Postulates of quantum mechanics viewed as a non-commutative extension of probability theory with a dynamical law

Dimitri Petritis

Institut de recherche mathématique de Rennes Université de Rennes 1 et CNRS (UMR 6625)

Santiago, November 2013

Phase space and pure states Time evolution Observables Measurements

Phase space and states

Postulate

Phase space quantum system: complex separable Hilbert space \mathbb{H} . **Pure states** are unit vectors^a of \mathbb{H} .

^aStrictly speaking, equivalence classes of unit vectors differing by a global phase, called **rays**, so that $\mathbf{S}_{p} \simeq \mathbb{H}_{1}/\sim$ and $h' \sim h \Leftrightarrow h' = \lambda h, \lambda \in \mathbb{C}, |\lambda| = 1$.

- Hilbert space: \mathbb{C} -Banach space, with sesquilinear form $\langle \cdot | \cdot \rangle : \mathbb{H} \times \mathbb{H} \to \mathbb{C}$, s.t.
 - $\langle \alpha_1 \phi_1 + \alpha_2 \phi_2 | \psi \rangle = \overline{\alpha_1} \langle \phi_1 | \psi \rangle + \overline{\alpha_2} \langle \phi_2 | \psi \rangle,$

•
$$\langle \phi | \psi \rangle = \langle \psi | \phi \rangle,$$

- $\|\psi\|^2 = \langle \psi | \psi \rangle.$
- Ray: $\psi \in \mathbb{H}$, $\|\psi\| = 1$.
 - But \mathbb{H} separable $\Rightarrow \|\psi\|^2 = \sum_n |\psi_n|^2 = 1.$
 - Hence $(|\psi_n|^2)_n$ probability vector on set indexing the basis of \mathbb{H} .

Phase space and pure states Time evolution Observables Measurements

Time evolution

Postulate

Time evolution of isolated quantum system described by a unitary operator U acting on \mathbb{H} . Conversely, any unitary operator acting on \mathbb{H} corresponds to possible invariance^a of the system.

^aTime evolution of isolated system leaves physical quantity "energy" invariant. Unitary operators are associated with conserved quantities.

• U unitary: $U^*U = UU^* = I \Rightarrow U^{-1} = U^*$.

•
$$\phi$$
 ray: $\|U\phi\|^2 = \langle U\phi | U\phi \rangle = \langle \phi | U^*U\phi \rangle = \|\phi\|^2 = 1.$

• Hence $U\phi$ ray.

Simplified version of postulates of QM An illustrative example Phase space and pure states Time evolution Observables Measurements

Sharp and unsharp observables

Postulate

General real sharp observable: self-adjoint X acting on \mathbb{H} . **Elementary real sharp observables** associated with X:

 $\mathcal{B}(\mathbb{R}) \ni B \mapsto M(B) \in \mathfrak{P}(\mathbb{H}); M \text{ spectral projector of } X.$

Unsharp real observable: resolution of identity into positive operators that are not necessarily projections.

•
$$X^* = X \Rightarrow \operatorname{spec} X := \mathbb{X} \subseteq \mathbb{R}$$
.

 M spectral measure of X; supp M = spec X but can trivially be extended on ℝ.

•
$$X = \int_{\operatorname{spec} X} M(dx) x.$$

Measurements (innocent-looking but against intuition)

Postulate

Let M spectral measure of sharp observable X. Measuring observable X in pure state ψ is asking whether X has spectral values in B and determining probability $\pi^{\psi}_{M}(B)$ of occurrence, by

$$\mathbf{S}_{p}
i \psi \mapsto \pi^{\psi}_{M}(B) := \langle \psi | M(B)\psi \rangle \in [0,1].$$

•
$$\pi^{\psi}_{M} \in \mathcal{M}_{1}(\mathcal{B}(\mathbb{R}))$$
 supported by $\mathbb{X} := \operatorname{spec} X$.

•
$$X = \int_{\operatorname{spec} X} M(dx) x$$

 $\Rightarrow \mathbb{E}_{\psi}(X) = \int_{\mathbb{X}} \pi_M^{\psi}(dx) x = \int_{\mathbb{X}} \langle \psi | M(dx) \psi \rangle x = \langle \psi | X \psi \rangle.$

- M in CM indicator; in QM projection operator acting on \mathbb{H} .
- Quid if 2 observables with spectral measures M and N?

Simplified version of postulates of QM An illustrative example Phase space and pure states Time evolution Observables Measurements

Composite systems

Postulate

System composed from two subsystems — described respectively by \mathbb{H}_1 and \mathbb{H}_2 — is described by $\mathbb{H}_1 \otimes \mathbb{H}_2$ (where \otimes denotes tensor product).

Blackboard 1: Tensor product (a first look).

A very simple illustrative example Phase space, states, and time evolution

•
$$\mathbb{H} = \mathbb{C}^2$$
; $\forall f \in \mathbb{H} : f = f_1 \epsilon_1 + f_2 \epsilon_2$, $\epsilon_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $\epsilon_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

- If $||f|| \neq 0$, then $\phi = \frac{f}{||f||} \in \mathbf{S}_p$, i.e. $|\phi_1|^2 + |\phi_2|^2 = 1$, therefore ϕ_1, ϕ_2 amplitudes of probability on $\{1, 2\}$.
- $\epsilon_1, \epsilon_2 \in \mathbf{S}_p$.
- $|\phi_1|^2 = \mathbb{P}($ system in state ϕ is in state ϵ_1).
- If $\phi_1 \neq 0, \phi_2 \neq 0$, the pure state ϕ is in a linear superposition of other pure states.
- Time evolution of isolated system is invertible and preserves pure states.

A very simple illustrative example Observables I

- Take $X = \begin{pmatrix} 1 & 2i \\ -2i & -2 \end{pmatrix} = X^*$ as an example of sharp observable.
- $X = \operatorname{spec} X = \{-3, 2\}$. Compute easily

Eigenvalues	Eigenvectors	Orthoprojectors
x	U _X	M _x
-3	$\frac{1}{\sqrt{5}} \begin{pmatrix} -i \\ 2 \end{pmatrix}$	$\begin{array}{c c} \frac{1}{5} \left(\begin{array}{cc} 1 & -2i \\ 2i & 4 \end{array} \right) \end{array}$
2	$\frac{1}{\sqrt{5}} \left(\begin{array}{c} 2i\\1 \end{array} \right)$	$\frac{1}{5} \left(\begin{array}{cc} 4 & 2i \\ -2i & 1 \end{array} \right)$

- ∑_{x∈spec X} M_x = I_H, M_x ≥ 0 and M²_x = M_x. Thus (M_x) family of sharp elementary observables.
- For $x \in \operatorname{spec} X$, $M_x \mathbb{H} = \mathbb{C} \mathbf{u}_x$.
- $X^* = X \Rightarrow \langle \mathbf{u}_x | \mathbf{u}_y \rangle = \delta_{x,y}, x, y \in \operatorname{spec} X \Rightarrow M_x, M_y \text{ orthogonal orthoprojections.}$

A very simple illustrative example Observables II

- Since $(\mathbf{u}_x)_x$ orhonormal basis, $\mathbf{S}_p \ni \psi = \sum_x \alpha_x \mathbf{u}_x$, with $\sum_x |\alpha_x|^2 = 1$, i.e. $(|\alpha_x|^2)_x$ probability vector on spec X.
- $\mathbb{E}_{\psi} X = \langle \psi | X \psi \rangle = \langle \sum_{x} \alpha_{x} \mathbf{u}_{x} | (\sum_{x'} M_{x} x) \sum_{x''} \alpha_{x''} \mathbf{u}_{x''} \rangle = \sum_{x} x |\alpha_{x}|^{2}.$
- If X was a classical X-valued r.v., with probability $(p_x)_{x \in \mathbb{X}}$,

$$\mathbb{E}X = \sum_{x} x p_{x} = \sum_{x} \sqrt{p_{x}} x \sqrt{p_{x}} = \sum_{x} e^{-i\theta_{x}} \sqrt{p_{x}} x \sqrt{p_{x}} e^{i\theta_{x}} = \langle \psi | \hat{X} \psi \rangle,$$

where
$$\psi = \begin{pmatrix} e^{i\theta_{-3}}\sqrt{p_{-3}}\\ e^{i\theta_2}\sqrt{p_2} \end{pmatrix}$$
 and $\hat{X} = \begin{pmatrix} -3 & 0\\ 0 & 2 \end{pmatrix}$.

• Classical r.v. = quantum r.v. with only diagonal entries.

A very simple illustrative example Measurement

- System in $\psi \in \mathbf{S}_p$. Ask question M_x , i.e. "does X takes value x?" and determine its probability.
- Answer: yes, with probability $\pi_M^{\psi}(x) = \langle \psi | M_x \psi \rangle = ||M_x \psi||^2$, where $M_x \psi = \begin{cases} \langle \mathbf{u}_x | \psi \rangle \mathbf{u}_x & \text{if } x \in \mathbb{X}, \\ 0 & \text{otherwise.} \end{cases}$
- BUT: Once the question has been asked, and got positive answer, the system now in new state $\phi_x = \frac{\langle \mathbf{u}_x | \psi \rangle \mathbf{u}_x}{|\langle \mathbf{u}_x | \psi \rangle|}$.
- Re-asking the question, gives answer "yes" with probability 1.
- Asking a question on a quantum system, IRREVERSIBLY alters its state.

A very simple illustrative example Composite systems

- $\mathbb{H} = \mathbb{H}_1 \otimes \mathbb{H}_2$, $\mathbb{H}_i \simeq \mathbb{C}^2$. Each \mathbb{H}_i with basis (ϵ_1, ϵ_2) .
- Basis of \mathbb{H} $(\epsilon_1 \otimes \epsilon_1, \epsilon_1 \otimes \epsilon_2, \epsilon_2 \otimes \epsilon_1, \epsilon_2 \otimes \epsilon_2).$
- $\mathbb{H} \ni \psi = \psi_{11}\epsilon_1 \otimes \epsilon_1 + \psi_{12}\epsilon_1 \otimes \epsilon_2 + \psi_{21}\epsilon_2 \otimes \epsilon_1 + \psi_{22}\epsilon_2 \otimes \epsilon_2.$
- If $\psi_{11} = \psi_{12} = 0$, $\psi_{21} \neq 0$; $\psi_{22} \neq 0$, then

$$\psi = \psi_{21}\epsilon_2 \otimes \epsilon_1 + \psi_{22}\epsilon_2 \otimes \epsilon_2 = \epsilon_2 \otimes (\psi_{21}\epsilon_1 + \psi_{22}\epsilon_2),$$

i.e. $\psi = \psi^{(1)} \otimes \psi^{(2)}$. Joint probability = product measure (independence).

- If both $\psi_{11} \neq 0$; $\psi_{22} \neq 0$ then $\psi \neq \psi^{(1)} \otimes \psi^{(2)}$ (non-independence). Exercise: is-it possible classically?
- "Quantenverschränkung", "Quantum entanglement".
 "Intrication (enchevêtrement) quantique". Probably
 "Entrelazamiento (enredo) cuántico" in Spanish.

An artist's view of entanglement

Figure: Ruth Bloch. Entanglement (bronze, 71cm, 1995). (From the web page of the artist, reproduced here with her permission; the existence of this sculpture has been brought to my attention by Dénes Petz).