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Reminder of the Kolmogorov definition (1)

Abstract measurable space (Ω,F), F ⊆ P(Ω).
Ω ∈ F ,
A ∈ F ⇒ Ac ∈ F ,
(An)n∈N ∈ F ⇒ ∪n∈NAnF .

Probability measure on Ω ∈ F , i.e. P : F → [0, 1]

P(Ω) = 1,
P(tn∈NAn) =

∑
n∈N P(An).

Concrete measurable space (X,X ).
X-valued random variable: any (F ,X )-measurable map
X : Ω→ X.
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Reminder of the Kolmogorov definition (2)

Remark
Probability P on (Ω,F) does not intervene directly in the definition
of X . It induces nevertheless a probability PX on (X,X ), the law
of X , by

X 3 A 7→ PX (A) := P(X−1(A)) = P({ω ∈ Ω : X (ω) ∈ A}).

Remark
Important in definition of X the concrete space X. The abstract
space Ω is irrelevant.

Blackboard 1: 3 ways to toss a coin . . .
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Reducibility of classical randomness

Figure: From: Diaconis, Holmes, Montgomery, Dynamical bias in the
coin toss, SIAM Review 2007.
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Reminder on stochastic kernels

Definition
Let (Ω,F) and (X,X ) measurable spaces. Map

K : Ω×X → [0, 1]

is stochastic kernel from (Ω,F) to (X,X ) if
∀ω ∈ Ω,K (ω, ·) probability on X , and
∀A ∈ X ,K (·,A) measurable function.

Blackboard 2: example of 2 coins
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Action of K

K (ω, ·) probability. Hence

bX 3 f 7→ Kf ∈ bF

Kf (ω) :=

∫
X

K (ω, dx)f (x).

K (·,A) (bounded) measurable function. Hence

M1(F) 3 µ 7→ µK ∈M1(X )

µK (A) :=

∫
Ω
µ(dω)K (ω,A).

Blackboard 3: contravariant and covariant functors.
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Deterministic kernel K

Definition
Stochastic kernel K is deterministic if

∀ω ∈ Ω,∃!x := xK (ω) ∈ X : K (ω,A) = εx(A) = 1 A(x).

Blackboard 4: stochastic matrices and extremal stochastic matrices.
Blackboard 5: equivalence X ↔ K for discrete r.v.
Blackboard 6: equivalence X ↔ K for continuous r.v.
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Random variables and detrerministic kernels

For X r.v. on (Ω,F , µ) and values in (X,X ), kernel K := KX

K (ω,A) = 1 X−1(A)(ω) = εX (ω)(A)

conveys exactly same information as X .

∀ω ∈ Ω,X (ω) =

∫
X
εX (ω)(dx)x =

∫
X

K (ω, dx)x = (K idX)(ω),

∀A ∈ X ,PX (A) = µ(X−1(A)) =

∫
Ω
µ(dω)1 X−1(A)(ω)

=

∫
Ω
µ(dω)K (ω,A) = (µK )(A).
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Archetypal example of a physical sharp measurement

X ↔ KX with KX deterministic kernel.
For fixed X (hence KX ) define sharp elementary observable:

X 3 A 7→ M(A) := K (·,A) = 1 X−1(A) ∈ bF .

Random variable recovery: X (ω) =
∫
X M(dx)(ω)x .

Precise preparation of the system µ ∈M1(F).
Measurement: S×O 3 (µ,M) 7→ πµM ∈M1(X ), where

πµM(A) =

∫
Ω
µ(dω)M(A)(ω) =

∫
Ω
µ(dω)K (ω,A) = (µK )(A).
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Gambling with classical dice I

Dice shows up a face ω ∈ Ω := {1, 2, . . . , 6}.
Gambler’s net gain determined by the random variable X :

X (ω) = [(ω − 1 mod 3)− 1] ∈ X := {−1, 0, 1}.

Two ways to represent information conveyed by X : either as a
6-dimensional vectorV or as a 6× 3 stochastic deterministic
matrix K :

V :=



−1
0
1
−1
0
1

 ; K =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

 .
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Gambling with classical dice II

Observable M is the family M = (Mx )x∈X of elementary observables , where

Mx (ω) := K(ω, x) = 1 x (X (ω)) = 1X−1({x})(ω) = δX (ω)({x}).

M−1 :=


1
0
0
1
0
0

 ; M0 :=


0
1
0
0
1
0

 ; M1 :=


0
0
1
0
0
1

 .

Remark

∀x ∈ X, ω ∈ Ω, Mx (ω) ≥ 0 and M2
x (ω) = Mx (ω). (i.e. Mx projections).∑

x∈X Mx = 1. ((Mx )x∈X resolution of identity).

X =
∑

x∈X Mxx . (“Spectral decomposition” of X ).
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Gambling with classical dice III

For preparation of dice in state µ ∈M1(F), measurement
determines a probability πµM ∈M1(X) by

πµM(x) = µ({ω ∈ Ω : X (ω) = x})

=
∑

ω∈X−1({x})

µ(ω)

= 〈µ,Mx〉
=

∑
ω∈Ω

µ(ω)Mx(ω).

Definition
Observable decomposable into family of projections (Mx) called
sharp.
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Gambling with classical dice IV

Example of 2 different preparations of the system “dice”:

µ1 = (
1
6
,
1
6
,
1
6
,
1
6
,
1
6
,
1
6

); µ2 = (
1
32
,
1
32
,
1
16
,
1
8
,
1
4
,
1
2

)

Corresponding probability measures inM1(X):

πµ1M = (
1
3
,
1
3
,
1
3

); πµ2M = (
5
32
,
9
32
,
18
32

).

Average value Eµ(X ) =
∑

x∈X π
µ
M(x)x :

Eµ1(X ) = 0; Eµ2(X ) = − 5
32

+
18
32

=
13
32
.
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Randomised gambling with classical dice I

Again gambler’s net gain (observable) ↔ K but now K genuine
stochastic matrix, e.g.

K =



4
5 0 1

5
0 1 0
1
5 0 4

5
4
5 0 1

5
0 1 0
1
5 0 4

5

⇒ M−1 =



4
5
0
1
5
4
5
0
1
5

 ; M0 =


0
1
0
0
1
0

 ; M1 =



1
5
0
4
5
1
5
0
4
5

⇒ V =


− 3

5
0
3
5
− 3

5
0
3
5

 .

Exercise
What is the significance of the vector V ?
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Randomised gambling with classical dice II

Remark

∀x ∈ X, ω ∈ Ω, M2
x (ω) ≤ Mx(ω). (Mx not projections).∑

x∈X Mx = 1. ((Mx)x∈X resolution of identity).
πµM(x) = 〈µ,Mx〉 =

∑
ω∈Ω µ(ω)Mx(ω). (But (Mx) do not

provide spectral decomposition of X ).
But still average gain in state µ given by
EµX =

∑
x∈X π

µ
M(x)x .

Definition
Resolution of identity M = (Mx) with Mx positive but not
necessarily projections called unsharp or randomised observable.
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Randomised gambling with classical dice III

With previous µ1 and µ2:

πµ1
M = µ1K = (

1
6
,
1
6
,
1
6
,
1
6
,
1
6
,
1
6

)



4
5 0 1

5
0 1 0
1
5 0 4

5
4
5 0 1

5
0 1 0
1
5 0 4

5

 = (
1
3
,
1
3
,
1
3

);

πµ2
M = µ2K = (

1
32
,
1
32
,
1
16
,
1
8
,
1
4
,
1
2

)



4
5 0 1

5
0 1 0
1
5 0 4

5
4
5 0 1

5
0 1 0
1
5 0 4

5

 = (
38
160

,
45
160

,
77
160

).

Eµ1(X ) = 0;Eµ2(X ) =
39
160

.
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Postulates of classical mechanics
Phase space and states

Postulate (Phase space and states)

Phase space: a measurable space (Ω,F).
States: possible preparations of the system S =M1(F).

Set S is convex

µ1, µ2 ∈ S, λ ∈ [0, 1]⇒ λµ1 + (1− λ)µ2 ∈ S.

Extremal points, i.e. states without non-trivial convex
decomposition, are the pure states Sp = {εω, ω ∈ Ω} ' Ω.
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Postulates of classical mechanics
Dynamical law

Postulate (Dynamical law)

Time evolution of isolateda system: a measurable invertible
function T : Ω→ Ω.

aNot exchanging mass or energy with environment.

T is a r.v. hence ↔ KT deterministic stochastic kernel.

Definition
State µ ∈ S invariant if T∗µ := µKT = µ, i.e.

∀A ∈ F , µ(T−1A) = µ(A).
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Postulate (Observables)

General sharp X-valued observables: random variablesa on
phase space (Ω,F) taking values in (X,X ).
Elementary sharp observables: The {0, 1}-valued spectral
components Mx .
General (unsharp) X-valued observables described by
decompositions of identity (Mx) into positive but not
necessarily projective components.

aRecall r.v. X ↔ deterministic stochastic kernel K ↔ (Mx) : X =
∑

x Mxx .
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Postulates of classical mechanics
Measurement

For any X ∈ O consider family of questions (M(A))A∈X .

M(A) = 1⇔ X ∈ A.

Make system interact with measuring apparatus that determines
whether question gets positive answer.

Postulate (Physical measurement)

For system in state µ ask question M(A) and determine probability
of positive answer.

S×O 3 (µ,M(A)) 7→ πµM(A) = µK (A).
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Postulates of classical mechanics
Composite systems

System composed of N subsystems, each with its own phase space
(Ωi ,Fi ) for i = 1, . . . ,N.

Postulate (Composite system)

The phase space (Ω,F) of the composite system is

Ω = ×N
i=1Ωi ,

F = ⊗N
i=1Fi = σ(×N

i=1Fi ).

States are not necessarily product measures!
Blackboard 7: Two illustrative examples.
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Hidden variables hypothesis

In the next lecture, postulates of Quantum Mechanics.
QM never been contradicted by experiment up to now.
Nevertheless, “measurement postulate” so counter-intuitive
that physicists searched ways of circumvention.
One of the criticism on this postulate concerns the
irreducibility1 of quantum randomness it imposes.
One attempt of circumvention was the “hidden variables”
hypothesis2.
Personal view: Situation similar to aether hypothesis in EM.

1Einstein’s aphorism: “God does not play dice with the world”.
2Bohm, A suggested interpretation of the quantum theory in terms of

"hidden" variables. I+II, Phys. Rev. 85:166–179, 180–193 (1952).
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Experiments with polarisers

α β

Experimental facts:

When photon passes through first polariser — in direction α —
emerges polarised in that direction.

When second polariser encountered — in direction β — photon
passes through with probability cos2(α− β).

If photon initially already polarised in direction α, nothing changes if
the first polariser is removed.
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Bell’s inequalities

If hidden variables ⇒ Kolmogorov theory holds.

Proposition (Four-variable Bell’s inequality)

X1,X2,Y1,Y2 arbitrary quadruple of {0, 1}-valued random
variables. Then

P(X1 = Y1) ≤ P(X1 = Y2) + P(X2 = Y2) + P(X2 = Y1).

Proof.
R.v. being {0, 1}-valued, enough to check on all 16 possible
realisations of quadruple (X1(ω),X2(ω),Y1(ω),Y2(ω)) that

{X1 = Y1} ⊆ {[X1 = Y2] ∨ [X2 = Y2] ∨ [X2 = Y1]}.
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The Orsay experiment

Aspect, Dalibard, Roger. Experimental test of Bell’s inequalities using time-varying

analyzers, Phys. Rev. Lett., 49: 1804–1807 (1982).

αi

PM1

Coincidence monitoring

PM2

βj

Ca
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Experimental refutation of hidden variables hypothesis I

Xα := 1⇔ {left photon passes if polariser oriented in α}.
Yβ := 1⇔ {right photon passes if polariser oriented in β}.
Experimental fact: P(Xα = Yβ) = sin2(α− β).
Bell’s inequalities:

P(Xα1 = Yβ1) ≤ P(Xα1 = Yβ2)+P(Xα2 = Yβ1)+P(Xα2 = Yβ2).

With choice α1 = 0, α2 = π/3, β1 = π/2, and β2 = π/6:

sin2(π/2) ≤ sin2(−π/6) + sin2(−π/6) + sin2(π/6)

or else ⇒ 1 ≤ 1/4 + 1/4 + 1/4.
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Experimental refutation of hidden variables hypothesis II

Orsay experiment can be seen as game you play against nature
and you always loose!
Exist other experiments3 refuting hidden variables, e.g. by use
of Kochen-Specker theorem.

3Including by Chilean groups, e.g. Saavedra, Concepción.
Santiago, November 2013 QCCC


	Probability theory
	Random variables
	Stochastic kernels and spectral representation
	Deterministic kernels and sharp measurements

	Postulates of classical mechanics
	Phase space and states
	The dynamical law
	Observables
	Physical measurement
	Composite systems

	Insufficiency of classical probability to describe Nature
	Hidden variables, Bell's inequalities, the Orsay experiment


