Classical mechanics ...

\ldots viewed as a classical probability theory with a dynamical law

Dimitri Petritis

Institut de recherche mathématique de Rennes Université de Rennes 1 et CNRS (UMR 6625)

Santiago, November 2013

Random variables

Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Reminder of the Kolmogorov definition (1)

- Abstract measurable space (Ω, \mathcal{F}) , $\mathcal{F} \subseteq \mathcal{P}(\Omega)$.
 - $\Omega\in \mathcal{F}$,
 - $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$,
 - $(A_n)_{n\in\mathbb{N}}\in\mathcal{F}\Rightarrow\cup_{n\in\mathbb{N}}A_n\mathcal{F}.$
- Probability measure on $\Omega\in\mathcal{F},$ i.e. $\mathbb{P}:\mathcal{F}\rightarrow[0,1]$
 - $\mathbb{P}(\Omega) = 1$,
 - $\mathbb{P}(\sqcup_{n\in\mathbb{N}}A_n) = \sum_{n\in\mathbb{N}}\mathbb{P}(A_n).$
- Concrete measurable space $(\mathbb{X}, \mathcal{X})$.
- \mathbb{X} -valued random variable: any $(\mathcal{F}, \mathcal{X})$ -measurable map $X : \Omega \to \mathbb{X}$.

Random variables

Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Reminder of the Kolmogorov definition (2)

Remark

Probability \mathbb{P} on (Ω, \mathcal{F}) does not intervene directly in the definition of X. It induces nevertheless a probability \mathbb{P}_X on $(\mathbb{X}, \mathcal{X})$, the law of X, by

$$\mathcal{X} \ni A \mapsto \mathbb{P}_X(A) := \mathbb{P}(X^{-1}(A)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in A\}).$$

Remark

Important in definition of X the concrete space X. The abstract space Ω is irrelevant.

Blackboard 1: 3 ways to toss a coin ...

Probability theory

Postulates of classical mechanics Insufficiency of classical probability to describe Nature

Random variables

Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Reducibility of classical randomness

Figure: From: Diaconis, Holmes, Montgomery, Dynamical bias in the coin toss, SIAM Review 2007.

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Reminder on stochastic kernels

Definition

Let (Ω, \mathcal{F}) and $(\mathbb{X}, \mathcal{X})$ measurable spaces. Map

 $K: \Omega \times \mathcal{X} \to [0, 1]$

is stochastic kernel from (Ω, \mathcal{F}) to $(\mathbb{X}, \mathcal{X})$ if

- $\forall \omega \in \Omega, \mathcal{K}(\omega, \cdot)$ probability on \mathcal{X} , and
- $\forall A \in \mathcal{X}, K(\cdot, A)$ measurable function.

Blackboard 2: example of 2 coins

Probability theory

Postulates of classical mechanics Insufficiency of classical probability to describe Nature Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Action of K

• $K(\omega, \cdot)$ probability. Hence

$$egin{array}{rcl} b\mathcal{X}
i f &\mapsto & extsf{K}f \in b\mathcal{F} \ Kf(\omega) &:= & \int_{\mathbb{X}} K(\omega, dx) f(x). \end{array}$$

• $K(\cdot, A)$ (bounded) measurable function. Hence

$$\mathcal{M}_1(\mathcal{F}) \ni \mu \quad \mapsto \quad \mu K \in \mathcal{M}_1(\mathcal{X}) \ \mu K(A) \quad := \quad \int_{\Omega} \mu(d\omega) K(\omega, A).$$

Blackboard 3: contravariant and covariant functors.

Santiago, November 2013 QCCC

Probability theory

Postulates of classical mechanics Insufficiency of classical probability to describe Nature Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Deterministic kernel K

Definition

Stochastic kernel K is deterministic if

$$\forall \omega \in \Omega, \exists ! x := x_{\mathcal{K}}(\omega) \in \mathbb{X} : \mathcal{K}(\omega, A) = \epsilon_{x}(A) = \mathbb{1}_{A}(x).$$

Blackboard 4: stochastic matrices and extremal stochastic matrices. Blackboard 5: equivalence $X \leftrightarrow K$ for discrete r.v. Blackboard 6: equivalence $X \leftrightarrow K$ for continuous r.v.

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Random variables and detrerministic kernels

For X r.v. on $(\Omega, \mathcal{F}, \mu)$ and values in $(\mathbb{X}, \mathcal{X})$, kernel $K := K_X$

$$K(\omega, A) = \mathbb{1}_{X^{-1}(A)}(\omega) = \epsilon_{X(\omega)}(A)$$

conveys exactly same information as X.

$$\begin{aligned} \forall \omega \in \Omega, X(\omega) &= \int_{\mathbb{X}} \epsilon_{X(\omega)}(dx)x = \int_{\mathbb{X}} K(\omega, dx)x = (K \mathrm{id}_{\mathbb{X}})(\omega), \\ \forall A \in \mathcal{X}, \mathbb{P}_{X}(A) &= \mu(X^{-1}(A)) = \int_{\Omega} \mu(d\omega) \mathbb{1}_{X^{-1}(A)}(\omega) \\ &= \int_{\Omega} \mu(d\omega) K(\omega, A) = (\mu K)(A). \end{aligned}$$

Archetypal example of a physical sharp measurement

- $X \leftrightarrow K_X$ with K_X deterministic kernel.
- For fixed X (hence K_X) define sharp elementary observable:

$$\mathcal{X} \ni A \mapsto M(A) := K(\cdot, A) = \mathbb{1}_{X^{-1}(A)} \in b\mathcal{F}.$$

- Random variable recovery: $X(\omega) = \int_{\mathbb{X}} M(dx)(\omega)x$.
- Precise preparation of the system $\mu \in \mathcal{M}_1(\mathcal{F})$.
- Measurement: $\mathbf{S} \times \mathbf{O} \ni (\mu, M) \mapsto \pi^{\mu}_{M} \in \mathcal{M}_{1}(\mathcal{X})$, where

$$\pi^{\mu}_{M}(A) = \int_{\Omega} \mu(d\omega) M(A)(\omega) = \int_{\Omega} \mu(d\omega) K(\omega, A) = (\mu K)(A).$$

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

.

Gambling with classical dice I

- Dice shows up a face $\omega \in \Omega := \{1, 2, \dots, 6\}.$
- Gambler's net gain determined by the random variable X:

$$X(\omega) = [(\omega - 1 \mod 3) - 1] \in \mathbb{X} := \{-1, 0, 1\}.$$

Two ways to represent information conveyed by X: either as a 6-dimensional vector V or as a 6 × 3 stochastic deterministic matrix K:

$$V := \begin{pmatrix} -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}; \mathcal{K} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Gambling with classical dice II

Observable *M* is the family $M = (M_x)_{x \in \mathbb{X}}$ of elementary observables , where

$$M_{\mathbf{X}}(\omega) := K(\omega, \mathbf{X}) = \mathbb{1}_{\mathbf{X}}(X(\omega)) = \mathbb{1}_{\mathbf{X}^{-1}(\{\mathbf{X}\})}(\omega) = \delta_{\mathbf{X}(\omega)}(\{\mathbf{X}\}).$$

$$M_{-1} := \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}; M_0 := \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}; M_1 := \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Remark

- $\forall x \in \mathbb{X}, \ \omega \in \Omega, \ M_x(\omega) \ge 0 \text{ and } M_x^2(\omega) = M_x(\omega).$ (i.e. M_x projections).
- $\sum_{x \in \mathbb{X}} M_x = 1$. ((M_x) $_{x \in \mathbb{X}}$ resolution of identity).
- $X = \sum_{x \in \mathbb{X}} M_x x$. ("Spectral decomposition" of X).

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Gambling with classical dice III

For preparation of dice in state μ ∈ M₁(F), measurement determines a probability π^μ_M ∈ M₁(X) by

$$\pi^{\mu}_{M}(x) = \mu(\{\omega \in \Omega : X(\omega) = x\})$$
$$= \sum_{\omega \in X^{-1}(\{x\})} \mu(\omega)$$
$$= \langle \mu, M_{x} \rangle$$
$$= \sum_{\omega \in \Omega} \mu(\omega) M_{x}(\omega).$$

Definition

Observable decomposable into family of projections (M_x) called **sharp**.

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Gambling with classical dice IV

• Example of 2 different preparations of the system "dice":

$$\mu_1 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}); \ \mu_2 = (\frac{1}{32}, \frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2})$$

• Corresponding probability measures in $\mathcal{M}_1(\mathbb{X})$:

$$\pi_M^{\mu_1} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}); \ \pi_M^{\mu_2} = (\frac{5}{32}, \frac{9}{32}, \frac{18}{32}).$$

• Average value $\mathbb{E}_{\mu}(X) = \sum_{x \in \mathbb{X}} \pi^{\mu}_{M}(x) x$:

$$\mathbb{E}_{\mu_1}(X) = 0; \ \mathbb{E}_{\mu_2}(X) = -\frac{5}{32} + \frac{18}{32} = \frac{13}{32}.$$

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Randomised gambling with classical dice I

Again gambler's net gain (observable) $\leftrightarrow K$ but now K genuine stochastic matrix, e.g.

Exercise

What is the significance of the vector V?

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Randomised gambling with classical dice II

Remark

- $\forall x \in \mathbb{X}, \ \omega \in \Omega, \ M_x^2(\omega) \le M_x(\omega)$. (M_x not projections).
- $\sum_{x \in \mathbb{X}} M_x = 1$. ((M_x)_{$x \in \mathbb{X}$} resolution of identity).
- $\pi_M^{\mu}(x) = \langle \mu, M_x \rangle = \sum_{\omega \in \Omega} \mu(\omega) M_x(\omega)$. (But (M_x) do not provide spectral decomposition of X).
- But still average gain in state μ given by $\mathbb{E}_{\mu} X = \sum_{x \in \mathbb{X}} \pi^{\mu}_{M}(x) x.$

Definition

Resolution of identity $M = (M_x)$ with M_x positive but not necessarily projections called **unsharp or randomised observable**.

Random variables Stochastic kernels and spectral representation Deterministic kernels and sharp measurements

Randomised gambling with classical dice III

With previous μ_1 and μ_2 :

$$\begin{aligned} \pi_{M}^{\mu_{1}} &= \mu_{1} \mathcal{K} = \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right) \begin{pmatrix} \frac{4}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \\ \end{pmatrix} &= \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right); \\ \pi_{M}^{\mu_{2}} &= \mu_{2} \mathcal{K} = \left(\frac{1}{32}, \frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\right) \begin{pmatrix} \frac{4}{5} & 0 & \frac{1}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & \frac{4}{5} \\ \end{pmatrix} &= \left(\frac{38}{160}, \frac{45}{160}, \frac{77}{160}\right). \\ \mathbb{E}_{\mu_{1}}(\mathcal{X}) &= 0; \mathbb{E}_{\mu_{2}}(\mathcal{X}) = \frac{39}{160}. \end{aligned}$$

Phase space and states The dynamical law Observables Physical measurement Composite systems

Postulates of classical mechanics Phase space and states

Postulate (Phase space and states)

Phase space: a measurable space (Ω, \mathcal{F}) . **States:** possible preparations of the system $S = \mathcal{M}_1(\mathcal{F})$.

Set **S** is **convex**

$$\mu_1, \mu_2 \in \mathbf{S}, \lambda \in [0, 1] \Rightarrow \lambda \mu_1 + (1 - \lambda) \mu_2 \in \mathbf{S}.$$

Extremal points, i.e. states without non-trivial convex decomposition, are the **pure states** $\mathbf{S}_{p} = \{\epsilon_{\omega}, \omega \in \Omega\} \simeq \Omega$.

Phase space and states The dynamical law Observables Physical measurement Composite systems

RFN

Postulates of classical mechanics Dynamical law

Postulate (Dynamical law)

Time evolution of isolated^a system: a measurable invertible function $T : \Omega \rightarrow \Omega$.

^aNot exchanging mass or energy with environment.

T is a r.v. hence $\leftrightarrow K_T$ deterministic stochastic kernel.

Definition

State
$$\mu \in S$$
 invariant if $T_*\mu := \mu K_T = \mu$, i.e.

$$\forall A \in \mathcal{F}, \mu(T^{-1}A) = \mu(A).$$

Phase space and states The dynamical law **Observables** Physical measurement Composite systems

Postulates of classical mechanics Sharp general and elementary observables

Postulate (Observables)

- General sharp X-valued observables: random variables^a on phase space (Ω, F) taking values in (X, X).
- **Elementary sharp observables:** The {0,1}-valued spectral components M_x .
- General (unsharp) X-valued observables described by decompositions of identity (M_x) into positive but not necessarily projective components.

^aRecall r.v. $X \leftrightarrow$ deterministic stochastic kernel $K \leftrightarrow (M_x) : X = \sum_x M_x x$.

UNIVERSIT

Phase space and states The dynamical law Observables **Physical measurement** Composite systems

Postulates of classical mechanics Measurement

For any $X \in \mathbf{O}$ consider family of questions $(M(A))_{A \in \mathcal{X}}$.

 $M(A) = 1 \Leftrightarrow X \in A.$

Make system interact with **measuring apparatus** that determines whether question gets positive answer.

Postulate (Physical measurement)

For system in state μ ask question M(A) and determine probability of positive answer.

$$\mathbf{S} \times \mathbf{O} \ni (\mu, M(A)) \mapsto \pi^{\mu}_{M}(A) = \mu K(A).$$

Phase space and states The dynamical law Observables Physical measurement Composite systems

Postulates of classical mechanics Composite systems

System composed of N subsystems, each with its own phase space $(\Omega_i, \mathcal{F}_i)$ for i = 1, ..., N.

Postulate (Composite system)

The phase space (Ω, \mathcal{F}) of the composite system is

$$\begin{aligned} \Omega &= \times_{i=1}^{N} \Omega_i, \\ \mathcal{F} &= \otimes_{i=1}^{N} \mathcal{F}_i = \sigma(\times_{i=1}^{N} \mathcal{F}_i). \end{aligned}$$

States are not necessarily product measures! Blackboard 7: Two illustrative examples.

Hidden variables hypothesis

- In the next lecture, postulates of Quantum Mechanics.
- QM never been contradicted by experiment up to now.
- Nevertheless, "measurement postulate" so counter-intuitive that physicists searched ways of circumvention.
- One of the criticism on this postulate concerns the irreducibility¹ of quantum randomness it imposes.
- One attempt of circumvention was the "hidden variables" hypothesis².
- Personal view: Situation similar to aether hypothesis in EM.

¹Einstein's aphorism: "God does not play dice with the world". ²Bohm, A suggested interpretation of the quantum theory in terms of "NUMERSITE OF RENT" "hidden" variables. I+II, Phys. Rev. 85:166–179, 180–193 (1952).

Hidden variables, Bell's inequalities, the Orsay experiment

Experiments with polarisers

Experimental facts:

- When photon passes through first polariser in direction α emerges polarised in that direction.
- When second polariser encountered in direction β photon passes through with probability $\cos^2(\alpha \beta)$.
- If photon initially already polarised in direction α, nothing changes if the first polariser is removed.

Bell's inequalities

If hidden variables \Rightarrow Kolmogorov theory holds.

Proposition (Four-variable Bell's inequality)

 X_1, X_2, Y_1, Y_2 arbitrary quadruple of $\{0,1\}\text{-valued random variables. Then}$

$$\mathbb{P}(X_1 = Y_1) \leq \mathbb{P}(X_1 = Y_2) + \mathbb{P}(X_2 = Y_2) + \mathbb{P}(X_2 = Y_1).$$

Proof.

R.v. being $\{0, 1\}$ -valued, enough to check on all 16 possible realisations of quadruple $(X_1(\omega), X_2(\omega), Y_1(\omega), Y_2(\omega))$ that

$$\{X_1 = Y_1\} \subseteq \{[X_1 = Y_2] \lor [X_2 = Y_2] \lor [X_2 = Y_1]\}.$$

Hidden variables, Bell's inequalities, the Orsay experiment

The Orsay experiment

Aspect, Dalibard, Roger. Experimental test of Bell's inequalities using time-varying analyzers, Phys. Rev. Lett., 49: 1804–1807 (1982).

Experimental refutation of hidden variables hypothesis I

- $X_{\alpha} := 1 \Leftrightarrow \{ \text{left photon passes if polariser oriented in } \alpha \}.$
- $Y_{\beta} := 1 \Leftrightarrow \{ \text{right photon passes if polariser oriented in } \beta \}.$
- Experimental fact: $\mathbb{P}(X_{\alpha} = Y_{\beta}) = \sin^2(\alpha \beta)$.
- Bell's inequalities:

$$\mathbb{P}(X_{\alpha_1}=Y_{\beta_1}) \leq \mathbb{P}(X_{\alpha_1}=Y_{\beta_2}) + \mathbb{P}(X_{\alpha_2}=Y_{\beta_1}) + \mathbb{P}(X_{\alpha_2}=Y_{\beta_2}).$$

• With choice $\alpha_1 = 0$, $\alpha_2 = \pi/3$, $\beta_1 = \pi/2$, and $\beta_2 = \pi/6$:

$$\sin^2(\pi/2) \le \sin^2(-\pi/6) + \sin^2(-\pi/6) + \sin^2(\pi/6)$$

or else $\Rightarrow 1 \leq 1/4 + 1/4 + 1/4$.

Experimental refutation of hidden variables hypothesis II

- Orsay experiment can be seen as game you play against nature and you always loose!
- Exist other experiments³ refuting hidden variables, e.g. by use of Kochen-Specker theorem.

³Including by Chilean groups, e.g. Saavedra, Concepción.