
Linear Algebra over Zp[[u]] and related rings

Xavier Caruso, David Lubicz

October 8, 2013

Abstract

Let R be a complete discrete valuation ring, S = R[[u]] and d a positive integer. The aim of this paper
is to explain how to compute efficiently usual operations such as sum and intersection of sub-S-modules of
Sd. As S is not principal, it is not possible to have a uniform bound on the number of generators of the
modules resulting from these operations. We explain how to mitigate this problem, following an idea of
Iwasawa, by computing an approximation of the result of these operations up to a quasi-isomorphism. In
the course of the analysis of the p-adic and u-adic precisions of the computations, we have to introduce
more general coefficient rings that may be interesting for their own sake. Being able to perform linear
algebra operations modulo quasi-isomorphism with S-modules has applications in Iwasawa theory and
p-adic Hodge theory.

Contents
1 Introduction 1

2 Arithmetic of the rings Sν 3
2.1 Notations . 3
2.2 Definition and first properties of Sν . 4
2.3 Division in Sν . 6

3 Modules over Sν 8
3.1 Quasi-isomorphism and maximal modules . 9
3.2 An approach based on localisation . 12
3.3 A generalisation of Iwasawa’s theorem and applications 17
3.4 Comparing the two approaches . 29

4 Representation and precision 30
4.1 Generality with precision . 30
4.2 Finite precision computation with elements of Sν . 32
4.3 Finite precision computation with modules with coefficients in Sν 35

1 Introduction
Let R be a complete discrete valuation ring (see §2.1 for a reminder of the definition) whose valuation is
denoted by vR. Let K denote its fraction field with valuation vK and π be a uniformizer of R. We set
S = R[[u]]; it is the ring of formal series over R. Our aim is to provide efficient algorithms to deal with
finitely generated modules over S. Since, we can always represent a torsion module as the quotient of two
torsion-free modules, we shall focus on torsion-free modules.

Any finitely generated torsion-free S-module M can be considered as a submodule of Sd for d big
enough. As a consequence, we can represent M by a matrix whose columns are the coefficients of generators
of M in the canonical basis of Sd. Thus we can reformulate our problem as follows: given M1 and M2

two matrices representing respectively the S-modules M1 and M2 embedded in Sd, give algorithms to
compute a matrix representing M1 ∩M2 or M1 + M2. We would like also to be able to check membership,
equality of sub-S-modules, inclusions, etc. As S is not a principal ideal domain, in order to control the

1

number of generators of the sub-S-modules of Sd, we propose, following an idea of Iwasawa, to compute
approximations of the submodules resulting from aforementioned operations in the following sense: we say
that a morphism M1 →M2 is a quasi-isomorphism if its kernel and co-kernel both have finite length, and
we want to make computations modulo quasi-isomorphisms. We propose two different approaches, each of
them having its own advantages and disadvantages.

First approch: We notice that classes of modules modulo quasi-isomorphism can be described by modules
over the rings Sπ and Su defined respectively as the localization of S with respect to π and the completion of
the localization of S with respect to u. Precisely, for A = Sπ, Su, let FreedA be the set of free sub-A-modules
of Ad, and denote by ModdS/qis the set of quasi-isomorphism classes of sub-S-modules of Sd. We shall
prove that there is an injective morphism Ψ′ : ModdS/qis → FreedSπ ×FreedSu ,M 7→ (M ⊗S Sπ,M ⊗S Su)

(where M is any representative in the class M) whose image can be precisely characterized (see Theorem
1.1 below). Using this correspondence, operations with modules with coefficients in S reduces to the
computation with modules over Sπ and Su. As these two last rings are Euclidean, there exist classical
canonical representations and algorithms to manipulate modules over these rings.

Second approach: It consists in finding a canonical representative in a class of modules modulo quasi-
isomorphism which is amenable to computations. Such a representative is provided by the maximal module
of a S-module M . It can be defined as the unique free module in the class of quasi-isomorphism of M . We
present an algorithm to compute the maximal module associated to a sub-S-module of Sd which is inspired
by a construction of Cohen, presented in [10, p. 131], to obtain a classification up to quasi-isomorphism
of finitely generated S-modules. We can then compose this algorithm with algorithms to compute basic
operations on free modules in order to compute with representatives up to quasi-isomorphisms.

In order to obtain real algorithms (i.e. something computable by a Turing machine) we have to consider
the fact that elements of S, Sπ , Su are not finite. In this paper we consider an approach in two steps in order
to solve this problem. First, we give the ability to Turing machines to manipulate, by the way of oracles,
elements of S, Sπ, Su. More precisely, we suppose given oracles able to store elements of the base ring,
compute valuation, multiplication, addition, inversion, and Euclidean division. We express the complexity of
an algorithm with oracle by the number of calls to the oracles to compute ring operations. Once we have well
defined algorithm with oracles to compute with modules, we study as a second step the problem of turning
them into real algorithms.

Much in the same way as for floating point arithmetic, the actual computations with modules with
coefficients in S are done with approximations up to certain π-adic and u-adic precisions. It is important
to ensure that the (truncated) outputs of our algorithms are correct which means that they do not depend
on the π or u powers of the input that we have forgotten. In order to deal with this precision analysis, it is
convenient to consider a generalisation of the family of ring coefficients S. Namely, given α, β relatively
prime integers, we write ν = β/α and set Sν = {

∑
aiu

i ∈ K[[u]]|vK(ai) + νi ≥ 0, ∀i ∈ N}. We have
S0 = S. In this paper, we develop a theory of Sν-modules which encompass modules over S and use it in
order to obtain algorithm with complexity bounds and proof of correctness.

More precisely, we generalize the definition of a maximal module for finitely generated torsion-free
Sν-modules. Denote by MaxdSν the set of maximal sub-Sν-modules of Sdν . We prove the following theorem
(see Theorem 3.12), which generalize the above mentioned decomposition:

Theorem 1.1. The natural map

Ψ : MaxdSν −→ FreedSν,π × FreedSν,u
M 7→ (Mπ,Mu).

is injective and its image consists of pairs (A,B) such that A and B generate the same E -vector space in
E d. If a pair (A,B) satisfies this condition, its unique preimage under Ψ is given by A ∩B.

In the theorem, E is a field containing Sν and its localization Sν,π and Sν,u which is precisely defined
in Section 2.2. We give an algorithm with oracles to compute the maximal module associated to a finitely
generated torsion-free Sν-module. In general, it is not true that the maximal module of a torsion-free
Sν-module is free, although this property holds when ν = 0. Nonetheless, by using the theory of continued
fraction, it is possible to obtain a tight upper bound on the number of generators of a maximal module
embedded in Sdν . If ν is rational, it admits a unique finite development as a continued fraction that we denote
by [a0; a1, . . . , an] (here, we suppose that an 6= 1). We can prove the following (see Theorem 3.32):

2

Theorem 1.2. Let ν = [a0; a1, . . . , an]. Let M be a sub-Sν-module of Sdν . Then Max(M) is generated by
at most d · (2 +

∑dn/2e
i=1 a2i) elements.

We then move to precision problems. We provide some simple examples to show that a lot of basic
operations that we need in order to compute with modules over Sν , such as the computation of the Gauss
valuation, are not stable. This means that, in general, the computation with approximations of the input data
does not yield approximation of the result. This is where it becomes interesting to use the possibility to
change the slope ν of the base ring Sν . In the context of our computation, a bigger slope plays the role of
a loss of precision in the computation of an approximation of a module over Sν . In this direction, we can
prove the following theorem (see Theorem 4.6 for a precise statement):

Theorem 1.3. Let M1 and M2 = Sν .t for t ∈ Sdν be two finitely generated sub-Sν-modules of Sdν such that
M2 ⊂ 1/πcM1 for a positive integer c. Let M1 and M2 be the matrices with coefficients in Sν of generators
of M1 and M2 in the canonical basis of Sdν . Suppose we are given approximations Mr

1 and Mr
2 of M1 and

M2 respectively. Then, for a well chosen ν′ > ν, there exists a polynomial time algorithm in the length of the
representation of Mr

1 and Mr
2 to compute a matrix Mr

3 which is an approximation of the maximal module
associated to (M1 ⊗Sν Sν′) + (M2 ⊗Sν Sν′).

The organisation of the paper is as follows: in §2, we introduce the rings Sν , and their basic arithmetic
and analytic properties. In §3, we generalize some classical results of Iwasawa to the case of finitely
generated Sν-modules and then give an algorithm with oracle to compute the maximal module associated
to a torsion-free Sν-module and obtain an upper bound on the number of generators of a maximal module.
Note that §2 and §3, we only describe algorithms with oracles. In §4, we study the problem of p-adic and
u-adic precisions and turn the algorithms with oracles obtained in the previous sections into real algorithms.

2 Arithmetic of the rings Sν
In order to compute with modules over Sν we first have to study the basic arithmetic properties of their base
ring. In this section, we show that its localization with respect to uα/πβ and π becomes Euclidean. We
provide algorithms with oracles to compute the Euclidean division in these rings which will be very useful
for our purpose along with their complexity expressed in term of the number of ring operations. They will be
turned into real algorithms (i.e. working on a real Turing machine) in §4 where we study the problem of
precision of computation in the rings Sν .

2.1 Notations
We fix the notations for the rest of the paper. Let R be a ring equipped with a discrete valuation vR, that is a
map vR : R→ N≥0 ∪ {+∞} satisfying the following conditions:

• for all x ∈ R, vR(x) = +∞ if and only if x = 0;

• for all x ∈ R, vR(x) = 0 if and only if x is invertible;

• for all x, y ∈ R, vR(xy) = vR(x) + vR(y);

• for all x, y ∈ R, vR(x+ y) ≥ min(vR(x), vR(y)).

Let a be a fixed real number in (0, 1). One can define a distance d on R by the formula d(x, y) = avR(x−y)

(x, y ∈ R) where we use the convention that a+∞ = 0. For the rest of the paper, we assume that R is
complete with respect to d. We recall that R is a local ring whose maximal ideal is M = {x ∈ R|vR(x) > 0}.
By renormalizing vR, we can suppose it to be surjective. We denote by π a uniformizer of R, that is an
element of R whose valuation is 1. Every element x in R can then be written x = πru where r = vR(x)
and u ∈ R is invertible. Here are several classical examples of such rings R:

• the ring Zp of p-adic integers equipped with the usual p-adic valuation;

• more generally, the ring of integers of any finite extension of Qp;

• for any field k, the ring k[[u]] of formal power series with coefficients in k.

3

We now go back to a general R. It follows easily from the definition that the field of fractions of R is just
R[1/π]. Let’s denote it by K and set S = R[[u]], the ring of formal series over R. The valuation vR can be
extended uniquely to a valuation vK on K.

2.2 Definition and first properties of Sν

Denote by K[[u]] the power series ring with coefficients in K. It is classical to define the Gauss valuation
of an element

∑
aiu

i ∈ K[[u]] as the smallest vK(ai) if it exists. The ring of elements of K[[u]] with non
negative Gauss valuation is nothing but R[[u]]. In this section, we are going to consider more generally a
family of valuations parametrized by a slope ν ∈ Q so as to define the subring of K[[u]] of elements with
positive valuation.

Definition 2.1. Let ν ∈ Q. We define the Gauss valuation vν : K[[u]]→ Q ∪ {+∞,−∞} by vν(x) = +∞
if x = 0, vν(

∑
aiu

i) = min{vK(ai) + νi, i ∈ N} if
∑
aiu

i 6= 0 and this minimum exists and vν(x) =
−∞ otherwise. The Weierstrass degree of x =

∑
aiu

i denoted degνW (x) is given by degνW (0) = −∞,
degνW (x) = min{i|vK(ai) + νi = vν(x)} if vν(x) 6= −∞ and degνW (x) = +∞ otherwise. When no
confusion is possible, we will use the notation degW instead of degνW .

y = −νx

π

u

Figure 1: The Gauss valuation of π2 · u4 with ν = 1/3 is 10/3.

The following lemma gives some basic properties of vν and degW . In particular, it shows that vν has the
usual properties of a valuation:

Lemma 2.2. For x, y ∈ K[[u]] we have:

1. vν(x) = +∞ if and only if x = 0;

2. vν(x · y) = vν(x) + vν(y);

3. vν(x+ y) ≥ min(vν(x), vν(y)).

Moreover for all x, y ∈ K[[u]] with finite Gauss valuation, degW (x.y) = degW (x) + degW (y).

Proof. From the definition (i) is clear. To prove (ii), we first suppose that x =
∑
aiu

i and y =
∑
biu

i

have finite valuation. Let z = x · y =
∑
ciu

i. We have vK(ci) + νi = vK(
∑i
j=0 aj · bi−j) + νi ≥

minj{vK(aj)+ν ·j+vK(bi−j)+ν ·(i−j)} ≥ vν(x)+vν(y). Moreover, by taking i = degW (x)+degW (y)
in the previous computation, we obtain that vK(cdegW (x)+degW (y)) = vν(x) + vν(y). If vν(x) = −∞ and
y 6= 0, we can apply the previous result to the series obtained by truncating x up to a certain power to show
that vν(x · y) = −∞. The proof of the rest of the lemma is left to the reader.

We let Sν = {x ∈ K[[u]]|vν(x) ≥ 0}. By definition, an element x ∈ Sν can we written as a series

x =
∑
i∈N

aiu
i,

where ai ∈ K and vK(ai) ≥ −νi.

4

Remark 2.3. It is clear that Sν is complete for the valuation vν with ν = β/α. Nonetheless, the ring Sν is
not a valuation ring. In fact, although vν(uα/πβ) = 0 for ν 6= 0 (resp. vν(u) = 0 for ν = 0), uα/πβ (resp.
u) is not invertible in Sν .

We let

Sν,π = Sν [1/π] =
{∑
i∈N

aiu
i, ai ∈ K such that vK(ai) + νi bounded below

}
.

In the same way, it is clear that one can extend the valuation vν of Sν to Sν [πβ/uα] and we let Sν,u =
̂Sν [πβ/uα] where the hat stands for the completion of Sν [πβ/uα] with respect to the topology defined by vν .
Put in another way,

Sν,u =
{∑
i∈Z

aiu
i, ai ∈ K, vK(ai) + νi ≥ 0, and lim

i→−∞
vK(ai) + νi = +∞

}
.

We moreover define

E =
{∑
i∈Z

aiu
i, ai ∈ K vK(ai) + νi bounded below and lim

i→−∞
vK(ai) + νi = +∞

}
.

We have the following commutative diagram of inclusions:

Sν,π

Sν E

Sν,u

(1)

As Sν,π is a subring of K[[u]], it is equipped with the valuation vν and the Weierstrass degree associated
to vν . Moreover, one can extend, in an obvious manner, the definition of vν and the Weierstrass degree for
Sν,u and E .

We can interpret the ring Sν in terms of the analytic functions on the π-adic disc. In order to ex-
plain this, for ν = β/α ∈ Q, we consider the open disk Dν = {x ∈ Ω|vK(x) > ν} where Ω
is the completion of an algebraic closure of K. Denote by Oν the ring of convergent series Oν =

{
∑
i∈N aiu

i|ai ∈ K, lim infi→+∞
vK(ai)

i ≥ −ν} in the disk Dν . It is clear that Sν,π is exactly the set {f ∈
K[[u]]| vK(f(x)) bounded below onDν} and Sν can be described as {f ∈ K[[u]]| vK(f(x)) bounded below by 0 onDν}.
Thus, there are obvious inclusions Sν ⊂ Sν,π ⊂ Oν but one should beware of the fact that the last inclusion
is strict. Indeed for instance, for R = Zp, ν = 0 the series

∑
i>0

ui

i which defines the function log(1− u) is
convergent in the unity disk but is obviously not in S0,π since vK(1/i) has no lower bound. Assuming that ν
is rational (which we do), the next proposition gives another characterisation of elements of Oν that lie in
Sν,π . In the course of the proof, we use the notion of Newton polygon of an element of Sν .

Definition 2.4. For x =
∑
i∈N aiu

i ∈ K[[u]] ∈ Sν , we define the Newton polygon of x that we denote by
NPν(x) by the convex hull of the set of points {(i, vK(ai)), i ∈ N} together with the point (0,+∞) and the
limit point limx→+∞(αx,−βx).

Proposition 2.5. An element x ∈ Oν is in Sν,π if and only if x has only a finite number of zeros in the disk
Dν .

Proof. Let x ∈ Oν . The number of zeros of x ∈ Dν is equal to the length of the interval above which
NPν(x) has a slope < −ν. If this length is finite, it is clear that vp(ai) is bounded below by a line of the
form −νi+ c with c a constant and as a consequence is an element of Sν,π .

Conversely, suppose that x ∈ Sν,π. This means that vp(ai) + νi is bounded below and is contained in
Z + νZ which is a discrete subgroup of R (as ν is rational). Thus, the set {vp(ai) + νi, i ∈ N} reaches a
minimum for a certain index i0. This means that for all i > i0, the slope of NPν(x) is greater than −ν and x
has a finite number of zeros in Dν .

5

We end up this section, by remarking that up to an extension of the base ring R all the Sν’s are isomorphic
to a S0. Indeed, write ν = β/α with α, β relatively prime numbers and let $, in an algebraic closure of K,
be such that $α = π. Let R′ = R[$], K ′ be the fraction field of R′ (and a finite extension of K). The
valuation on R extends uniquely on R′ by setting vK′($) = 1/α. For µ = 0, ν, let Sµ′ = Sµ ⊗R R′. The
valuation vK′ defines a Gauss valuation on Sµ′ that we denote also by vµ.

Lemma 2.6. Keeping the notations from above, the unique continuous morphism of rings ρ : S0
′ → S′ν

sending u to u
$β

is an isomorphism. Moreover, if x ∈ S0
′ we have v0(x) = vν(ρ(x)) and deg0

W (x) =
degνW (ρ(x)).

Proof. By definition, S′ν = {
∑
aiu

i|vK′(ai) + νi ≥ 0} = {
∑
ai(u/$

β)i|vK′(ai) ≥ 0} from which it is
clear that ρ is an isomorphism. The rest of the lemma is an easy verification.

2.3 Division in Sν

The Weierstrass degree allows us to describe a Euclidean division in Sν . Although, the existence of such a
division is classical (see for instance [10]) at least over S0 = R[[u]], we give here a proof for all ν which
provides an algorithm with oracles to compute the Euclidean division.

In order to study divisibility in Sν , we have a first result:

Lemma 2.7. Let x, z ∈ Sν . We suppose that degW (x) = 0 then there exists y ∈ Sν such that x.y = z if
and only if vν(x) ≤ vν(z).

Proof. We suppose that degW (x) = 0. If there exists y ∈ Sν such that x · y = z then clearly vν(x) ≤ vν(z).
Reciprocally, we suppose that vν(x) ≤ vν(z). Write x =

∑
i∈N aiu

i and z =
∑
i∈N ciu

i. We remark
that as degW (x) = 0, we have vν(x) = vK(a0). Since a0 is invertible in K there exists y ∈ K[[u]] such
that x.y = z. We have to prove that vν(y) ≥ 0. For this, write y =

∑
i∈N biu

i. We have vK(b0) =
vK(c0)−vK(a0) ≥ 0 by hypothesis. Then, for j ≥ 1, we prove by induction that vK(bj)+νj ≥ 0. We have
bj = a−1

0 · cj − a
−1
0

∑j
i=1 ai · bj−i. But vK(a−1

0 · cj) + νj ≥ vν(z)− vν(x) ≥ 0 because degW (x) = 0.
Moreover, for i = 1 . . . j, vK(a−1

0 · ai · bj−i) + νj = vK(ai) + νi− vν(x) + vK(bj−i) + ν(j − i). But by
definition vK(ai) + νi− vν(x) ≥ 0 and by the induction hypothesis vK(bj−i) + ν(j − i) ≥ 0. Therefore,
vK(bj) + νj ≥ 0 and we are done.

Applying Lemma 2.7 to z = 1, we get

Corollary 2.8. Let x =
∑
i∈N aix

i ∈ Sν , then x is invertible in Sν if and only if degW (x) = 0 and
vν(x) = 0.

We note that the corollary implies that Sν is a local ring. Next, we introduce the following notations: for
x =

∑
i∈N aiu

i ∈ Sν and d a positive integer, we let Hi(x, d) =
∑
i≥d aiu

i and Lo(x, d) =
∑d−1
i=0 aiu

i. It
is clear that x = Lo(x, d) + Hi(x, d).

Proposition 2.9. Let x, y ∈ Sν . Suppose that vν(y) ≥ vν(x) then there exists a unique couple (q, r) ∈
Sν × (K[u] ∩ Sν) such that deg(r) < degW (x) and y = q · x+ r.

Proof. First, we prove the existence of (q, r). Let d = degW (x), we consider the sequences (qi) and (ri)
defined by q0 = 0 and r0 = y and

qi+1 = qi +
Hi(ri, d)

Hi(x, d)
, ri+1 = ri −

Hi(ri, d)

Hi(x, d)
· x. (2)

We are going to prove by induction that qi and ri are convergent sequences (for the vν valuation) of
elements of Sν . Let e = vν(Lo(x, d)) − vν(Hi(x, d)) > 0. Our induction hypothesis is that qi and ri are
elements of Sν , that vν(Hi(ri, d)) ≥ e · i+ vν(Hi(y, d)) and that y = qi · x+ ri. It is clearly true for i = 0.

By the induction hypothesis, we have vν(Hi(ri, d)) ≥ vν(Hi(y, d)) and by hypothesis vν(Hi(y, d)) ≥
vν(y) ≥ vν(x) = vν(Hi(x, d)) so that vν(Hi(ri, d)) ≥ vν(Hi(x, d)). Applying Lemma 2.7, we obtain
Hi(ri,d)
Hi(x,d) ∈ Sν and then qi+1, ri+1 ∈ Sν . Next writing x = Hi(x, d) + Lo(x, d), we get

ri+1 = Lo(ri, d)− Hi(ri, d)

Hi(x, d)
· Lo(x, d). (3)

6

Applying Lemma 2.2, we obtain that vν(Hi(ri+1, d)) ≥ vν(Hi(ri, d))+vν(Lo(x, d))−vν(Hi(x, d)). Using
the induction hypothesis, we get that vν(Hi(ri+1, d)) ≥ e · (i + 1) + vν(Hi(y, d)). Finally, using the
hypothesis that y = qi · x+ ri, we immediately check using (2) that y = qi+1 · x+ ri+1.

From the induction, we deduce that qi and ri are convergent sequences of Sν for the vν valuation. In fact,
we have qi+1− qi = Hi(ri,d)

Hi(x,d) so that vν(qi+1− qi) = vν(Hi(ri, d))− vν(Hi(x, d)) ≥ e · i+ vν(Hi(y, d))−
vν(Hi(x, d)) ≥ e · i. The same argument works for ri. Denote by q and r the limits. As for all i ∈ N,
y = qi · x + ri, we have y = q · x + r. Moreover, since Hi(ri, d) ≥ e · i, we have Hi(r, d) = 0, so that
r ∈ K[u] and deg(r) < degW (x).

We prove the uniqueness of (q, r). Let (q′, r′) ∈ Sν × (K[u] ∩ Sν) such that y = q′ · x + r′. Then
(q − q′) · x = r′ − r. We have degW ((q − q′) · x) = degW (r′ − r) < degW (x) which is only possible if
q = q′ and r = r′.

From the proof of Proposition 2.9, we deduce Algorithm with oracle 1 to compute from the knowledge
of x, y, the elements q′, r′ ∈ Sν such that vν(q − q′) ≥ prec and vν(r − r′) ≥ prec. Furthermore, by the
proof of the proposition, the number of iterations of the while loop is bounded by dprec/ee. We deduce that
Algorithm 1 needs one inversion and 3 · dprec/ee multiplications in Sν . The Algorithm with oracle 1 can
be turned into a real algorithm and in Section 4, we will present an even faster algorithm to compute the
Euclidean division.

Algorithm 1: EuclideanDivision
input :x, y ∈ Sν with vν(y) ≥ vν(x), prec ∈ N
output :q, r ∈ Sν such that y = q · x+ r and vν(Hi(r, degW (x))) ≥ prec

1 q ← 0;
2 r ← y;
3 d← degW (x);
4 while vν(Hi(r, d)) < prec do
5 q ← q + Hi(r,d)

Hi(x,d) ;

6 r ← r − Hi(r,d)
Hi(x,d) · x;

7 return q, r;

We state the following convenient definition from [10]:

Definition 2.10. Let x ∈ Sν , we say that x is distinguished if vν(x) = 0.

With this definition, we can state the classical Weierstrass preparation theorem:

Corollary 2.11 (Weierstrass preparation). Let x ∈ Sν be a distinguished element and let d = degW (x).
Then we can write x = q · h, where q ∈ Sν is an invertible element and h ∈ K[u] ∩ Sν is of the form
h = ud

πν·d
+
∑d−1
i=0 biu

i with vK(bi) + νi > 0.

Proof. We notice that dν is a nonnegative integer. Indeed, it is clearly nonnegative, and writing x =
∑
adu

d,
we have vR(ad) + dν = 0 (since x is assumed to be distinguished) and, consequently, dν = −vR(ad) ∈ Z.

By proposition 2.9, there exist q ∈ Sν and r ∈ K[u] ∩ Sν such that deg r < d and

ud

πd·ν
= q · x+ r.

Using Lemma 2.2, we obtain vν(q) = 0 and degW (q) = 0. Then, Corollary 2.8 implies that q is invertible.
To finish the proof it suffices to remark that degW (ud

πd·ν
− r) = d and the result follows from the definition

of degW .

Remark 2.12. The previous proposition is closely related to the Proposition 2.5 since it says that an element
of Oν is in Sν,π if and only if it can be written as product of a polynomial times a function which does not
have any zero in Dν .

The following proposition states that the rings Sν,π and Sν,u are Euclidean rings and provides algorithms
with oracles to compute the division.

7

Proposition 2.13. The ring Sν,π is Euclidean, the ring Sν,u is a discrete valuation ring for the valuation vν
(and as a consequence is also Euclidean). Moreover, E is a field.

Proof. Let x, y ∈ Sν,π . There exist s, t ∈ N such that πsx, πty ∈ Sν and vν(πt · y) ≥ vν(πs · x). Applying
Proposition 2.9, yields q ∈ Sν and r ∈ K[[u]]∩Sν such that deg(r) < degW (x) and y = πs−t ·q ·x+π−t ·r
and we are done.

In order to prove that Sν,u is a discrete valuation ring, we have to show that the set of invertible elements
of Sν,u is the set of elements x ∈ Sν,u such that vν(x) = 0. Write ν = β/α, with α, β relatively prime
numbers. Let m be the ideal defined by {x ∈ Sν,u, vν(x) > 0}, it is clear that Sν,u/m is isomorphic to the
field k((uα)). As Sν,u is complete for the vν valuation, the Hensel lift algorithm gives an algorithm with
oracles to compute the inverse of an element whose valuation is zero. The Algorithm 2 uses a fast Newton
iteration to perform this computation modulo mn at the expense of O(log(n)) multiplications in Sν,u.

Let x be a non zero element of E , by dividing it by a power of π we can suppose that vν(x) = 0 and by
using the algorithm with oracle Algorithm 2, we can invert it.

Algorithm 2: Inverse
input :x ∈ Sν,u such that vν(x) = 0, n ∈ N
output :y ∈ Sν,u such that x · y = 1 mod mn

1 if n = 1 then
2 y ← 1/x mod m;
3 else
4 y ← Inverse(x, dn/2e);
5 y ← y + y(1− xy) mod mn;

Remark 2.14. One can use the usual Euclidean algorithm to compute the Bézout coefficients of x, y ∈ Sν,π .
This algorithm outputs g, k, l,m, n ∈ Sν,π such that g is the greatest common divisor of x and y, k·x+l·y = g,
m · x+ n · y = 0 and k · n− l ·m = 1. It proceeds by using the fact that gcd(x, y) = gcd(y, r) where r
is the rest of the division of x by y and uses O(degW (y)) calls to the Euclidean division Algorithm 1. We
remark, as the rest of the division of two elements of Sν is an element of K[u], that starting from the second
iteration of this algorithm all the divisions to be computed are the usual division between elements of K[u].
Unfortunately, we will see that in §4, that the Euclidean algorithm in general is not stable, so that we might
need extra information, about x and y in order to compute an approximation of their gcd from the knowledge
of an approximation of x and an approximation of y.

3 Modules over Sν

Let d be a positive integer and fix ν ∈ Q. We want to compute with finitely generated torsion free Sν-modules.
Any such module M can be embedded in Sdν for d ∈ N and can be represented by a matrix with coefficients
in Sν whose column vectors are the coordinates of generators of M in the canonical basis of Sdν . Indeed,
we can always embed M is M ⊗Sν Frac(Sν) and select a basis (e1, . . . , ed) of M ⊗Sν Frac(Sν) together
with an element D ∈ Sν such that the image of M in M ⊗Sν Frac(Sν) is contained in the free Sν-module
generated by the 1

D .ei’s.
A first problem arises here: it is not possible to bound the number of generators of the submodules of Sdν

that we have to compute with. For instance, for d = 1 and ν = 0, choose a positive integer k and consider the
sub-S0-module Mk of S0 generated by the family (πk−juj)j=0,...,k. Then Mk can not be generated by less
than k+1 elements. Indeed, let (e0, . . . , en) ∈ Sn0 be a family of generators of Mk, and for j ≥ 0 and define
a filtration on Mk by letting F jMk = Mk ∩ ujS0. We are going to prove by induction on t ∈ {0, . . . , k}
that there exists a matrix Mt ∈ Mn×n(S0) such that, if we set (e′0, . . . , e

′
n) = (e0, . . . , en) · Mt then

(e′0, . . . , e
′
n) is a family of generators of Mk, for j < t, e′j = ujπk−j mod F j+1Mk and (e′j)j≥t is a

family of generators of F tMk. This is obviously true for t = 0. Suppose that it is true for t0 ∈ {0, . . . , k}.
Let (e′0, . . . , e

′
n) = (e0, . . . , en) ·Mt0 . As the morphism (

∑k
j=t0

S0e
′
j)/F

t0+1Mk → πk−tR, defined by
ut0
∑
aiu

i 7→ a0 is an isomorphism, we can suppose if necessary by renumbering the family (e′i) that

8

e′t0 = ut0πk−t0 mod F t0+1Mk. Then, by considering linear combinations of the form e′j − λe′t0+1 for
λ ∈ S0 for j > t0, one can obtain a matrix Mt0+1 satisfying the induction hypothesis for t0 + 1. Finally, we
get n ≥ k.

A second problem comes from the fact that there is no unique way to represent a module by a set
of generators. For computational purpose, in order to check equality between modules for instance, it is
important to have a canonical representation, that is a bijective correspondence between mathematical
objects and data structures. An example of such a canonical representation exists for finitely generated
modules with coefficients in a Euclidean ring ([5]): it is the so-called Hermite Normal Form (HNF). It is
given by a triangular matrix (with some extra conditions) that can be computed from an initial matrix M
by doing operations on column vectors of M . Even if Sν is not Euclidean, we could have hoped that such
representations still exist for free modules. Unfortunately, it turns out that it is not the case. Indeed, in
general, there does not even exist a triangular matrix form for matrices over Sν . For instance, for ν = 0, take:

M =
(
u π
π u

)
∈M2×2(S0)

and assume that M can be written as a product LP where L is lower-triangular and P is invertible. Let α
and β be the diagonal entries of L. Then, α and β belong to the maximal ideal of S0 (since the coefficients
of M all belong to this ideal) and the product αβ is equal to a unit times u2 − π2. Hence, by multiplying β
by an invertible element in S0 if necessary, we can assume that β = u± π since S0 is a unique factorisation
domain. On the other hand, by hypothesis, there exist a, b ∈ S0 such that ua+ πb = 0 and πa+ ub = β.
This equality implies that π divides a and therefore that β = πa+ ub ∈ uS0 + π2S0. This is a contradiction.

In this section, we explain how to get around these problems. First, we recall the notion of quasi-
isomorphism and study the localisation of the modules with respect to π or uα/πβ in order to obtain canonical
representations well suited for the computation in the category of modules up to quasi-isomorphism. Then,
we describe a generalisation of an algorithm of Cohen to compute the maximal module associated to a given
torsion-free Sν-module and obtain a bound on the number of generators of a maximal Sν-module. We
explain how to combine the different approaches in order to obtain a comprehensive algorithmic toolbox for
modules over Sν .

3.1 Quasi-isomorphism and maximal modules
In order to be able to control the number of generators of a Sν-module, we are going to compute up to finite
modules which will be considered as “negligible”.

Definition 3.1. A finitely generated Sν-module is said to be finite if it has finite length. Let M and M ′

be two finitely generated Sν-modules, let f : M → M ′ be a Sν-linear morphism. We say that f is a
quasi-isomorphism if its kernel and its co-kernel are finite modules.

Remark 3.2. Since ker f and coker f are finitely generated (because Sν is a noetherian ring), it is easy to
check that they have finite length if and only if they are canceled, at the same time, by a distinguished element
of Sν and a power of π. We refer the reader to [11] for the definition and the basic properties of the length of
a module. A quasi-isomorphism between torsion-free modules is always injective. Indeed, its kernel, being a
submodule annihilated by a power of uα/πβ and π of a torsion free module, is zero.

Example 3.3. Let M be the submodule of S0 generated by (π2, πu3). The inclusion M ⊂ πS0 yields an
injective morphism whose cokernel is annihilated by π and u3. As a consequence M is quasi-isomorphic to
the free module π.S0 (see Figure 2).

We have a canonical representative in a class of quasi-isomorphism which is given by the following
definition.

Definition 3.4. Let M be a torsion-free finitely generated Sν-module. We say that M ′ together with a
quasi-isomorphism f : M →M ′ is maximal for M if for every N , torsion-free Sν-module, and quasi-
isomorphism f ′ : M → N , there exists a morphism g : N →M ′ which makes the following diagram
commutative:

9

π

uu3

π2

Figure 2: The module M is quasi-isomorphic to π · S0.

M M ′

N

f

f ′ g
(4)

The morphism g in the definition is unique and is in fact a quasi-isomorphism. Indeed, by the commuta-
tivity of the diagram, the image of g contains the image of f . Thus, the cokernel of g is finite. Moreover,
since f is injective, g is injective on Imf ′, which is cofinite in N . It follows that ker g is finite and g is a
quasi-isomorphism. Moreover, for every x ∈ N , there exists a positive integer n such that πnx is in the
image of f ′. The image of πnx by g is then uniquely defined by the commutativity of the diagram (4). The
uniqueness of g follows.

A maximal module for M , if it exists, is unique up to isomorphism. Indeed, if M ′ and M ′′ are two
maximal modules for M then there exist two quasi-isomorphisms g1 : M ′ →M ′′ and g2 : M ′′ →M ′

and the uniqueness of g in the diagram (4) implies that g1 ◦ g2 = IdM ′′ and g2 ◦ g1 = IdM ′ . If it exists,
we denote the maximal module of M by Max(M). We can rephrase the above by saying that if M ′ is the
maximal module for M then there is a quasi-isomorphism from M into M ′ and any quasi-isomorphism
M ′ →M ′′ is an isomorphism. In fact, this condition characterises maximal modules:

Lemma 3.5. Let M be a finitely generated torsion free Sν-module. Let M ′ be a Sν-module such that there
is a quasi-isomorphism f : M →M ′. The following assertions are equivalent:

1. M ′ is maximal;

2. any quasi-isomorphism M ′ →M ′′ is an isomorphism.

Proof. We only have to prove that the second property implies that M ′ verifies the universal property
of maximal modules. For this let N be a finite type Sν-module such that there is a quasi-isomorphism
f ′ : M → N . Let ∆ = f ⊕ f ′ : M →M ′ ⊕N be the diagonal embedding and let M0 = M ′⊕N

∆(M) . It is
clear that M0 is a finitely generated torsion free Sν-module.

There are canonical injections iM ′ : M ′ →M0 and iN : N →M0. We claim that iM ′ and iN are
quasi-isomorphisms. To see that, it suffices to show that the induced injection iM = (iM ′ , iN) ◦∆ : M →
M0 has a finite cokernel. But

coker iM =
coker f ⊕ coker f ′

∆(M) ∩ (coker f ⊕ coker f ′)

which has finite length being a quotient of coker f ⊕ coker f ′.
Next, by hypothesis iM ′ is in fact an isomorphism so that we have a quasi-isomorphism g = i−1

M ′ ◦ iN
which sits in the following diagram:

M ′ M′⊕N
∆(M)

M N

iN

iM′

f

f ′
g (5)

It is clear that the lower left triangle of the diagram is commutative and we are done.

10

A theorem of Iwasawa [8] asserts that if M is a finitely generated module over S0, then Max(M) exists
and is free of finite rank over S0. The main object of §3.3 is to extend this result to modules over Sν and
to study Max(M): we shall provide a constructive proof of the existence of Max(M) for any finitely
generated torsion-free module M over Sν . We will see however that this Max(M) is not free in general;
nevertheless we shall provide an upper bound on the number of generators of Max(M).

Lemma 3.6. Let f : M →M ′ be a quasi-isomorphism between torsion-free finitely generated Sν-modules.
Suppose that M ′ is free then M ′ is maximal.

Proof. We use the criterion of Lemma 3.5. Let N be a finitely generated Sν-module such that there is a
quasi-isomorphism f ′ : M ′ → N and we want to show that f ′ is an isomorphism. As M ′ is torsion-free,
we know that f ′ is injective. Now, suppose that there exists a non zero element in the cokernel of f ′. It means
that there exists a non zero x ∈ N which is not in the image of f ′. As f ′ is a quasi-isomorphism there exists
n ∈ N and λ ∈ Sν a distinguished element (recall definition 2.10) with πn · x ∈ Imf ′ and λ · x ∈ Imf ′. If
we set z1 = f ′

−1
(πn · x) and z2 = f ′

−1
(λ · x), we have the relation

λz1 − πnz2 = 0, (6)

in M ′. Let (ei)i∈I be a basis of M ′ and write zi =
∑
µjiej for i = 1, 2. Putting this in (6), we

obtain that λµj1 = πnµj2 and thus πn|µj1 for j ∈ I since λ is a distinguished element of Sν . But then
f ′(
∑
µj1/π

nej) = 1/πn.f(z1) = x contradicting the fact that x is not in the image of f ′.

Remark 3.7. One can rephrase Iwasawa’s result in a more abstract way using the category language.
Let ModSν be the category of finitely generated Sν-modules, that are torsion-free and let Modtf

Sν
(resp.

FreeSν) denote its full subcategory gathering all torsion-free modules (resp. all free modules). We also
introduce the category Modqis

Sν
, which is by definition the category of finitely generated Sν-modules up to

quasi-isomorphism, i.e. Modqis
Sν

is obtained from ModSν by inverting formally quasi-isomorphisms. We
have a natural functor ModSν → Modqis

Sν
, whose restriction to Modtf

Sν
defines a pylonet in the sense of [2],

§1. It follows from the results of loc. cit (see Corollary 1.2.2) that the Max construction is a functor: to
a morphism f : M →M ′ in Modtf

Sν
, one can attach a morphism Max(f) : Max(M)→ Max(M ′). We

recall briefly the construction of Max(f). Let M ′′ be the pushout M ′ ⊕M Max(M), that is the direct sum
M ′ ⊕Max(M) divided by M (embedded diagonally). We have a natural morphism M ′ →M ′′ which
turns out to be a quasi-isomorphism. Hence, there exists a map M ′′ → Max(M ′) and we finally define
Max(M) to be the compositum Max(M)→M ′′ → Max(M ′) where the first map comes from the natural
embedding Max(M)→M ′ ⊕Max(M).

If M is a submodule of Sdν (for some positive integer d), the following proposition gives a very explicit
description of Max(M).

Proposition 3.8. Write ν = β/α, with α, β relatively prime integers. Let d be a positive integer and M be
a submodule of Sdν . Then Max(M) exists and

Max(M) =
{
x ∈ Sdν | ∃n ∈ N, πnx ∈M and (uα/πβ)n · x ∈M

}
.

Furthermore the morphism iM : M → Max(M) is the natural embedding.

Proof. Let Mmax be the set of x ∈ Sdν such that there exists some n such that πnx and (uα/πβ)n · x belong
to M . We want to show that Max(M) exists and is equal to Mmax. It is clear that M ⊂ Mmax and
that the quotient Mmax/M is canceled by a power of π and a power of uα/πβ which is a distinguished
element. Hence it has finite length, and the inclusion M →Mmax is a quasi-isomorphism. Next, suppose
that we are given a Sν-module M0 together with a quasi-isomorphism g : Mmax →M0. Then there is a
quasi-isomorphism iM : M →M0 that sits in the following diagram:

M Mmax Sdν

M0

iM
g (7)

11

Note that g is injective as it is a quasi-isomorphism. Moreover, we know that the cokernel of ιM is annihilated
by a power of uα/πβ and a power of π, which implies that g is surjective. Thus, g is an isomorphism and by
Lemma 3.5, Max(M) exists and Max(M) = Mmax as claimed. The second part of the proposition is clear
from the above diagram.

It follows directly from Proposition 3.8 that the intersection of two maximal modules is maximal. The
same is however not true for the sum: in general the Sν-module M + M ′ is not maximal even if M and M ′

are (take for example M = uS0 and M ′ = πS0). This leads us to define the new operation +max (which is
much more pleasant than the usual sum of modules) on the set of maximal submodules of Sdν as follows:

M +max M ′ = Max(M + M ′).

We also deduce from Proposition 3.8 that a S0-module M is free if and only if M = Mmax. This gives
a nice criterion to check if a S0-module is free. It is not true in general for a sub-Sν-module M of Sdν that
Max(M) is free (this will become apparent when we give the general shape of a maximal Sν-module in
§3.3). However, by Lemma 2.6, every Sν becomes isomorphic to S0 over a finite extension R′ = R[$]
(where $ depends on ν). Set S′ν = Sν ⊗R R′. For all submodule M of Sdν , we obtain that Max(M ⊗ S′ν)
is a free submodule of (S′ν)d. Denote by MaxdSν the set of maximal sub-Sν-modules of Sdν and by FreedS′ν
the set of free sub-S′ν-module of (S′ν)d.

Proposition 3.9. The natural map

Φ : MaxdSν −→ FreedS′ν
M 7→ Max(M ⊗Sν S′ν)

is injective. A left inverse of Φ is given by M ′ 7→M ′ ∩ Sdν . Moreover, the image of Φ contains the subset of
FreedS′ν of free modules which admit a basis (e′i)i∈I where e′i ∈ (S′ν)d and e′i = $αiei with ei ∈ (Sν)d and
αi ∈ N.

Remark 3.10. Actually, we will prove later (see Lemma 3.18) that the image of Φ is exactly the subset of
FreedS′ν verifying the condition of Proposition 3.9.

Proof. In order to prove that Φ is injective, it is enough to prove that Φ has a left inverse. For this, let
M ∈ MaxdSν and let M ′ = Max(M ⊗Sν S′ν) ∈ FreedS′ν . Then it suffices to prove that M2 = M ′ ∩ Sdν is a
maximal sub-Sν-module of Sdν . Indeed, as it is clear that M2 contains M and that the injection M →M2

is a quasi-isomorphism (since the injection M ⊗Sν S′ν →M ′ is a quasi-isomorphism), we remark that by
the maximality of M it would imply that M = M2.

For this let x ∈ Sdν and suppose that there exists n ∈ N such that πn · x ∈M2 and (uα/πβ)n · x ∈M2.
As M ′ is maximal and M2 ⊂M ′, by Proposition 3.8, it means that x ∈M ′. Hence x ∈M2. Using again
Proposition 3.8, we deduce that M2 is maximal.

Let us now prove the last claim of the proposition. Let M ′ ∈ FreedS′ν which admits a basis (e′i)i∈I where
e′i ∈ (S′ν)d and e′i = $αiei with ei ∈ (Sν)d and αi ∈ N. We have to find a sub-Sν-module M of Sdν
such that M ⊗Sν S′ν is quasi-isomorphic to M ′. As M ′ =

⊕
e′iS
′
ν , it is enough to treat the case d = 1.

Let 0 ≤ α1 be an integer and let M ′ be the sub-S′ν-module of S′ν generated by $α1 . Let λ be a positive
integer such that α1

α + λβα = γ ∈ Z. Such a λ exists because α and β are relatively prime. Let M be the
sub-Sν-module of Sν generated by π and uλ

πγ . Let µ = $−α1 u
λ

πγ , it is clear that vν(µ) = 0 so that µ is a
distinguished element of S′ν . Thus, we have $α1 .µ ∈M ⊗Sν S′ν and $α1 ·$α−α1 ∈M ⊗Sν S′ν therefore
M ⊗Sν S′ν is quasi-isomorphic to M ′.

3.2 An approach based on localisation
We have seen that in a class of quasi-isomorphism of a finite type torsion-free Sν-module M there exists a
distinguished element Max(M). In this section, we use this fact in order to represent the quasi-isomorphism
class of M by localizing with respect to uα/πβ and π. We thus obtain a representation of finite type
torsion-free Sν-modules amenable to computations.

12

3.2.1 A useful bijection

We keep our fixed positive integer d. We recall that

E =
{∑
i∈Z

aiu
i, ai ∈ K, vK(ai) + νi bounded below and lim

i→−∞
vK(ai) + νi = +∞

}
is a field containing Sν,π and Sν,u. If M is a sub-Sν-module of E d, we shall denote by Mπ (resp. Mu)
the sub-Sν,π-module (resp. the sub-Sν,u-module) of E d generated by M . For example, if M is free over
Sν with basis (e1, . . . , eh), then Mπ (resp. Mu) is also free over Sν,π (resp. Sν,u) with the same basis. As
M is torsion free, and as Sν,u and Sν,π are principal ideal domains, Mπ and Mu are free. We denote by
MaxdSν the set of maximal sub-Sν-modules of Sdν and for A = Sν , Sν,π or Sν,u, let FreedA denote the set of
sub-A-modules of Ad, which are free over A. Recall that MaxdS0

= FreedS0
since we have seen in Section 3.1

that a maximal module over S0 is free. Thus, the following lemma provides a useful description of maximal
S0-modules.

Lemma 3.11. Let S = S0. The natural map

Ψ′ : FreedS −→ FreedSπ × FreedSu
M 7→ (Mπ,Mu).

is injective. If a pair (A,B) is in the image of Ψ′, its unique preimage under Ψ′ is given by A ∩B.

Proof. From the descriptions of elements of S, Sπ , Su and E in terms of series, it follows that S = Sπ ∩ Su.
If M ∈ FreedS , it is isomorphic to Sh for h ≤ d and, by applying the preceding remark component by
component, we get M = Mπ ∩Mu. This implies the injectivity of Ψ′ and the given formula for its
left-inverse.

Using Lemma 3.11, we can prove:

Theorem 3.12. The natural map

Ψ : MaxdSν −→ FreedSν,π × FreedSν,u
M 7→ (Mπ,Mu).

is injective and its image consists of pairs (A,B) such that A and B generate the same E -vector space in
E d. If a pair (A,B) satisfies this condition, its unique preimage under Ψ is given by A ∩B.

Furthermore, we have the following equalities:

Ψ(M ∩M ′) = (Mπ ∩M ′
π,Mu ∩M ′

u)

Ψ(M +max M ′) = (Mπ + M ′
π,Mu + M ′

u)

for all M ,M ′ ∈ MaxdSν .

Proof. Let $ in an algebraic closure of K, be such that $α = π. Let R′ = R[$] and S′ν = Sν ⊗R R′. We
know by Lemma 2.6 that S′ν is isomorphic to R′[[u]]. Then, the map Ψ sits in the following commutative
diagram:

MaxdSν FreedSν,π × FreedSν,u

FreeS′ν
Freed

S′ν,π
× Freed

S′ν,u

Ψ

Max(.⊗Sν S
′
ν) .⊗Sν S

′
ν

Ψ′

(8)

By Proposition 3.9, the map M 7→ Max(M ⊗Sν S′ν) is injective and Ψ′ is injective by Lemma 3.11 and the
fact that S′ν is isomorphic to S0 by Lemma 2.6. Thus, we deduce that Ψ is injective by the commutativity of
(8).

We want to prove now that if the pair (A,B) belongs to FreedSν,π × FreedSν,u and satisfies the condition
of the theorem, then M = A ∩ B is maximal over Sν and Ψ(M) = (A,B). We claim that there exists
a basis (e1, . . . , eh) of A (over Sν,π) such that M is included inside the Sν-module generated by the ei’s.

13

Indeed, let us first consider (e1, . . . , eh) a basis of A and denote by M ′ the Sν-module generated by the ei’s.
Now, remark that, by our assumption on the pair (A,B), every element x ∈ B can be written as a E -linear
combination of the ei’s. Taking for n the smallest valuation of the coefficients appearing in this expression, we
get x ∈ π−nM ′

u. Moreover, since B is finitely generated over Sν,u, we can choose a uniform n. Replacing
ei by π−ne′i for all i, we then get A = M ′

π and B ⊂M ′
u. Thus M = A ∩B ⊂M ′

π ∩M ′
u = M ′.

Since Sν is a noetherian ring (recall that ν is rational), we find that M is finitely generated over Sν .
Furthermore, one can compute Max(M) using Proposition 3.8: if x is an element of Sdν for which there
exists n such that πnx and (uα/πβ)nx belong to M , then x ∈ A (since π is invertible in Sν,π) and x ∈ B
(since uα/πβ is invertible in Sν,u). Thus x ∈M and Max(M) = M , i.e. M is maximal.

Let us prove now that Ψ(M) = (A,B). By the same argument as before, we find that there exists a
positive integer n such that πnM ′ ⊂M ⊂M ′, from which it follows that Mπ = M ′

π = A. The method
to prove that Mu = B is analogous: we first show that there exists a basis (e1, . . . , eh) of B over Sν,u and
some elements s1, . . . , sh ∈ Sν such that:

• all si’s are invertible in Sν,u, and

• we have
∑
sieiSν ⊂M ⊂

∑
eiSν .

From these conditions, it follows that Mu is generated by the ei’s over Su and, consequently, that Mu = B.
It remains to prove the claimed formulas concerning intersections and sums. For the intersection, we

note that if M ∩M ′ = (Mπ ∩Mu)∩ (M ′
π ∩M ′

u) = (Mπ ∩M ′
π)∩ (Mu ∩M ′

u). Hence, we just need to
justify that Mπ ∩M ′

π and Mu ∩M ′
u are free over Sν,π and Sν,u respectively, and that they generate the

same E -vector space. The fact that they are free follows from the classification theorem of finitely generated
modules over principal rings, whereas the second property is a consequence of the flatness of E over Sν,π
and Sν,u.

For the sum, we have to justify that (M +max M ′)π = Mπ + M ′
π and (M +max M ′)u = Mu + M ′

u.
It is clear that (M + M ′)π = Mπ + M ′

π and (M + M ′)u = Mu + M ′
u. Hence, it is enough to prove

that, given a finitely generated Sν-module N ∈ Sdν , we have Max(N)π = Nπ and Max(N)u = Nu. It is
obvious by Proposition 3.8.

Reinterpretation in the language of categories We introduce the “fiber product” category FreeSν,π⊗FreeE

FreeSν,u whose objects are triples (A,B, f) where A ∈ FreeSν,π , B ∈ FreeSν,u and f : E ⊗Sν,π A →
E ⊗Sν,u B is an E -linear isomorphism. We have natural functors in both directions between MaxSν and
FreeSν,π ⊗FreeE

FreeSν,u : to an object M of MaxdSν , we associate the triple (Sν,π ⊗S M , Sν,u ⊗S M , f)
where f is the canonical isomorphism, and conversely, to a triple (Mπ,Mu, f), we associate the fiber
product of the following diagram (which turns out to be free of finite rank over Sν):

Mu

Mπ E ⊗Sν,π Mπ E ⊗Sν,u Mu

(9)

Theorem 3.12 then says that these two functors are equivalences of categories inverse one to the other.
Actually, this result can be generalized to non-free modules as follows.

Proposition 3.13. The functor ModSν → ModSν,π ⊗ModE
ModSν,u , M 7→ (Sν,π ⊗S M , Sν,u ⊗S M)

factors through Modqis
Sν

and the resulting functor

Modqis
Sν
→ ModSν,π ⊗ModE

ModSν,u

is an equivalence of categories.

Proof. Left to the reader.

14

3.2.2 Normal forms for modules over Sν,π and Sν,u

As Sν,π and Sν,u are Euclidean rings there exists a good notion of rank as well as Hermite Normal Forms
for matrix over these rings. In this section, we state propositions giving the shape of Hermite Normal Form
together with algorithms with oracles to compute them. We recall that an algorithm with oracle is a Turing
machine which has access to oracles to store elements of the base ring and perform all usual ring operations:
test equality, computation of the valuation, addition, opposite, multiplication and Euclidean division. We will
measure the time complexity of the algorithms by counting the number of calls to the oracles. Classically,
we then derive some consequences which will be used in this paper. For the complexity analysis, we denote
by θ a real number such that product of two d × d matrices with coefficient in Sν can be done in O(dθ)
ring operations. With a naive algorithm, we can take θ = 3 and with the current best known algorithm of
Coppersmith and Winograd [6], θ = 2.376.

Proposition 3.14. Let M = (mij) ∈Md×d′(Sν,π), let r be the rank of M . Then, there exists an invertible
matrix P such that M.P = T with

T =

t1 0 0
?

tr
?

? ? 0 0



 , (10)

where

• for i = 1, . . . , r, ti = udj +
∑dj−1
i=0 bju

j with vK(bj) + ν(j − dj) > 0 ;

• for i = 1, . . . , r, Tl(i),i = ti and l is a strictly increasing function from {1, . . . r} to {1, . . . , d} such
that l(1) = 1.

The matrix T is said to be an echelon form of M . Let dmax be the maximal Weierstrass degree of the entries
of M , an echelon form of M can be computed in O(d · d′ · dmax + max(dθ · d′, d′θ · d) log(2d′/d)) ring
operations

If the echelon form moreover satisfies:

• all entries on the l(i)th-row are elements of K[u] of degree < di.

then T is unique with these properties and is called the Hermite Normal Form. The Hermite Normal form of
M can be computed from an echelon form of M at the expense of an additional O(r2) ring operations.

Proposition 3.15. Let M ∈Md×d′(Sν,u), let r be the rank of M . Then there exists an invertible matrix P
such that M.P = T and

T =

πd1 0 0
?

πdr

?

? ? 0 0



 , (11)

where

• for i = 1, . . . , r, Tl(i),i = πdi where l is a strictly increasing function from {1, . . . r} to {1, . . . , d}
such that l(1) = 1.

The matrix T is said to be an echelon form of M . An echelon form of M can be computed in O(d.d′) +
max(dθ · d′, d′θ · d) log(2d′/d)) ring operations.

If the echelon form moreover satisfies

• the entries on the l(i)th-row are representatives modulo πdi .

15

then T is unique with these properties and the called the Hermite Normal Form of M . The Hermite Normal
form of M can be computed at the expense of an additional O(r2) ring operations.

Proof. The proof of the previous propositions as well as algorithms to compute the echelon form of M with
the given complexity is an immediate consequence of [7, Theoreme 3.1] together with the fact that Sν,π and
Sν,u are Euclidean rings. Moreover for all x, y ∈ Sν,π one can compute the gcd(x, y) in O(degW (y)) ring
operations. From its triangle form, one can then compute the Hermite Form of M with coefficients in Sν,π at
the expense of O(d · r · dmax) ring operations.

Remark 3.16. We deduce from this proposition that if M ∈ Md×d′(Sν,π) is a full rank matrix, there
exists P such that M · P is a matrix of the form (10) with all coefficients in K[u]. In the same way, if
M ∈Md×d′(Sν,u) is a full rank matrix then there exists an invertible matrix P such that M ·P has the form
(11) where all entries are representatives modulo πmax{d1,...,dr}.

Let Sν,loc be Sν,u or Sν,π . We derive some consequences of the existence of triangle forms and Hermite
Normal Form for the representation and computation with finitely generated sub-Sν,loc-modules of Sdν,loc.
We can represent a finitely generated sub-Sν,loc-module M of Sdν,loc by a d×dmatrixM giving d generators
of M in the canonical basis of Sdν,loc since every sub-module of Sdν,loc has dimension at most d. Keeping the
same notations, one can compute the module of syzygies of M . For this it is enough to compute R, a matrix
of maximal rank such that M ·R = 0 which can easily be done by computing an echelon form of M . Given
a vector V ∈ Sdν,loc provided by its coordinates vector V in the canonical basis, one can check efficiently if
V ∈M by finding a vector X such that M.X = V which can also be done with the echelon form of M .

Let M and M ′ representing the modules M and M ′, one can compute a matrix representing the module
M + M ′ by computing the echelon form of the matrix (MM ′) and taking the d first columns. One can

compute the intersection of M and M ′ in the same way by findingR andR′ such that (MM ′)

(
R
R′

)
= 0.

3.2.3 Consequences for algorithms

In view of the results of §3.2.1 and §3.2.2, we shall represent a maximal Sν-module M living in some Sdν as
a pair (A,B) where A (resp. B) is the matrix with coefficients in Sν,π (resp. in Sν,u) in Hermite Normal
Form representing Sν,π ⊗Sν M (resp. Sν,u ⊗Sν M).

The second part of Theorem 3.12 tells us that it is very easy to compute intersections and “maximal-sums”
of Sν-modules with this representation. Indeed, we just have to perform the same operations on each
component, and we have already explained in §3.2.2 how to do it efficiently. As the Hermite Normal Form
is unique, it is also very easy to check the equality of two maximal sub-Sν-modules of Sdν . Using only the
echelon form of the matrices A and B it is also possible to test membership.

Even better, this representation is also very convenient for many other operations we would like to
perform on Sν-modules. Below we detail three of them. First, let M ⊂ Sdν be a maximal Sν-module. By
definition, the saturation of M in Sdν is the module

Msat =
{
x ∈ Sdν | ∃n ∈ N, πnx ∈M

}
.

It follows from Proposition 3.8 that Msat is maximal over Sν , and we would like to compute it. For that,
working with our representation, we need to compute (Msat)π and (Msat)u. But, we have (Msat)π = Mπ

and
(Msat)u =

{
x ∈ Sdν,u | ∃n ∈ N, πnx ∈Mu

}
.

The computation of (Msat)π is then for free, whereas the computation of (Msat)u can be achieved using
Smith forms, which is here quite efficient due to the fact that Sν,u is a discrete valuation ring. An important
special case is when M has rank d over Sν . Then (Msat)u is always equal to Sdν,u. Thus, in this case, if M
is represented by the pair of matrices (A,B), then Msat is just represented by the pair (A, I) where I is the
identity matrix.

More generally, one can consider the following situation. Let M ∈ MaxdSν and M ′ ∈ MaxdSν,π . We
want to compute M ∩M ′, which is a maximal module over Sν . As before, we need to determine (M ∩M ′)π
and (M ∩M ′)u and one can check that:

(M ∩M ′)π = Mπ ∩M ′
π

(M ∩M ′)u = Mu ∩M ′
u.

16

Note that, here, M ′
u is vector space over E . As before, the intersection Mu ∩M ′

u can be computed using
Smith forms and, if M ′ has rank d over Sν,π , we just have M ′

u = E d and so (M ∩M ′)u = Mu.
The third example we would like to present is obtained from the previous one by inverting the roles of

Sν,π and Sν,u: we take M ∈ FreedSν and M ′ ∈ FreedSν,u and we want to compute M ∩M ′. We then have
(M ∩M ′)π = Mπ ∩M ′

π and (M ∩M ′)u = Mu ∩M ′. Here a new difficulty occurs: M ′
π is a E -vector

space and so, in previous formulas, it appears an intersection between a free module over Sν,π and a E -vector
space. Again, one can compute this Smith form. However, it is not so efficient as before since Sν,π is just a
Euclidean ring, and not a discrete valuation ring. Anyway, it remains true that, in the case where M ′ has full
rank, then M ′

π = E d. So, in this case, (M ∩M ′)π is just equal to Mπ and the computation of (M ∩M ′)π
becomes very easy.

3.2.4 Further localisations

We remark that the matrix appearing in Proposition 3.15 has coefficients in Sν,u which is a discrete valuation
ring while the matrix of Proposition 3.14 has coefficients in Sν,π which is only Euclidean. For certain
applications, it can be more convenient to compute with elements in a discrete valuation ring; for instance,
the computation of the Smith Normal Form can be made faster in a discrete valuation ring.

It is actually possible to work only over discrete valuation rings by localising further. More precisely,
for any element a ∈ K̄ (where K̄ is an algebraic closure K̄ of K) with valuation > ν, we have a canonical
injective morphism Sν,π → K̄[[u− a]] which maps a series to its Taylor expansion at a. Hence, if Mp is a
sub-Sν,π-module of Sdν,π , one can consider Mp,a = Mp ⊗Sν,π K̄[[u− a]] ⊂ K̄[[u− a]]d for all element a
as before. Moreover, if Mp has maximal rank, all Mp,a’s are trivial (i.e. equal to K̄[[u− a]]d) except a finite
number of them (which are those for which a is a root of one of the ti’s of Proposition 3.14). In addition, the
map:

Ξ : ModdSν,π −→
∏
a∈R ModdK̄[[u−a]]

Mp 7→ (Mp,a)a

is injective and commutes with sums and intersections. Hence, one can substitute to Mp, the (finite) family
consisting of all non trivial Mp,a’s. This way, we just have to work with modules defined over discrete
valuation rings.

Note finally that there exist algorithms to compute one representation from the other. Indeed, remark first
that computing the image of Mp by Ξ is trivial if Mp is represented by a matrix of generators: it is enough
to map all coefficients of this matrix to all K̄[[u− a]]’s. Going in the other direction is more subtle but is
explained in [3], §2.3.

3.3 A generalisation of Iwasawa’s theorem and applications
The aim of this subsection is to present an algorithm with oracle to compute the maximal module associated
to a Sν-module. Moreover, as a byproduct of our study, we will derive an upper bound on the number of
generators of a maximal sub-Sν-module of Snν .

The idea of our construction (inspired by an algorithm of Cohen) is to consider the matrix of relations of
a module and to perform elementary operations preserving quasi-isomorphisms to put this matrix in a certain
form. In order to do so, we first need a way to compute the matrix of relations of a module or at least a certain
approximation of it. Let M be a torsion-free finitely generated Sν-module and let (e1, . . . , ek) ∈M k be
a family of generators of M . We denote by R the module of relations of (e1, . . . , ek) that is the set of
(λ1, . . . , λk) ∈ Skν such that

∑k
i=1 λiei = 0. Let r be the rank of M ⊗Sν Sν,π . From the exact sequence

0→ R ⊗Sν Sν,π → Skν,π →M ⊗Sν Sν,π → 0, (12)

deduced from the flatness of Sν,π over Sν , we obtain that R ⊗Sν Sν,π is a free module over Sν,π of rank
` = k− r. Let (f1, . . . , f`) be a basis of R⊗Sν Sν,π and set R′ = ⊕`i=1(Sν,π ·fi∩Skν). Apparently, R′ is a
sub-Sν-module of R which is free of rank `. Indeed, if ni denotes the smallest integer such that πni ·fi ∈ Skν ,
then the family (πni · fi) is a basis of R′. Moreover, we have the inclusion R′ ⊃ πNR for a certain N
since R′ ⊗Sν Sν,π = R ⊗Sν Sν,π . Now, from the knowledge of the matrix M ∈Md×k(Sν) whose column
vectors are the coordinates of ei in the canonical basis of Sdν , we can compute a matrix R′ ∈Mk×`(Sν) of
generators of R′ using the algorithms of §3.2.2. We have by definition M.R′ = 0. Of course in the above
construction, we can replace, mutatis mutandis the localisation with respect to π by the localisation with
respect to uα/πβ .

17

3.3.1 An algorithm to compute the maximal module

We start with a couple of matrices M = (mi,j) ∈Md×k(Sν) and R = (ri,j) ∈Mk×`(Sν) representing the
generators of M embedded in Sdν and a sub-module of R containing πNR for a certain N . We are going to
prove by induction that we can put R in triangular form by using elementary operations on the rows of R
and the columns of M which preserve M up to quasi-isomorphism. We suppose that for a positive integer i0
there is a strictly increasing function t : [1, i0]→ N∗ such that

• for all i = 1, . . . , i0 − 1, for j > i, and t(i) ≤ m < t(i+ 1), rj,m = 0 ;

• for all i = 1, . . . , i0, for all j > t(i), ri,j = 0.

The matrix R has the following shape:

R =

r1,t(1)

ri0,t(i0)

? ?

? ?



 , (13)

where the blanks represent 0 entries.
We set t(i0 +1) to be the first integer t such that t(i0) < t ≤ ` and there exists a j ≥ i0 +1 with rj,t 6= 0.

If no such integer exists then we have finished. In order to describe operations on rows (resp. columns) of a
matrix T of dimension k×` it is convenient to denote the row vectors of T (resp. the column vectors of T) by
Li(T) for i = 1, . . . , k (resp. Ci(T) for i = 1, . . . , `). We say that the condition Cond(i) on R is satisfied if
there exist two different indices j0, j1 ∈ {1, . . . , k} such that rj0,t(i) · rj1,t(i) 6= 0, vν(rj0,t(i)) ≤ vν(rj1,t(i))
and degW (rj0,t(i)) ≤ degW (rj1,t(i)). We apply the algorithm ColumnReduction (see Algorithm 3) on
R,M, i0 + 1, t(i0 + 1).

Algorithm 3: ColumnReduction (preliminary version)
input :

• M ∈Md×k(Sν)

• R ∈Mk×`(Sν) in the form (13),

• i, t(i) ∈ N

output :R,M such that M ·R = 0 and R does not satisfy condition Cond(t(i))

1 while Cond(t(i)) is satisfied do
2 Pick up j0, j1 ∈ {1, . . . , k} such that rj0,t(i) · rj1,t(i) 6= 0, vν(rj0,t(i)) ≤ vν(rj1,t(i0+1)) and

degW (rj0,t(i)) ≤ degW (rj1,t(i));
3 (q, r)← EuclideanDivision(rj0,t(i), rj1,t(i));
4 Cj0(M)← Cj0(M) + qCj1(M);
5 Lj1(R)← Lj1(R)− qLj0(R);

6 return M,R;

It is clear that the matrix M returned by Algorithm 3 represents the same module M since it modifies
M by performing elementary operations on the columns. Moreover, the algorithm preserves the relation
M ·R = 0. The effect of the operation of Step 5 of Algorithm 3 on the entry rj1,t(i) of R is either

• replacing it by 0, or

• decreasing strictly its Weierstrass degree and its Gauss valuation.

Hence, it is easily seen that after a finite number of loops the conditions Cond(t(i0 + 1)) will no longer
be satisfied on R. It may happen that there is only one nonzero entry on the t(i0 + 1)th column of R and
in this case, we are basically done: by permuting the rows of R we can suppose that the non zero entry is

18

ri0+1,t(i0+1). Next, we remark that the vector v of M whose coordinates in the canonical basis of Sdν is
given by the (i0 + 1)th column of M verifies ri0+1,t(i0+1) · v = 0 which means that v = 0 and we can set
ri0+1,j = 0 for j > t(i0 + 1).

If there are several nonzero entries on the t(i0 + 1)th column of R and the condition Cond(t(i0 + 1))
is not satisfied on R, we let j0 be such that vν(rj0,t(i0+1)) = min1≤j≤k{vν(rj,t(i0+1))}. Note that we
have vν(rj0,t(i0+1)) < vν(rj,t(i0+1)) for j 6= j0 because on the contrary, the condition Cond(t(i0 + 1))

would be satisfied on R. By multiplying the t(i0 + 1)th column of R by an element of Sν,π with valuation
−vν(rj0,t(i0+1)), we can moreover suppose that vν(rj0,t(i0+1)) = 0. Let δ = minj 6=j0(vν(rj,t(i0+1))).

The case ν = 0 First, we suppose that ν = 0 from which we deduce that δ is a positive integer. Denote
by e1, . . . , ek the generators of M represented by the column vectors of the matrix M . Denote by M1 the
module generated by (e′j)j=1...k with e′j = ej for j 6= j0 and e′j0 = 1

π ej0 . The identity of Sdν induces an
inclusion f : M →M1. It is clear that the cokernel of f is annihilated by π. Moreover, we have

rj0,t(i0+1).e
′
j0 =

∑
j 6=j0

rj,t(i0+1)

π
ej . (14)

As the right hand side of (14) is in M since rj,t(i0+1)

π ∈ Sν , the cokernel of f is also annihilated by rj0,t(i0+1)

which is a distinguished element of Sν . We conclude that f is a quasi-isomorphism.
We denote by O1(j) the operation on the couple of matrices (M,R) which consists in multiplying by

1
π the (j)th column of M and multiplying by π the (j)th row of R. Keeping the hypothesis and notations
of the preceding paragraph, it is clear that if (M,R) represents the module M and its relations, then the
matrices resulting from the operation of O1(j0) represents the module M1 which is quasi-isomorphic to M .
By repeating operations of the form O1(j) a finite number of time, we can suppose that δ = 0. But it means
that the condition Cond(t(i0 + 1)) is not satisfied on R and we can call again Algorithm 3.

We thus obtain the algorithm ColumnReduction (final version), Algorithm 4, which takes a relation
matrix of the form (13) for i0 and returns a relation matrix of the same form for i0 + 1. The algorithm
MatrixReduction, Algorithm 5, uses ColumnReduction in order to compute a new set of generators of a
module quasi-isomorphic to M the relation matrix of which has a triangular form.

Algorithm 4: ColumnReduction (final version) for ν = 0

input :

• M ∈Md×k(Sν),

• R ∈Mk×`(Sν) in the form (13),

• i, t(i) ∈ N the position of the last non zero “diagonal” entry of R.

output :R,M such that M.R = 0 and R is triangular up to the i+ 1 row.

1 while ∃j0, j1 such that j0 6= j1 and rj0,t(i) · rj1,t(i) 6= 0 do
2 while Cond(t(i)) is satisfied do
3 Pick up j0, j1 ∈ {1, . . . , k} such that rj0,t(i) · rj1,t(i) 6= 0, vν(rj0,t(i)) ≤ vν(rj1,t(i)) and

degW (rj0,t(i)) ≤ degW (rj1,t(i));
4 (q, r)← EuclideanDivision(rj0,t(i), rj1,t(i));
5 Cj0(M)← Cj0(M) + qCj1(M);
6 Lj1(R)← Lj1(R)− qLj0(R);

7 Let j0 be such that degW (rj0,t(i)) = max1≤j≤k{degW (rj,t(i))};
8 δ ← minj 6=j0(vν(rj,t(i)))− vν(rj0,t(i));
9 Cj0(M)← 1

πδ
Cj0(M);

10 Lj0(R)← πδLj0(R);

11 return M,R;

The general case We reduce the general case to the case ν = 0, by using Lemma 2.6. Let$ in an algebraic
closure of K be such that $α = π. Let R′ = R[$], S′ν = Sν ⊗R R′ and M ′ = M ⊗Sν S′ν . The valuation

19

Algorithm 5: MatrixReduction for the case ν = 0

input :

• R ∈Mk×`(Sν),

• M ∈Md×k(Sν) such that M ·R = 0.

output : R ∈Mk×`(S
′
ν), M ∈Md×k(S′ν) such that M ·R = 0 and R is a triangular matrix.

1 i0 ← 0;
2 t(i0)← 1;
3 while i ≤ k do
4 t(i0)← min{t|t > t(i0) and∃j > 0,with rj,t 6= 0 };
5 i0 ← i0 + 1;
6 M,R← ColumnReduction(M,R, i0, t(i0));
7 for j ← t(i0) + 1 to ` do
8 ri0,j ← 0

on R (resp. the Gauss valuation on Sν) extends uniquely to R′ (resp. to S′ν). We have vν($) = 1/α. The
algorithm for the general case is exactly the same as for the case ν = 0 up to the point when Cond(t(i0 + 1))
is not satisfied. By multiplying the t(i0 + 1)th column of R by $−vν(rj0,t(i0+1))·α, we can moreover suppose
that vν(rj0,t(i0+1)) = 0. Let δ = minj 6=j0(vν(rj,t(i0+1))).

With this setting, we can define a quasi-isomorphism in the same manner as before. Namely, let e1, . . . , ek
be the generators of M ′ as a sub-module of S′ν

d represented by the column vectors of the matrix M . Denote
by M ′

1 the module generated by (e′j)j=1...k where e′j = ej for j 6= j0 and e′j0 = 1
$δ
ej0 . Then the natural

injection M ′ →M ′
1 is a quasi-isomorphism. We denote by O2(j, δ) the operation on the couple of matrices

(M,R) with coefficients in S′ν which consists in multiplying by 1
$δ

the (j)th column of M and multiplying
by $δ the (j)th row of R. With the hypothesis and notations of this paragraph (i.e. M has the form
(13)), if (M,R) represents the module M ′ and its relations, then the matrices (M ′, R′) resulting from the
operation of O2(j0, δ) represents the module M ′

1 which have been shown to be quasi-isomorphic to M ′ (as
a S′ν-module). Moreover, R′ verifies the condition Cond(t(i0 + 1)).

The matrix M ′ (resp. R′), resulting from the operation O2(j, δ) is made of column (resp. row) vectors
with coefficients in Sν multiplied by $δ for a certain δ ∈ 1

αZ. An important claim is that this structure is
kept intact in the course of the computations involving all the elementary operations introduced up to now. In
fact, these operations on the rows of R are:

• multiplication of a row by a $α, for α an integer ;

• permutation of the rows ;

• for j0, j1 ∈ {1, . . . , k}, replacing Lj1(R) by Lj1(R) − q′Lj0(R) where q′ is the quotient of $α
1 · y

by $α0 · x for x, y ∈ Sν and α0, α1 ∈ N.

It is clear that the two first operations does not change the structure of R and the same thing is true for the last
operation. Indeed, let q ∈ Sν,π and r ∈ Sν,π ∩K[u] with deg(r) ≤ degW (x), be such that y = q · x+ r,
then for α0, α1 ∈ N, we have $α0 · y = $α0−α1q · $α1x + $α0r so that we have q′ = $α0−α1q with
q ∈ Sν .

In order to prove formally this claim and take advantage of it to carry out all the computations in the
smaller Sν coefficient ring, we represent the couple of matrices (M ′, R′) with coefficients in S′ν by a
triple (M,R,L) where M,R are matrices with coefficients in Sν and L = [α1, . . . , αk] is a list of integers
such that for i = 1, . . . , k, Ci(M ′) = $α

i Ci(M) and Li(R′) = $−αiLi(R). We say that the condition
Cond′(i) on R is satisfied if there exists two different j0, j1 ∈ {1, . . . , k} such that rj0,t(i) · rj1,t(i) 6= 0,
vν(rj0,t(i)) +

αj0
α ≤ vν(rj1,t(i)) +

αj1
α and degW (rj0,t(i)) ≤ degW (rj1,t(i)). With these notations, we can

write the final version of the MatrixReduction algorithm (see Algorithm 6) which encode the matrices M ′, R′

with coefficients in S′ν with a couple M,R of matrices with coefficients in Sν and a list of integers.

Example 3.17. We illustrate the operation of the algorithm on the module of example 3.3. Recall that M is
the submodule of S0 generated by (π2, πu3). It is represented in the canonical basis of S0 by the matrices

20

Algorithm 6: MatrixReduction
input :

• R ∈Mk×`(Sν),

• M ∈Md×k(Sν) such that M ·R = 0.

output : R ∈Mk×`(S
′
ν), M ∈Md×k(S′ν), L such that M ·R = 0 and R is a triangular matrix.

1 i0 ← 0;
2 t(i0)← 1;
3 L← [0, . . . , 0];
4 while i ≤ k do
5 i0 ← i0 + 1;
6 t(i0)← min{t|t > t(i0) and∃j > 0,with rj,t 6= 0 };
7 while ∃j0, j1 such that j0 6= j1 and rj0,t(i0) · rj1,t(i0) 6= 0 do
8 while Cond′(t(i0)) is satisfied do
9 Pick up j0, j1 ∈ {1, . . . , k} such that rj0,t(i0) · rj1,t(i0) 6= 0,

vν(rj0,t(i0)) + L[j0]
α ≤ vν(rj1,t(i0)) + L[j1]

α and degW (rj0,t(i0)) ≤ degW (rj1,t(i0));
10 if vν(rj0,t(i0)) > vν(rj1,t(i0)) then
11 δ0 ← dvν(rj0,t(i0))− vν(rj1,t(i0))e;
12 Lj1(R)← πδ0Lj1(R);
13 Cj1(M)← π−δ0Cj1(M);
14 L[j1]← L[j1] + α · δ0;

15 (q, r)← EuclideanDivision(rj0,t(i0), rj1,t(i0));
16 Cj0(M)← Cj0(M) + qCj1(M);
17 Lj1(R)← Lj1(R)− qLj0(R);

18 Let j0 be such that degW (rj0,t(i0)) = max1≤j≤k{degW (rj,t(i0))};
19 δ ← minj 6=j0(vν(rj,t(i0)))− vν(rj0,t(i0));
20 Cj0(M)← 1

πbδc
Cj0(M);

21 Lj0(R)← πbδcLj0(R);
22 L[j0]← L[j0] + δ − bδc;
23 for j ← t(i0) + 1 to ` do
24 ri0,j ← 0

25 Let j0 ∈ {1, . . . , k} be such that rj0,t(i0) 6= 0;
26 (Cj0(M), Ci0(M))← (Ci0(M), Cj0(M));
27 (Lj0(R), Li0(R))← (Li0(R), Lj0(R));

21

M of generators and R of relation :

M =
(
π2 πu3

)
, R =

(
u3

−π

)
.

It is clear that Cond(1) is not verified on R since there is no division possible between its entries. As a
consequence, we apply operation O1(1) on the couple (M,R) to obtain:

M =
(
π πu3

)
, R =

(
πu3

−π

)
.

Now, we have πu3 = −u3 · π and by applying on M (resp. R) an elementary operation on the columns
(resp. rows), we get finally :

M =
(
π 0

)
, R =

(
0
−π

)
.

An we deduce that the maximal module associate to M is π.S0.

3.3.2 Computation of Max(M)

Let M1, R1, L1 = MatrixReduction(M,R,L = [0, . . . , 0]). Let L1 = [β1, . . . , βk]. We denote by M ′
1

the sub-S′ν-module of (S′ν)d generated by the vectors given in the canonical basis of (S′ν)d by the column
vectors $βi · Ci(M1) for i ∈ {1, . . . , k} such that Li(R1) is the zero vector.

Lemma 3.18. We have M ′
1 = Max(M ⊗Sν S′ν).

Proof. Let M ′ = M ⊗Sν S′ν and let M1 be the sub-S′ν-module of (S′ν)d generated by all the column
vectors $βi · Ci(M1). It is clear that M1 = M ′

1 since for i ∈ {1, . . . , k} such that Li(R1) is not the zero
vector, we have Ci(M1) = 0 (because M1 is torsion free). As M1 is obtained from M ′ by a sequence of
quasi-isomorphisms, it means that there exists a quasi-isomorphism q′ : M ′ →M ′

1. If we prove that M ′
1 is

a free S′ν-module, we are done by Lemma 3.6.
Consider the exact sequence 0 → R → Skν → M → 0 associated to the family (e1, . . . , ek) of

generators of M . As S′ν is flat over Sν , and as R′ ⊗Sν S′ν [1/$] = R ⊗Sν S′ν [1/$] by definition of R′, we
have an exact sequence

0→ R′ ⊗Sν S′ν [1/$]→ (S′ν
k
)[1/$]→M ′[1/$]→ 0 (15)

defined by the generators (e1, . . . , ek) of M ′[1/$]. It is clear that at each step, the algorithm ReduceMatrix
describes an exact sequence of the form (15) for a different map (S′ν

k
)[1/$]→M ′[1/$] since it preserves

the relation MR = 0. From this and the definition of M ′1, we deduce that if R1 is the module of relations of
M ′

1 then R1[1/$] = 0 from which we deduce that R1 = 0 and we are done.

Remark 3.19. As a byproduct of the preceding proof, we see that the vectors given in the canonical basis
of (S′ν)d by the column vectors $βi · Ci(M1) for i ∈ {1, . . . , k} such that Li(R1) is the zero vector form a
basis of M ′

1.

Corollary 3.20. Let M2 = M ′
1 ∩ Sdν . Then, M2 = Max(M).

Proof. The corollary is an immediate consequence of Proposition 3.9 and Lemma 3.18.

3.3.3 Computation with Sν-modules

Proposition 3.9 and Lemma 3.18 establish a one-to-one correspondence Φ : MaxdSν → FreedS′ν , defined by

M 7→ Max(M ⊗Sν S′ν). Moreover, the image of Φ is exactly the set of free sub-S′ν-modules of S′ν
d which

admit a basis (ei)i∈I where ei ∈ (S′ν)d and ei = $αie′i with e′i ∈ (Sν)d and 0 ≤ αi ≤ α. We have seen
that a M ∈ Φ(MaxdSν) can be represented by a couple (M,L) where M ∈ Md×k(Sν) and L is a list of
positive integers ≤ α.

From the data of a matrix representing an element of M ∈ MaxdSν the algorithm MatrixReduction
computes the couple (M,L) representing Φ(M). Moreover, if M ′ ∈ Φ(MaxdSν), the Algorithm 7 allows
to recover Φ−1(M ′). We see that we can easily go back and forth between the different representations.
For most of the applications however, it is convenient to represent an element of M ∈ MaxdSν by a couple
(M,L). Indeed, we have the lemma:

22

Lemma 3.21. Let M1,M2 ∈ MaxdSν , then

Φ(M1 ∩M2) = Φ(M1) ∩ Φ(M2),

Φ(M1 +max M2) = Φ(M1) +max Φ(M2).

Proof. For the first claim, we have Φ−1(Φ(M1) ∩ Φ(M2)) = Φ(M1) ∩ Φ(M2) ∩ Sdν = (Φ(M1) ∩ Sdν) ∩
(Φ(M2) ∩ Sdν) = M1 ∩M2.

Next, we prove the second claim. We have the following diagram of quasi-isomorphisms:

(M1 + M2)⊗Sν S
′
ν

Max(M1 + M2)⊗Sν S
′
ν Max(M1 ⊗Sν S

′
ν) + Max(M2 ⊗Sν S

′
ν)

(16)

Thus, we have Max(Max(M1 + M2)⊗Sν S′ν) = Max((M1 + M2)⊗Sν S′ν) = Max(Max(M1⊗Sν S′ν) +
Max(M2 ⊗Sν S′ν)) which is exactly the desired result.

Let M1,M2 ∈ Φ(MaxdSν) be represented respectively by the couples (M1, L1) and (M2, L2). Then, by
Lemma 3.21 one can represent the sum M1 +max M2 by applying the algorithm MatrixReduction on the
couple ((M1M2), L1 +L2) (where L1 +L2 is the concatenation of the lists L1 and L2). The representation
as a couple (M,L) is however not well suited to the computation of the intersection of modules, since it
implies the computation of the kernel of a matrix with coefficient in Sν which is not Euclidean.

3.3.4 The generators of a maximal module

In order to have a complete algorithm (with oracles) to compute Max(M), it remains to explain how to
recover M2 = M ′

1 ∩ Sdν from the knowledge of M ′
1 (see §3.3.2 for the definition of M ′

1). We would
like also to obtain a bound on the number of generators of M2. By the construction of M ′

1, there exists
a basis (e1, . . . , ek) ∈ Sdν and δi ∈ N for i = 1, . . . , k, such that M ′

1 =
⊕k

i=1 S
′
ν .$

δiei. Then, we have
M2 =

⊕k
i=1(S′ν .$

δi ∩ Sν).ei. Hence, it is enough to explain how to compute M ′
1 ∩ Sdν when M ′

1 has
dimension 1. In this case, M ′

1 is generated by an element of the form 1
$δ
· y where y ∈ Sν and by definition,

we want to find generators for the Sν-module {x ∈ Sν |vν(x) ≥ vν(1
$δ
· y)}. We are reduced to the problem

of finding generators of the Sν-module N = {x ∈ Sν |vν(x) ≥ −δ/α}.

Lemma 3.22. Let δ ∈ {0, . . . , α − 1}. We define inductively a sequence of couple of integers (αi, βi) by
setting α0 = 0, β0 = 0. Then for i > 0, while βi−1 + αi−1ν > − δ

α , we let (αi, βi) be the unique couple of
integers such that

• βi + αiν ≥ − δ
α ,

• for all (x, y) 6= (αi, βi) ∈ Z2 such that 0 ≤ x ≤ αi and y + xν ≥ − δ
α , we have βi + αiν < y + xν,

• αi is the smallest integer strictly greater than αi−1 such that there exists an integer βi with (αi, βi)
satisfying the two conditions above.

The family (πβi · uαi) has cardinality bounded by α and is a system of generators of the Sν-module
N = {x ∈ Sν |vν(x) ≥ −δ/α}.

Proof. First, it is clear by definition that all the πβi · uαi are elements of N . Moreover, it is clear that αi is
bounded by −δ/β mod α.

Denote by N0 the sub-Sν-module of N generated by the family (πβi · uαi). Let x ∈ N , we prove
inductively on degW (x) that x is in N0. If degW (x) = 0 then vν(x) ≥ 0 so that x = x · 1 with x ∈ Sν .
Suppose that d = degW (x) > 0. As vν(x) ≥ −δ/α, by applying Corollary 2.11, we can write x = q · h,
with q ∈ Sν invertible and h ∈ K[u] is a degree d polynomial such that vν(h) ≥ −δ/α and degW (h) = d.
We have to show that h is in N0. Let i0 be the greatest index such that αi0 ≤ d. Then by construction
of the family (αi, βi), we have vν(πβi0 · uαi0) ≤ vν(h). Indeed, if t is the term of h of degree d then
t ∈ N and if we write t = πµ · uχ, we have by construction βi0 + αi0ν ≤ µ + χν. Thus we can write
h = q1 ·πβi0 ·uαi0 +r where q1 ∈ Sν , degW (r) < αi0 and vν(r) ≥ −δ/α. We can then apply the induction
hypothesis on r to conclude.

23

From the above lemma, one can easily deduce an algorithm to compute the generators of N = {x ∈
Sν |vν(x) ≥ −δ/α} as well as an upper bound on the number of generators. In order to find the αi we just
run over all the values between 1 and −δ/β mod α and check for each of them if it satisfies the conditions
of Lemma 3.22. Nevertheless this algorithm is inefficient and the obtained bound is far from tight. In the
following, we explain how to obtain a tight bound as well as an efficient algorithm to compute a family of
generators of N by using the theory of continued fractions. In order to set up the notations, we briefly recall
the results from this theory that we need (see [9]). For a0, . . . , an integers, the notation [a0; a1, . . . , an]
refers to the value of the continued fraction

a0 +
1

a1 +
1

. . . +
1

an

.

We take the convention that an 6= 1 in [a0; a1, . . . , an] so that every rational number can be written
uniquely as a finite continued fraction. Let r = [a0; a1, . . . , an]. We let p0 = a0, q0 = 1, p1 = a0a1 + 1,
q1 = a1 and define inductively pk = akpk−1 + pk−2, qk = akqk−1 + qk−2. The fractions pk/qk are called
the kth convergent of the continued fraction [a0; a1, . . . , an]. We have the properties:

• the integers pk and qk are relatively prime (see [9, Th. 2]);

• pk/qk = [a0; a1, . . . , ak].

Definition 3.23. Let r be a real number, and let γ be a positive integer. We say that a fraction a
b (b ≥ γ)

is a best approximation (resp. a positive best approximation) of r relatively to γ if for all integers c, d
such that γ ≤ d ≤ b and c/d 6= a/b (resp. such that γ ≤ d ≤ b, dr − c > 0 and c/d 6= a/b), we have
|dr − c| > |br − a| (resp. dr − c > br − a > 0). We say simply that ab is a best approximation (resp. a
positive best approximation) of r if ab is a best approximation (resp. a positive best approximation) relatively
to 1.

Remark 3.24. Our definition of best approximation corresponds to what is often called in the literature best
approximation of second kind (see [9]).

Everything we need about continued fractions is contained in the following theorem (see [9, Th. 15 and
Th. 16]).

Theorem 3.25. Let x = [a0; a1, . . . , an].

1. Every convergent pk/qk is a best approximation of x.

2. Reciprocally, every best approximation of x is a convergent, the only exceptions being the cases
x = a0 + κ, with κ ∈ [1/2, 1[, p0

q0
= a0

1 .

Moreover, for i = 0, . . . , n− 1, x− pi
qi
> 0 for i even and x− pi

qi
< 0 for i odd.

Let r be a real number and b an integer. In the following, it is convenient to denote by min(r, b) (resp.
min+(r, b)) the integer a such that |b · r − a| = min{|b · r − k|, k ∈ Z} (resp. such that b · r − a =
min{b · r − k, k ∈ Zwith b · r − k > 0}). Then, for r a real number and b a positive integer, we let
{b}r = b · r −min(r, b) and {b}+r = b · r −min+(r, b).

Example 3.26. Let r = 0.9 and b = 2. Then we have min(r, b) = 2, min+(r, b) = 1, {b}r = −0.2 and
{b}+r = 0.8.

We need the following lemma:

Lemma 3.27. We have:

• for all j ∈ {0, . . . , n}, {qj}x > 0 if j is even, {qj}x < 0 if j is odd;

• for j ∈ {1, . . . , n− 2} for all ζ integer such that 0 ≤ ζ < aj+2, ζ · {qj+1}x + {qj}x has the same
sign has {qj}x.

24

Moreover for all j ∈ {1, . . . , n− 2} and all ζ integer such that 0 ≤ ζ < aj+2,

{ζ · qj+1 + qj}x = ζ · {qj+1}x + {qj}x.

Proof. The fact that {qj}x > 0 if j is even, {qj}x < 0 if j is odd is an immediate consequence of Theorem
3.25.

If ζ = 0, there is nothing to prove. We suppose for instance that {qj}x > 0 and {qj+1}x < 0 (the other
case can be treated in a similar manner). Suppose that for 0 < ζ < aj+2, we have

{qj}x + ζ · {qj+1}x < 0. (17)

Let ζ be the smallest verifying (17), then ζ ≥ 2 since we have by definition of a best approximation
|{qj}x| > |{qj+1}x|. Then, as {qj}x + (ζ − 1) · {qj+1}x > 0, we have |{qj}x + ζ · {qj+1}x| < |{qj+1}x|
which is a contradiction with the fact that there is no best approximation of x the denominator of which is
between qj+1 and qj+2 = an+2qj+1 + qj > ζ · qj+1 + qj .

With our hypothesis, for all integer ζ such that 0 < ζ < aj+2, we have {qj}x > {qj}x + ζ · {qj+1}x.
Thus we have we have {qj}x > ζ(qj+1 · x − min(x, qj+1)) + qj · x − min(x, qj) > 0, so that 1/2 >
(ζqj+1+qj)·x−ζ min(x, qj+1)−min(x, qj) > 0 (remember that as j ≥ 1, {qj}x ≤ 1/2). As a consequence,
ζ min(x, qj+1) + min(x, qj) = min(x, ζqj+1 + qj) thus {ζ · qj+1 + qj}x = ζ · {qj+1}x + {qj}x.

For x = [a0; a1, . . . , an] ∈ Q and γ a positive integer, we would like to be able to obtain the list of
positive best approximations of x relatively to γ. The lemma tells us that not only the convergents p2i/q2i for
i ∈ {0, . . . , bn/2c} are positive best approximations of x but also the min+(x, q2i+µq2i+1)/(q2i+µq2i+1)
for i ∈ {0, . . . , b(n− 2)/2c} and µ integer such that 1 < µ < a2i+2. The following proposition states that
these are all the positive best approximations of x and gives a generalisation for the case of a positive γ.

Proposition 3.28. Let x = a/b where a, b are relatively prime integers. Write x = [a0; a1, . . . , an] and
denote by pk/qk the sequence of convergents associated to the continued fraction [a0; a1, . . . , an]. Let γ < b

be a positive integer. Let γ ≤ d ≤ b be an integer such that min+(x,d)
d is a positive best approximation of x

relatively to γ. Let i be the biggest index such that d− q2i+1 ≥ γ and let λ be the biggest integer such that
d− q2i+1 − λ · q2i+2 ≥ γ. Then

1) min+(x,d−q2i+1−λ·q2i+2)
d−q2i+1−λ·q2i+2

is a positive best approximation of x relatively to γ.

2) If e is such that d− q2i+1 − λ · q2i+2 < e < d then min+(x, e)/e is not a positive best approximation of
x relatively to γ.

Moreover, we have

{d− q2i+1 − λ · q2i+2}+x − {d}+x = λ · {q2i+2}x − {q2i+1}x > 0. (18)

0 γ d− q2i+1 − 2q2i+2d− q2i+3 d− q2i+1 d

Figure 3: Graphical representation of Proposition 18.

Proof. Let i and λ be defined as in the statement. We remark that we have λ < a2i+3. Indeed, by hypothesis
d− q2i+1 − λ · q2i+2 ≥ γ, but we have q2i+3 = a2i+3 · q2i+2 + q2i+1 and we know that d− q2i+3 < γ. For
0 ≤ ζ < a2i+3 an integer, let µ(ζ) = q2i+1 + ζ.q2i+2, h = d− µ(λ).

First, we prove that
{d}+x − {µ(ζ)}x = {d− µ(ζ)}+x , (19)

if 0 ≤ ζ < a2i+3. Using Lemma 3.27, we obtain

0 ≤ min(x, µ(ζ))− µ(ζ) · x < 1. (20)

25

As 0 ≤ d · x − min+(x, d) < 1, we have 0 ≤ (d − µ(ζ)) · x − min+(x, d) + min(x, µ(ζ)) < 2. We
have to prove that (d − µ(ζ)) · x − min+(x, d) + min(x, µ(ζ)) < 1. Suppose, on the contrary, that
(d− µ(ζ)) · x−min+(x, d) + min(x, µ(ζ)) ≥ 1, then because of (20), we have:

0 ≤ (d− µ(ζ)) · x−min+(x, d) + min(x, µ(ζ))− 1 < d · x−min+(x, d). (21)

If ζ ≤ λ this is a contradiction with the hypothesis that min+(x,d)
d is a positive best approximation of x

relatively to γ. If ζ > λ then (d−µ(ζ)) · x−min+(x, d) + min(x, µ(ζ)) < (d−µ(λ)) · x−min+(x, d) +
min(x, µ(λ)) because {µ(ζ)}+x > {µ(λ)}+x by Lemma 3.27. Next, we remark that (d − µ(λ)) · x −
min+(x, d)+min(x, µ(λ)) < 1 by what we have just proved, so that we have (d−µ(ζ)) ·x−min+(x, d)+
min(x, µ(ζ)) < 1. In any case, we are done.

Now, suppose that there exists γ ≤ e < d such that

{d}+x < {e}+x ≤ {h}+x . (22)

For 0 ≤ ζ < a2i+3 a non negative integer, let e(ζ) = d−µ(ζ). Choose ζ so that |{e}+x −{e(ζ)}+x | is minimal.
By (19), we know that {e(ζ)}+x = {d}+x − {µ(ζ)}x. As moreover {d}+x − {µ(a2i+3)}x ≤ {d}+x (following
Lemma 3.27) and {e(λ)}+x = {h}+x , we deduce that λ ≤ ζ < a2i+3. Suppose that {e}+x − {e(ζ)}+x 6= 0.
As for all ζ ∈ {λ, . . . , a2i+3 − 1}, |{e(ζ + 1)}+x − {e(ζ)}+x | = |{µ(ζ)}+x − {µ(ζ + 1)}+x | = {q2i+2}x, we
deduce that |{e− e(ζ)}x| < {q2i+2}x and the fact that |e− e(ζ)| < q2i+3 contradicts the second statement
of Theorem 3.25.

Thus, we have that {e}+x = {e(ζ)}+x . Then, from (22), we can write {e}+x = {d}+x −{µ(ζ)}x ≤ {h}+x =
{d}+x − {µ(λ)}x so that {µ(ζ)}x ≥ {µ(λ)}x. Suppose that {µ(ζ)}x > {µ(λ)}x then, as λ ≤ ζ < a2i+3, it
means that ζ > λ. But then, e = e(ζ) = d− µ(ζ) < γ which is a contradiction with the hypothesis γ ≤ e.
As a consequence, we have λ = ζ and e = h.

To finish the proof, we note that (18) is an immediate consequence of (19) and Lemma 3.27.

Let x be a rational and γ a positive integer. From the Proposition 3.28, we immediately obtain an
algorithm (see Algorithm 7) to compute the reserve ordered list of the integers q such that min+(x, q)/q is a
positive best approximation of x relatively to γ.

From Algorithm 7, it is possible to obtain a bound on the number of positive best approximations of a
rational number x. In order to state the following corollary, we introduce a notation: for (µ, ρ, χ) ∈ R2 × N,
we denote by L(µ, ρ, χ) the finite arithmetic sequence with first term µ, common difference ρ and length χ
(if χ is zero then the sequence is considered as empty).

Corollary 3.29. Let x = [a0; a1, . . . , an] be a rational number, denote by pk/qk for k = 0, . . . , n the
associated sequence of convergents. Let γ be a positive integer. The list a positive best approximations of x
relatively to γ has cardinality bounded by 2 +

∑bn/2c
i=1 a2i.

Denote by L the finite sequence of increasing integers q such that min+(x, q)/q is a positive best
approximation relatively to γ. Let I = {0, . . . , b(n− 1)/2c}. There exist two sequences (µi)i∈I and (χi)i∈I
with coefficients respectively in Q and N such that L = ∪i∈IL(µi, q2i+1, χi). Moreover, for i ∈ I , the
sequence ({q}+x)q∈L(µi,q2i+1,χi) is also an arithmetic sequence with common difference {q2i+1}x < 0.

Proof. To prove the first part of the statement, it suffices to show that the number of elements of the list
generated by the loop beginning in line 12 of Algorithm 7 for a given value of nextqk is less than anextqk+1.
Indeed, it is clear from the initialisation of Algorithm 7 that nextqk is running through the odd indices in
{0, . . . , n− 1}. Now the relation q[nextqk + 1] = anextqk+1 · q[nextqk] + q[nextqk− 1] implies that the
loop on line 12 is executed at most anextqk+1 times. Taking into account the first and last element in the list
L, we obtain that its cardinality is bounded by 2 +

∑bn/2c
i=1 a2i.

The second part of the statement is clear, since the while loop on line 12 build a (reverse ordered)
arithmetic sequence of common difference q[nextqk] and the last point is an immediate consequence of
(18).

Remark 3.30. Denote by L the output of Algorithm 7. By the corollary, L is a union of arithmetic sequences
each of which can be encoded by a triple of integers giving the first term of the sequence, its common
difference and the number of terms of the sequence. Recall that x = [a0; a1, . . . , an]. Using this encoding,
the list L can be represented (as a data structure) by O(n) bits of information. Moreover, it is easy to modify

26

Algorithm 7: Reverse order list of positive best approximations
input :

• x = a/b = [a0; a1, . . . , an] a rational number ;

• the lists of integers p[k], q[k] for k = 0, . . . , n, such that p[k]/q[k] are the convergents associated to
[a0; a1, . . . , an];

• γ ≤ b a positive integer.

output :L a reverse ordered list of the integers q such that min+(x, q)/q is a positive best
approximation of x relatively to γ

1 L← [b];
2 last← b;
3 t← n;
4 if (t+ 1) mod 2 = 0 then
5 nextqk← t− 2;
6 else
7 nextqk← t− 1;

8 while nextqk ≥ 0 do
9 if last− q[nextqk] ≥ γ then

10 λ← floor
(last− q[nextqk]− γ

q[nextqk + 1]

)
;

11 last← last− λ.q[nextqk + 1] ;

12 while last− q[nextqk] ≥ γ do
13 last← last− q[nextqk];
14 L← last ∪ L ;

15 nextqk← nextqk− 2;

16 if L[1] > γ then
17 L← γ ∪ L;

18 return L;

27

Algorithm 7 so that it returns the list L encoded in that way and have running time O(n). For this, we just
have to replace lines 12-14 by:

length← floor
(last− γ
q[nextqk]

)
;

first← last− length · q[nextqk];

L← (first, q[nextqk], length) ∪ L;

last← first

We have everything in hand in order to compute efficiently the generators of N = {x ∈ Sν |vν(x) ≥
−δ/α}. Indeed, consider the line L given by the equation y + x.βα = − δ

α . Let γ = δ
β mod α, where δ

β

mod α is considered as a positive integer in {0, . . . , α− 1}. Then −γ is the abscissa of the first point of the
line L with integer coordinates to the left of the origin point. Denote by (qi)i∈I the list of integers qi such
that min+(β/α, qi)/qi is a positive best approximation of β/α relatively to γ. Then if we set αi = qi − γ, it
is easily seen that the αi are precisely the same as the one defined in the Lemma 3.22.

Corollary 3.31. Let ν = β/α = [a0; a1, . . . , an]. Let δ be an integer. Set N = {x ∈ Sν |vν(x) ≥
−δ/α}. Then N is generated elements of the form (πβi .uαi)i∈J where the cardinality of J is bounded
by 2 +

∑bn/2c
i=1 a2i. Let I = {1, . . . , bn/2c}. There exist two sequences (µi)i∈I and (χi)i∈I with co-

efficients respectively in Q and N such that (αi)i∈J = ∪i∈IL(µi, q2i+1, χi). Moreover, the sequence
vν(πβi .uαi)αi∈L(µi,q2i+1,χi) is also an arithmetic sequence.

By gathering all the results of this section, we obtain:

Theorem 3.32. Let ν = [a0; a1, . . . , an]. Let M be a sub-Sν-module of Sdν . Then a bound on the number
of generators of Max(M) is d.(2 +

∑dn/2e
i=1 a2i). These generators can be represented by d vectors of Sdν

and d · bn/2c arithmetic sequences of the form L(µ, q, χ) where q is the denominator of a convergent of odd
index associated to [a0; a1, . . . , an].

3.3.5 Application: scalar extension of Sν-modules

Let ν′, ν ∈ Q such that ν′ > ν, there is a natural inclusion θν,ν′ : Sν → Sν′ . Given a module M over
Sν , we would like to compute the module Max(M ⊗Sν Sν′) ∈ MaxdSν′ . If M = (mij) ∈Md×k(Sν) is a
matrix representing M , it can be done by calling the algorithm MatrixReduction on the matrix (θν,ν′(mij)).

Nevertheless, if M is maximal, there is another better way to carry out this computation. Assume that
M is represented by a couple (M ′, L′) with M ′ ∈ Md×k(Sν) and L′ = [α1, . . . , αk] is a list of integers.
Let (f1, . . . , fk) with fi = $αi · ei for i = 1, . . . , k and ei ∈ Sdν be the basis of Φ(M) given by the column
vectors associated to the couple (M ′, L′) (see Remark 3.19). Then by definition M is generated by the
sub-Sν-modules Fi = fi.S

′
ν ∩ Sdν . Moreover, using Algorithm 7, one can recover a family of generators

of Fi which are of the form sj · ei with sj ∈ Sν and following Remark 3.30 it is possible to encode the
generators of Fi by a list of arithmetic sequences. As this representation is very compact, we would like to
take advantage of it in order to compute the scalar extension. By working component by component, we
only have to consider the case of a sub-Sν-module of Sν , N = {x ∈ Sν |vν(x) ≥ −δ/α} for δ ∈ N. Then
it has been seen in Corollary 3.31 that N is generated elements of the form (πβi .uαi)i∈J . More precisely,
write ν = [a0; a1, . . . , an] and let I = {1, . . . , bn/2c}. Then, there exists three sequences (µi)i∈I , where
(ζi)i∈I and (χi)i∈I with coefficients respectively in Q, N and N such that (αj)j∈J = ∪i∈IL(µi, ζi, χi).
Let N ′ = N ⊗Sν Sν′ . Of course, the sequence (πβj .uαj)j∈J has coefficients in Sν′ and is a family of
generators of N ′. Hence, Max(N ′) corresponds to the couple (M ′, L′) where the unique element of L′ is
given the minimum of all quantities βj + ν′ · αj when j runs over J . Now, we remark that the sequence
βj + ν′ · αj is arithmetic when j runs over one subset L(µi, ζi, χi). On this subset, the minimum is reached
for the first index or the last one. Thus, to compute L′, it is enough to take the minimum over these particular
indices. It yields an algorithm whose complexity is O(n) — or O(nd) for the d-dimensional case — where
we recall that n is the length of the continued fraction of ν (in particular n = O(1 + min(log |α|, log |β|)) if
ν = α

β .)

28

3.4 Comparing the two approaches
We have introduced two different ways to represent Sν-modules and compute with them. It is important to
compare the two approaches since they are well suited for different kind of applications. We call the repre-
sentation of §3.2.1 the (Mπ,Mu)-representation and the representation of §3.3 the (M,L)-representation.

First, we explain how to go back and forth between the two representations. Let M ∈ MaxdSν given
with the (M,L)-presentation by the couple (M,L) with M ∈Md×k(Sν) and L is a list of integers. We can
recover a matrix M1 with coefficients in Sν whose columns vectors gives generators of M in the canonical
basis of Sdν . Then to obtain the couple (Mπ,Mu) representing M we just have to compute the Hermite
Normal Forms of M1 ⊗Sν Sν,π and M1 ⊗Sν Sν,u.

We explain how to compute the (M,L)-representation associated to a (Mπ,Mu)-representation in the
case that the associated module M ∈ MaxdSν has full rank. Suppose we are given the couple (Mπ,Mu)
representing M where Mπ = (mπ,i,j) ∈ Md×k(Sν,π) and Mu = (mu,i,j) ∈ Md×k(Sν,u). Up to
multiplyingMπ by a certain power of π (which is invertible in Sν,π), we can suppose that all themπ,i,j ∈ Sν .
As the coefficients of Mu are defined modulo a certain power of π (namely the determinant of Mu),
we can also suppose, up to multiplying Mu by a certain power of uα/πβ (which is invertible in Sν,u),
that all the coefficients of Mu belongs to Sν . Let Du = det(Mu) ∈ Sν . On the other side, let Dπ =
det(Mπ)/$α·vν(det(Mπ)) ∈ S′ν . By definition, we have vν(Dπ) = 0. Denote by M π

0 (resp. M u
0) the

sub-S′ν-module of (S′ν)d generated by the column vectors of DuMπ (resp. DπMu), considered as matrices
with coefficients in S′ν . We can prove:

Lemma 3.33. Keeping the above notations, we have:

Max((Mu ∩Mπ)⊗Sν S′ν) = Max(M π
0 + M u

0).

Proof. Using the formula adj(M) = det(M).M−1, it is clear that the column vectors of the matrix DuMπ

(resp. DπMu) belong to the S′ν,u-module generated by the column vectors of Mu (resp. the S′ν,π-module
generated by the column vectors of Mπ). As a consequence, we have M π

0 ⊂ (Mu ∩Mπ) ⊗Sν S′ν and
M u

0 ⊂ (Mu ∩Mπ) ⊗Sν S′ν . We deduce that M π
0 + M u

0 ⊂ (Mu ∩Mπ) ⊗Sν S′ν . Thus, we have
Max((Mu ∩Mπ)⊗Sν S′ν) ⊃ Max((M π

0 + M u
0)⊗Sν S′ν).

Next, suppose that x ∈ Max((Mu ∩Mπ)⊗Sν S′ν). By Proposition 3.8, it means that there exists n ∈ N
such that πn · x ∈ (Mu ∩Mπ)⊗Sν S′ν and (u/$β)n · x ∈ (Mu ∩Mπ)⊗Sν S′ν . Note that Du is a power
of π, as a consequence there exists n0 > n such that

πn0 · x ∈M π
0 ⊂M π

0 + M u
0 . (23)

We would like to prove that there exists n1 ∈ N such that (u/$β)n1x ∈ M π
0 + M u

0 . For this, it
suffices to prove that (u/$β)n1x mod M π

0 ∈M u
0 /(M

π
0 ∩M u

0) ⊂ S′ν/M π
0 . As Dπ is invertible in S′ν,u

(remember that vν(Dπ) = 0) there exists t ∈ S′ν and n2 ∈ N such that t.Dπ = (u/$β)n2 mod πn0S′ν .
Denote by f1, . . . , fk the vectors whose coordinates in the canonical basis of (S′ν)d are given by the column
vectors of M u

0 . Now, as (u/$β)n · x ∈Mu there exist λi ∈ S′ν,u, for i = 1, . . . , k, such that

(u/$β)n.x =

k∑
i=1

λifi.

But we have (u/$β)n.x ∈Mπ so that (u/$β)n.x ∈ (S′ν)d and using the triangular form of the matrix Mu

(see Proposition 3.15) we have that λi ∈ S′ν for i = 1, . . . , k. By multiplying the preceding equation by
t.Dπ , we obtain:

(u/$β)n+n2 .x+ λ(u/$β)nπn0 · x =

k∑
i=1

(t.λi)(Dπfi),

for λ ∈ S′ν . Recall that we have seen that πn0 · x ∈M π
0 , thus (u/$β)n+n2 · x mod M π

0 ∈M u
0 /(M

π
0 ∩

M π
0). As a consequence by taking n1 = n+ n2, we have:

(u/$β)n1 · x ∈M π
0 + M u

0 (24)

By (23) and (24), there exists a m ∈ N such that πm · x ∈M π
0 + M u

0 and (u/$β)m · x ∈M π
0 + M u

0 .
By applying Proposition 3.8, we deduce that x ∈ Max((M π

0 + M u
0)⊗Sν S′ν) and we are done.

29

Remark 3.34. In the preceding construction, we need the extension S′ν of Sν just to ensure that vν(Dπ) = 0.
Thus, if vν(det(Mπ)) ∈ Z, this extension is not necessary.

Now, let M ∈ MaxdSν be represented by a couple (Mπ,Mu). As Mπ and Mu are given in Hermite
Normal Form, we can easily compute Dπ and Du. Let M ′π = DuMπ and M ′u = DπMu. Lemma 3.33 tells
us that we can then obtain the (M,L)-representation of M by calling the MatrixReduction algorithm on the
matrix (M ′πM

′
u).

The main advantage of the (Mπ,Mu)-representation is that is provides unique representation of maximal
modules over Sν , because of the same property for Hermite Normal Forms. Thus, it allows to test equality
between modules. We have seen also that the echelon form is well suited to test whether x ∈ Sdν is an
element of M ∈ MaxdSν as well as to compute the intersection of two modules. On the other side the
(M,L)-representation provides an actual basis of module in MaxdSν . Moreover, the base change operation
⊗SνSν′ only makes sense in the (M,L)-representation (and we will see in §4 an important application of this
operation). Indeed, if ν′ ≥ ν, although there is a natural inclusion morphism Sν ⊂ Sν′ , the two sub-rings of
E , Sν,u and Sν′,u are not comparable by the inclusion relation.

4 Representation and precision
In the previous sections, we have presented algorithms to compute with Sν-modules by using, as a black-box,
the ring operations of Sν . As elements of Sν can not be coded with a finite data structure, these procedures
are not algorithms stricto sensus since they can not be implemented on a Turing machine for instance. In
order to turn them into algorithms, we have to explain how to represent mathematical objects by finite data
structures. Much in the same way as we compute with approximations of real numbers, we can represent
power series with coefficients R by truncating them up to a certain precision. Then we have to ensure the
stability of the computations, i.e. that the result is independent of the part of the input that we ignore. In
the following, we proceed in an incremental manner. First, we explain how to represent the elements of
the coefficient ring R of Sν by a finite structure, then we deal with elements of Sν and finally with more
complex structures with coefficients in Sν such as Sν-modules.

4.1 Generality with precision
We recall from the introduction that R is a complete discrete valuation ring, and that for algorithmic
applications we are mostly interested in:

• Zp or more generally the ring a integer of a finite extension of Qp,

• the ring k[[X]] of formal power series with coefficients in a (finite) field k.

In any case, if π denote the uniformizer element of R and pπ is a positive integer, we shall represent an
element of R by its image in the quotient R/πpπR. We suppose that there exists algorithms to compute the
arithmetic operations of the ring R/πpπR. We say that an element x ∈ R/πpπR is the data of element of
x ∈ R up to π-adic precision pπ if x mod πpπ = x.

For the complexity analysis, we shall assume that we have efficient algorithms to perform all standard
operations in quotients R/πpπR for all integers pπ . We discuss briefly the validity of this assumption for the
aforementioned classical examples of rings R. In the case that R = k[[X]], we suppose that the operations
in the field k costs one unit of time and can be represented by one unit of memory. With that in mind, if
R = k[[X]] there exists a trivial algorithm to perform additions. It is optimal in the sense that its complexity
is equal to the size of the inputs. The same thing is true if R is the ring of integers of any finite extension
of Qp. Things are more complicated for the multiplication of two elements of R/πpπR, whose time will
be denoted by T0(pπ) in the rest of this paper. In the case R = Zp, using Strassen algorithm [12], we have
T (pπ) = Õ(pπ) where the soft-O notation means that we neglect logarithmic factors. If R is the ring of
integer of a degree d finite extension of Qp, we can represent elements of R with a degree d− 1 polynomial
with coefficients in Zp and using again Strassen algorithm for polynomials, we have T0(pπ) = Õ(d · pπ). If
R = k[[X]] using again Strassen algorithm for polynomials, we have T (pπ) = Õ(pπ) (we suppose here that
operation in k costs one unit of time). We can summarize these results by saying that with the best known
algorithms, the time T0(pπ) is quasi-linear log(|R/πpπR|).

30

An obvious way to obtain a finite approximation of an element of
∑
aiu

i/πdiνe ∈ Sν is to consider a
representative modulo a certain power pu of u. We, thus obtain a degree pu−1 polynomial

∑pu−1
i=0 aiu

i/πdiνe

with ai ∈ R that we can represent by a vector of dimension pu with coefficients in R up to precision pπ as
before. We call this representation the flat approximation of an element of Sν with u-adic precision pu and π-
adic precision pπ or the (pu, pπ)-flat approximation. The data of a representative with π-adic precision pπ and
u-adic precision pu of an element x =

∑
aiu

i/πdiνe ∈ Sν is given by a polynomial
∑pu
i=0 aiu

i/πdiνe such
that ai = ai mod πpπ . It should be remarked however that the flat approximation is not the only possible
procedure to truncate an element of Sν in order to obtain a finite structure. For instance, one can represent
an element of Sν up to a certain u-adic precision pu by a polynomial

∑pu−1
i=0 aiu

i with coefficients in R of
degree pu−1. Such a polynomial may itself be represented by the data of ai mod πpπ for i = 0, . . . , pu−1,
as before but it is also possible to represent

∑pu−1
i=0 aiu

i by coefficients with different π-adic precisions ai
mod πpπ,i . Put in another way, we want to obtain a representative of

∑pu−1
i=0 aiu

i modulo the R-module∑pu−1
i=0 πpπiui/πdiνe ·R. We call this representation the jagged approximation. We can generalize even

further the flat and jagged approximations. For instance, we remark that for f =
∑
aiu

i ∈ Sν the flat and
jagged approximations consist in the data of f (i)(0)/i! for i = 0, . . . , pu − 1 but we could also provide the
data of f (i)(x)/i! for any x ∈ K in the disc of convergence of f .

Taking into account the previous examples, we say that a data of precision is given by any sub-R-module
P of Sν . Most of the time, but not always, we want Sν/P to be R-module of finite length. Indeed, it may
happen that we compute with objects of Sν that can be represented exactly with a finite structure. This is the
case for instance, if the characteristic of R is 0, of any element Z ⊂ R. In this special case, it makes sense to
consider a data of precision P such that Sν/P is not of finite length in order to take into account the fact
that we know certain elements of Sν with “infinite precision”. In general, in order to represent an element of
Sdν by a finite data structure, one can consider a sub-R-module P of Sdν such that most of the time Sdν/P
has finite length.

Then, in order to compute a function f : Sdν → Sdν , we would like to replace it by its approximation. A
good way to construct this approximation is to write the first order Taylor development of f at the point x we
are evaluating f :

f(x+ h) = f(x) + dfx(h) +O(h2).

If we neglect O(h2), we see that when x+ h varies in x+ P , its image under f varies in f(x) + dfx(P).
Most of the time (but not always), dfx(P) will be the correct data of precision (see [1] for a full discussion
about this). Proceeding this way, the computation of the function f decomposes in two distincts parts: (1) the
computation of the function on the representative, i.e. the computation of f(x) and (2) the computation of
the precision of the result, i.e. the computation of dfx(P).

A more general precision data is intuitively less convenient for computations since it involves more
complex data structures. For instance, each coefficient of a polynomial representing an element of Sν with
the jagged approximation may have very unbalanced length so that it may be difficult to adapt asymptotically
fast arithmetic for such objects. On the other side, we are going to see shortly that even for a very common
operation in Sν such as the computation of the Euclidean division, one may take advantage of the flexibility
of the jagged approximation. Hence, the choice of a representation to compute with elements of Sν is a non
trivial trade off between space/time complexity on the one hand and the quantity of precision we accept to
loose on the other hand.

It is convenient to represent a jagged precision by a series. For this, let Pπ =
∑∞
i=0 aiu

i/πbiνc ∈ Sν . In
the following, we denote by P(Pπ) the sub-R-module of Sν given by

∑∞
i=0 aiu

i/πbiνc ·R. Moreover, if
P is sub-R-module of Sν , we denote by repr(P) : Sν → Sν/P the canonical projection of R-modules.
It is clear that P(Pπ) only depends on the valuation of the coefficients ai of Pπ =

∑∞
i=0 aiu

i/πbiνc ∈ Sν .
It is often convenient to consider a jagged precision which is defined by a sub-R-module P of Sν which is
also a Sν-module. For this it is enough for P to be stable by multiplication by u and uα/πβ . This can be
check easily if P is given by Pπ ∈ Sν .

If pπ is an integer, we will use the notations Pf (pu, pπ) for

P(

pu−1∑
i=0

πpπui/πbiνc +

∞∑
pu

ui/πbiνc)

which corresponds to the (pu, pπ)-flat approximation. If P ′ and P are two sub-R-modules of Sν such
that P ′ ⊂P then there is a canonical projection Sν/P ′ → Sν/P; by a slight abuse of notation, we will

31

denote it also repr(P). If λ ∈ Sν , and P is a sub-R-module of Sν , we denote by λ.P = {λ.x, x ∈P}
the sub-R-module of Sν . If λ is distinguished and Sν/P has finite length then Sν/(λ ·P) has finite length
as well. If P,P ′ are sub-R-modules of Sν , we denote by P ·P ′ the submodule generated by all products
xy for (x, y) ∈ (P ×P ′). It is clear that if Sν/P and Sν/P ′ have finite length then Sν/(P ·P ′) also
has finite length.

Lemma 4.1. For all P,P ′ sub-R-modules of Sν such that Sν/P and Sν/P ′ have finite length, for all
x, y ∈ Sν we have:

1. if P ′ ⊃P then repr(P ′)(repr(P)(x)) = repr(P ′)(x) ;

2. repr(P + P ′)(repr(P)(x)) + repr(P + P ′)(repr(P ′)(y)) = repr(P + P ′)(x+ y) ;

3. let P0 = y ·P + x ·P ′ + P ·P ′, then

repr(P0)(repr(P)(x)) · repr(P0)(repr(P ′)(y)) = repr(P0)(x · y);

4. if P ′ ⊃P , then repr(P ′)(repr(P)(x)) · repr(P ′)(y) = repr(P ′)(x · y)

Proof. The fist claim is trivial. Then we have (x+P) + (y+P ′) = x+y+ (P +P ′) and (x+P) · (y+
P ′) = x · y + x ·P ′ + y ·P + P ·P ′. The fourth claim, is an immediate consequence of 1 and 3.

We discuss briefly the complexity of the elementary arithmetic operations in Sν with the (pu, pπ)-flat
approximation. First, we remark that the size of an element of Sν with the (pu, pπ)-flat approximation is in
the order of pπ · pu. As before, the time of an addition in Sν is linear in the size of a representative of Sν
since it reduces to the addition of two polynomials of degree pu− 1 with coefficients in R/πpπR. We denote
by T (pu, pπ) the time cost of the multiplication of two elements of Sν with the (pu, pπ)−flat approximation.
Again, by using a tweaked Strassen’s algorithm, we have T (pu, pπ) = Õ(pu · T (pπ)) = Õ(pu · pπ). In the
following, we study the precision of some important functions using the flat and jagged approximation.

4.2 Finite precision computation with elements of Sν

Most of the time, even for very elementary function dealing with elements of Sν , it is not possible to
ensure the stability of the result without some extra assumption. We illustrate this fact with some important
examples.

4.2.1 Gauss valuation

First, consider the Gauss valuation function vν : K[[u]]→ Q. A natural way to define vν on a representative
modulo Pf (pu, pπ), with pu, pπ positive integers, is to compute the valuation of the truncated representative
in Sν . For instance let x = π+u10, then v0(repr(Pf (9, 2))(x)) = v0(π) = 1. We denote also this function
by vν . But then we have v0(repr(Pf (9, 2))(x)) = 1 and v0(repr(Pf (10, 2))(x)) = 0. From the previous
example, one can see that the Gauss valuation of an element x ∈ Sν,π can not be computed in general from
the knowledge of its approximation. Still, it is possible to obtain the Gauss valuation of an element x ∈ Sν,π
from the knowledge of its approximation if we are given some extra information about x. For instance, if
vν(repr(Pf (pu, pπ))(x)) = 0 and if we know furthermore that x ∈ Sν then we are sure that vν(x) = 0.
More generally, it may happen than we have a guarantee that x ∈ 1/πλ.Sν for a λ ∈ Z. Then, if ν is big
enough, it is possible to compute the valuation of x from the knowledge of repr(Pf (pu, pπ))(x).

Lemma 4.2. Let x =
∑
aiu

i ∈ 1/πλ · Sν for an nonnegative integer λ. Let pu be a positive integer and
x ∈ K[u] be the unique representative of x mod upu of degree < pu.

Let ν′ ∈ Q be such that

ν′ − ν ≥ λ

pu
, (25)

then vν′(x) = vν′(x) provided that vν′(x) < 0.

32

Proof. Let x =
∑
aiu

i ∈ 1/πλ · Sν . It is enough to prove that vν′(x− x) ≥ 0 or equivalently that:

vK(ai) + ν′ · i ≥ 0 (26)

for all i ≥ pu. Using our assumptions, we can write for i ≥ pu:

vK(ai) + ν′ · i = vK(ai) + ν · i+ (ν′ − ν) · i ≥ −λ+ i · λ
pu
≥ 0. (27)

The Lemma is proved.

This lemma, while totally elementary, shows the following very important fact: by increasing the ν
parameter of the Sν-module, one can obtain guarantees on the valuation of a certain x =

∑
aiu

i ∈ Sν from
the knowledge of its representative x =

∑pu−1
i=1 aiu

i (under some additional assumptions).

4.2.2 Inversion

We have the following Lemma:

Lemma 4.3. Let x ∈ Sν and suppose that degW (x) = 0 and that vν(x) = 0 so that by Corollary 2.8, x is
invertible. Let pu, pπ be positive integers. Then repr(Pf (pu, pπ))(x) ∈ Sν/Pf (pu, pπ) is also invertible
and we have repr(Pf (pu, pπ))(x)−1 = repr(Pf (pu, pπ))(x−1).

Proof. Write x =
∑
aiu

i/πbiνc, x−1 =
∑
biu

i/πbiνc and c = 1 =
∑
ciu

i/πbiνc with cj =
∑j
i=0 ai ·bj−i.

We have vK(a0) = 0 so that we can compute a0
−1 mod pπ = b0 mod pπ . Then, using the formula

bj
πbjνc

=
1

a0
·
j−1∑
i=0

aibj−i
πbiνcπb(j−i)νc

,

together with the remark that πbjνc/(πbiνcπb(j−i)νc) is equal to 1 or π, we obtain by induction for j =
1, . . . , pu − 1, bj mod pπ .

4.2.3 Euclidean division

Let x, y ∈ Sν and let q, r ∈ Sν,π be the quotient and remainder of the Euclidean division of y by x. We
will see that even if we are given flat approximations of x and y, the precision of q and r are not well
described by a flat approximation so that we have to use a finer model of precision such as the jagged
approximation in order to study the Euclidean division. We remark also that the Euclidean division is
not stable unless we have a guarantee on d = degW (x) since the degree of the remainder depends on d.
Let Pπ =

∑∞
i=0 aiu

i/πbiνc ∈ Sν defining a jagged precision. Let x =
∑∞
i=0 biu

i/πbiνc ∈ Sν and let
x̃ =

∑
b̃iu

i/πbiνc be a representative of repr(P(Pπ))(x). In general, we can not deduce degW (x) from
the knowledge of degW (x̃) and Pπ. Suppose that for i ∈ {0, . . . , d}, vK(ai) > vK(b̃i). This condition,
which can be checked by an algorithm that takes as input finite data structures representing x̃ and Pπ,
ensures that for i ∈ {0, . . . , d}, vK(bi) = vK(b̃i). If moreover we are given a guarantee, provided by the
mathematical context of the computations, that for all i > d, vK(bi) + νi ≥ vK(b̃d) + νd then we know that
degW (x) = degW (x̃) and NPν(x) = NPν(x̃). With these hypothesis, that we keep until the end of this
section, it makes sense to ask up to what precision it is possible to compute q and r from the knowledge of
the approximations x̃ and ỹ of x and y.

The following lemma is a useful tool in that direction:

Lemma 4.4. Let x ∈ Sν and let n ≥ degW (x) = d. Let (qn, rn) ∈ Sν,π × (K[u] ∩ Sν,π) be such
that un = qn · x + rn and deg(rn) < degW (x). Denote by Sx the set of slopes of NPν(x) and let
µ = −max{s ∈ Sx|s+ ν < 0} (see Figure 4 for an example).

We have:

NPν(rn) ⊂ t(0,µ(n−d)+vν(ud)−vν(x))(NPν(x)), (28)

NPν(qn) ⊂ {(x, y) ∈ R2|y ≥ vν(ud)− vν(x) + µ(n− d− x)}, (29)

where tv for v ∈ R2 is the translation by the vector v.

33

π

u

Figure 4: The Newton Polygon of π7 + π4u+ π2u5 + πu16 + π2u20 ∈ S0 where µ = 1/11.

Proof. We remark that we can suppose in the statement of the lemma that x is a degree d polynomial such
that degW (x) = d. Indeed, using the Weierstrass preparation Theorem 2.11, we can write x = hx′ with
h ∈ Sν invertible and x′ ∈ K[u]. Let Sx′ be the set of slopes of NPν(x′). As h is invertible, we get that
NPν(x) = NPν(x′) (recall that the slopes of the Newton polygon are the opposites of the valuations of the
roots of the corresponding series). As un = xqn + rn, we have un = x′(hqn) + rn. Again, as h is invertible,
NPν(qn) = NPν(hqn). As moreover, x′ is a degree d polynomial with deg(x) = d, we have proved our
claim.

From now on, we suppose that x is a degree d polynomial. We prove the lemma by induction on n. If
n = d then we have qd ∈ R with vK(qd) = vν(ud)− vν(x) (recall that deg(x) = d) and rd = ud − qdx. It
is clear that (28) and (29) are verified.

For n ∈ N, we write un = qn · x + rn, with qn and rn verifying the hypothesis of the lemma. Let
λ = vν(ud)− vν(x). We have un+1 = uqn · x+ urn. If deg(urn) < d then qn+1 = uqn and rn+1 = urn
so that, by the induction hypothesis, NPν(rn+1) ⊂ t(1,λ+µ(n−d))(NPν(x)) ∩ {(x, y) ∈ R2|x ≤ d− 1} ⊂
t(0,λ+µ(n+1−d))(NPν(x)) and NPν(qn+1) ⊂ t(1,0)({(x, y) ∈ R2|y ≥ λ + µ(n − d − x)}) = {(x, y) ∈
R2|y ≥ λ + µ(n + 1 − d − x)}. If deg(urn) = d, there exists ε an invertible element of R such that
urn = επλ

′
x+ rn+1 with λ′ ≥ vν(urn)− vν(x) and deg(rn+1) < d. Then we have qn+1 = u(qn + επλ

′
)

and rn+1 = urn − επλ
′
x and it is clear again that (28) and (29) are verified.

Let x, y ∈ Sν and let (q, r) ∈ Sν,π × (K[u] ∩ Sν,π) be such that y = q · x+ r and deg(r) < degW (x).
We suppose that x and y are known up to a certain precision and we would like to know up to what precision
can we compute q and r. Let Pπ,x =

∑∞
i=0 ai,xu

i/πbiνc and Pπ,y =
∑∞
i=0 ai,yu

i/πbiνc defining two (a
priori different) jagged precision. Let x1, x2 be two representatives of repr(P(Pπ,x))(x) and let y1, y2 be
two representatives of repr(P(Pπ,y))(y). For i = 1, 2, let (qi, ri) ∈ Sν,π × (K[u] ∩ Sν,π) be such that
deg(ri) < degW (x) and yi = qi ·xi+ri. Write x. = x2−x1, y. = y2−y1, q. = q2−q1 and r. = r2−r1. We
would like to write q. and r. as a function of x. , y. . From y1 = q1x1 +r1 and y1 +y. = (q1 +q.)(x1 +x.)+r1 +dr,
we deduce that

x2q. + r. = y. − q1x. , (30)

with deg(r.) < degW (x1). The space where y. − q1x. may vary is repr(P(Pπ,y))(y) + q1repr(P(Pπ,x))(x)
and we can approximate it from above by

y − q1x+ P(

∞∑
i=0

aiu
i/πbiνc)

where ai is an element having Gauss valuation max(vR(ai,y, vR(ai,y + vν(x)− vν(y)). (Note that the Gauss
valuation of q1 is known to be at least vν(x)− vν(y).) Therefore, we have found a formula for the precision
of y. − q1x. . Now, remark that Equation (30) defines q. and r. as respectively the quotient and remainder of the
Euclidean division of y. − q1x. by x2. Hence, we can apply Lemma 4.4 in order to deduce the precisions of q.
and r. respectively as a union of areas of the form (28) and (29).

As a conclusion, a possible method to perform the Euclidean division of x by y (which are elements of
Sν known up to some precision denoted by P(Pπ,x) and P(Pπ,y) respectively) goes as follows:

34

1. as explained above, we first compute the spaces where may vary q. and r., which are the precisions
attached to the quotient and the remainder respectively,

2. we then forget about precision: we choose any representative x̃ (resp. ỹ) of x (resp. y) in repr(P(Pπ,x))(x)
(resp. repr(P(Pπ,y))(y)) — typically we pick polynomials x̃ and ỹ — and we compute the Euclidean
division of x̃ by ỹ

3. we put together the precision obtained in the first step and the values obtained in the second step,
obtaining this way the answer.

Here is then a perfect concrete example where the computation of the precision on the one hand and the
computation of the actual answer on the other hand are entirely separated.

This approach has another very interesting feature, which we describe now. The starting remark is that, if
we choose x̃ and ỹ to be polynomials, we are reduced to compute Euclidean divisions between elements
of Sν that turn out to be polynomials. The point we want to discuss is that it is possible to design specific
algorithms — essentially based on Newton iteration — to take advantage of this extra assumption and
compute Euclidean divisions the complexity of which is not linear but logarithmic in the precision.

In order to describe this algorithm, we first notice that we can reduce the computation of the Euclidean
division of x̃ by ỹ to the computation of the Weierstrass preparation form of ỹ and an Euclidean division
between elements of K[u] ∩ Sν . Indeed, write ỹ = hỹ′ where h is an invertible element of Sν and
ỹ′ ∈ K[u] ∩ Sν with deg(ỹ′) = degW (ỹ). If q̃′ and r̃′ denotes the quotient and the remainder of the
Euclidean division of x̃ by ỹ′, we have the identity y = q′x′ + r′ from which we deduce y = q′h−1x+ r′.
Therefore, q = q′h−1 and r′ = r are the quotient and the remainder of the Euclidean division of x̃ by ỹ.
Moreover, h−1 can be computed from the knowlege of h with Algorithm 2 and q′ and r′ can be computed
using the usual Euclidean division algorithm for actual polynomials.

It remains to explain how one can compute efficiently the Weierstrass decomposition (in Sν) of a
polynomial ỹ. We first notice that, by our initial assumptions, we know that the Newton polygons of y
and ỹ agree. Hence, using it, we can decompose x̃ as a product hỹ′ corresponding respectively to the part
of slope > ν and the part of slope ≤ ν. The key observation is that the writing ỹ = hỹ′ is precisely the
Weierstass decomposition of ỹ; indeed, h is apparently a polynomial of degree degW(x̃) and ỹ′ is invertible
in Sν since all the slopes of its Newton polygon are ≤ ν. Finally, note that the writing ỹ = hỹ′ can be
computed efficiently by Algorithm 8 — which is a slight variation of usual Newton iteration — presented
below.

Algorithm 8: Weierstrass preparation
input :P ∈ K[u] ∩ Sν (known up to some precision), d = degW (P)
output :A ∈ K[u] ∩ Sν such that P = AB for a certain B ∈ Sν is a Weierstrass decomposition of P

1 A← P mod ud+1;
2 B ← 1, V ← 1, X ← P mod A;
3 while true do
4 A′ ← V X mod A;
5 if A′ = 0 (according to the precision) then break;
6 A← A+A′;
7 B,X ← quorem(P,A);
8 B ← B mod A;
9 V = [V (2−BV)] mod A;

10 return A;

4.3 Finite precision computation with modules with coefficients in Sν

Let M1 and M2 be two maximal sub-Sν-modules of Sdν . In this section, we are interested in the computation
of the maximal sum M1 +max M2 of M1 and M2. We would like to carry out computations with finite
precision and have a guarantee on the precision of the results.

35

4.3.1 A quick word about Greatest Common Divisor

The case of one-dimensional modules reduces to the computations of Greatest Common Divisors (gcd). In the
first small subsection, we illustrate with vary basic examples that, even in this case, the situation is far from
being simple. Suppose that R = Z5, ν = 0 so that Sν = Z5[[u]]. Let P1 = repr(Pf (∞, 2))(u − 1) and
P2 = repr(Pf (∞, 2))(u− 2). Then it is clear that for all P1, P2 ∈ Sν such that P1 = P1 mod Pf (∞, 2)
and P2 = P2 mod Pf (∞, 2) then gcd(P1, P2) = 1. This can be seen by using the Euclidean algorithm to
compute the extended gcd of P1 and P2 in Sν/Pf (∞, 2) which obviously returns 1. In this case, it is safe
to claim that gcd(P1, P2) = 1.

Next, consider P3 = repr(Pf (∞, 2))(u − 1) and P4 = repr(Pf (∞, 2))(u − 1). In this case, it is
very easy to find different representatives of P3 and P4 having different gcd. For instance, we can take
P3 = P4 = u− 1 in this case gcd(P3, P4) = u− 1 on the one hand and P3 = u− 1 and P4 = u− 6 then
gcd(P3, P4) = 1 on the other hand. If we compute the gcd of P3 and P4 using the Euclidean algorithm, we
obtain u− 1 and we do not have enough precision on the next remainder to decide whether it vanishes or not.
This example shows that, in the case that the gcd of the representatives is not surely 1 it is not even clear
how to define it since the result may change depending on the representatives in Sν that we use in order to
compute it.

4.3.2 Taking guarantees

As illustrated before (with the one-dimensional case), it is utopic to obtain a stable algorithm computing the
“free sum”. Actually, as before (see for instance §4.2.1), we need some extra information, that we can get from
the mathematical context of our computation, in order to guarantee the precision of the output. A very natural
extra information that can arise in practise is the following: let M1 and M2 be two sub-Sν-modules of Sdν,π
and we know that there exists a positive integer c such that M2 ⊂ 1/πcM1. We recognize a generalisation of
the hypothesis of Lemma 4.2 where we have shown in the case that d = 1 that we can obtain a guarantee on
the valuation vν of approximations of elements of K[[u]] for well chosen ν. This situation is also crucial in
the paper [4] in the particular case where M2 = Sνt where t is a generator of M2. We are going to see that,
although we don’t know how to compute an approximation of M1 +max M2, we can describe an algorithm
which outputs an approximation of (M1 ⊗Sν Sν′) +max (M2 ⊗Sν Sν′) for a well chosen ν′ > ν.

y = −νx

y = −ν′x y = −νx− c

pu

π

u

Figure 5: The computation of ν′ from pu and ν.

Let t ∈M2 be a generator and let (e1, . . . , eh) be a family of generators of M1. By our hypothesis, we
know that there exists λi ∈ 1/πc ·Sν such that t =

∑
λiei. We remark that if all the λi are in Sν then t ∈M1

so that M1 +Sν · t = M1 and there is nothing to do. Write λi =
∑
j≥0 a

i
ju
j with vK(aij) + ν · j ≥ −c. Let

pu a positive integer, we are going to choose ν′, as it is explained in figure 5, such that
∑
j≥pu a

i
ju
i ∈ Sν′ .

For this it is enough to take ν′ ≥ ν + c/pu. Let t′ =
∑
i λ
′
iei with λ′i =

∑pu−1
j=0 aiju

j and t′′ =
∑
i λ
′′
i ei

with λ′′i =
∑∞
pu
aiju

j . Using the same remark as above, we have:

(M1⊗Sν Sν′)+max (t ·Sν′) = (M1⊗Sν Sν′)+max (t′ ·Sν′)+max (t′′ ·Sν′) = (M1⊗Sν Sν′)+max (t′ ·Sν′),

since t′′ · Sν′ ∈M1. Now, as λ′i is a polynomial in u, we can obtain its valuation, greatest common divisor
and all the operations that we need in order to compute (M1 ⊗Sν Sν′) +max (t · Sν′).

36

We recall that we write ν = β/α with α, β relatively prime numbers and let $ in an algebraic closure of
K, be such that $α = π. Let R′ = R[$] and S′ν = Sν ⊗R R′. The algorithm AddVector is an adaptation
of the algorithm MatrixReduction.

Algorithm 9: AddVector
input :

• M ∈Md×h(Sν), a matrix whose column vectors C(i) for i = 1, . . . , h give generators of M1 in the
canonical basis of Sdν ;

• a list λ[1], . . . , λ[h] such that
∑
λiCi(M) = t, λ[i] ∈ 1/πc · Sν ∩K[u] and deg λ[i] ≤ pu − 1 for

i = 1, . . . , k.

output :M ∈Md×h(Sν) and a list L a matrix such that the column vectors $L[i] · Ci(M) give
generators of M1 +max t in the canonical basis of S′ν

d

1 L← [0, . . . , 0];
2 while ∃j ∈ {1, . . . , h} such that vν(λ[j])− L[j]

α < 0 do
3 while Cond(λ, L) is satisfied do
4 Pick up j0, j1 ∈ {1, . . . , h} such that λ[j0] · λ[j1] 6= 0, vν(λ[j0])− L[j0]

α ≤ vν(λ[j1])− L[j1]
α

and degW (λ[j0]) ≤ degW (λ[j1]);
5 if vν(λ[j0]) > vν(λ[j1]) then
6 δ0 ← dvν(λ[j0])− vν(λ[j1])e;
7 λ[j0]← π−δ0λ[j0];
8 L[j0]← L[j0]− α · δ0;

9 (q, r)← EuclideanDivision(λ[j0], λ[j1]);
10 λ[j1]← λ[j1]− qλ[j0];
11 Cj1(M)← Cj0(M) + qCj1(M);

12 Let j0 such that vν(λ[j0])− L[j0]
α = minj=1,...,h(λ[j])− L[j]

α);
13 Let j1 such that vν(λ[j1])− L[j1]

α = minj 6=j0(λ[j])− L[j]
α);

14 L[j0]← L[j0] + αvν(λ[j0])− L[j0]− αvν(λ[j1]) + L[j1];

15 return M,L;

In the preceding algorithm, Cond(λ, L) returns true if there exists j0, j1 ∈ {1, . . . , h} such that λ[j0] ·
λ[j1] 6= 0, vν(λ[j0])− L[j0]

α ≤ vν(λ[j1])− L[j1]
α and degW (λ[j0]) ≤ degW (λ[j1])

We want to give a consequence of this algorithm. We first need a definition.

Definition 4.5. Let M be a sub-Sν-module of Sdν . Let P be a sub-R-module of Sν . We say that a matrix
Mr = (mr

ij) ∈ Md×d′(Sν/P) is an P-approximation of M is there exists a matrix M = (mij) ∈
Md×d′(Sν) whose columns are the coordinates of generators of M in the canonical basis of Sdν and such
that mr

ij = repr(P)(mij).

Theorem 4.6. Let M1 and M2 = Sν .t for t ∈ Sdν be two finitely generated sub-Sν-modules of Sdν such
that M2 ⊂ 1/πcM1 for a positive integer c. Let M1 = (m1

ij) and M2 = (m2
ij) be the matrices with

coefficients in Sν of generators of M1 and M2 in the canonical basis of Sdν . Let pu, pπ be positive integers
and suppose that we are given Mr

1 = (repr(P0(pu, pπ))(m1
ij)) and Mr

2 = (repr(P0(pu, pπ))(m2
ij)). Let

ν′ = ν+c/pu, then there exists a polynomial time algorithm in the length of the representation ofMr
1 andMr

2

to compute a matrixMr
3 = (M3

ij) with coefficients in Sν′/P0(pu, pπ) which is a P0(pu, pπ)-approximation
of

(M1 ⊗Sν Sν′) +max (M2 ⊗Sν Sν′).

Remark 4.7. We insist on the fact that in Theorem 4.6 the modules M2 is supposed to be generated by
one unique element (hence, the matrix M2 is a column matrix). Of course, if M2 is generated by a family
(t1, . . . , th′), one can apply the algorithm AddVector successively with the vectors t1, . . . , th′ . However, we
emphasize that procedding this way we do not get

M1 ⊗Sν Sν′ +max M2 ⊗Sν Sν′

37

for a big slope ν′ but something which can be a little bit bigger since the change of slopes occurs at each
iteration and not only once at the end. Nevertheless for many applications (see for instance [4]), the
algorithm AddVector would be enough.

References
[1] Xavier Caruso. p-adic precision. en préparation.

[2] Xavier Caruso. Fp-représentations semi-stables. Ann. Inst. Fourier (Grenoble), 61(4):1683–1747
(2012), 2011.

[3] Xavier Caruso. Random matrix over a dvr and lu factorization. preprint, 2012.

[4] Xavier Caruso and David Lubicz. Semi-simplifiée modulo p des représentations semi-stables : une
approche algorithmique. en préparation.

[5] Henri Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts in
Mathematics. Springer-Verlag, Berlin, 1993.

[6] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic
Comput., 9(3):251–280, 1990.

[7] James L. Hafner and Kevin S. McCurley. Asymptotically fast triangularization of matrices over rings.
SIAM J. Comput., 20(6):1068–1083, 1991.

[8] Kenkichi Iwasawa. On Γ-extensions of algebraic number fields. Bull. Amer. Math. Soc., 65:183–226,
1959.

[9] A. Ya. Khinchin. Continued fractions. The University of Chicago Press, Chicago, Ill.-London, 1964.

[10] Serge Lang. Cyclotomic fields. Springer-Verlag, New York, 1978. Graduate Texts in Mathematics, Vol.
59.

[11] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese
by M. Reid.

[12] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge University Press,
Cambridge, second edition, 2003.

38

