Some special topics in Hilbert spaces

Dimitri Petritis

Institut de recherche mathématique de Rennes Université de Rennes 1 et CNRS (UMR 6625)

Santiago, November 2013

Projections I

V vector space (not necessarily Hilbert).

• Let M, N subspaces of V. If

$$\forall v \in V, \exists! m \in M, \exists! n \in N : v = m + n,$$

 $V = M \oplus N$. Uniqueness of decomposition if $M \cap N = \{0, \}$.

• If $V = M \oplus N$, define $P : V \rightarrow V(M)$ by

$$V \ni v = m + n \mapsto Pv = P(m + n) = m \in M.$$

Obviously $P^2v = Pv = m$.

Definition

Linear operator $P: V \to V$ s.t. $P^2 = P$ is a **projection (on** M).

Projections II

$\mathsf{Theorem}$

- If $P: V \to V$ projection, then $V = \operatorname{im} P \oplus \ker P$.
- If M, N subspaces s.t. $V = M \oplus N$, then exists $P : V \to V$ with im P = M, ker P = N.
- If $V = \mathbb{H}$ (orthogonality) and \mathbb{M} closed subspace, $\mathbb{H} = \mathbb{M} \oplus \mathbb{M}^{\perp}$.
- If P projection on \mathbb{M} , writing unique decompositions h = m + n, h' = m' + n'.

$$\langle Ph | h' \rangle = \langle m | m' + n' \rangle = \langle m | m' \rangle = \langle m + n | m \rangle = \langle h | Ph' \rangle,$$

i.e. $P^* = P$. Self-adjoint projection called **orthoprojection**.

Projections III

$\mathsf{Theorem}$

- If P orthoprojection on \mathbb{H} , then $\mathbb{H} = \operatorname{im} P \oplus \ker P$.
- If \mathbb{M} closed subspace of \mathbb{H} , then exists P orthoprojection with im $P = \mathbb{M}$, ker $P = \mathbb{M}^{\perp}$.

Hence bijection between closed subspaces and orthoprojections.

Remark

If \mathbb{M} not closed subspace, there is still orthoprojection associated with $\mathbb{H} = \overline{\mathbb{M}} \oplus \mathbb{M}^{\perp}$.

Definition

 P_1, P_2 **orthogonal** othoprojections on \mathbb{H} if im $P_1 \perp \text{im } P_2$.

Duality I

Definition

- Algebraic dual $\mathbb{H}^* = \{F : \mathbb{H} \to \mathbb{C}, F \text{ linear.}\}$
- Topological dual $\mathbb{H}' = \{ F \in \mathbb{H}^* : F \text{ continuous.} \}$

Continuous \Leftrightarrow bounded \Leftrightarrow $||F|| := \sup_{h:||h||=1} |F(h)| < \infty$. $g \in \mathbb{H}$ fixed: F_g defined by $F_g(h) = \langle g | h \rangle$ is in \mathbb{H}' .

Theorem (Fréchet-Riesz)

$$\forall F \in \mathbb{H}', \exists ! g \in \mathbb{H} : F(\cdot) = \langle g | \cdot \rangle.$$

Duality II

Remark

- Map $g \mapsto J(g) = \langle g | \cdot \rangle$, identifies \mathbb{H} and \mathbb{H}' isometrically because ||J(g)|| = ||g||.
- $J(\lambda g) = \overline{\lambda} J(g)$ anti-linear.
- \bullet \mathbb{H}, \mathbb{H}' are self-dual, isomorphic as Banach, anti-isomorphic as Hilbert.

Orthonormal systems I

- System of vectors $(e_i)_{i \in I} \in \mathbb{H}$ is
 - orthogonal if $i, j \in I, i \neq j \Rightarrow \langle e_i | e_i \rangle = 0$,
 - orthonormal if $\langle e_i | e_j \rangle = \delta_{i,j}$.

If $I = \mathbb{N}$, system = sequence.

- If $(e_n)_{n\in\mathbb{N}}$ orhonormal sequence,
 - $\mathbb{H} \ni h \mapsto (c_n)_{n \in \mathbb{H}}$, with $c_n := c_n(h) = \langle e_n | h \rangle$, the sequence of **Fourier coefficients**.
 - $\sum_{n} c_n e_n = \sum_{n} \langle e_n | h \rangle e_n$, the formal Fourier sequence.

Orthonormal systems II

Exercise

 (e_1,\ldots,e_n) orthonormal family in \mathbb{H} $(\dim \mathbb{H} \geq n)$, $(\lambda_1,\ldots,\lambda_n) \in \mathbb{C}^n$, $h \in \mathbb{H}$, $c_i(h) = \langle e_i | h \rangle$ for $i = 1,\ldots,n$.

$$||h - \sum_{i=1}^{n} \lambda_i e_i|| = ||h||^2 + \sum_{i=1}^{n} |\lambda_i - c_i(h)|^2 - \sum_{i=1}^{n} |c_i(h)|^2.$$

Remark

- Among all (λ_i) , choice $\lambda_i = c_i(h)$ minimises $dist(h, \mathbb{K})$, where $\mathbb{K} = vect(e_1, \dots, e_n)$.
- Vector $k = \sum_{i=1}^{n} c_i(h)e_i \in \mathbb{K}$ lies closer to h than any other vector of \mathbb{K} .
- In particular: $0 \le \|h k\|^2 = \|h\|^2 \sum_{i=1}^n |c_i(h)|^2 \Rightarrow \sum_{i=1}^n |c_i(h)|^2 \le \|h\|^2$.

Orthonormal systems III

Theorem

Let $(\epsilon_n)_n$ orthonormal sequence and (λ_n) complex sequence. Then

$$\left[\lim_{N\to\infty}\sum_{n=1}^N\lambda_ne_n=h\in\mathbb{H}\right]\Leftrightarrow\left[\sum_{n\in\mathbb{N}}|\lambda_n|^2<\infty\right].$$

Corollary

$$\forall h \in \mathbb{H}, \sum_{n \in \mathbb{N}} \langle e_n | h \rangle e_n = g \in \mathbb{H}.$$

Is it true g = h?

Orthonormal systems IV

$\mathsf{Theorem}$

Let $(e_n)_n$ orthonormal sequence in \mathbb{H} . The following are equivalent:

- $(e_n)_n$ is complete (basis),
- $\overline{\text{vect}}(e_n, n \in \mathbb{N}) = \mathbb{H}$,
- $\forall h \in \mathbb{H}, \|h\|^2 = \sum_{n \in \mathbb{N}} |\langle e_n | h \rangle|^2$,
- $\forall h \in \mathbb{H}, h = \sum_{n \in \mathbb{N}} \langle e_n | h \rangle e_n$,
- $\sum_{n\in\mathbb{N}} P_n \stackrel{s}{=} I_{\mathbb{H}}$, where P_n is the orthogonal orthoprojection on $\mathbb{C}e_n$ and $\stackrel{s}{=}$ denotes strong convergence.

Dirac's notation I

 $\langle \cdot | \cdot \rangle$ denoted by angular bra(c)ket. Split into bra $\langle \cdot |$ (to represent vectors) and $| \cdot \rangle$ (to represent linear forms).

Usual notation	Dirac's notation	
Orhonormal basis		
(e_1,\ldots,e_n)	$(e_1\rangle,\ldots e_n\rangle)$	
$\psi = \sum_{i} \psi_{i} e_{i}$	$ \psi \rangle = \sum_{i} \psi_{i} e_{i} \rangle$	
$\langle \phi \psi \rangle = \sum \overline{\phi_i} \psi_i$		
$Duality\ J: \mathbb{H} \to \mathbb{H}'$		
$ J: \phi \mapsto J(\phi)(\cdot) = \langle \phi \cdot \rangle \in \mathbb{H}' $	$J: \phi\rangle \mapsto \langle \phi $	
$\langle \phi \psi angle = J(\phi)(\psi)$		
Self-adjoint operators $X = X^*$		
$\langle \phi X\psi \rangle = \langle X^*\phi \psi \rangle = \langle X\phi \psi \rangle$		

Dirac's notation II

Usual notation	Dirac's notation	
Orhonormal basis		
P_n rank 1 orthoprojection to $\mathbb{C}e_n$	$P_n = e_n\rangle\langle e_n $	
$\psi = \psi_n e_n + \sum_{i \neq n} \psi_i e_i$		
$P_n\psi=\psi_n e_n$	$ P_n \psi\rangle = e_n\rangle\langle e_n \psi\rangle = e_n\rangle\psi_n $	
Spectral decomposition: $X = \sum_{x \in \text{spec } X} x M_x$		
$M_{x} = \text{orhtoprojection to } \mathbb{C}\mathbf{u}_{x}$	$M_{\scriptscriptstyle X} = {\sf u}_{\scriptscriptstyle X} \rangle \langle {\sf u}_{\scriptscriptstyle X} $	
$X\psi = \sum_{x} \langle \mathbf{u}_{x} \psi \rangle \mathbf{u}_{x}$	$X \psi\rangle = \sum_{x} \langleu_x \psi\rangle u_x\rangle$	
Tensor product		
$\phi \otimes \psi$	$ \hspace{.06cm}\phi\hspace{.06cm}\rangle \otimes \hspace{.06cm}\psi\hspace{.06cm}\rangle \equiv \hspace{.06cm}\phi\psi\hspace{.06cm}\rangle$	

Dirac's notation III

- If $\|\psi\| = 1$, then $\langle \psi | X\psi \rangle = \sum_{i,j} \overline{\psi}_i \psi_j \langle e_i | Xe_j \rangle$.
- Let $\rho = |\psi\rangle\langle\psi|$. Then

$$\begin{aligned} \mathsf{tr}(\rho X) &=& \sum_{j} \langle \, e_{j} \, | \, \rho X e_{j} \, \rangle \\ &=& \sum_{j} \langle \, e_{j} \, | \, \psi \, \rangle \langle \, \psi \, | \, X e_{j} \, \rangle \\ &=& \sum_{i,j} \langle \, e_{j} \, | \, \psi \, \rangle \langle \, \psi \, | \, e_{i} \, \rangle \langle \, e_{i} \, | \, X e_{j} \, \rangle \\ &=& \sum_{i,j} \overline{\psi}_{i} \psi_{j} \langle \, e_{i} \, | \, X e_{j} \, \rangle. \end{aligned}$$

Density operators I

- Operator $\rho = |\psi\rangle\langle\psi|$ with $\psi = \mathbb{H} \simeq \mathbb{C}^2$ very special.
- In canonical basis, has matrix representation

$$\rho = \begin{pmatrix} |\psi_1|^2 & \psi_1\overline{\psi}_2 \\ \overline{\psi}_1\psi_2 & |\psi_2|^2 \end{pmatrix}, \text{with } \operatorname{tr}(\rho) = |\psi_1|^2 + |\psi_2|^2 = 1.$$

Diagonal elements of $\rho=$ classical probability on $\{1,2\}.$

• If $X = x_1 |\epsilon_1\rangle\langle\epsilon_1| + x_2 |\epsilon_2\rangle\langle\epsilon_2| = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is classical observable,

$$tr(\rho X) = x_1 \rho_{11} + x_2 \rho_{22},$$

i.e. non diagonal elements of ρ do not intervene.

Density operators II

• For $\rho = |\psi\rangle\langle\psi|$,

$$\mathbb{E}_{\psi}X = \langle \psi | X\psi \rangle = x_1 |\psi_1|^2 + x_2 |\psi_2|^2 = \operatorname{tr}(\rho X)$$

i.e. ρ conveys same information as pure state ψ . While $\langle \psi | X\psi \rangle$ not linear in ψ , $\operatorname{tr}(\rho X)$ linear in ρ .

- For $\psi_1, \psi_2 \in \mathbf{S}_p$, let $\rho_1 = |\psi_1\rangle\langle\psi_1|$, $\rho_2 = |\psi_2\rangle\langle\psi_2|$, $\lambda \in [0, 1]$, and $\rho = \lambda \rho_1 + (1 \lambda)\rho_2$.
- For M(B), $B \in \mathcal{B}(\mathbb{R})$ sharp elementary observable:

$$\pi_{\mathcal{M}}^{\rho}(B) = \lambda \operatorname{tr}(\rho_{1}M(B)) + (1 - \lambda)\operatorname{tr}(\rho_{2}M(B))$$
$$= \lambda \pi_{\mathcal{M}}^{\psi_{1}}(B) + (1 - \lambda)\pi_{\mathcal{M}}^{\psi_{2}}(B),$$

but $\mathcal{M}_1(\mathcal{B}(\mathbb{R}))$ convex. Hence $\pi_M^{\rho} \in \mathcal{M}_1(\mathcal{B}(\mathbb{R}))$.

• $\rho = \lambda \rho_1 + (1 - \lambda)\rho_2$ cannot be written $\rho = |\psi\rangle\langle\psi|$ any longer.

Density operators III

Definition (States)

$$S = \mathcal{D}(\mathbb{H}) := \{ \rho \in \mathcal{B}_h(\mathbb{H}) : \rho \geq 0, \operatorname{tr} \rho = 1 \}.$$

- $\rho \geq 0 \Leftrightarrow \forall h \in \mathbb{H}, \langle h | \rho h \rangle \geq 0 \Leftrightarrow \operatorname{spec} \rho \subseteq \mathbb{R}_+ \Leftrightarrow \exists a \in \mathcal{B}(\mathbb{H}) : \rho = a^* a.$
- $\mathcal{D}(\mathbb{H})$ is convex.
- $\operatorname{tr} \rho = 1 \Rightarrow \operatorname{spec} \rho \subseteq [0, 1].$
- $\rho^2 \le \rho$. $\rho^2 = \rho \Leftrightarrow \operatorname{spec} \rho = \{0,1\}$ (projectors).
- Projections are in extr $S = S_p$.

Tensor products (for finite dimensional spaces) I

- ℍ is self-dual. Hence
 - $\forall h \in \mathbb{H}, \exists ! L(h) \in \mathbb{H}'$ such that $L(h)(g) = \langle h | g \rangle$.
 - $\forall F \in \mathbb{H}', \exists! v(F) \in \mathbb{H} \text{ such that } F(g) = \langle v(F) | g \rangle.$
 - v(L(h)) = h; L(v(F)) = F.
- ullet \mathbb{H}' is also a Hilbert space, hence vector $h \in \mathbb{H}$ can be seen
 - either as equivalent to the linear form L(h),
 - or as a linear form acting on \mathbb{H}' , i.e. $\mathbb{H} \simeq (\mathsf{LF}(\mathbb{H}))'$.
- BF($\mathbb{H}_1, \mathbb{H}_2$) := { $\beta : \mathbb{H}_1 \times \mathbb{H}_2 \to \mathbb{C}, \beta \text{ bilinear}$ } = vector space.
- $(\mathsf{BF}(\mathbb{H}_1,\mathbb{H}_2))' := \{\tau : \mathsf{BF}(\mathbb{H}_1,\mathbb{H}_2) \to \mathbb{C}, \tau \text{ linear}\}.$
- $\mathbb{H}_1 \otimes \mathbb{H}_2$ will be identified with $(\mathsf{BF}(\mathbb{H}_1, \mathbb{H}_2))'$.

Tensor products (for finite dimensional spaces) II

• Define simple tensor h₁ ⊗ h₂:

$$\forall \beta \in \mathsf{BF}(\mathbb{H}_1, \mathbb{H}_2), h_1 \otimes h_2(\beta) = \beta(h_1, h_2),$$

$$\mathbb{H}_1 \otimes \mathbb{H}_2 = \mathsf{vect}\{\tau = \sum_{i=1}^n \lambda_i h_{1,i} \otimes h_{2,i}\} \subseteq (\mathsf{BF}(\mathbb{H}_1 \otimes \mathbb{H}_2))'.$$

• Exercise: show that $\tau(\beta)$ is independent of representation of τ , where

$$\mathsf{BF}(\mathbb{H}_1,\mathbb{H}_2)\ni\beta\mapsto\tau(\beta)=\sum_{i=1}^n\lambda_i\beta(h_{1,i},h_{2,i}).$$

Tensor products (for finite dimensional spaces) III

Theorem

If $E \subset \mathbb{H}_1$ and $F \subset \mathbb{H}_2$ linearly independent sets of vectors then $\{e \otimes f, e \in E, f \in F\} \subset \mathbb{H}_1 \otimes \mathbb{H}_2$ is also linearly independent.

Proof.

- Let $\tau = \sum \lambda_i e_i \otimes f_i$, $e_i \in E$, $f_i \in F$.
- For arbitrary linear forms $L \in \mathbb{H}'_1$ and $M \in \mathbb{H}'_2$, consider bilinear form $\beta(e, f) = L(e)M(f)$.
- $\tau = 0 \Rightarrow \tau(\beta) = \sum \lambda_i e_i \otimes f_i(\beta) = \sum \lambda_i \beta(e_1, f_i) = M(\sum \lambda_i L(e_i) f_i) = 0.$
- True for every $M \in \mathbb{H}_2' \Rightarrow \sum \lambda_i L(e_i) f_i = 0$. But F independent set. Hence $\lambda_i L(e_i) = 0, \forall i, \forall L \in \mathbb{H}_1'$.
- *E* independent set $\Rightarrow \forall i, e_i \neq 0 \Rightarrow \forall i, \lambda_i = 0$.

Tensor products of operators

Corollary

If $(\epsilon_i), (\zeta_j)$ orthonormal bases of $\mathbb{H}_1, \mathbb{H}_2$,

$$\mathbb{H}_{1}\otimes\mathbb{H}_{2}\ni g=\sum_{i,j=1}^{i=d_{1},j=d_{2}}c_{i,j}|\left.\epsilon_{i}\right.\rangle\otimes\left|\left.\zeta_{j}\right.\rangle=\sum_{j=1}^{d_{2}}|\left.g_{j}\right.\rangle\otimes\left|\left.\zeta_{j}\right.\rangle,$$

where $|g_j\rangle = \sum_{i=1}^{d_1} c_{i,j} |\epsilon_i\rangle$. I.e. $\mathbb{H}_1 \otimes \mathbb{H}_2 \simeq \mathbb{H}_1 \oplus \mathbb{H}_1 \cdots \oplus \mathbb{H}_1$ (d_2 copies).

Definition

If $X_i \in \mathcal{B}(\mathbb{H}_i)$, for i = 1, 2, then

$$(X_1\otimes X_2)(h_1\otimes h_2)=(X_1h_1)\otimes (X_2h_2)$$

(extended by linearity on $\mathbb{H}_1 \otimes \mathbb{H}_2$).

Quantum marginals I

Definition

• Let T trace class operator on $\mathbb{H}_1 \otimes \mathbb{H}_2$. The **partial trace** (w.r.t. \mathbb{H}_2) is the trace class operator $\operatorname{tr}_{\mathbb{H}_2} T$ on \mathbb{H}_1 , defined by

$$\langle \ \textit{h}_1 \ | \ \mathsf{tr}_{\mathbb{H}_{\mathbf{2}}} \ \textit{Th}_{\mathbf{1}}' \
angle = \sum_{j} \langle \ \textit{h}_1 \otimes \epsilon_{2,j} \ | \ \textit{Th}_{\mathbf{1}}' \otimes \epsilon_{2,j} \
angle,$$

where $(\epsilon_{2,j})$ o.n.b. of \mathbb{H}_2 .

• Let ρ be a density operator on $\mathbb{H}_1 \otimes \mathbb{H}_2$. Its partial trace $\operatorname{tr}_{\mathbb{H}_2} \rho$ on \mathbb{H}_1 is called the **(quantum) marginal** of ρ .

Remark

The density matrix $\rho \in \mathcal{D}(\mathbb{H}_1 \otimes \mathbb{H}_2)$ corresponds to joint probability; the quantum marginal corresponds to the marginal on \mathbb{H}_1 when the second part is integrated out.

Quantum marginals II

- $\mathbb{F} = \mathbb{G} \otimes \mathbb{H}$.
- $(|g_i\rangle)_{i\in I}$, $(|h_j\rangle)_{j\in J}$ onb on \mathbb{G} and \mathbb{H} . Family $|g_ih_j\rangle := |g_i\rangle \otimes |h_j\rangle, i\in I, j\in J$ onb of \mathbb{F} .
- $|\phi\rangle \in \mathbb{F}$ ray, hence $\phi = \sum_{ij} W_{ij} |g_i h_j\rangle \Rightarrow \rho := |\phi\rangle\langle\phi| = \sum_{ij;kl} \overline{W}_{ij} W_{kl} |g_i h_j\rangle\langle g_k h_l|$.
- Define $\rho_1 := \operatorname{tr}_{\mathbb{H}} \rho$.

$$\begin{split} \langle \, g \, | \, \rho_1 g' \, \rangle &:= & \sum_{m \in J} \langle \, g h_m \, | \, \rho g' h_m \, \rangle \\ &= & \sum_{m \in J} \sum_{i,k \in I} \sum_{j,l \in J} \overline{W}_{ij} \, W_{kl} \langle \, g h_m \, | \, g_k h_l \, \rangle \langle \, g_i h_j \, | \, g' h_m \, \rangle \\ &= & \sum_{i,k \in I} (WW^*)_{ki} \langle \, g \, | \, G^{ki} g' \, \rangle, \ \, \text{where} \, \, G^{ki} = | \, g_k \, \rangle \langle \, g_i \, |. \end{split}$$

Quantum marginals III

- $\rho_1 = WW^* \Rightarrow \langle g \mid WW^*g \rangle = ||W^*g||^2 \geq 0.$
- tr $\rho_1 = \sum_{i \in I} (WW^*)_{ii} = \sum_{i \in I} \sum_{j \in J} W_{ij} \overline{W}_{ij} = \sum_{(i,j) \in I \times J} |W_{ij}|^2 = \langle \phi | \phi \rangle = 1.$
- Hence $\rho_1 \in \mathcal{D}(\mathbb{G})$.
- $\mathbb{G} = \mathbb{H} = \mathbb{C}^2$, $\phi = \frac{1}{\sqrt{2}}(|\epsilon_1 \epsilon_1\rangle + |\epsilon_2 \epsilon_2\rangle)$.
- $\bullet W = \begin{pmatrix} \frac{1}{\sqrt{2}} & \\ & \frac{1}{\sqrt{2}} \end{pmatrix} = W^*.$
- $\rho_1 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$. Hence $\rho_1^2 < \rho_1$. As a matter of fact, ρ_1 marginal of a pure state maximally disordered state!
- Another manifestation of the irreducibility of quantum randomness.

