∈X and all A ⊆X, the function

H 0
A(x) can take only two values, 0 or 1.
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7.5. Limit behaviour of the chain in terms of the boundary

7.5 Limit behaviour of the chain in terms of the bound-
ary

Assume that (Xn) is transient and irreducible in X. Transience means that
(Xn) eventually leaves any bounded subset ofX. Now, even though the sequence
(Xn) does not converge inX, it does converge in the Martin compactification X̂M

towards a random limit X∞ ∈ ∂mXM , i.e.

Px( lim
n→∞Xn exists and equals X∞ ∈ ∂mXM ) = 1.

The purpose of this section (see theorem 7.5.6 below) is to determine the law of
X∞.

Lemma 7.5.1. Let X be a transient MC((X,X ),P,µ) and F ⊆ X a finite set. Then
there exists a charge rF ≥ 0, supported by the set F , such that

L0
F (x) :=Px(τ0

F <∞) =G0rF (x),

for all x ∈X.

Proof: From the very definition of L0
F , we have

P nL0
F (x) =Px(Xk ∈ F, for some k ≥ n).

Define

rF (x) := L0
F (x)−PL0

F (x) =Px(X0 ∈ F ; Xk 6∈ F for k ≥ 1) ≥ 0.

Hence L0
F is P-superharmonic 3. Since F is finite and the chain transient, limn P nL0

F (x) =
0, therefore from the Riesz decomposition theorem 5.2.6 follows that L0

F is a po-
tential corresponding to the charge rF . From the definition of rF , namely rF (x) =
Px(X0 ∈ F ; Xk 6∈ F for k ≥ 1) follows immediately that rF (x) = rF (x)1F (x) for all x,
proving the claim that rF is supported by F . ä

From lemma 7.2.7, we know that K (·,α) is P-superharmonic for all α ∈ ∂XM .
Denote M(x,α) = limn→∞ P nK (x,α) its harmonic part, stemming from the Riesz
decomposition theorem 5.2.6. Recall also from proposition 5.2.12 that, for an
arbitrary subset A ⊆ X, the harmonic part in the Riesz decomposition of L0

A is
H 0

A.

Lemma 7.5.2. Let X be a transientMC((X,X ),P,µ). For an arbitrary subset A ⊆X,
there exists a measure νA on B(∂XM ) such that

H 0
A(x) =

∫
A∩∂XM

M(x,α)νA(dα).

3. A fact we already knew from proposition 5.2.12.
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Proof: If A is finite, transience of the chain shows that the claim is correct with
νA = 0. Consider thus the infinite case and let (Al )l be an increasing sequence of
measurable finite sets, exhausting A. Then by lemma 7.5.1, L0

Al
(x) = ∫

Al
K (x, y)νAl (d y),

where
νAl ({y}) =G0(o, y)r Al (y)

with supp(νAl ) ⊆ Al ⊆ A. Now

νAl (X̂M ) = ∑
y∈Al

G0(o, y)r Al (y) = L0
Al

(o) =Po(τ0
Al

<∞) ≤ 1.

Hence, there exists a weakly converging subsequence w − limνAlk
= νA on X̂M .

Moreover, τ0
Al

↓ τ0
A. Hence,

L0
A(x) =Px(τ0

A <∞) =
∫

A
K (x,α)νA(dα),

generalising thus lemma 7.5.1 for arbitrary sets A. We have thus, for all x ∈X,

P nL0
A(x) = Px(Xk ∈ A, for some k ≥ n)

=
∫

A
P nK (x,α)νA(dα)

→ H 0
A(x).

On the other hand, P nK (x,α) ↓ M(x,α) for all α ∈ X̂M , while P nK (x, y) ↓ 0 for all
y ∈X; the result follows immediately. ä

We shall introduce a convenient trick, known as relativisation, to modify the
asymptotic behaviour of the chain at infinity. Let h ∈ H+

1 (P ) for an irreducible
transient P . Since h(o) = 1, irreducibility of P implies that h(x) > 0 for all x ∈ X.
Define henceforth P (h)(x, y) = 1

h(x) P (x, y)h(y) that is obviously non-negative for

all x, y ∈ X. Harmonicity of h implies that
∑

y∈XP (h)(x, y) = 1
h(x) h(x) = 1; hence

P (h) is a Markov kernel.

Notation 7.5.3. For any h ∈H+
1 (P ) denote by P (h) the relativised Markov kernel

and by P(h)
x the probability on the trajectory space induced by the kernel P (h)

(with the same trajectories).

Exercise 7.5.4. (Relativised kernels) Let h ∈H+
1 (P ).

1. f ∈H+(P ) ⇔ f
h ∈H+(P (h)).

2. If K (h) denotes the boundary kernel of P (h), then K (h)(x, y) = 1
h(x) K (x, y).

3. Let h ∈H+
1 (P ) and denote µh the unique measure on B(∂mXM ) represent-

ing h, i.e. h(x) = ∫
∂mXM

K (x,α)µh(dα). Then µh represents the constant

harmonic function 1 for the relativised kernel K (h).

The relativised chain follows the same trajectories as the original one; only
probabilities are affected by the relativisation.
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Proposition 7.5.5. Let (Xn) be a MC((X,X ),P,εx), with P irreducible and tran-
sient. For every B ∈B(X ∞) we have

Px(B) =
∫
∂mXM

P
(hα)
x (B)K (x,α)µ1(dα),

where hα(x) = K (x,α) and P(hα)
x denotes the probability on the path space due to

the relativised kernel. More generally, for every h ∈H+
1 (P ),

P(h)
x (B) = 1

h(x)

∫
∂mXM

P
(hα)
x (B)K (x,α)µh(dα).

Proof: It is enough to prove the formulae for the elementary cylindrical sets of the
form B = {x1}×·· · {xn}×X×X×·· · . We have then

P(h)
x (B) = P (h)(x, x1) · · ·P (h)(xn−1, xn)

= 1

h(x)
P (x, x1) · · ·P (xn−1, xn)h(xn)

= 1

h(x)
Ex(1{x1,...,xn }(X1, · · · , Xn)h(Xn)).

In particular

P
(hα)
x (B) = 1

K (x,α)
Ex(1{x1,...,xn }(X1, · · · , Xn)K (Xn ,α)).

Using the Poisson-Martin representation h(x) = ∫
∂mXM

K (x,α)µh(dα), we con-
clude that

P(h)
x (B) = 1

h(x)

∫
∂mXM

P
(hα)
x (B)K (x,α)µh(dα).

The first statement is obtained immediately by applying the previous formula to
the constant harmonic function 1. ä
Theorem 7.5.6. Let (Xn) be a MC((X,X ),P,εx), where P is irreducible and tran-
sient. For all A ∈B(∂mXM ),

Px( lim
n→∞Xn = X∞ ∈ A) =

∫
A

K (x,α)µ1(dα).

Proof: The event {limn→∞ Xn = X∞ ∈ A} is X ∞-measurable. From proposition
7.5.5, we conclude that

Px( lim
n→∞Xn = X∞ ∈ A) =

∫
∂mXM

P
(hα)
x ( lim

n→∞Xn = X∞ ∈ A)K (x,α)µ1(dα),

where hα(x) = K (x,α) ∈H+
m(P ).

It is enough to establish that P(hα)
x (limn→∞ Xn =α) = 1 because then the r.h.s.

of the previous formula reduces to
∫

A K (x,α)µ1(dα) which is preciseley the claim
of the theorem.

/Users/dp/a/ens/markov-bndry.tex
2015-10-16 • 18:25:17.

94



Boundary theory for transient chains on denumerably infinite sets

Fix α ∈ ∂mXM and ε > 0 and let Aε = {x ∈ X : ρ(x,α) ≥ ε}. Obviously, α 6∈ Aε.
On denoting P(hα)

x (Xn ∈ Aε i.o.), we observe that if H (hα)
Aε

(x) = 0 for all x ∈ X and

all ε> 0 then P(hα)
x (Xn ∈ Ac

ε eventually) = 1, and since ε> 0 is arbitrary, the latter

means P(hα)
x (limn→∞ Xn =α) = 1. Hence it is enough to prove H (hα)

Aε
(x) = 0 for all

x ∈X and all ε> 0.

Let f = H (hα)
Aε

; we know (see exercise 7.5.4 on relativised kernels) that f ∈
H+(P hα) ⇔ f (·)K (·,α) ∈H+(P ). Since K (·,α) ∈H+

m(P ), we conclude that any bounded

h ∈ H+(P (hα)) is constant. Hence (see exercise 7.4.6) H hα
Aε

(x) ∈ {0,1} for all x ∈ X
and all ε> 0. It is therefore enough to exclude the possibility H hα

Aε
(x) ≡ 1.

By lemma 7.5.2, there exists a measure νAε on B(∂XM ) such that

1 ≥ H (hα)
Aε

(x) =
∫

Aε∩∂XM

M (hα)(x,β)νAε(dβ)

=
∫

Aε∩∂XM

M(x,β)

K (x,α)
νAε(dβ),

implying that
∫

Aε∩∂XM
M(x,β)νAε(dβ) ≤ K (x,α). Thus, for all Borel subsets A ⊆

Aε∩∂XM , we have
∫

A M(x,β)νAε(dβ) ≤ K (x,α). Recall that M(·,β) ∈H+(P ) while
K (·,α) ∈H+

m(P ). From the very definition of minimality, we conclude that
∫

A M(x,β)νAε(dβ) =
C AK (x,α), and by applying this equality to x = o, we determine the constant
C A = ∫

A M(o,β)νAε(dβ), so that for all x ∈X,

M(x,β) = M(o,β)K (x,α), for νAε-a.e. β ∈ Aε∩∂XM .

If H (hα)
Aε

(x) 6= 0 then the zero-one law implies that H (hα)
Aε

(x) = 1, therefore

h(o) =
∫

Aε∩∂mXM

M(o,β)νAε(dβ) = 1,

hence

L0
Aε

(x) =Po(τ0
Aε

<∞) =
∫

Aε
K (o,α)νAε(dα) ≤ 1

and M(o,β) ≤ K (o,β) ≤ 1. Consequently,

1 = h(o) =
∫

Aε∩∂mXM

M(o,β)νAε(dβ) ≤ 1,

implying that for all x ∈X and α ∈ ∂mXM , M(x,β) = K (x,α), for νAε-a.e. β ∈ Aε∩
∂XM .

Now, by the Riesz decomposition of K , we have

K (x,β) = M(x,β)+G0rβ(x),

where rβ is a non-negative charge. But K (o,β) = M(o,β) = 1 hence G0rβ(o) = 0.
Therefore, G0rβ(x) = 0 for all x, so that M(x,β) = K (x,α) = K (x,β) for νAε−a.e.β ∈
Aε∩∂XM . From the construction of the Martin boundary, if K (x,α) = K (x,β) for
all x ∈ X, then α = β. Since α 6∈ Aε, it follows that νAε(Aε∩∂XM ) = 0. Therefore

H hα
Aε

≡ 0 for all ε> 0. ä
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Exercise 7.5.7. (Competition game [43]) Let (Xn) be a MC((X,X ),P,εx) with
X = Z2 and Markov kernel P defined, for x = (x1, x2) and y = (y1, y2) elements of
Z2, by

P (x,y) =


1
2 y1 = x1, y2 = x2 +1
1
2 y1 = x1 +1, y2 = x2

0 otherwise.

1. The process is not irreducible.

2. Show that

G0(x,y) =
{

C y1−x1
y1−x1+y2−x2

( 1
2 )y1−x1+y2−x2 y1 ≤ x1 ∧ y2 ≤ x2,

0 y1 < x1 ∨ y2 < x2.

3. Show that K (x,y) = 2x1+x2 ( y1
y1+y2

)x1 ( y2
y1+y2

)x2 (1+O (
x2

1
y1

)+O (
x2

2
y2

)).

4. Let yk →∞. Show that limk K (x,yk ) exists if and only if
yk,1

yk,1+yk,2
→ α with

α ∈ [0,1]. In that case, establish that

K (x,α) = 2x1+x2αx1 (1−α)x2 .

5. Conclude that h ∈ SH+(P ) on X if and only if there exists µ on B([0,1])
such that

h(x) = 2x1+x2

∫ 1

0
αx1 (1−α)x2µ(dα).

In particular, the functions h(x) = K (x,α) are harmonic.

6. Show that for all α ∈ [0,1], the function K (·,α) ∈H+
m(P ).

7. Compute K (x, 1
2 ) and conlcude that if h ∈ bH+(P ) then h is constant.

8. Establish ∂XM = ∂mXM = [0,1] while ∂PXM = { 1
2 }.

7.6 Markov chains on discrete groups, amenability and
triviality of the boundary

In this section X will be a countably infinite group. Random walks on Zd

provide a standard example of Markov chains on Abelian groups. However, the
non Abelian case is also very interesting and will be provide us with non-trivial
examples.

Definition 7.6.1. Let X be a countably infinite group (composition is denoted
multiplicatively). The transition kernel is termed group left invariant if P (x, y) =
P (g x, g y) for all g ∈X. Right invariance is defined analogously.

Exercise 7.6.2. Let P be a transition kernel on the Abelian group X = Zd and µ

an arbitrary probability on X. Show that
— P defined by P (x, y) =µ(y −x) is group invariant,
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— if h is P-harmonic, then so is the translated function hg (·) := h(· + g ), for
all g ∈X,

— any harmonic function h can be expressed as a convex combination of its
translates.

Theorem 7.6.3 (Choquet-Deny). Let P be a translation invariant and irreducible
kernel on X=Zd , and denote by ΓP = {β ∈ Rd :

∑
y∈XP (0, y)exp(β · y) = 1}, where ·

stands for the scalar product on Rd . Then
— h ∈ H+

1 (P ) if, and only if, there exists a measure µh on B(ΓP ) such that
h(x) = ∫

ΓP
exp(α · x)µh(dα),

— h ∈H+
m(P ) if, and only if, there exists an α ∈ ΓP such that h(x) = exp(α · x)

i.e. µh degenerates into a Dirac mass on α.

Proof: If P is recurrent, then all h ∈H+(P ) are constant (see exercise 6.2.11), hence
the theorem holds with µh(dα) = ε0(dα). It is therefore enough to consider the
case of transient P . Irreducibility of P implies that ∀y ∈X, ∃n := ny ≥ 0 such that
P n(0, y) > 0. Let h ∈H+

m(P ).

h(x) = ∑
z∈X

P ny (x, z)h(z)

= ∑
z∈X

P ny (0, z −x)h(z)

= ∑
z∈X

P ny (0, z)h(x + z)

≥ P ny (0, y)h(x + y),

hence h(x + y) ≤ cy h(x), where cy = 1
P ny (0,y) < ∞. Then for h ∈ H+

m(P ), we get

h(x + y) = dy h(x) and applying for x equal to the reference point o = 0 we get
dy = h(y). Hence h(x + y) = h(x)h(y). Considering the case where x scans the
set of basis elements of Zd , i.e. x ∈ {ei , i = 1, . . . ,d}, we conclude that any multi-
plicative harmonic function must be of the form h(x) = exp(α · x). Additionally,
if α ∈ ΓP then such a function is necessarily normalised. If h ∈ H+

1 (P ) then the
representation h(x) = ∫

ΓP
exp(α ·x)µh(dα) holds immediately.

Conversely, assuming that h(x) = exp(β · x) for some β ∈ ΓP , implies that
h ∈H+

1 (P ). If f ∈H+
1 (P ) is such that 0 ≤ f (x) ≤C h(x) for all x, then 0 ≤ ∫

ΓP
exp(α ·

x)µ f (dα) ≤ C exp(β · x). Now, in x = (x1, . . . , xd ) appearing in the previous in-
equalities, let xi →±∞ for an i ∈ {1, . . . ,d}, and keep fixed all other x j , for j 6= i .
We conclude that necessarily suppµ f ⊆ {β} and consequently f (x) =C h(x) show-
ing that h ∈H+

m(P ). ä
Corollary 7.6.4. Let X = (Xn)n be an irreducible Markov chain onX=Zd with an
invariant kernel P.

— If ξn+1 = Xn+1 − Xn has 0 mean, there do not exist non-trivial functions in
H+(P ).

— The constant function h ≡ 1 always belongs in H+
m(P ).

— If for all n ≥ 0,
∑

y∈XP (0, y)‖y‖n <∞ but
∑

y∈XP (0, y)exp(α · x) =∞ for all
α 6= 0, then there do not exist non-trivial functions in H+(P ).
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Exercise 7.6.5. Prove the previous corollary 7.6.4.

Exercise 7.6.6. (Simple random walk on the homogeneous tree) Let X = Td ,
with d ≥ 3, where Td is the group generated by the d free involutions, i.e. the
non-Abelian group with presentation Td = 〈a1, . . . , ad |a2

1 = . . . = a2
d = e 〉 where e

stands for the neutral element. Every x ∈ Td can be written in a unique way as a
reduced word x = ai1 · · ·ail , for some integer l , with the constraint ik 6= ik+1 for
all k = 1, . . . l −1. The integer l := l (x) := |x| is called the length of the word x. The
inverse of x is immediately obtained as x−1 = ail · · ·aii . The Cayley graph of Td is
the graph (V,A) where the vertex set V = Td and the edge set A is the subset of
V×V characterised by the condition (x, y) ∈A⇔ y = xai , for some i ∈ {1, . . . ,d}.
There exists an isomorphism between the Caley graph of Td and the group Td

itself. Hence the group Td can be metrised naturally by introducing the edge
distance δ(x, y) = |x−1 y |. The isotropic simple random walk on Td is defined by
the transition kernel

P (x, y) =
{ 1

d if (x, y) ∈A,
0 otherwise.

1. Write explicitly the condition for a function h to belong in H+(P ).

2. Introduce the sequence Yn = |Xn |, for n ∈ N. Show that Y = (Yn)n is a
Markov chain onN of transition kernel Q (determine Q).

3. Show that Pk (lim Yn
n = d2

d ) = 1 for all k ∈N.

4. Conclude that X = (Xn)n is transient whenever d ≥ 3.

5. Show that L0
y (x) =G0(x, y)r (y) where r (y) =Py (Xn 6= y,∀n ≥ 1). Argue that

∀y ∈X, r (y) = r > 0. Conclude that G0(x, y) = L0
y (x)

r .

6. Introducing the function φ(l ) = Pl (Yn = 0,for some n ≥ 0) and the refer-

ence point o = e, establish that K (x, y) = φ(|y−1x|)
φ(|y−1|) .

7. Show that φ verifies φ(0) = 1 and for l ≥ 1,

φ(l ) = 1

d
φ(l −1)+ d −1

d
φ(l +1).

Show that a solution can be obtained in the form φ(l ) = c1λ
l
1+c2λ

l
2 where

c1,c2 are constants and λ1,λ2 solutions of the quadratic equation λ= 1
d +

d−1
d λ2. Conclude that φ(l ) = ( 1

d−1 )l for l ≥ 0 and establish that K (x, y) =
( 1

d−1 )|y
−1x|−|x|.

8. Let (yn) be a sequence in X such that limn |yn | = ∞. Determine under
which conditions the limit limn[|x−1 yn |− |yn |] exists for all x ∈X.

9. Let A = {α= ai1 ai2 · · · ; ik ∈ {1, . . . ,d}∧ (ik 6= ik+1)∀k} be the set of the leaves
of the tree. For x = ak1 · · ·ak|x| ∈X andα= ai1 ai2 · · · ∈ A written respectively
as a finite and as an infinite reduced word, introduce J : X× A → N by
J (x,α) = |x| − 2max{ j ≤ |x| : kn = in ;1 ≤ n ≤ j }. Show that limK (x, yn) =
K (x,α) = ( 1

d−1 )J (x,α).

10. h ∈H+(P ) ⇔ h(x) = ∫
A( 1

d−1 )J (x,α)µh(dα), where µh is a measure on A.

11. Show that ∂XM = ∂mXM = A.

Thm Choquet-
Deny, fron-
tières pour
groupoides
et semi-
groupoides,
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9
Irreducibility on general spaces

In this chapter, methods for dealing with Markov chains on general spaces are
developed. The material presented in this and the following chapters heavily re-
lies on the original work of Döblin [10]; a more pedagogical and concise account
of this work is [38] or [37]. More complete treatement of the subject, far beyond
the scope of this semestrial course, remain [34, 49].

9.1 φ-irreducibility

For Markov chains on discrete spaces, irreducibility means that for all x, y ∈X,
there exists n = n(x, y) ∈N such that P n(x, y) > 0 or, equivalently, Ly (x) =Px(τy <
∞) > 0. In the continuous case however, it may happen that for any pair x, y ∈X,
Ly (x) =Px(τy <∞) = 0.

Example 9.1.1. Let (ξi )i be a sequence of independent random variables on
[−1,1] identically distributed according to the uniform law on [−1,1]. Then the
sequence (Xn)n defined by X0 = x and Xn = Xn−1 + ξn for all n ≥ 1 is a random
walk on R verifying Ly (x) =Px(τy <∞) = 0 for all x, y ∈R.

Definition 9.1.2. A measurable set F ∈X is called (stochastically) closed if F 6= ;
and P (x,F ) = 1 for all x ∈ F . A closed set that cannot be partitioned into two
closed sets is called indecomposable.

Definition 9.1.3. Let φ ∈M+(X ).
— The measure φ is called an irreducibility measure for the Markov chain

X if
A ∈X ,φ(A) > 0 ⇒∀x ∈X,L A(x) > 0.
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9.1. φ-irreducibility

The chain is then called φ-irreducible.
— The chain is called φ-recurrent if

A ∈X ,φ(A) > 0 ⇒∀x ∈X,L A(x) = 1.

— The chain is called Harris recurrent if

A ∈X ,φ(A) > 0 ⇒∀x ∈X, HA(x) = 1.

Remark 9.1.4. If X is countable, the usual notions of irreducibility and recur-
rence are recovered on choosing for φ ∈M+(X ) the counting measure.

Given a probability ν ∈ M1(X ) and a measure φ ∈ M+(X ), we know that ν
has a unique decomposition into ν = νac +νs , where νac ¿ φ is the absolutely
continuous part (i.e. ∀A ∈ X ,φ(A) = 0 ⇒ νac (A) = 0), and νs ⊥ φ is the singu-
lar part (i.e. ∃A ∈ X ,φ(A) = 0 and νs(Ac ) = 0). Moreover, the Radon-Nikodým
theorem states that there exists a unique f ∈ L1(X,X ,φ) such that, for all A ∈X ,

νac (A) = ∫
A f (x)φ(d x), where f (x) = dµ

dφ (x) is the Radon-Nikodým derivative.

Now, if φ ∈ M+(X ) is an irreducibility measure, noting that for all x ∈ X and
n ∈ N, P n(x, ·) is a probability on X , we can decompose P n(x, ·) = P n

ac (x, ·) +
P n

s (x, ·). On denoting by pn(x, y) = dP n
ac (x,·)
dφ (y), we have P n

ac (x, A) = ∫
A pn(x, y)φ(d y).

As far as the singular part is concerned, for all x ∈X and n ∈N, P n(x, ·) ⊥φmeans
that there exists a set Xx,n ∈ X such that φ(Xx,n) = 0 and P n(x,P n(x, ·)c ) = 0. In
summarising,

P n(x, A) =
∫

A∩Xc
x,n

pn(x, y)φ(d y)+P n
s (x, A∩Xx,n).

Remark 9.1.5. One can easily show that for all x ∈ X and all n ∈ N, the Radon-
Nikodým density pn(x, ·) is measurable with respect to the second argument and
similarly pn(·, x) measurable with respect to the first argument. It is convenient
to ensure that pn(·, ·) is jointly measurable with respect to the two arguments.

Lemma 9.1.6. Let φ ∈ M+(X ) be an irreducibility measure for the chain. Then,
any probability µ ∈M1(X ) that is equivalent to φ is an irreducibility measure.

Proof: Since µ is equivalent to φ it follows that µ¿ φ and φ¿ µ. Hence, for any
A ∈X eitherφ(A) = 0 (and consequentlyµ(A) = 0) orφ(A) > 0 (and consequently
µ(A) > 0). Therefore, µ is also an irreducibility measure. ä

Proposition 9.1.7. Let φ ∈ M+(X ) be an irreducibility measure for the chain.
Then there exists an irreducibility measure ψ ∈ M+(X ) such any irreducibility
measure φ′ ∈M+(X ) is φ′ ¿ψ.

Proof: See exercise 9.1.9 below. ä
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Irreducibility on general spaces

Definition 9.1.8. The measure ψ, whose existence is guaranteed by proposition
9.1.7, unique up to meausures thar are equivalent, is called the maximal irre-
ducibility measure.

Exercise 9.1.9. (Part of the paper given on December 2006) Let φ ∈M+(X ) be
an irreducibility measure for the chain.

1. Is it possible, without loss of generality, to assume that φ is a probability?

2. Let ψ be a measure, defined for every A ∈X by ψ(A) = ∫
φ(d x)G1/2(x, A).

Denote by Xk = {x ∈ X :
∑k

n=1 P n(x, A) > 1/k}. If ψ(A) > 0 is it true that
φ(Xk ) > 0 for some k ≥ 1?

3. Does φ-irreducibility imply ψ-irreducibility?

4. Let φ′ ∈M+(X ). Is it true that φ′ is an irreducibility measure if and only if
φ′ ¿ψ?

5. Can we conclude that two maximal irreducibility measures are equiva-
lent? (The ordering implicitly assumed here is the absolute continuity ¿.)

6. Letφ′ be an arbitrary finite irreducibility measure. Defineψ′(A) = ∫
φ′(d x)G1/2(x, A)

for all A ∈X . Is it true that ψ and ψ′ are equivalent?

7. If for some A ∈X , we have ψ(A) = 0, show that ψ({x ∈X : L A(x) > 0}) = 0.

Exercise 9.1.10. Let (ξn) be a sequence of independent real-valued random vari-
ables, identically distributed according to the law ν. Suppose that the measure ν
possesses an absolutely continuous part νac with respect to the Lebesgue mea-
sure λ on (R,B(R)), with density f . Suppose further there exist constants β > 0
and δ> 0 such that for all x ∈Rwith |x| ≤βwe have f (x) > δ. Construct a Markov
chain (Xn) on (R,B(R)) by the recurrence X0 = x and Xn+1 = Xn +ξn+1, for n ∈N.
Denote by P the Markovian kernel of this chain.

1. Let C = {x ∈R : |x| ≤β/2}. For an arbitrary Borel set B ⊆C and an arbitrary
x ∈ B , minorise P (x,B).

2. Let φ ∈M+(B(R)) be defined by

φ(A) =
{
λ(A) if A ∈ B(R), A ⊆C ,
0 if A ∈ B(R), A ⊆C c .

Is the mesure φ an irreducibility measure for the chain (Xn)?

Exercise 9.1.11. Let ψ ∈ M+(X ) be a maximal irreducibility measure for the
chain. A set A ∈X is called full if ψ(Ac ) = 0.

1. Show that every stochastically closed set F is full.

2. Let A ∈X be full and define F := {x ∈X : G0(x, Ac ) = 0}.
— Show that F ⊆ A.
— Suppose that there exists y ∈ F such that P (y, Ac ) > 0. Show that this

assumption contradicts the very definition of F .
— Conclude that any full set contains a closed set.

Theorem 9.1.12. Let X be separable. Then the densities pn(·, ·) are jointly mea-
surable.
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9.1. φ-irreducibility

Proof: By lemma 9.1.6, we can assume without loss of generality that φ is a prob-
ability. Since P n

ac (x, ·) ¿φ(·), it follows that for any ε> 0, there exists a δ> 0 such
that for every A ∈X with φ(A) < δ it follows that P n

ac (x, A) < ε, for all x ∈X.

Since X is separable, we proceed as in theorem B.2.1; there exists a sequence
(Bl )l∈N of sets Bn ⊆ X such that X = σ(Bl , l ∈ N). Denote Gk = σ(B1, . . . ,Bk )
for k ∈ N. Every such σ-algebra is composed by 2r (k) possible unions of atoms
Ak,1, . . . , Ak,r (k) of Gk . Every atom A ∈ Gk is of the form: A = H1 ∩ ·· · ∩ Hk , each
Hi being either Bi or B c

i . For every y ∈X, there exists a unique atom A ∈Gk such
that y ∈ A; denote by Ak (y) that particular atom. Define then

pn,k (x, y) =
{

P n (x,Ak (y))
φ(Ak (y)) if φ(Ak (y)) > 0

0 if φ(Ak (y)) = 0.

Now, each pn,k (·, ·) is jointly measurable. For every A ∈Gk and every t ∈]0,1],
denote by FA = {x ∈ X : P n(x, A) ≤ tφ(A)}. Obviously FA ∈ X because P (·, A) ∈
mX for all A ∈X . The we compute

p−1
n,k (]0, t ]) = {(x, y) ∈X2 : P n(x, A(y)) ≤ tφ(A(y))}

=∪A∈Gk ∪y∈A {(x, y) ∈X2 : P n(x, A) ≤ tφ(A)}

=∪A∈Gk FA × A ∈X ⊗Gk ⊆X ⊗X ,

establishing the joint measurability of pn,k (·, ·). Define qn(·, ·) = liminfk→∞ pn,k (·, ·)
that will be obviously be jointly measurable as limes infimum of jointly measur-
able functions.

Moreover, pn,k (x, ·) ∈L 1(X,Gk ,φ) and for all G ∈Gk , we have
∫

G pn,k (x, y)φ(d y) =
P n

ac (x,G) ≤ 1. This equation implies that (pn,k (x, ·))k is a positive uniformly in-
tegrable (Gk )-martingale. Therefore, by theorem , qn(x, y) = lim pn,k (x, y) is a
jointly measurable version of the Radon-Nikodým derivative

qn(x, y) = dP n
ac(x, ·)

dφ(·) (y),∀φy ∈X.

ä

Remark 9.1.13. If X is not separable, the conclusion still holds (see [50, §14.13,
pp. 147–149] for instance).

Proposition 9.1.14. There exist X ⊗X -measurable versions of the densities pn of
the Radon-Nikodým derivatives satisfying, for all n ≥ 1, all k with 1 ≤ k ≤ n and
all x, y ∈X:

pn(x, y) ≥
∫
X

P n−k (x,d z)pk (z, y)

≥
∫
X

pn−k (x, z)φ(d z)pk (z, y).
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Irreducibility on general spaces

Proof: For every k, let qk be a X ⊗X -measurable version of the density of P k
ac (as

established in theorem 9.1.12). Then we have for all B ∈X :

P n(x,B) =
∫
X

P n−k (x,d y)P k (y,B)

≥
∫
X

P n−k (x,d y)
∫

B
qk (y, z)φ(d z)

=
∫

B

(∫
X

P n−k (x,d y)qk (y, z)

)
φ(d z).

Apply this inequality to B = A \Xx,n for an arbitrary A ∈X . Then

P n(x, A \Xx,n) =
∫

A
qn(x, z)φ(d z) (because φ(Xx,n) = 0)

≥
∫

A

(∫
X

P n−k (x,d y)qk (y, z)

)
φ(d z).

Hence ∀φz ∈X,

qn(x, z) ≥
∫
X

P n−k (x,d y)qk (y, z)

≥
∫
X

qn−k (x,d y)φ(d y)qk (y, z).

On defining recursively

p1(x, z) = q1(x, z)

pn(x, z) = qn(x, z)∨ max
1≤k≤n

∫
X

P n−k (x,d y)qk (y, z), for n ≥ 2,

we se that the sequence (pn)n fulifills the requirements of the proposition. ä

9.2 c-sets

When X is countable, or more generally when a general space X possesses a
special regenerating point a such that L{a}(x) > 0 for all x, then the situation is
quite simple since segments of the Markov chain between successive visits to a
are independent.

Example 9.2.1. Let (ξn)n be a sequence of independent random variables iden-
tically distributed with uniform probability on [−1,1] and consider the Markov
chain on X = R+ defined by Xn+1 = (Xn + ξn+1)+. Then 0 ∈ X is a regenerating
point.

In the general case, such points may not exist; they are subtituted by c-sets,
i.e. “small sets” visible by the absolutely continuous part of the kernel.
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9.2. c-sets

Definition 9.2.2. Let C ∈X and φ ∈M+(X ). The set C is called a c-set relatively
to the measure φ if

— φ(C ) > 0 and
— ∃n ∈N : r (n,C ) ≡ inf(x,y)∈C×C pn(x, y) > 0.

Remark 9.2.3. The claimed “smallness” of c-sets lies precisely on the last condi-
tion of the definition 9.2.2: the set must be sufficiently “small” so that inf(x,y)∈C×C pn(x, y) >
0 (if the infimum is taken over allX×X it is likely to be 0). On the other hand, the
c-sets must be sufficiently large to be “visible” by φ.

Theorem 9.2.4. Suppose that X is separable and φ an irreducibility measure.
Suppose that A ∈X verifies

1. φ(A) > 0 and

2. ∀B ∈X ,B ⊆ A,φ(B) > 0 ⇒∀x ∈ A,LB (x) > 0.

Then A contains a c-set.

The proof is long and tedious but without any conceptual difficulty, split for
clarity into the two lemmata 9.2.5 an 9.2.6, proved below.

Denote by φ2 =φ⊗φ the measure on X ⊗X induced by φ and for any A ∈X

by A2 = A× A the corresponding rectangle. For any U ⊆X×X, we denote by

U1(y) = {x ∈X : (x, y) ∈U }, y ∈X
U2(x) = {y ∈X : (x, y) ∈U }, x ∈X,

the horizontal section at ordinate y and the vertical section at abscissa x. Define

R(m,n) = {(x, y) ∈ A2 : pm(x, y) ≥ 1

n
}, and R =∪m≥1 ∪n≥1 R(m,n).

Now
x ∈ A, y ∈ R2(x) ⇒∃m ≥ 1,∃n ≥ 1 : (x, y) ∈ R(m,n).

Thus, R2(x) =∪m≥1 ∪n≥1 {y ∈ A : pm(x, y) ≥ 1
n } ≡ B ⊆ A.

Lemma 9.2.5. Let φ be an irreducibility measure. For all x ∈X, φ(R2(x)) > 0.

Proof: Instantiate hypothesis 2) of the theorem to A =X.

∀B ∈X ,φ(B) > 0 ⇒ ∀x ∈X : LB (x) =Px(τB <∞) > 0

⇒ ∀x ∈X :
∑

m≥1
Px(τB = m) > 0

⇒ ∀x ∈X :
∑

m≥1
P m(x,B) > 0 (∗),

because {Xm ∈ B} = {τB = m}t {τB < m, Xm ∈ B} and consequently, P m(x,B) ≥
Px(τB = m). Now P m(x,B) differs from

∫
B pm(x, y)φ(d y) on B ∩Xx,m (recall that

φ(Xx,m) = 0). On definingXx =∪m∈NXx,m , we have that φ(Xx) = 0. Thus, without
loss of generality, we can limit ourselves to measurable sets B ∈X , with φ(B) > 0
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Irreducibility on general spaces

and B ∩Xx =;. These considerations imply that the inequality (∗) above, reads
now

∫
B (

∑
m≥1 pm(x, y))φ(d y) > 0. Therefore,

∀x ∈X,∀φy ∈ B ⇒ ∑
m≥1

pm(x, y) > 0

⇒∃m ≥ 1 : pm(x, y) > 0

⇒∃m ≥ 1,∃n ≥ 1 : pm(x, y) ≥ 1

n
.

In summarising: ∀x ∈ X: φ(∪m≥1 ∪n≥1 {(x, y) ∈ B 2 : pm(x, y) ≥ 1
n }) > 0 hence

φ(R2(x)) > 0. ä

Lemma 9.2.6. Let φ be an irreducibility measure.

φ({y ∈X :φ(R1(y) > 0 and φ(R2(y) > 0}) > 0.

Proof: We know from lemma 9.2.5 that
∫
φ(R2(x))φ(d x) > 0. Thus

0 <
∫
φ(R2(x))φ(d x) =

∫ ∫
1R2(x)(y)φ(d y)

=
∫ (∫

1R (x, y)φ(d x)

)
φ(d y) =

∫
φ(R1(y))φ(d y),

proving that we have both
∫
φ(R1(y))φ(d y) > 0 and

∫
φ(R2(y))φ(d y) > 0. To finish

the proof, we must show I > 0, where:

I ≡
∫
φ(R1(y))φ(R2(y))φ(d y)

=
∫ ∫

1R (y, t )φ(d t )

(∫
1R (s, y)φ(d s)

)
φ(d y)

=
∫ ∫ (∫

1R (s, y)1R (y, t )φ(d y)

)
φ(d s))φ(d t ).

Instantiating the previous lemma 9.2.5 for A =X yields φ(R2(y)) > 0, for all y ∈X.
Combined with the conclusion

∫
φ(R1(y))φ(d y) > 0 obtained above, we conclude

that I > 0. ä

Sketch of the proof of theorem 9.2.4: As was the case in the proof of lemma 9.2.6,
φ-irreducibility guarantees that 1R (s, y)1R (y, t ) > 0 on a set of strictly positive
measure: there exist m1,n1,m2,n2 such that P m1 (s, y) ≥ 1

n1
and P m2 (y, t ) ≥ 1

n2
.

Define F = Rm1,n1 and G = Rm2,n2 and consider (∆n)n be a sequence of finite X -
measurable partitions of A such that for all n, the partition ∆n+1 is refinement of
∆n , i.e. every element of ∆n+1 is a finite disjoint union of elements of ∆n . Addi-
tionally, every such partition of A induces a partition of A2 because if An,α ∈ ∆n

and An,β ∈ ∆n , for α,β = 1, . . . , |∆n |, then the set An,α × An,β ≡ A2
n,(α,β) will be

an element of the induced partition. Now, for all x ∈ A, there exists a unique
δ = δ(n, x) ∈ {1, · · · , |∆n |} such that x ∈ An,δ. Denote by Gn = σ(A2

n,(α,β),α,β ∈
{1, · · · , |∆n |}) the σ-algebra on X×X generated by the partition of order n.
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As was the case in the proof of the proposition 9.1.14, it is enough to con-
sider the case where φ is a probability. For every n ≥ 1 and x, y ∈ X, the set
D ≡ A2

n,(δ(n,x),δ(n,y)) ∈Gn and we have:

∫
D

φ2(F ∩D)

φ2(D)
φ(d x)φ(d y) =

∫
D
1F (x, y)φ(d x)φ(d y).

Since the sets of the form D are a π-system generating Gn . Hence we shall have

φ2(F ∩D)

φ2(D)
= E(1F |Gn), a.s.

Now the sequence (E(1F |Gn))n is a uniformly integrable (Gn)n-martingale con-
verging almost surely 1 to 1F . Assuming that F is contained in the σ-algebra gen-
erated by the partitions, we have therefore,

lim
n→∞

φ2(F ∩ A2
n,(δ(n,x),δ(n,y)))

φ2(A2
n,(δ(n,x),δ(n,y)))

=1F (x, y), (x, y) ∈ A2 \ N .

The same line of arguments leads to the conclusion that

lim
n→∞

φ2(G ∩ A2
n,(δ(n,x),δ(n,y)))

φ2(A2
n,(δ(n,x),δ(n,y)))

=1G (x, y), (x, y) ∈ A2 \ N .

Since φ2(N ) = 0, we have

φ({y ∈ A :φ(F1(y)) > 0 and φ(G2(y)) > 0}) > 0,

meaning that

φ({y ∈ A :φ(F1(y) \ N1(y)) > 0;φ(G2(y) \ N2(y)) > 0}) > 0.

There exist therefore s0, y0, t0 ∈ A such that s0 ∈ F1(y0) \ N1(y0) and t0 ∈ G2(y0) \
N2(y0). For n sufficiently large denote byα= δ(n, s0),β= δ(n, y0), andγ= δ(n, t0);
since

lim
n→∞

φ2(F ∩ A2
n,(α,β))

φ2(A2
n,(α,β))

=1F ,

when the right hand side does not vanish, there exists n0 sufficiently large so that
for n ≥ n0 we have

φ2(F ∩ A2
n,(α,β)) ≥

3

4
φ(An,α)φ(An,β)

and similarly

φ2(G ∩ A2
n,(α,γ)) ≥

3

4
φ(An,α)φ(An,γ).

1. That means that for all (x, y) ∈ A2 but, may be, for a negligible set N .
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Irreducibility on general spaces

Left hand sides of the above equations read respectively
∫

An,α
φ(F2(s)∩An,β)φ(d s)

and
∫

An,γ
φ(G1(t )∩ An,β)φ(d t ). On defining

J = {s ∈ An,α :φ(F2(s)∩ An,β) ≥ 3

4
φ(An,β)}

K = {t ∈ An,γ :φ(G1(t )∩ An,β) ≥ 3

4
φ(An,β)}

we conclude thatφ(J ) > 0 andφ(K ) > 0. We can further show that for all x ∈ J and
all z ∈ K , φ(F2(x)∩G1(z)) ≥ 1

2φ(An,β). Now, y ∈ F2(x)∩G1(z) means that (x, y) ∈ F
and (y, z) ∈ G . Recalling the definitions of F and G given at the beginning of the
proof, we have:

pm1+m2 (x, z) ≥
∫
X

pm1 (x, y)pm2 (y, z)φ(d y)

≥
∫

F2(x)∩G1(z)
pm1 (x, y)pm2 (y, z)φ(d y)

≥ φ(An,β)

2n1n2

≡ λ> 0.

By hypothesis, for all x ∈ K there exists an m ≥ 1 and an ε > 0 such that for C =
{x ∈ K : P m(x, J ) > ε} we have φ(C ) > 0. For x, y ∈C then,

pm+m1+m2 (x, y) ≥
∫

J
P m(x,d z)pm+m2 (z, y)

≥ φ(J )λε> 0.

Therefore C is a c-set. ä
Corollary 9.2.7. If X is separable and the chain is φ-irreducible, then all A ∈ X

such that φ(A) > 0 contain c-sets. In particular X contains c-sets.

Definition 9.2.8. Let φ ∈M+(X ) and C a c-set. Define

I (C ) = {n ≥ 1 : r (n,C ) ≡ inf
(x,y)∈C 2

pn(x, y) > 0}

and
d(C ) = gcd I (C ).

Proposition 9.2.9. Let C be a c-set with d(C ) = d, for some d ∈N.

1. The set I (C ) contains all the sufficiently large multiples of d.

2. If the chain is irreducible then all c-sets C ′ ⊆C verify d(C ′) = d.

Proof: Since I (C ) is closed for addition, (1) is an immediate corollary of lemma
6.1.13.

Recall the notation r (n,C ) = inf(x,y)∈C 2 pn(x, y). To prove (2), note that

n ∈ I (C ) ⇔ r (n,C ) > 0,

n′ ∈ I (C ′) ⇔ r (n′,C ′) > 0.
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9.3. Cycle decomposition

Obviously C ′ ⊆ C ⇒ I (C ) ⊆ I (C ′) ⇒ d ′ = gcd I (C ′) ≤ d = gcd I (C ). Let m1,m2 ∈
I (C ), n′ ∈ I (C ′), x, y ∈C . Hence

pm1+n′+m2 (x, y) ≥
∫

C ′×C ′
pm1 (x, x ′)pn′(x ′, y ′)pm2 (y ′, y)φ(d x ′)φ(d y ′)

≥ r (m1,C )r (n′,C ′)r (m2,C )(φ(C ′))2

> 0.

Therefore, m1 +n′+m2 ∈ I (C ) and similarly we prove that m1 +2n′+m2 ∈ I (C ).
Therefore, d divides both m1 +2n′+m2 and m1 +n′+m2, hence it divides their
difference, i.e. n′. Hence d divides any integer in I (C ′), therefore, d ≤ d ′. ä

9.3 Cycle decomposition

Proposition 9.3.1. Let (Y,Y , (Yn)n∈N,P) be a filtered space, Y∞ = ∨n≥1Yn , and
(Ai )i a sequence of events such that Ai ∈Y∞ for all i ≥ 1. Then

1. limn→∞P(∪∞
i=n Ai |Yn) =1∩∞

m=1∪∞
i=m A1 =1limsupi Ai ;

2. limn→∞P(∩∞
i=n Ai |Yn) =1∪∞

m=1∩∞
i=m A1 =1liminfi Ai .

Proof: The two assertions can be proved similarly; only proof of the first is given
here. Note that for all k ≤ n:

Xn ≡P(∪∞
i=k Ai |Yn) ≥P(∪∞

i=n Ai |Yn)

≥P(∩∞
m=1 ∪∞

i=m Ai |Yn) = E(1limsupi Ai |Yn) ≡ Yn .

Now, (Xn)n is a positive, uniformly integrable (Yn)n-martingale. As such it con-
verges almost surely and in L 1 towards 1∪∞

i=k Ai . So is (Yn)n , therefore limn Yn =
1limsupi Ai . Exploiting the convergence of the martingales at both ends of the
above inequality, yields

1∪∞
i=k Ai ≥ limsup

n
P(∪∞

i=n Ai |Yn)

≥ liminf
n

P(∪∞
i=n Ai |Yn)

≥ 1limsupi Ai .

Finally, taking the k → ∞ limit of the leftmost term in the above inequality, we
get limk→∞1∪i≥k Ai =1∩k≥1∪i≥k Ai =1limsupi Ai . ä

Recall (exercise 14 in §3.5) that LB (x) =Px(∪n≥1{Xn ∈ B}) and HB (x) =Px(∩∞
n=1∪m≥n

{Xm ∈ B}).

Definition 9.3.2. Let A ∈ X . The set A is called unessential if for all x ∈ X, we
have HA(x) = 0; otherwise, is called essential. If A is essential but can be writ-
ten as a countable union of unessential sets, then is called improperly essential,
otherwise properly essential.
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Remark 9.3.3. The previous definition implicitly implies that a countable union
of unessential sets is not necessarily unessential. To convince the reader that this
is not a vain precaution, consider the following example: let X=N and suppose
that for all x ∈X, P (x, y) = 0 if y < x while P (x, x+1) > 0 (for example P (x, x+1) =
1). Then all states are unessential. However X=∪x∈X{x} is necessarily essential.

Proposition 9.3.4. Let F ∈ X be a closed set and F ◦ = {x ∈ X : LF (x) = 0}. Then
X\ (F ∪F ◦) cannot be properly essential.

Proof: Since F is closed, it follows that

F ◦ ≡ {x ∈X : LF (x) = 0} = {x ∈ F c : LF (x) = 0}.

Thus, (F ◦)c = {x ∈ F c : LF (x) > 0}∪F and

X\ (F ∪F ◦) = {x ∈ F c : LF (x) > 0} =∪m≥1Gm ,

where Gm = {x ∈ F c : LF (x) ≥ 1
m }. It is therefore enough to show that for all m the

sets Gm are unessential.

From proposition 9.3.1 and Markov property, we conclude 2 that

LF (Xn) = Px(∪i≥0{Xi+1 ◦θn ∈ F }|Fn)

= Px(∪i≥n{Xi+1 ∈ F }|Fn)

→ 1limsupn {Xn∈F }.

Thus limn→∞ LF (Xn) = 1{Xn∈F i.o.}. On the set {Xn ∈ Gm i.o.} we have that for all
n ∈N, there exists an integer kn ≥ 1 such that Xn+kn ∈Gm . Therefore, LF (Xn+kn ) ≥
infy∈Gm LF (y) ≥ 1/m. Thus

{0,1} 31{Xn∈F i.o.} = lim
n

LF (Xn)

= lim
n

LF (Xn+kn )

≥ 1/m,

i.e. 1{Xn∈F i.o.} = 1. This shows that on {Xn ∈ Gm i.o.}, we have {Xn ∈ F i.o.}. How-
ever, F is closed, hence absorbing: if Xn ∈ F infinitely often, then there exists an
integer N such that for all n ≥ N we have Xn ∈ F , i.e. if Xn ∈ F infinitely often, then
F c cannot be visited but at most a finite number of times. This is in contradiction
with the assumption Xn ∈Gm infinitely often. ä
Remark 9.3.5. It is worth quoting here a particularly vivid image used by Döblin
[10] to explain the contradiction used in the above proof: “Si un promeneur a, en
traversant une rue, une probabilité p > 0 d’être écrasé par une voiture, il ne saurait
la traverser indéfiniment car il sera tué avant (nous admettons qu’il ne puisse pas
mourir autrement)”.

2. Recall that this result was also obtained in proposition 5.2.12, by use of Riesz decomposi-
tion.
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9.3. Cycle decomposition

Definition 9.3.6. Let (C0, . . . ,Cd−1) be a collection of d (d ≥ 1) disjoint measur-
able sets of X . We say that (C0, . . . ,Cd−1) is cycle (more precisely a d-cycle) for the
stochastic kernel P if for all i = 0, . . . ,d−1 and all x ∈Ci we have P (x,Ci+1 mod d ) =
1.

Theorem 9.3.7. Suppose that X is a φ-irreducible chain. Then there exists a d-
cycle C = (C0, . . . ,Cd−1) such that

— The set A =X\∪d−1
i=0 Ci is not properly essential and verifies φ(A) = 0.

— If C ′ = (C ′
0, . . . ,C ′

d ′−1) is a d ′-cycle, then d ′ divides d and for all i = 0, . . . ,d ′−
1, the set C ′

i differs from the union of d/d ′ members of the cycle C by a φ-
negligible set that is not properly essential.

We shall prove this theorem only for the case of separable X . The non-separable
case is treated according the lines developed in [50, p. 147]. The proof is split into
two elementary lemmata, lemma 9.3.9 and lemma 9.3.10 below. We start by stat-
ing a

Definition 9.3.8. Let φ ∈ M+(X ) be an irreducibility measure and d a fixed in-
teger and C a c-set. For an integer k with 1 ≤ k ≤ d , a measurable set A ∈ X is
called k-accessible (relatively to φ and C ) if there exists a measurable set B ⊆ C
withφ(B) > 0 such that Px(∪∞

n=0{Xnd+k ∈ A}) > 0, for all x ∈ B . If there exists some
integer k so that A is k-accessible, then A is called accessible.

It is evident that A ∈X is k-accessible if and only if

∃B ∈X ,B ⊆C ,φ(B) > 0 : ∀x ∈ B ,Px(τA ∈ Lk ) > 0,

where Lk = dN+k.

Lemma 9.3.9. Let φ be an irreducibility measure and C a c-set having periodicity
d(C ) = d. Then C is d-accessible.

Proof: By lemma 6.1.13, it follows that there exists an integer N0 ≥ 1 such that , for
n ≥ N0 the integer nd is contained in the set I (C ) = {n ∈ N : inf(x,y)∈C 2 pn(x, y)}.
Therefore, for all x ∈C ,

Px(∪∞
l=1{Xld+d ∈C }) ≥ Px(∪∞

l=N0
{Xl d+d ∈C })

≥ r ((N0 +1)d ,C )φ(C )

> 0.

ä

Lemma 9.3.10. Let φ be an irreducibility measure and C a c-set having period-
icity d(C ) = d ≥ 2. Then for any integer k with 1 ≤ k < d, the set C cannot be
k-accessible.
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Partial proof (under a simplifying hypothesis): Recall that since d = gcd(I (C )),
there exists an integer N0 > 0 such that I (C ) contains all integers of the form nd
for n ≥ N0. Suppose that there exists a k with 1 ≤ k < d such that C is k-accessible.
Then,

∃B ∈X ,B ⊆C ,φ(B) > 0 : ∀x ∈ B ,Px(∪∞
k=0{Xnd+k ∈C }) > 0.

NowPx(∪∞
k=0{Xnd+k ∈C }) > 0 means that there exists M ∈N such that P Md+k (x,C ) >

0. Without loss of generality, we can assume that M ≥ N0; otherwise, for all n ∈N,
we have

P (n+M)d+k (x,C ) ≥
∫

B
pnd (x, y)φ(d y)P Md+k (y,C )

≥ r (nd ,C )
∫

B
φ(d y)P Md+k (y,C ) > 0.

We can thus choose an n so that n +M ≥ N0. We conclude the proof under the
simplifying hypothesis that the Markov kernel has only absolutely continuous
component. From the inequality P nd+Md+k (x,C ) ≥ ∫

Xpnd (x, y)φ(d y)P Md+k (y,C ),
we conclude by proposition 9.1.14 that there exist versions of the Radon-Nikodým
densities satisfying

pnd+Md+k (x, y) ≥
∫
X

pnd (x, z)φ(d z)pMd+k (z, y)∫
C

pnd (x, z)φ(d z)pMd+k (z, y) ≥ r (nd ,C )
∫

B
φ(d z)pMd+k (z, y) > 0.

We have thus r ((n+M)d+k,C ) > 0, meaning that both (n+M)d+k ∈ I (C ) and (n+
M)d ∈ I (C ); therefore k must be divisible by d in contradiction with the definition
of d as gcd I (C ). ä

Sketch of the proof of theorem 9.3.7: Since the chain is φ-irreducible, there exists
a c-set C . Let d = d(C ) = gcd{n ≥ 1 : inf(x,y)∈C 2 pn(x, y) > 0}. For j = 1, . . . ,d , de-

fine: Ĉ j = {x ∈ X : P nd− j (x,C ) > 0 for some n ≥ 1}. Since C is a c-set, it follows
that φ(C ) > 0 and since the chain is φ-irreducible it follows that for all B ∈ X :
φ(B) > 0 ⇒∀x ∈X,LB (x) > 0. Every x ∈X belongs to at least a Ĉ j for j = 1, . . . ,d .
However, the sets Ĉ j are not necessarily mutually disjoint.

Lemmata 9.3.9 and 9.3.10 guarantee that C is d-accessible (relatively toφ and
C ) while cannot be k-accessible for any k, with 1 ≤ k < d . We show similarly that
for 1 ≤ i 6= j ≤ d , Ĉi ∩ Ĉ j is not accessible. (Exercise! Hint: follow the line of
reasoning used within the proof of lemma 9.3.10.) Hence A = ∪0<i< j≤d (Ĉi ∩ Ĉ j )
is not accessible either. Consequently, X \ A is closed. Define Ci = Ĉi \ A, for
i = 1, . . . ,d . It is then elementary to show that A = X \ ∪d

i=1Ci . Since A is not
accessible, φ-irreducibility implies that φ(A) = 0. Applying proposition 9.3.4 to
the closed set X \ A implies that X \ ((X \ A)∪ (X \ A)◦) is not properly essential.
Now

(X\ A)◦ = {x ∈X : LX\A(x) = 0}.

But φ(X\ A) > 0 so that by φ-irreducibility, for all x ∈X, we have that LX\A(x) > 0;
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this implies (X\ A)◦ =;. In summarising,

X\ ((X\ A)∪ (X\ A)◦) = X\ (X\ A)

= A,

establishing thus that A is not properly essential.

The second assertion of the theorem is proved according to the same line of
reasoning (exercise!). ä
Proposition 9.3.11. Let A ∈ X be a non empty set. Denote by A∞ = {x ∈ X :
HA(x) = 1} and suppose that X is indecomposable and properly essential. Then
the following are equivalent:

1. A is properly essential,

2. A◦ =;,

3. A∞ 6= ;.

Proof: An exercise (10.1.3), postponed to the next chapter 10. ä
Exercise 9.3.12. Let X be indecomposable and F closed. Show that F c cannot
be properly essential. (Hint: Start by showing that F ⊆ (F c )◦.)
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10
Asymptotic behaviour for φ-recurrent

chains

In this chapter we shall establish that the asymptotic σ-algebra, T
Pµ
∞ , for a

φ-recurrent chain is finite. If moreover the chain is aperiodic, the asymptotic
σ-algebra is trivial.

10.1 Tail σ-algebras

Definition 10.1.1. For A ∈X , we denote by Λ(A) the set

Λ(A) =∩∞
m=1 ∪i≥m {Xi ∈ A} = {Xi ∈ A i.o.}.

Proposition 10.1.2. Let A,B ∈X .

1. If iB (A) := infx∈A LB (x) > 0, then, for all µ ∈ M1(X ), we have Λ(A) ⊆Λ(B),
Pµ-a.s. Consequently Pµ(Λ(A)) ≤Pµ(Λ(B)).

2. If sB (A) := supx∈A HB (x) < 1, then, for all µ ∈ M1(X ), we have Λ(A) ⊆
Λc (B), Pµ-a.s. Consequently Pµ(Λ(A)∩Λ(B)) = 0.

Proof: Let Ai = {Xi+1 ∈ A} and Bi = {Xi+1 ∈ B}.

To prove (1) note that LB (Xn) =Pµ(∪i≥nBi |Fn) and by proposition 9.3.1, limn→∞ LB (Xn) =
1Λ(B), Pµ-a.s. If ω ∈ Λ(A) then for all m ≥ 1, there exists a n ≥ m such that ω ∈
{Xn ∈ A} ⊆ {LB (Xn) ≥ iB (A)}, the latter inclusion holding because infx∈A LB (x) > 0
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(and Xn ∈ A). Hence, Pµ-a.s.

Λ(A) ⊆ limsup
n

{LB (Xn) ≥ iB (A)} = {inf
m

sup
n≥m

LB (Xn) ≥ iB (A)}

⊆ {limsup
n

LB (Xn) > 0} = {1Λ(B) > 0} = {1Λ(B) = 1} =Λ(B).

To prove (2) note that HB (Xn) = Pµ(∩m≥n ∪k≥m Bk |Fn) and by proposition
9.3.1, limn→∞ HB (Xn) = 1Λ(B), Pµ-a.s. If ω ∈ Λ(A) then for all m ≥ 1, there exists
a n ≥ m such that ω ∈ {Xn ∈ A} ⊆ {HB (Xn) ≤ sB (A)}, the latter inclusion holding
because supx∈A HB (x) ≥ sB (A) (and Xn ∈ A). Hence, Pµ-a.s.

Λ(A) ⊆ limsup
n

{HB (Xn) ≤ sB (A)}

⊆ {liminf
n

HB (Xn) < 1}

= {1Λ(B) < 1} = {1Λ(B) = 0} =Λc (B).

ä
Exercise 10.1.3. (Proof of the proposition 9.3.11)

— For n ≥ 1 define

An = {x ∈X : HA(x) < 1− 1

n
;L A(x) > 1

n
}.

Express X in terms of A◦, A∞ and the family (An)n .
— Show that for all n ≥ 1 the sets An cannot be properly essential. (Hint: use

proposition 10.1.2 twice.)
— Determine A◦∩ A∞ and conclude that A∞ and (X\ A)∩ A◦ are disjoint.
— Show that A◦ and A∞ cannot be simultaneously non-empty, establishing

thus the equivalence of statements 2 and 3 of the proposition. (Hint: show
they are closed and use indecomposability of X.)

— Conlcude that either A◦ or A∞ is properly essential.
— Assume statement 3 of the proposition holds. Write A = ∪nBn with all

Bn unessential and Dn = {x ∈ A∞ : L∪n
k=1Bk

(x) > 1
n }. Show that for some

indices n the sets Dn must be properly essential.
— Show that the previous results contradicts the statement that all Bn are

unessential.
— Conclude that 3 implies 1.
— Conversely suppose that 1 holds and assume that A∞ =;. Show that one

can then decompose A into a countable union of unessential sets.

Corollary 10.1.4. If (Xn) is a φ-recurrent chain then

1. For all B ∈X , with φ(B) > 0, we have HB (x) = 1 for all x ∈X.

2. Every bounded harmonic function is constant.

Proof: To show (1), recall thatφ-recurrence means that for all B ∈X withφ(B), we
have LB (x) = 1 for all x ∈X. Let A =X and B ∈X as above; then infx∈XLB (x) > 0.
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Asymptotic behaviour for φ-recurrent chains

Hence (1) of proposition 10.1.2 is verified. For µ = εx , we get: 1 = Px(Λ(X)) =
HX(x) ≤Px(Λ(B)) = HB (x) ≤ 1. Summarising:

B ∈X ,φ(B) > 0 ⇒∀x ∈X : HB (x) = 1.

To show (2), let h ∈ bX be harmonic. By theorem 5.4.1, there exists a bounded
invariant function Ξ ∈ bF such that limn h(Xn) =Ξ, Px-a.s. Define α0 = sup{α ∈
R : φ({x ∈ X : h(x) > α}) > 0}. Since h ∈ bX , it follows α0 <∞. Therefore, for all
α ∈]0,α0[, φ({x ∈ X : h(x) ≥ α}) > 0. From (1) we get: H{x∈X:h(x)≥α}(x) = 1, for all
x ∈ X, meaning that h(Xn) ≥ α for infinitely many indices. Consequently, Ξ ≥ α

Px-a.s. because Ξ= limn h(Xn). Similarly, for all α>α0, we show that for α>α0,
w have H{x∈X:h(x)≤α}(x) = 1, for all x ∈ X and consequently Ξ ≤ α0 Px-a.s. Thus,
finally, Px(Ξ=α0) = 1 meaning that h(x) = Ex(Ξ) =α0. ä

10.2 Structure of the asymptotic σ-algebra

This section is devoted to the proof of the following

Theorem 10.2.1. Let µ ∈M1(X ) and (Xn) a φ-recurrent Markov chain.

1. If the chain is aperiodic, then T
Pµ
∞ is trivial.

2. If the chain has period d and (C1, . . . ,Cd ) is a d-cycle of (Xn), then T
Pµ
∞ is

atomic and the atoms (modulo Pµ-negligible events) are those of the events

Ei =∪m≥1 ∩n≥m {Xnd+i ∈Ci }, i = 1, . . . ,d

that verify the condition Pµ(Ei ) > 0.

Proof: Only the aperiodic case will be proved. To establish triviality of the T
Pµ
∞

σ-algebra, it is enough to show that all bounded harmonic spatio-temporal func-
tions are constant because then, from corollary 5.4.2, it follows that the invariant
σ-algebra for the spatio-temporal chain is trivial and proposition 5.3.7 guaran-
tees further that the asymptotic events for the chain are the invariant events for
the spatio-temporal chain. Let h̃ be such a bounded harmonic spatio-temporal
function. Define h̃′(x,n) = h̃(x,n +1) for all x ∈ X and all n ∈ N. Then h̃′ is also
a bounded harmonic spatio-temporal function. We shall establish in the sequel
that h̃′ = h̃ showing that h̃ is independent of n, hence h̃′(x,n) = h(x) for all x,
where h will be a bounded harmonic, hence constant by (2) of previous corollary
10.1.4.

Suppose that there exists a z0 = (x0,n0) such that h̃′(z0) 6= h̃(z0). Denote by
Zn = (Xn ,Tn) the spatio-temporal chain. The martingales (h̃(Zn))n and (h̃′(Zn))n

converge respectively towards Ξ and Ξ′, P̃z0 -a.s. Since we have supposed that
h̃′(z0) 6= h̃(z0), we have necessarily that P̃z0 (Ξ 6= Ξ′) > 0. Assume that P̃z0 (Ξ <
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10.2. Structure of the asymptotic σ-algebra

Ξ′) > 0 (the other case is treated similarly). Then there exist a,b ∈ R with a < b
and δ> 0 such that

P̃z0 (Ξ< a;Ξ′ > b) = δ> 0.

On denoting A = {z : h̃(z) < a} and B = {z : h̃′(z) > b}, the previous relationship
implies

P̃z0 (∪m≥0 ∩n≥m {Zn ∈ A∩B}) ≥ δ.

Let g (z0) = P̃z0 (∩n≥m{Zn ∈ A∩B}). Since

lim
n

g (Zn) =1∪m≥0∩n≥m {Zn∈A∩B}, P̃z0 -a.s.,

appropriately choosing z, the value g (z) can be made arbitrarily close to 1 with
strictly positive probability P̃z . Corollary 9.2.7 guarantees that any measurable
set A with φ(A) > contains a C -set. Let C be such a set; there exist m > 0 and
r (m,C ) > 0 such that for all x, y ∈C , we have both pm(x, y) ≥ r (m,C ) and pm+1(x, y) ≥
r (m,C ) (due to the aperiodicity and lemma 6.1.13). Now,

φ(C ) > 0
10.1.4⇒ HC (x) = 1,∀x ∈X
⇒ Px0 (Xn ∈C i.o.) = 1

⇒ P̃z0 (Zn ∈C ×N i.o.) = 1. (∗)

Observe also that

{lim
n

g (Zn) = 1} = ∩p≥1 ∪m≥0 ∩n≥m{|g (Zn)−1| < 1/p}

= ∩p≥1 Ap ,

where Ap =∪m≥0∩n≥m{|g (Zn)−1| < 1/p}. Therefore, the condition P̃z0 (limn g (Zn) =
1) > 0 implies that for every r ≥ 1, we have

P̃z0 (∪m≥0 ∩n≥m {|g (Zn)−1| < 1/r } = P̃z0 (Ar )

≥ P̃z0 (∩p≥1 Ap )

> 0. (∗∗)

In other words, there exists an increasing subsequence (nl )l , with liml nl =∞
such that for every η′ > 0, we have simultaneously for every l

P̃z0 (Xnl ∈C and |g (Znl )−1| < η′) > 0.

In fact, abbreviate Cnl = {Xnl ∈C } and Gnl = {|g (Znl )−1| < η′}. Then the condition
φ(C ) > 0 implies, by virtue of (*), that there exists a strictly increasing unbounded
sequence of integers (nl )l such that for all l , P̃z0 (Cnl ) = 1. Similarly, condition
P̃z0 (limn g (Zn) = 1) > 0 implies, by virtue of (**) that there exists an integer N > 0
such that for all n ≥ N , P̃z0 (Gn) > 0. Now

0 < P̃z0 (Gnl )

= P̃z0 (Cnl ∩Gnl )+ P̃z0 (C c
nl
∩Gnl )

= P̃z0 (Cnl ∩Gnl ).
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Asymptotic behaviour for φ-recurrent chains

Therefore, there must exist a point z1 = (x1,n1) with x1 ∈ C and 1− g (z1) <
r (m,C )φ(C )/4. Let C ′ =C ∩ {x ∈X : (x,n1 +m) 6∈ A∩B}. We have then:

Px1 (Xm ∈C ′) ≥
∫

C ′
pm(x1, y)φ(d y) ≥ r (m,C )φ(C ′)

and
Px1 (Xm ∈C ′) ≤ P̃z1 (Zm 6∈ A∩B) ≤ 1− g (z1) < ηφ(C )/4.

Hence, φ(C ′) ≤ φ(C )/4. We introduce similarly C ′′ = C ∩ {x ∈ X : (x,n1 +m +1) 6∈
A ∩B} and establish that φ(C ′′) ≤φ(C )/4 and conclude that φ(C ′∪C ′′) ≤φ(C )/2.
The latter implies that C contains a point x that does not belong to C ′∪C ′′; for
that point x, we have (x,n1 +m) ∈ A ∩B and (x,n1 +m + 1) ∈ A ∩B . Now, for
n = n1+m, (x,n) ∈ A∩B ⇒ (x,n) ∈ B ⇒ h̃(x,n) = h̃′(x,n+1) > b, while (x,n) ∈ A∩
B ⇒ (x,n) ∈ A ⇒ h̃(x,n) = h̃′(x,n +1) < a, a contradiction due to the hypothesis
that h̃ 6= h̃′.

The proof for the periodic case is based on theorem 9.3.7. ä
Corollary 10.2.2. Let (Xn) be a φ-recurrent chain and µ,ν ∈ M1(X ) with period
d ≥ 1. Then ‖ 1

d limn
∑d−1

k=0(µ−ν)P n+k‖ = 0.

Proof: If the chain is aperiodic, φ-recurrence guarantees the triviality of T
Pµ
∞ by

theorem 10.2.1, for all µ ∈ M1(X ). We conclude then by theorem 5.4.4. If the
chain is periodic, then (Xnd+r )n is φ-irreducible and aperiodic on the set Cr of
the cycle. ä
Exercise 10.2.3. (Weakening of the condition ofφ-recurrence) A chain is called
weakly φ-recurrent if A ∈ X and φ(A) > 0 imply that ∀φx ∈ X, HA(x) = 1. Con-
sider a weakly φ-recurrent chain and chose Ξ=1A where A is an invariant set. If
we define h(x) = Ex(Ξ) then for all µ ∈M1(X ), limn h(Xn) =Ξ, Pµ-a.s.

1. If 0 < α < 1, show that the sets B1 = {x ∈ X : h(x) > α} and B2 = {x ∈ X :
h(x) <α} cannot be simultaneously of strictly positive φ measure.

2. Conclude that ∀φy ∈X, either h(y) = 0 or h(y) = 1.

3. Let µ ∈ M+ and Pµ(·) = ∫
µ(d x)Px(·) (even when µ is not a probability).

Show that if µ¿φ, for all A ∈J
Pµ
∞ , either Pµ(A) = 0 or Pµ(A) = 1.

4. Conclude that if µ ¿ φ, weak φ-recurrence extends theorem 10.2.1 by

guaranteeing the triviality of the σ-algebra J
Pµ
∞ .
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11
Uniform φ-recurrence

11.1 Exponential convergence to equilibrium

We introduce the notion of taboo probability kernel by

B P m(x, A) =Px(Xm ∈ A; Xi 6∈ B ,∀i = 1, . . .m −1).

Definition 11.1.1. A chain (Xn) is uniformly φ-recurrent if for all A ∈ X with
φ(A) > 0, the following limn

∑n
m=1 AP m(x, A) = 1 holds uniformly in x.

Remark 11.1.2. Although elementary, it is worth stating explicitly for the sake of
definiteness what is meant by uniformity in the previous definition:

∀ε> 0,∃N : ∀x ∈X,∀n ≥ N ⇒
n∑

m=1
AP m(x, A) ≥ 1−ε.

Theorem 11.1.3. Let (Xn)n be a uniformly φ-recurrent chain. Then there exist
constants C <∞ and ρ < 1 such that for all µ,ν ∈M1(X ), and all n,

1. if the chain is aperiodic,

‖(µ−ν)P n‖ ≤Cρn‖µ−ν‖,

and

2. if the chain is d-periodic,

‖ 1

n

n∑
k=1

(µ−ν)P k‖ ≤Cρn‖µ−ν‖,
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11.1. Exponential convergence to equilibrium

Proof: Only the aperiodic case will be treated in detail. Without loss of generality,
we can always assume that φ is a finite measure. Denote σn = (µ−ν)P n .

We first prove that the sequence (‖σn‖)n is decreasing: recall that |σn | =σ+
n +

σ−
n . Then |σn+1| = |σnP | ≤σ+

n P +σ−
n P . It follows that

‖σn+1‖ = |σn+1|(X) ≤σ+
n P (X)+σ−

n P (X) =σ+
n (X)+σ−

n (X) = ‖σn‖.

Suppose for the moment that there exist n1 ≥ 1 and ρ1 < 1 such that

‖σn1‖ = ‖(µ−ν)P n1‖ ≤ ρ1‖µ−ν‖ (∗)

holds. Iterating, we shall then have ‖σn1k‖ = ‖(µ−ν)P n1k‖ ≤ ρk
1‖µ−ν‖ for all k.

Therefore, the result holds for the subsequence (‖σn1k‖)k and since the initial se-
quence is decreasing, the result will hold for any ρ with n1

p
ρ1 < ρ < 1. To conlude,

it is henceforth enough to establish (*).

Note that for every pair µ,ν ∈ M1(X ), there exist a pair of mutually singular
finite measures µ′,ν′ ∈ M+(X ) such that µ−ν = µ′−ν′ with ‖µ′‖ = ‖ν′‖ = ‖µ−
ν‖/2. Then

‖(µ−ν)P n‖ = ‖(µ′−ν′)P n‖ = ‖
∫
µ′(d x)εxP n −

∫
ν′(d y)εy P n‖

= 1

‖µ′‖‖
∫ ∫

µ′(d x)ν′(d x)(εx −εy )P n‖

≤ 1

‖µ′‖
∫ ∫

µ′(d x)ν′(d x)‖(εx −εy )P n‖.

Therefore, it is enough to show the claim for µ= εx and ν= εy with x 6= y .

The chain is aperiodic and φ-recurrent, therefore, since for all µ,ν ∈ M1(X ),
the convergence limn ‖(µ−ν)P n‖ = 0 holds, for all δ> 0, there exists a n0 ≥ 1 such
that for n ≥ n0 we have ‖(µ−ν)P n‖ < δ/4. For fixed x0 ∈ X and δ > 0, we can
find 1 a B ∈ X with φ(B) > 0 and a n0 ≥ 1 such that for z ∈ B and n ≥ n0 we have
‖(εx0 −εz)P n‖ < δ/4.

The chain (Xn) is uniformly φ-recurrent, therefore for B ∈ X with φ(B) > 0,
there exists a n1 such that

∑n1
k=1 B P k (y,B) > 1 − δ

4 . For n ≥ max(n0,n1), for all
A ∈X and all y ∈X:

an = |P n(x0, A)−P n(y, A)−
n1∑

k=1

∫
B

B P k (y,d z)(P n(x0, A)−P n−k (z, A))|

≤ P n(x0, A)(1−
n1∑

k=1

∫
B

B P k (y,d z))

+|P n(y, A)−
n1∑

k=1

∫
B

B P k (y,d z)P n−k (z, A)|.

1. To establish the existence of such a set with strictly positive measure, on has to use the
Egorov’s theorem A.2.1.
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Uniform φ-recurrence

Now, for all l ≤ n:

P n(y, A) =
∫
X

P l (y,d z)P n−l (z, A)

≥
∫

B
P l (y,d z)P n−l (z, A)

≥
n∑

k=1

∫
B

B P k (y,d z)P n−k (z, A).

Finally, an is majorised as

an ≤ (1− (1−δ/4))+|
n∑

k=n1+1

∫
B

P k (y,d z)P n−k (z, A)|

≤ δ/4+
∞∑

k=n1+1

∫
B

P k (y,d z)

≤ δ/2.

Consider now the remainder

bn = |
n∑

k=1

∫
B

B P k (y,d z)(P n(x0, A)−P n−k (z, A))|

≤
n∑

k=1

∫
B

B P k (y,d z)|P n−k (x0, A)−P n−k (z, A)| (≡ b1
n)

+
n∑

k=1

∫
B

B P k (y,d z)|P n(x0, A)−P n−k (x0, A)| (≡ b2
n)

From the choice of B as the support of the measureν, it follows that limn |P n−k (x0, A)−
P n−k (z, A)| = 0, uniformly in A; consequently limn b1

n = 0, uniformly in A. From
corollary 10.2.2, it follows that for every fixed k, we have ‖P n(x0, ·)−P n−k (x0, ·)‖ =
‖(εx0 −εx0 P k )P n−k‖→ 0, hence limn b2

n = 0, uniformly in A. Therefore, uniformly
in A and y ,

lim
n

|
n∑

k=1

∫
B

B P k (y,d z)(P n(x0, A)−P n−k (z, A)| = 0.

In conclusion,
|P n(x0, A)−P n(y, A)| ≤ an +bn → 0,

uniformly in A and y . Since |P n(x, A)−P n(y, A)| ≤ |P n(x0, A)−P n(x, A)|+|P n(x0, A)−
P n(y, A)|→ 0, there exists ρ1 < 1 and an integer N , such that for all x, y and µ= εx

and ν= εy , we have ‖(µ−ν)P N‖ ≤ ρ1‖µ−ν‖. ä

11.2 Embedded Markov chains

If for some A ∈ X and all x ∈ X the condition HA(x) = 1 holds, then Px(τA <
∞) = 1. It is easy then to verify that the taboo potential kernel AG(x,B) is a Marko-
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11.2. Embedded Markov chains

vian kernel when restricted on (A,XA), where XA = {B ∈X : B ⊆ A}:

AG(x, A) = Ex

(
τA∑

k=1
1A(Xk )

)

= ∑
n≥1

Ex

(
n∑

k=1
1A(Xk )|τA = n)Px(τA = n)

)
= Px(τA <∞)

= 1.

Definition 11.2.1. Suppose that (Xn)n is a MC((X,X ),P,µ) with µ= εx for some
x ∈ A. Denote by τ(0)

A = 0 and recursively for n ≥ 1,

τ(n)
A = inf{k > τ(n−1)

A : Xk ∈ A}.

Then the process (Yn) defined by Yn = X
τ(n)

A
is a MC((A,XA),P A,εx), where P A(x,B) =

AG(x,B), for all x ∈ A and B ∈XA. The Markov chain (Yn) is called embedded in
A.

Definition 11.2.2. Let X be a MC((X,X ),P,µ). A set D ∈X is called a d-set if the
chain embedded in D is uniformly φ-recurrent.

Proposition 11.2.3. If the chain (Xn) on (X,X ) satisfies

∀A ∈X ,φ(A) > 0,∃n > 0,∃ε> 0 : ∀x ∈X :
n∑

k=1
AP k (x, A) > ε,

then the chain is uniformly φ-recurrent.

Proof: Observe that
∑ j n

k=1 AP k (x, A) =∑ j n
k=1Px(Xk ∈ A;τA > k −1). The hypothesis

guarantees for all x ∈X:

n∑
k=1

AP k (x, A) =
n∑

k=1
Px(Xk ∈ A;τA > k −1)

=
n∑

k=1
Px(Xk ∈ A;τA = k)

=
n∑

k=1
Px(Xk ∈ A|τA = k)Px(τA = k)

= Px(τA ≤ n)

≥ ε.

Hence supx∈XPx(τA > n) ≤ 1−ε. Therefore

Px(τA > 2n) = Px(τA > n; Xn+1 6∈ A; . . . ; X2n 6∈ A)

≤ Px(τA > n)PXn (τA > n)

≤ Px(τA > n)sup
y∈X

Py (τA > n)

≤ (1−ε)2.

We conclude by noting that Px(τA > j n) ≤ (1−ε) j and consequently that Px(τA ≤
j n) ≥ 1− (1−ε) j → 1, uniformly in x. ä
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Uniform φ-recurrence

11.3 Embedding of a general φ-recurrent chain

Theorem 11.3.1. Let (Xn) be a φ-recurrent chain. There exists an increasing se-
quence of measurable d-sets, D1 ⊆ D2 ⊆ ·· · , exhausting the space, i.e. ∪nDn =X.

Proof: Since (Xn) is φ-recurrent, is also φ-irreducible. By corollary 9.2.7, we know
that there exists a c-set C , i.e. φ(C ) > 0 and there exists a n0 ≥ 1 and a r (n0,C ) > 0
such that inf(x,y)∈C 2 pn0 (x, y) ≥ r (n0,C ) > 0. Let s(x) = inf{m ≥ 1 : Px(∪m

i=1{Xi ∈
C } ≥ 1

m }. Since C is a c-set, it follows that s(x) < +∞. Obviously, s is a X -
measurable function. Define for all n ∈N, the measurable sets Dn = {x ∈X : s(x) ≤
n0 +n}. The sequence (Dn) is increasing and Dn ↑X. To conclude, it remains to
show that every Dn is a d-set.

Let A ⊆ Dn with φ(A) > 0. Now φ-recurrence of (Xn) implies that for all z, we
have L A(z) = 1. Therefore, for any ε ∈]0,1[, there exist n1 ≥ 1, and B ∈ X with
B ⊆ C and φ(B) > 0 such that for all z ∈ B , we have Pz(∪n1

k=1{Xk ∈ A}) > ε. Then,
for all x ∈ Dn ,

Px(τA ≤ n +n0 +n1) = Px(∪n+n0+n1
k=1 {Xk ∈ A})

≥ Px(∪n
k1=1 ∪n0+n1

k2=1 {Xk1 ∈C ; Xk1+k2 ∈ A})

≥ Px({τC ≤ n}∩∪n0+n1
k=1 {Xk1 ∈C ; XτC+k ∈ A})

= Px({τC ≤ n})Px(∪n0+n1
k=1 {XτC+k ∈ A}|τC ≤ n)

≥ 1

n0 +n
inf
y∈C

Py (∪n0+n1
k=1 {Xk ∈ A}).

For all y ∈C ,

Py (∪n0+n1
k=1 {Xk ∈ A}) = Py (τA ≤ n0 +n1)

≥ Py ({τB ≤ n0}∩∪n1
k=1{XτB+k ∈ A})

≥ Py ({τB ≤ n0}) inf
z∈B

Pz∈B (τA ≤ n1)

≥ Py ({τB ≤ n0})ε

≥ Py (Xn0 ∈ B)ε

≥ r (n0,C )φ(B)ε.

In summarising, for all x ∈ Dn ,

Px(∪n+n0+n1
k=1 {Xk ∈ A}) = Px(τA ≤ n +n0 +n1)

=
n+n0+n1∑

k=1
AP k (x, A)

≥ 1

n0 +n
r (n0,C )φ(B)ε.

If X̂k = X
τ(k)

Dn
for x ∈ Dn , then (X̂k ) is obviously a chain embedded in Dn . Denot-

ing by ·̂ quantities associated with the embedded chain, the previous property
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11.3. Embedding of a general φ-recurrent chain

guarantees that

P̂x(τ̂A ≤ n +n0 +n1) ≥ Px(∪n+n0+n1
k=1 {Xk ∈ A})

≥ 1

n0 +n
r (n0,C )φ(B)ε.

The latter establishes that the chain embedded in Dn is uniformly φ-recurrent.
ä
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12
Invariant measures for φ-recurrent

chains

12.1 Convergence to equilibrium

Definition 12.1.1. A measure π ∈ M+(X ) is called invariant for the kernel P , if
π=πP . If additionally π(X) = 1, then π is an invariant probability.

Theorem 12.1.2. Let X be a φ-recurrent Markov chain and µ ∈M1(X ).

1. If the chain admits an invariant probabilityπ and is aperiodic, then limn→∞ ‖µP n−
π‖ = 0; if the chain has period d, then limn→∞ ‖ 1

d

∑d−1
k=0 µP n+k −π‖ = 0.

2. X admits at most one invariant probability.

3. If X is additionally uniformly φ-recurrent, then X has an invariant proba-
bility π and there exist constants a > 0 and ρ < 1 such that for all n ∈N

‖(µ−π)P n‖ ≤ aρn for the aperiodic case

‖ 1

d

d−1∑
k=0

µP n+k −π‖ ≤ aρn for the d-periodic case.

Proof: The statement “X is φ-recurrent” is equivalent to

∀A ∈X ,φ(A) > 0 ⇒∀x ∈X, HA(x) = 1.

Thanks to the corollary 10.1.4, the latter means that every bounded harmonic
function is constant. The theorem 5.4.4 guarantees then the triviality of the σ-

algebra T
Pµ
∞ and equivalently limn→∞ ‖(µ−π)P n‖ = 0 for all probability measures

π. If π is further an invariant probability, statement 1 follows immediately.
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Statement 2 follows from 1. As a matter of fact, if µP n has a limit, this limit is
necessarily π.

To prove statement 3 for the aperiodic case, note that uniform φ-recurrence
implies that

lim
n→∞‖µP n −µP n+m‖ = lim

n→∞‖(µ−µP m)P n‖ = 0

uniformly in m, thanks to the theorem 11.1.3 stating exponential convergence to
equilibrium. We conclude then that, uniformly in A ∈ X , the sequence µP n(A)
converges towards π(A) and that π is a probability. Now,

µP n+1(A) =
∫
µ(d x)

∫
P n(x,d y)P (y, A).

Taking limits in both sides and using the uniformity guaranteed by the theorem
11.1.3, we get π(A) = ∫

π(d y)P (y, A) showing the invariance of π. ä

12.2 Relationship between invariant and irreducibil-
ity measures

Theorem 12.2.1. Let X be a φ-recurrent chain. Then there exists a measure π ∈
M+(X ) such that

1. π is invariant.

2. For any π′ ∈ M+(X ) that is invariant, there is a constant c such that π′ =
cπ.

3. φ¿π.

Proof: Since X is φ-recurrent, theorem 11.3.1 guarantees the existence of d-sets.
Let A ∈X , with φ(A) > 0 such a d-set. By the very definition 11.3.1 of a d-set, the
chain embedded in A will be uniformly φ-recurrent; theorem 12.1.2 then guar-
antees that it admits an invariant probability πA. Define for all B ∈ X a mea-
sure (not necessarily a probability) byπ(B) = ∫

AπA(d x)P A(x,B), where P A(x,B) =
AG(x,B). (Note that P A is Markovian on A but not on X.)

For all B ⊆ A, the definition π(B) = ∫
AπA(d x)P A(x,B) yields π(B) = πA(B),

because πA is an invariant measure of P A on (A,XA) where XA = {B ∈X : B ⊆ A}.

If the chain X is initiated with πA, we have for all B ∈X that

π(B) =
∫

A
πA(d x)

∞∑
k=1

AP k (x,B)

=
∞∑

k=1
PπA (Xk ∈ B , Xi 6∈ A, i = 1, . . . ,k −1)

=
∫
πA(d x)

∞∑
k=1

Px({Xk ∈ B ;τA ≥ k}).
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Invariant measures for φ-recurrent chains

We shall show thatπ isσ-finite. For fixed A ∈X withφ(A) > 0 and m,n ≥ 1, define
X(m,n) = {x ∈ X : P m(x, A) ≥ 1/n}. Since φ(A) > 0 and the chain is φ-recurrent, it
follows that ∪m,nX

(m,n) = {x ∈X : L A(x) > 0} =X. Recall that

π(X(m,n)) =
∫
πA(d x)Ex(

τA∑
k=1

1X(m,n) (Xk )).

We have now

Ex(
τA∑

k=1
1X(m,n) (Xk )) = Ex(

τA∑
k=τ

X(m,n)

1X(m,n) (Xk ))Px(τX(m,n) ≤ τA)

≤ Ex(τA −τX(m,n) ;τX(m,n) ≤ τA)

=
∞∑

k=0
Px(τA −τX(m,n) > k;τX(m,n) ≤ τA)

≤ m
∞∑

j=0
Px(τA −τX(m,n) > j m;τX(m,n) ≤ τA)

≤ m
∞∑

j=1
(1− 1

n
) j

< +∞.

Therefore, π(X(m,n)) <+∞, establishing the σ-finiteness of π.

To prove invariance of π, write∫
π(d x)P (x,B) =

∫
A
πA(d x)P (x,B)+

∫
Ac
π(d y)P (y,B)

=
∫

A
πA(d x)P (x,B)+

∫
Ac

∫
A
πA(d x)P A(x,d y)P (y,B)

=
∫

A
πA(d x)[P (x,B)+

∫
Ac

P A(x,d y)P (y,B)]

=
∫

A
πA(d x)P A(x,B)

≡ π(B).

This remark concludes the proof of statement 1.

To prove 2, let π ∈ M+(X ) be an arbitrary invariant measure. Let A ∈ X be
such that π(A) = 1 and denote by πA = π�XA

. Remark that πA(B) = π(B) for all
B ∈ XA. We must show that the latter equals πA(d x)P A(x,B) for all B ∈ XA that
will be sufficient in showing invariance of πA for the chain embedded in A. We
shall establish, by recurrence, that

π(B) =
n∑

k=1

∫
A
π(d x)AP k (x,B)+

∫
Ac
π(d x)AP n(x,B). (∗)

Since for n = 1, we have AP k (x,B) = P (x,B), the above equality is true for n = 1.
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12.2. Relationship between invariant and irreducibility measures

Suppose that it remains true for n. The last term of (∗) reads:∫
Ac
π(d x)AP n(x,B) =

∫
π(d y)

∫
Ac

P (y,d x)AP n(x,B)

=
∫

A
π(d y)

∫
Ac

P (y,d x)AP n(x,B)+
∫

Ac
π(d y)

∫
Ac

P (y,d x)AP n(x,B)

=
∫

A
π(d y)AP n+1(y,B)+

∫
Ac
π(d y)AP n+1(y,B).

Using the recurrence hypothesis up to n, we get

π(B) =
n+1∑
k=1

∫
A
π(d x)AP k (x,B)+

∫
Ac
π(d x)AP n+1(x,B).

Using thus (∗), that is proved true for all n, we get:

π(B) ≥
∫

A
πA(d x)P A(x,B), ∀B ∈X .

Let F ∈ X be a subset of A. The previous inequality is true for both B = F and
B = A \ F . Now

1 = π(A)

= π(F )+π(A \ F )

≥
∫

A
πA(d x)P A(x,F )+

∫
A
πA(d x)P A(x, A \ F )

=
∫

A
πA(d x)P A(x, A)

=
∫

A
πA(d x)P̂x(τ̂A = 1)

= 1,

where ·̂ refers to the chain embedded in A. We conclude 1 that

π(F ) =
∫

A
πA(d x)P A(x,F ).

Consequently, if π,π′ ∈ M+(X ) are non-trivial invariant measures and A ∈ X

is such that 0 < π(A) < ∞ and 0 < π′(A) < ∞, then the measures π
π(A) and π′

π′(A)
coincide on A with the unique invariant probability of the chain embedded in A
(see exercise 12.2.3 below proving that it is as a matter of fact possible to choose
an A such that π(A) > 0). Therefore, they must coincide everywhere thanks to the
above arguments. This remarks proves statement 2.

To show statement 3, consider an invariant measure π ∈ M+(X ). For all B ∈
X and all n ∈N,

π(B) =
∫
π(d x)P (x,B) = . . . =

∫
π(d x)P n(x,B).

Now, if π(B) = 0, then, for all n ∈ N, the function P n(·,B) = 0 π-a.e. However, if
φ(B) > 0 then LB (x) > 0, i.e.

∑
n P n(x,B) > 0 for all x, by φ-recurrence. This leads

to a contradiction. Therefore, φ¿π. ä
1. Use the trivial statement [0 ≤ a′ ≤ a ≤ 1;0 ≤ b′ ≤ b ≤ 1;1 = a +b = a′+b′] ⇒ [a = a′;b = b′].
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Corollary 12.2.2. Let X be a φ-recurrent chain and π ∈M+(X ) a non-trivial in-
variant measure of X . Then X is π-recurrent. Additionally, for B ∈ X , there is
equivalence among

1. π(B) > 0,

2. ∀x ∈X : LB (x) > 0,

3. ∀x ∈X : HB (x) = 1.

Proof: The existence of a non-trivial invariant measure π, is guaranteed by the
previous theorem. We show first the implication 3 ⇒ 2; for arbitrary x ∈X,

X : HB (x) = 1 ⇔ Px({Xn ∈ B i.o. }) = 1

⇒ Px(∪n{Xn ∈ B}) > 0

⇔ LB (x) > 0.

Next, we show the implication 2 ⇒ 1:

LB (x) > 0 ⇔ Px(∪n{Xn ∈ B}) > 0

⇔ ∑
n

P n(x,B) > 0

⇔ ∑
n

t nP n(x,B) > 0,∀t ∈]0,1[.

Recalling that we denote by Gt (x,B) = ∑
n≥1 t nP n(x,B), t ∈]0,1[, we remark that

Gt (x,X) = t
1−t . Therefore Mt (x,B) = 1−t

t Gt (x,B) is a Markov kernel for all every
t ∈]0,1[. Additionally, LB (x) > 0 ⇔ Mt (x,B) > 0 for all t ∈]0,1[. Now, it π is an
invariant measure for P , then, for all A ∈X , we have:∫

π(d x)Mt (x, A) = 1− t

t

∑
n≥1

t n
∫
π(d x)P n(x, A) =π(A).

Therefore, π is also invariant for Mt . Moreover, LB (x) > 0 ⇔ Mt (x,B) > 0; subse-
quently, π(B) = ∫

π(d x)Mt (x,B) > 0, establishing thus 1.

Next we show the implication 1 ⇒ 3. Let F ∈X be an arbitrary closed set with
φ(F ) > 0 and let µ ∈M+(X ) be a measure defined by

µ=
{
π on XF = {B ∈X : B ⊆ F }
0 on XF c = {B ∈X : B ⊆ F c },

where π is an arbitrary invariant measure of the chain. First we observe that∫
µ(d x)P (x, A) =

∫
F
µ(d x)P (x, A)+

∫
F c
µ(d x)P (x, A)

=
∫

F
π(d x)P (x, A).

Now,
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— if A ⊆ F c , since F is closed, it follows that
∫

F π(d x)P (x, A) ≤ ∫
F π(d x)P (x,F c ) =

0 =µ(A).
— if A = F , then

∫
F π(d x)P (x,F ) =π(F ) =µ(F ).

— if A ⊆ F , then
∫

F π(d x)P (x, A) ≤ ∫
Xπ(d x)P (x, A) = π(A) = µ(A), so that∫

Xµ(d x)P (x, A) ≤ µ(A). Now when A ⊆ F , it is also true that F \ A ⊆ F .
Hence

∫
Xµ(d x)P (x,F \A) ≤µ(F \A). Subsequently 2, sinceµ(F ) = ∫

Xµ(d x)P (x, A)+∫
Xµ(d x)P (x,F \ A) ≤ µ(A)+µ(F \ A) = µ(F ), it follows, in particular, that∫
Xµ(d x)P (x, A) =µ(A).

The above observations establish thus the invariance of µ ∈ M+(X ). Statement
2 of the theorem 12.2.1 guarantees that µ = cπ for some constant c. Since, by
definition µ(F c ) = 0 it follows that π(F c ) = 0.

Suppose now that B ∈X is such thatπ(B) > 0. Denote by B◦ = {x ∈X : LB (x) =
0} and suppose that B◦ 6= ;. Define F = B◦∩B c = {x ∈ B c : LB (x) = 0}. For every
x ∈ F , we have

LB (x) = 0 ⇔ ∀n ∈N : P n(x,B) = 0

⇔ G(x,B) = 0

⇔ ∀n ∈N : P n(x,B c ) = 1

⇔ G(x,B c ) > 0.

Now B c = F tF ′ where F ′ = {x ∈ B c : LB (x) > 0}. Therefore, for all n, we have:

1 = P n(x,B c ) = P n(x,F )+P n(x,F ′).

Suppose that there exists an integer n1 such that P n1 (x,F ′) > 0. Then

G(x,B) ≥ ∑
n∈N

P n+n1 (x,B)

=
∫
X

P n1 (x,d y)G(y,B)

≥
∫

F ′
P n1 (x,d y)G(y,B)

> 0,

because F ′ is equivalently F ′ = {y ∈ B c : G(y,B) > 0}. Hence LB (x) > 0, in contra-
diction with x ∈ F . It follows that for all x ∈ F and all n ∈N, we have P n(x,F ) = 1,
meaning that F is closed.

Since F = B◦∩B c is closed, applying the previous result, we get that π(F c ) =
0. Now F c = {x ∈ B c : LB (x) > 0}∪B , therefore the sequence of inequalities 0 =
π(F c ) ≥ π(B) > 0 leads to a contradiction, due to the assumption that B◦ 6= ;.
Therefore, B◦ = ;, meaning that for all x ∈ X, we have LB (x) > 0. Subsequently,
there exists A ∈X with φ(A) > 0 such that infx∈A LB (x) > 0. Applying proposition
10.1.2, we get Λ(A) ⊆ Λ(B) and by φ-recurrence, that for all x ∈ X, 1 = HA(x) ≤
HB (x). The latter shows the implication

[π(B) > 0] ⇒ [∀x ∈X : HB (x) = 1],

2. Use the elementary observations: [0 ≤ a ≤ b and 0 ≤ a′ ≤ b′ and b +b′ = a + a′ ≤ b +b′] ⇒
[b −a = a′−b′] ⇒ [a = b and a′ = b′].
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Invariant measures for φ-recurrent chains

implying π-recurrence and establishing the implication of statement 3 out of 1.
ä
Exercise 12.2.3. Letφ ∈M+(X ) be a non-trivial measure and (Xn) aφ-recurrent
chain with invariant measure π ∈M+(X ). The purpose of this exercise is to show
that it is possible to choose a measurable set A such that 0 <π(A) <∞

1. Argue why it is always possible to find a measurable set A such thatφ(A) >
0.

2. Choose a fixed measurable set A with φ(A) > 0. Introduce the Markovian
kernel Mt for t ∈]0,1[ defined by

Mt = 1− t

t

n∑
t=1

t nP n .

Show that for all x ∈X, Mt (x, A) > 0.

3. Conclude that π(A) > 0.

4. Introduce the family of sets X(m,n) = {x ∈ X : P m(x, A) ≥ 1
n } for m,n ≥ 1

and Y(M ,N ) =∪M
m=1 ∪N

n=1X
(m,n). Show that limM ,N Y

(M ,N ) =X (see proof of
theorem 12.2.1).

5. Conclude that there exist integers M0 and N0 such that φ(A ∩Y(M0,N0)) >
φ(A)/2.

6. Conclude that A′ = A∩Y(M0,N0) satisfies the sought conditions.

Theorem 12.2.4. Let (Xn) be aMC((X,X ),P,µ) with X separable andπ ∈M+(X )
an invariant measure for P. Suppose further that

— π(X) =∞, and
— (Xn) is π-recurrent.

Then for all δ> 0 and all x ∈X,

lim
n→∞

P n(x, A)

π(A)+δ = 0, uniformly in A ∈X .

Proof: : Given in exercise 12.2.5. ä
Exercise 12.2.5. (Proof of the theorem 12.2.4)

1. Show that if the conclusion were false one could find δ0 > 0, x0 ∈ X, θ0 >
0, a strictly increasing sequence of integers (nk )k∈N, and a sequence of
measurable sets (Ak )k∈N, such that

P nk (x0, Ak )

π(Ak )+δ0
≥ θ0,∀k ∈N.

2. Use corollary 10.2.2 and the extension of Egorov’s theorem A.2.2, to es-
tablish that it is possible to choose B ∈ X with π(B) > 1

θ0
such that for all

y ∈ B ,
|P nk (x0, Ak )−P nk (y, Ak )| ≤ δ0θ0/2.

3. Use previous results to establish that

π(Ak ) ≥ θ0(π(Ak )+ δ0

2
)π(B).

4. Conclude ad absurdum.
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12.3 Ergodic properties
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A
Complements in measure theory

A.1 Monotone class theorems

On general sets, σ-algebras are technically complicated objects. However,
they are fundamental in the definition of a measure. To prove for instance that
two measures coïncide, we must show that they charge equally every set of theσ-
algebra. To palliate this difficulty, it is often possible to show equality of measures
on some easier object than the σ-algebra itself, typically a monotone class.

A.1.1 Set systems

Definition A.1.1. Let Ω be an arbitrary non-empty universal set and A ⊆ P (Ω)
a given class of subsets of Ω. Then A is a π-system, a semi-algebra, an algebra,
or a σ-algebra if the following conditions hold:
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A.1. Monotone class theorems

π-system semi-algebra algebra σ-algebra

Ω ∈A Ω ∈A Ω ∈A

A stable in finite
intersections

A stable in finite
intersections

A stable in finite
intersections

A stable in
countable
intersections

For A ∈A there
exists a finite
family of mutually
disjoint sets
(A1, . . . , An) such
that Ac =tn

i=1 Ai

A ∈A ⇒ Ac ∈A A ∈A ⇒ Ac ∈A

Exercise A.1.2. 1. Show thatσ-algebra⇒ algebra⇒ semi-algebra⇒π-system.

2. Provide some explicit examples for each class of sets in the previous defi-
nition.

3. Let A1 = {A ∈ P (Ω) : A countable or Ac countable } and A2 = {A ∈ P (Ω) :
A finite or Ac finite }. Which class do they belong to?

Definition A.1.3. Let Ω be an arbitrary non-empty universal set and A ⊆ P (Ω)
a given class of subsets of Ω and (An)n a sequence of sets of A . Then A is a
monotone classe, a Dynkin system, or a λ-system if the following conditions
hold:

monotone class Dynkin system λ-system

Ω ∈A Ω ∈A

An ↑ A ⇒ A ∈A A1 ⊆ A2 ⇒ A2 \ A1 ∈A A ∈A ⇒ Ac ∈A

An ↓ A ⇒ A ∈A A is a monotone class (An) mutually disjoint
⇒∪n An ∈A

Exercise A.1.4. Let Ω be a universal set and J an arbitrary non-empty indexing
set of a collection of set systems (A j ) j∈J , with A j ∈ P (Ω) for every j ∈ J . If
for all j ∈J , the system A j is of one of the types: algebra, σ-algebra, monotone
class, Dynkin system, π-system, so is the system ∩ j∈J A j .

Definition A.1.5. Let E ⊆P (Ω) be an arbitrary non-empty collection of subsets
of a universal set Ω. We call closure of type γ, for γ ∈ {α,σ,m,D,λ}, and denote
by γ(E ), the sets

— α(E ) =∩{A : E ⊆A ⊆P (Ω);A is an algebra},
— σ(E ) =∩{A : E ⊆A ⊆P (Ω);A is a σ-algebra},
— m(E ) =∩{A : E ⊆A ⊆P (Ω);A is a monotone class},
— D(E ) =∩{A : E ⊆A ⊆P (Ω);A is a Dynkin system},
— λ(E ) =∩{A : E ⊆A ⊆P (Ω);A is a λ-system}.

Exercise A.1.6. Let γ be the closure operator defined above and E ⊆ P (Ω) for
some universal setΩ. Then
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1. γ is isotone,

2. if E is an algebra, then σ(E ) = m(E ),

3. if E is a π-system, then σ(E ) =D(E ),

4. if E is a π-system, then σ(E ) =λ(E ),

5. if E is a π-system and a λ-system then E is a σ-algebra.

A.1.2 Set functions and their extensions

Definition A.1.7. Let Ω be an arbitrary non-empty universal set and A ⊆ P (Ω)
a given class of subsets of Ω. A set function µ : A → R+∪ {+∞} is a content 1, a
pre-measure, a measure, or a probability if the following conditions hold:

Set function type properties of A properties of µ

Content semi-algebra finitely additive

Pre-measure semi-algebra σ-additive

Measure σ-algebra σ-additive

Probability σ-algebra σ-additive and µ(Ω) = 1

Exercise A.1.8. Let µ : A → R+∪ {+∞} be a content. For sequences (An)n∈N of
sets in A , consider the following statements:

1. µ is a pre-measure.

2. µ is sequentially continuous for increasing sequences, i.e. if An ↑ A then
µ(An) ↑µ(A).

3. µ is sequentially continuous for decreasing sequences of sets of finite con-
tent, i.e. if An ↓ A and µ(A1) <+∞, then µ(An) ↓µ(A).

4. µ is sequentially continuous for sequences of sets decreasing to ; of finite
content , i.e. if An ↓; and µ(A1) <+∞, then µ(An) ↓ 0.

Then, 1 ⇔ 2 ⇒ 3 ⇒ 4. If, additionally, µ(Ω) <+∞ then all statements are equiva-
lent.

Exercise A.1.9. Let µ : A →R+∪{+∞} be a set function defined on some class A

of sets.

1. If A is a semi-algebra and µ is finitely additive, then there exists a con-
tent µ̂ on α(A ) such that µ̂(A) = µ(A) for all A ∈ A . Moreover, µ̂ is a pre-
measure on α(A ).

2. If A is an algebra and µ is a pre-measure, then there exists a measure µ̂ on
σ(A ) such that µ̂(A) =µ(A) for all A ∈A .

Exercise A.1.10. Let A ⊆ P (Ω) be a π-system generating a σ-algebra F , i.e.
σ(A ) = F . Suppose that P and P′ are two probabilities on F coinciding on A .
Then P=P′, i.e. they coincide on F .

1. The term content is very often called charge in the literature. In these notes, we reserve the
term charge in the context of harmonic analysis and potential theory to denote a very specific
quantity related to the Green’s operator of the Markov operator (see definition 5.1.1).
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A.2 Uniformity induced by Egorov’s theorem and its
extension

Recall first the elementary version of Egorov’s theorem

Theorem A.2.1 (Egorov’s theorem). Let (X,X ) be a measurable space and φ ∈
M+(X ) a finite measure. Suppose ( fn) be a sequence of functions such that, for
all n, the function fn is X -measurable and φ-a.e. finite and that f is a finite X -
measurable function. If limn fn = f φ-a.e. Then, for every ε > 0 there exist a set
B ∈X , with φ(B) < ε, such that limn fn = f uniformly on X\ B.

The conclusion is in general false if φ is not finite. Therefore, the following
generalisation, valid for the case of infinite total mass, is non trivial.

Theorem A.2.2 (Extension of Egorov’s theorem). Let (X,X ) be a measurable space
and φ ∈ M+(X ) (not necessarily of finite mass). Suppose ( fn) be a sequence of
functions such that, for all n, the function fn is X -measurable and φ-a.e. finite
and that f is a finite X -measurable function. If limn fn = f φ-a.e., then there ex-
ists a sequence of measurable sets (Bk ) such thatφ(X\∪∞

k=0Bk ) = 0 and limn fn = f ,
uniformly on every Bk .

Proof: See Halmos [19] p. 90. ä

/Users/dp/a/ens/markov-appen.tex
2015-10-15 • 20:50:13.

140



B
Some classical martingale results

B.1 Uniformly integrable martingales

It is an elementary result that for every ξ ∈ L 1(Ω,F ,P;R) and every ε> 0 we
can chose a δ= δ(ξ,ε) > 0 such that for every F ∈F , P(F ) ≤ δ⇒ ∫

F |ξ(ω)|P(dω) <
ε. Otherwise stated, for every ε > 0, there exists K = K (ξ,ε) ∈ [0,∞[ such that∫

{|ξ|>K } |ξ(ω)|P(dω) < ε. For the sake of clarity, we recall the following

Definition B.1.1. A class E ⊆ L 1(Ω,F ,P;R) is called uniformly integrable if
for all ε > 0, there exists a constant K = K (ε) ≥ 0 such that for all ξ ∈ E we have∫

{|ξ|>K } |ξ(ω)|P(dω) < ε.

Remark: A uniformly integrable class is bounded in L1. The converse is in gen-
eral false. Therefore the following lemma provides us with two useful sufficient
conditions of uniform integrability.

Lemma B.1.2. Let E ⊆L 1(Ω,F ,P;R).
— If there exists p > 1 such that E(|ξ|p ) <∞ for all ξ ∈ E , then E is uniformly

integrable.
— If there exists ζ ∈ L 1(Ω,F ,P;R+) such that |ξ| ≤ ζ for all ξ ∈ E , then E is

uniformly integrable.

Lemma B.1.3. Let ξ ∈ L 1(Ω,F ,P;R). Then the class of random variables E =
{E(ξ|G ),G sub-σ-algebra of F } is uniformly integrable.

The main result on uniform martingales needed in this course is the following
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B.2. Martingale proof of Radon-Nikodým theorem

Theorem B.1.4. Let (Ω,F , (Fn),P) be a filtered space and (Mn) a (Fn)-martingale
such that the class E = {Mn ,n ∈ N} is uniformly integrable. Then, M∞ = lim Mn

exists almost surely and in L1. Additionally, the martingale is closed, i.e. Mn =
E(M∞|Fn) for all n (so that M∞ = limE(M∞|Fn)).

Proof: See [51]. ä

B.2 Martingale proof of Radon-Nikodým theorem

Theorem B.2.1. Let (Ω,G ,φ) be a probability space and suppose that G is separa-
ble. Let ψ be a finite measure on (Ω,G ) that is absolutely continuous with respect
to φ. Then there exist a random variable D ∈ L 1(Ω,G ,φ) such that ψ = Dφ. The
random variable D is called (a version of) the Radon-Nikodým derivative of ψ

with respect to φ, denoted D = dψ
dφ .

Proof: For all ε> 0, there exists δ> 0 such that

G ∈G ;φ(G) < δ⇒ψ(G) < ε.

Since G is separable, there exists a sequence (Gn) generating G . Define the fil-
tration Gn = σ(G1, . . . ,Gn) for n ≥ 1. Obviously, Gn is composed of 2r (n) possible
unions of atoms An, j , j = 1, . . . ,r (n) of Gn . Note that every atom is of the form
H1∩·· ·∩Hn where Hi =Gi or Hi =Gc

i . Since for everyω ∈Ω there exists precisely
one atom containing it, we can define for every n ≥ 1 the function Dn : Ω→ R+
just by its restriction on atoms, namely:

An,k 3ω 7→ Dn(ω) =
{

ψ(An,k )
φ(An,k ) if φ(An,k ) > 0

0 otherwise.

Decomposing an arbitrary G ∈Gn in its constituting atoms: G = An,i1 t . . .t An,il ,
we compute ∫

G
Dndφ=

l∑
j=1

∫
An,i j

Dndφ=
l∑

j=1
ψ(An,i j ) =ψ(G).

Thus, Dn is a version of the Radon-Nikodým derivative on Gn . The previous
equalities guarantee similarly that (Dn) is positive (Gn)-martingale; therefore D∞ =
limn Dn exists almost surely. The measure ψ being of positive mass, there always
exists constant K such that ψ(Ω)/K < δ, for the δ determined in the beginning of
the proof. Now Markov inequality reads:

φ(Dn > K ) ≤ 1

K

∫
Ω

Dndφ= 1

K
ψ(Ω) < δ.

The set {Dn > K } being G measurable, the sequence (Dn) becomes uniformly
integrable since ∫

{Dn>K }
Dndφ=ψ({Dn > K }) < ε.
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Consequently, the convergence Dn → D∞ takes places also in L 1. Therefore, the
set functions G →R+ defined by

G 7→ ψ(G)

G 7→
∫

G
D∞dφ= lim

n

∫
G

Dndφ,

coincide on the π-system ∪Gn and consequently on the generated σ-algebra G ,
by virtue of exercise A.1.10. ä

B.3 Reverse martingales

We only need elementary results concerning reverse martingales, as they can
be found in chapter 1 of [18].

Definition B.3.1. Let (Ω,F ,P) be a probability space (Zn)n∈N a sequence of real-
valued random variables defined it and (Tn)n∈N a sequence of decreasing sub-σ-
algebras of F . The sequence (Zn) is called a (Tn)-reverse martingale or back-
wards martingale if for all n ∈N,

— Zn ∈ mTn ,
— E|Zn | <∞, and
— E(Zn |Tm) = Zm , for all m ≥ n.

Theorem B.3.2. If (Zn) is a (Tn)-reverse martingale, then Zn converges almost
surely to finite limit Z∞.

Proof: See [18], p. 18. ä

Remark: (Zn) is a (Tn)-reverse martingale if, and only if, (Zn−i+1) is a (Tn−i+1)-
martingale for 1 ≤ i ≤ n.
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C
Semi-martingale techniques

We regroup here some results, effectively used [14] in the constructive theory
of Markov chains, to obtain sharp criteria for recurrence/transience or precise
estimate of the existing moments of the recurrence time.

C.1 Integrability of the passage time

Theorem C.1.1. Let (Ω,F , (Fn)n∈N,P) be a filtered probability space and (Zn)n∈N
a R+ valued (Fn)n∈N-adapted sequence of random variables defined on it. For
c > 0 we denote by σc = inf{n ≥ 1 : Zn ≤ c}. We assume that P(Z0 = z) = 1 for some
z > 0. If z > c and there exists ε> 0 such that for all n ≥ 0:

E(Z(n+1)∧σc −Zn∧σc |Fn) ≤−ε1{σc>n},

then E(σc ) <∞.

Proof: Taking expectations on both sides of the strong supermartingale condition
yields:

E(Z(n+1)∧σc −Zn∧σc ) ≤−εP(σc > n).

Using telescopic cancellation to perform the summation over n and taking into
account the positivity of the random variables we get:

0 ≤ E(Z(n+1)∧σc ) ≤−ε
n∑

k=0
P(σc > k)+ z.
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The latter inequalities imply

E(σc ) = lim
n→∞

n∑
k=0

P(σc > k) < z

ε
<∞.

ä
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