
Principle of cryptography
Quantum cryptography

The BB84 cryptologic protocol
of quantum key distribution

Dimitri Petritis

Institut de recherche mathématique de Rennes
Université de Rennes 1 et CNRS (UMR 6625)

Santiago, November 2013

Santiago, November 2013 QCCC



Principle of cryptography
Quantum cryptography Vernam’s ciphering

Principles of coding and cryptography

Message = m ∈ A∗ (monoidal closure of finite alphabet A).
Length of message |m|.
Coding C : A∗ → A∗ (or more generally B∗).
Decoding D : B∗ → A∗, with DomD = imC = C (DomC ),
such that

D ◦ C�DomC = 1 .

Vigenère’s1 coding: key k ∈ A∗ with |k| = |m|; ci = mi + ki
mod A, i = 1, . . . , |m|; mi = ci − ki mod A, i = 1, . . . , |m|.
A = {a, . . . , z} ' {0, . . . , 25}; m =hello, k =chile, c =jluws.
For cryptography: D easy to compute, very difficult to guess.

1Blaise de Vigenère (1523–1596): diplomat, cryptograph, translator,
alchemist, and astrologue.
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Vernam’s ciphering (1917)

Vernam (1917) proposed US Patent 1310719.
(ki )i=1,...,|m| independent random variables uniformly
distributed on A.
Key used only once (one time pad).
All keys equiprobable, hence all messages m corresponding to
given ciphering c equiprobable.
If we receive a ciphered message of length 39, all
2639 = 1.53× 1055 words can be possible messages. Most of
them have no meaning. But even if some have meaning, we
don’t know which is the correct one.
m = overwheliminglyvictoriousovertheevilaxis and
m′ = wewonthebattlebutwedefinitelylostthewar
are potential source messages (equiprobable)!
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Shannon’s theorem on cryptography

Theorem (Shannon (1949))

|m| is large,
|k| = |m|, and
the key is used only once,

implya that Vernam’s ciphering is ideal (inviolable for all practical
purposes).

aC Shannon, Communication theory of secrecy systems, Bell System Tech.
J., 1949, 28, 656-715.

BUT: How to communicate the key?
Vernam’s ciphering abandoned.
Rivest, Shamir, Adleman (1978), or more generally “discrete
logarithm protocols” used instead.
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Is RSA secure?

If p, q large primes and N = pq then hard to factor N. Denote
n = logN.

Beginnings of RSA protocol (1978), τ = O(exp(n)).
Lenstra-Lenstra (1997), τ = O(exp(n1/3(log n)2/3)).
Shor (1994), if a quantum computer existed τ = O(n3).

Very rough estimation: 1 operation par nanosecond, n = 1000

O(exp(n)) O(exp(n1/3(log n)2/3)) O(n3)

10417 yr 2 0.2 yr 1 s

2For comparison: age of the universe 1.5× 1010 yr
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Non-cloning theorem

Theorem (Non-cloning)

Let |φ 〉 and |ψ 〉 unit vectors of H such that

〈φ |ψ 〉 6= 0 and |φ 〉 6= exp(iθ)|ψ 〉.

Then, no physical procedure can duplicate them.

Must show non-existence of unitary U : H⊗2 → H⊗2 s.t.
U|φα 〉 = |φφ 〉, U|ψα 〉 = |ψψ 〉, for α ancillary3 pure state.
Shall show ∀n ≥ 0, 6 ∃U : H⊗(n+2) → H⊗(n+2) s.t.
U|φα0 . . . αn 〉 = |φφβ1 . . . βn 〉 and
U|ψα0 . . . αn 〉 = |ψψγ1 . . . γn 〉, with αi , βi , and γi pure
states.

3adj. from Latin ancillaris, from ancilla ‘maidservant’.
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Proof of non-cloning theorem

Proof.
Suppose possible:

〈φ |ψ 〉 = 〈φα0 . . . αn |U∗Uψα0 . . . αn 〉

= 〈φ |ψ 〉2
n∏

i=1

〈βi | γi 〉.

By hypothesis, 〈φ |ψ 〉 6= 0⇒ 〈φ |ψ 〉
∏n

i=1 〈βi | γi 〉 = 1.
Cauchy-Schwarz: |〈φ |ψ 〉| ≤ ‖φ‖‖ψ‖ ≤ 1. But by hypothesis
φ 6= e iθψ ⇒ 〈φ |ψ 〉 6= 1⇒ |〈φ |ψ 〉| < 1.∏n

i=1 |〈βi | γi 〉| > 1.
Impossible because ∀i , |〈βi | γi 〉| ≤ ‖βi‖‖γi‖ ≤ 1.

Santiago, November 2013 QCCC



Principle of cryptography
Quantum cryptography

Non-cloning theorem
BB84

Setup of Bennett-Brassard 1984 (BB84) protocol

Alicia Bernardo

quantum channel

classical channel

Classical channel: public and vulnerable but authenticated,
e.g. internet with electronic signature.
Quantum channel: vulnerable, e.g. optical fibre or light beam
in free air, can be under complete control of an intruder.
Use of qubits4, i.e. pure states of C2.

4Experimental use of qudits, with d > 2, for this protocol are now being
tested in Concepción.
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BB84: ressources

Alicia and Bernardo agree publicly

to use two onb of H = C2.

B+ =

{
ε+0 =

(
1
0

)
, ε+1 =

(
0
1

)}
,

B× =

{
ε×0 =

ε+0 + ε+1√
2

, ε×1 =
ε+0 − ε

+
1√

2

}
.

First element of each basis associated with bit 0, second element
with bit 1;

integer n = (4+ δ)N, (N = length of key they wish to use in fine).

Alicia possesses apparatus implementing operation T : {0, 1}2 → H.

T (x , y) =


ε+0 if (x , y) = (0, 0),
ε+1 if (x , y) = (1, 0),
ε×0 if (x , y) = (0, 1),
ε×1 if (x , y) = (1, 1);

(notice ‖T (x , y)‖ = 1).
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Generation of the key (Alicia’s side)

AliciasKeyGeneration
Require: UnifRandomGenerator({0, 1}), T , n
Ensure: Strings a,b ∈ {0, 1}n and sequence (|ψi 〉)i=1,...,n

generate randomly a1, . . . , an
a← (a1, . . . , an) ∈ {0, 1}n
generate randomly b1, . . . , bn
b← (b1, . . . , bn) ∈ {0, 1}n
store a,b locally
i ← 1
repeat
|ψi 〉 ← T (ai , bi )
transmit |ψi 〉 to Bernardo via public quantum channel
i ← i + 1

until i > n
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Generation of the key (Bernardo’s side)
BernardosKeyGeneration
Require: UnifRanGen({0, 1}), M] = | ε]1 〉〈 ε

]
1 |, for ] ∈ {+,×}, n,

sequence |ψi 〉, for i = 1, . . . , n,
Ensure: Two strings of n bits a′, b′ ∈ {0, 1}n

Generate randomly b′1, . . . , b
′
n

b′ ← (b′1, . . . , b
′
n) ∈ {0, 1}n

i ← 1
repeat

if b′i = 0 then
ask whether M+ takes value 1 in state |ψi 〉

else
ask whether M× takes value 1 in state |ψi 〉

end if
if counter triggered then

a′i ← 1
else

a′i ← 0
end if
i ← i + 1

until i > n
a′ ← (a′1, . . . , a

′
n) ∈ {0, 1}n

transmit string b′ ∈ {0, 1}n to Alicia via public classical channel
store locally a′, b′
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Conciliation algorithm (at Alicia’s side)

Conciliation
Require: Strings b,b′ ∈ {0, 1}
Ensure: Sequence (k1, . . . , kL) (with L ≤ n) of positions of coinciding bits

c← b⊕ b′
i ← 1
k ← 1
repeat
k ← min{j : k ≤ j ≤ n such that cj = 0}
if k ≤ n then
ki ← k
i ← i + 1

end if
until k > n
L← i − 1
transmit5 (k1, . . . , kL) to Bernardo via public classical channel

5Notice that L := Ln.
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Proof of possibility of key distillation

Theorem
If no eavesdropping on quantum channel

P
(
(a′k1

, . . . , a′kL
) = (ak1 , . . . , akL)

)
= 1.

Proof.

ai bi ψi b′i 〈ψi |M+ψi 〉 a′i b′i 〈ψi |M×ψi 〉 a′i
0 0 ε+0 0 0 0 1 1/2 0 or 1
1 0 ε+1 0 1 1 1 1/2 0 or 1
0 1 ε×0 0 1/2 0 or 1 1 0 0
1 1 ε×1 0 1/2 0 or 1 1 1 1

If b′i = bi then P(a′i = ai ) = 1. Certainty on coincidences although a’s
never exchanged.
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Reconciliation

If no intrusion, Alicia and Bernardo can use a — sampled at places
of coincidence — as key because (ak1 , . . . , akL) = (a′k1

, . . . , a′kL
) a.s.

Lemma
If no intrusion, for large n, Ln = O(n/2) = O(2N).

Proof.
Simple use law of large numbers.
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Eavesdropping

Encarnación (. . . del mal) — a malevolent third party —
eavesdrops but cannot copy quantum states.

Alicia Bernardo

Encarnación

Encarnación can use procedure similar to Alicia’s and
Bernardo’s to produce sequence ψ̃i according to her own
sequences (a′′i , b

′′
i ).

Since b′′ independent of b and b′, b and b′ will coincide on
O(n/4) positions instead of O(n/2).
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Eavesdropping detection and reconciliation

After Alicia and Bernardo have passed by previous steps,
they share positions l = (k1, . . . , kL) where b and b′ coincide;
they know that a, a′ — if sampled according to l — must
coincide.

Bernardo randomly extracts subsequence of l′ = (r1, . . . , rL/2)
(of size L/2) of l and samples his a′ sequence on this positions
getting ã = (a′r1 , . . . , a

′
rL/2

).

He sends l′ and ã to Alicia.
Alicia checks whether (ar1 , . . . , arL/2) = (a′r1 , . . . , a

′
rL/2

). If yes,
she announces so to Bernardo and they use the complementary
sequence that has never been exchanged as key.
Else, intrusion is detected.
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Topics not touched up to now

Need really random numbers. But can buy true RNG USB key.

Classical channel authentication can be solved with better
protocols than classical6.
Have supposed perfect transmission, but noise always present.
Can be solved with quantum error correcting codes7.
Encarnación can be more subtle: get partial information from
unsharp measurement8.

6See, eg. Kanamori et al., IEEE Globecom 2005 for a review.
7See, eg. Gottesman, Proc. Symp. Appl. Math. 68, 13–58, AMS (2010)).
8Next lecture.
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