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Phase space and states

Postulate
Phase space quantum system: complex separable Hilbert space H.
Pure states are unit vectorsa of H.

aStrictly speaking, equivalence classes of unit vectors differing by a global
phase, called rays, so that Sp ' H1/ ∼ and h′ ∼ h⇔ h′ = λh, λ ∈ C, |λ| = 1.

Hilbert space: C-Banach space, with sesquilinear form 〈 · | · 〉 : H× H→ C, s.t.

〈α1φ1 + α2φ2 |ψ 〉 = α1〈φ1 |ψ 〉+ α2〈φ2 |ψ 〉,
〈φ |ψ 〉 = 〈ψ |φ 〉,
‖ψ‖2 = 〈ψ |ψ 〉.

Ray: ψ ∈ H, ‖ψ‖ = 1.

But H separable ⇒ ‖ψ‖2 =
∑

n |ψn|2 = 1.
Hence (|ψn|2)n probability vector on set indexing the basis of
H.
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Time evolution

Postulate
Time evolution of isolated quantum system described by a unitary
operator U acting on H. Conversely, any unitary operator acting on
H corresponds to possible invariancea of the system.

aTime evolution of isolated system leaves physical quantity “energy”
invariant. Unitary operators are associated with conserved quantities.

U unitary: U∗U = UU∗ = I ⇒ U−1 = U∗.
φ ray: ‖Uφ‖2 = 〈Uφ |Uφ 〉 = 〈φ |U∗Uφ 〉 = ‖φ‖2 = 1.
Hence Uφ ray.
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Sharp and unsharp observables

Postulate
General real sharp observable: self-adjoint X acting on H.
Elementary real sharp observables associated with X :

B(R) 3 B 7→ M(B) ∈ P(H);M spectral projector of X .

Unsharp real observable: resolution of identity into positive
operators that are not necessarily projections.

X ∗ = X ⇒ specX := X ⊆ R.
M spectral measure of X ; suppM = specX but can trivially
be extended on R.
X =

∫
spec X M(dx)x .
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Measurements (innocent-looking but against intuition)

Postulate
Let M spectral measure of sharp observable X . Measuring
observable X in pure state ψ is asking whether X has spectral
values in B and determining probability πψM(B) of occurrence, by

Sp 3 ψ 7→ πψM(B) := 〈ψ |M(B)ψ 〉 ∈ [0, 1].

πψM ∈M1(B(R)) supported by X := spec X .

X =
∫
spec X M(dx)x

⇒ Eψ(X ) =
∫
X π

ψ
M(dx)x =

∫
X 〈ψ |M(dx)ψ 〉x = 〈ψ |Xψ 〉.

M in CM indicator; in QM projection operator acting on H.

Quid if 2 observables with spectral measures M and N?
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Composite systems

Postulate
System composed from two subsystems — described respectively
by H1 and H2 — is described by H1 ⊗H2 (where ⊗ denotes tensor
product).

Blackboard 1: Tensor product (a first look).
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A very simple illustrative example
Phase space, states, and time evolution

H = C2; ∀f ∈ H : f = f1ε1 + f2ε2, ε1 =

(
1
0

)
; ε2 =

(
0
1

)
.

If ‖f ‖ 6= 0, then φ = f
‖f ‖ ∈ Sp, i.e. |φ1|2 + |φ2|2 = 1, therefore

φ1, φ2 amplitudes of probability on {1, 2}.
ε1, ε2 ∈ Sp.
|φ1|2 = P(system in state φ is in state ε1).
If φ1 6= 0, φ2 6= 0, the pure state φ is in a linear superposition
of other pure states.
Time evolution of isolated system is invertible and preserves
pure states.
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A very simple illustrative example
Observables I

Take X =

(
1 2i
−2i −2

)
= X ∗ as an example of sharp observable.

X = spec X = {−3, 2}. Compute easily

Eigenvalues Eigenvectors Orthoprojectors
x ux Mx

−3 1√
5

(
−i
2

)
1
5

(
1 −2i
2i 4

)
2 1√

5

(
2i
1

)
1
5

(
4 2i
−2i 1

)
∑

x∈spec X Mx = IH, Mx ≥ 0 and M2
x = Mx . Thus (Mx) family of

sharp elementary observables.

For x ∈ spec X , MxH = Cux .

X ∗ = X ⇒ 〈ux |uy 〉 = δx,y , x , y ∈ spec X ⇒ Mx ,My orthogonal
orthoprojections.
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A very simple illustrative example
Observables II

Since (ux)x orhonormal basis, Sp 3 ψ =
∑

x αxux , with∑
x |αx |2 = 1, i.e. (|αx |2)x probability vector on specX .

EψX = 〈ψ |Xψ 〉 = 〈
∑

x αxux | (
∑

x ′Mxx)
∑

x ′′ αx ′′ux ′′ 〉 =∑
x x |αx |2.

If X was a classical X-valued r.v., with probability (px)x∈X,

EX =
∑
x

xpx =
∑
x

√
pxx
√

px =
∑
x

e−iθx√pxx
√

pxe iθx = 〈ψ | X̂ψ 〉,

where ψ =

(
e iθ−3√p−3
e iθ2√p2

)
and X̂ =

(
−3 0
0 2

)
.

Classical r.v. = quantum r.v. with only diagonal entries.
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A very simple illustrative example
Measurement

System in ψ ∈ Sp. Ask question Mx , i.e. “does X takes value
x?” and determine its probability.
Answer: yes, with probability πψM(x) = 〈ψ |Mxψ 〉 = ‖Mxψ‖2,

where Mxψ =

{
〈ux |ψ 〉ux if x ∈ X,
0 otherwise.

BUT: Once the question has been asked, and got positive
answer, the system now in new state φx = 〈 ux |ψ 〉ux

|〈 ux |ψ 〉| .

Re-asking the question, gives answer “yes” with probability 1.
Asking a question on a quantum system, IRREVERSIBLY
alters its state.
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A very simple illustrative example
Composite systems

H = H1 ⊗H2, Hi ' C2. Each Hi with basis (ε1, ε2).
Basis of H (ε1 ⊗ ε1, ε1 ⊗ ε2, ε2 ⊗ ε1, ε2 ⊗ ε2).
H 3 ψ = ψ11ε1 ⊗ ε1 + ψ12ε1 ⊗ ε2 + ψ21ε2 ⊗ ε1 + ψ22ε2 ⊗ ε2.
If ψ11 = ψ12 = 0, ψ21 6= 0;ψ22 6= 0, then

ψ = ψ21ε2 ⊗ ε1 + ψ22ε2 ⊗ ε2 = ε2 ⊗ (ψ21ε1 + ψ22ε2),

i.e. ψ = ψ(1) ⊗ ψ(2). Joint probability = product measure
(independence).
If both ψ11 6= 0;ψ22 6= 0 then ψ 6= ψ(1) ⊗ ψ(2)

(non-independence). Exercise: is-it possible classically?
“Quantenverschränkung”, “Quantum entanglement” .
“Intrication (enchevêtrement) quantique”. Probably
“Entrelazamiento (enredo) cuántico” in Spanish.
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An artist’s view of entanglement

Figure: Ruth Bloch. Entanglement (bronze, 71cm, 1995). (From the web
page of the artist, reproduced here with her permission; the existence of
this sculpture has been brought to my attention by Dénes Petz).
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