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Abstract

We outline a method for the construction of genus 2 hyperelliptic curves over small degree
number fields whose Jacobian has complex multiplication and good ordinary reduction at the
prime 3. We prove the existence of a quasi-quadratic time algorithm for computing a canon-
ical lift in characteristic 3 based on equations defining a higher dimensional analogue of the
classical modular curve X0(3). We give a detailed description of our method in the special
case of genus 2.
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1 Introduction

The theory of complex multiplication yields an efficient method to produce abelian varieties over
a finite field with a prescribed endomorphism ring. In the case of elliptic curves, one starts with O
an order in an imaginary quadratic field of discriminant D. Let h = h(D) be the class number of
O. It is well known [26, Ch.II] that there exist exactly h isomorphism classes of elliptic curves with
complex multiplication by O. Let ji be their j-invariants where i = 1, . . . h . The usual CM-method
for elliptic curves consists of computing the ji using floating point arithmetic. One then recovers
the Hilbert class polynomial

HD(X) =
h∏
i=1

(X − ji)

from its real approximation, using the fact that it has integer coefficients. It is usual to assess the
complexity of this algorithm with respect to the size of the output. As h grows quasi-linearly with
respect to D, the complexity parameter is D.

In 2002, Couveignes and Henocq [5] introduced the idea of CM construction via p-adic lifting
of elliptic curves. The basis of their idea is to construct a CM lift, i.e. a lift of a curve over a finite
field to characteristic zero such that the Jacobian of the lifted curve has complex multiplication. In
the ordinary case the lifting can be done in a canonical way. In fact, one lifts a geometric invariant
of the curve using modular equations. The computation of the canonical lift of an ordinary elliptic
curve has drawn a considerable amount of attention in the past few years following an idea of
Satoh [24, 29, 11, 7, 25, 14]. Mestre generalized Satoh’s method to higher dimension using theta
constants. His purely 2-adic method [15, 22] is based on a generalization of Gauss’ arithmetic
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geometric mean (AGM) formulas. In this article we present formulas which may be seen as a 3-
adic analogue of Mestre’s generalized AGM equations. In contrast to the latter ones, our equations
do not contain information about the action of a lift of relative Frobenius on the cohomology. In
order to construct the canonical lift, we apply a modified version of the lifting algorithm of Lercier
and Lubicz [12] to our equations.

Next we compare our 3-adic CM method to the 2-adic CM method for genus 2 of Gaudry et
al. [8], which uses the classical Richelot correspondence for canonical lifting. The latter method
applies only to those CM fields K in which the prime 2 splits completely in the quadratic extension
K/K0, where K0 is the real subfield. For any other CM field K, the reduction of the CM curve at
2 will be non-ordinary. Thus there exists no ordinary curve with CM by K to serve as input to the
algorithm. The method presented in this paper exchanges this condition at 2 with the analogous
condition at 3. Hence the resulting 3-adic CM method applies to a large class of CM fields which
are not treatable by the prior 2-adic CM method [8].

Finally, we describe the techniques that are used in order to prove the equations introduced
in the present paper. We prove our equations using the theory of algebraic theta functions which
was developed by Mumford [17]. In the 3-adic arithmetic situation we make use of a canonical
coordinate system on the canonical lift whose existence is proven in [2]. Our algorithm is proven
by 3-adic analytic means and Serre-Tate theory.

This article is structured as follows. In Section 2 we prove equations which are satisfied by
the canonical theta null points of canonical lifts of ordinary abelian varieties over a perfect field
of characteristic 3. In Section 3, for lack of a suitable reference, we prove some properties of
algebraic theta functions which are used in the proof of the modular equations for the prime 3.
In Section 4 we describe a method for CM construction via canonical lifting of abelian surfaces in
characteristic 3. In Section 5 we recall classical results about the moduli of hyperelliptic genus 2
curves and provide examples of the CM invariants of abelian surfaces and genus 2 curves.

2 Modular equations of degree 3 and level 4

In this section we prove equations which have as solutions the theta null points of the canonical
lifts of ordinary abelian varieties over a perfect field of characteristic 3. The latter equations
form an essential ingredient of the 3-adic CM construction which is given in Section 4. Our proof
uses Mumford’s formalism of algebraic theta functions [17]. The results of Section 2.2 cannot
be obtained in a complex analytic setting. We remark that in [10] Y. Kopeliovich proves higher
dimensional theta identities of degree 3 using complex analytic methods. Our purely algebraic
method yields similar equations. Our set of equations is ’complete’ in the sense that it defines a
higher dimensional analogue of the classical modular curve X0(3).

2.1 Theta null points of 3-adic canonical lifts

For the basics about algebraic theta functions and standard notation we refer to [17]. Let R be a
complete noetherian local ring with perfect residue field k of characteristic 3. Assume that there
exists σ ∈ Aut(R) lifting the 3-rd power Frobenius automorphism of k. Let A be an abelian scheme
of relative dimension g over R, which is assumed to have ordinary reduction, and let L be an ample
symmetric line bundle of degree 1 on A. We set Zn = (Z/nZ)gR for an integer n ≥ 1. Assume that
we are given a symmetric theta structure Θ4 of type Z4 for the pair (A,L4). Let (au)u∈Z4 denote
the theta null point with respect to the theta structure Θ4. In the following we identify Z2 with
its image in Z4 under the morphism which maps component-wise 1 7→ 2. We define

S = {(x, y, z) ∈ Z3
4 | (x− 2y, x+ y − z, x+ y + z) ∈ Z3

2}.

For (x1, y1, z1), (x2, y2, z2) ∈ S we denote (x1, y1, z1) ∼ (x2, y2, z2) if there exists a permutation
matrix P ∈ M3(Z) such that

(x1 − 2y1, x1 + y1 − z1, x1 + y1 + z1) = (x2 − 2y2, x2 + y2 − z2, x2 + y2 + z2)P.
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Theorem 2.1 Assume that A is the canonical lift of Ak. For (x, y1, z1), (x, y2, z2) ∈ S such that
(x, y1, z1) ∼ (x, y2, z2) one has∑

u∈Z2

aσy1+uaz1+u =
∑
v∈Z2

aσy2+vaz2+v.

Proof. There exists a unique theta structure Θ2 of type Z2 for (A,L2) which is 2-compatible with
the given theta structure Θ4 (see [17, §2,Rem.1]). Now assume that we have chosen an isomorphism

Z3
∼→ A[3]et. (1)

In order to do so we may have to extend locally-étale the base ring R. Note that σ admits a unique
continuation to local-étale extensions. Our assumption is justified by the following observation.
As we shall see lateron, the resulting theta relations have coefficients in Z and hence are defined
over the original ring R.

By [2, Th.2.2] the isomorphism (1) determines a canonical theta structure Θcan
3 of type Z3

for L3. By Lemma 3.3 there exist semi-canonical product theta structures Θ6 = Θ2 × Θcan
3 and

Θ12 = Θ4 × Θcan
3 of type Z6 and Z12 for L6 and L12, respectively. By [2, Th.5.1] and Lemma

3.2 the canonical theta structure Θcan
3 is symmetric. We conclude by Lemma 3.4 that the theta

structures Θ2, Θ4, Θ6 and Θ12 are compatible in the sense of [3, §5.3]. For the following we assume
that we have chosen rigidifications for the line bundles Li and theta invariant isomorphisms

µi : π∗Li
∼→ V (Zi) = Hom(Zi,OR),

where i = 2, 4, 6, 12 and π : A→ Spec(R) denotes the structure morphism. Our choice determines
theta functions qLi ∈ V (Zi) which interpolate the coordinates of the theta null point with respect
to Θi (see [17, §1]). Let {δw}w∈Z2 denote the Dirac basis of the module of finite theta functions
V (Z2). Let now (x0, yi, zi) ∈ S where i = 1, 2 and set

(ai, bi, ci) = (x0 − 2yi, x0 + yi − zi, x0 + yi + zi).

Suppose that (x0, y1, z1) ∼ (x0, y2, z2), i.e. there exists a permutation matrix P ∈ M3(Z) such that

(a1, b1, c1) = (a2, b2, c2)P. (2)

For i = 1, 2 we set

S(i)
x0

= {(x, y, z) ∈ S | (x = x0) ∧ (x− 2y, x+ y − z, x+ y + z) = (ai, bi, ci)}.

By Theorem 3.11 there exists a λ ∈ R∗ such that(
δai ? δbi ? δci

)
(x0) (3)

= λ
∑

(x,y,z)∈S(i)
x0

δai(x− 2y)δbi(x+ y − z)δci(x+ y + z)qL12(y)qL4(z)

= λ
∑
t∈Z2

qL12(yi + t)qL4(zi + t).

It follows by Theorem 2.4 and Lemma 3.5 that there exists an α ∈ R∗ such that

qL12(z) = αqL4(z)σ (4)

for all z ∈ Z4. Combining the equations (3) and (4) we conclude that there exists λ ∈ R∗ such
that (

δai ? δbi ? δci

)
(x0) = λ

∑
t∈Z2

qL4(yi + t)σqL4(zi + t). (5)
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The commutativity of the ?-product and equality (2) imply that(
δa1 ? δb1 ? δc1

)
(x0) =

(
δa2 ? δb2 ? δc2

)
(x0). (6)

As a consequence of the equalities (5) and (6) we have∑
u∈Z2

qL4(y1 + u)σqL4(z1 + u) =
∑
v∈Z2

qL4(y2 + v)σqL4(z2 + v).

This completes the proof of Theorem 2.1. �

Note that by symmetry one has au = a−u for all u ∈ Z4. For the sake of completeness we also
give the well-known higher dimensional modular equations of level 4 which generalize Riemann’s
relation. Let

S′ = {(v, w, x, y) ∈ Z4
4 | (v + w, v − w, x+ y, x− y) ∈ Z4

2}.

For (v1, w1, x1, y1), (v2, w2, x2, y2) ∈ S′ we write (v1, w1, x1, y1) ∼ (v2, w2, x2, y2) if there exists a
permutation matrix P ∈ M4(Z) such that

(v1 + w1, v1 − w1, x1 + y1, x1 − y1) = (v2 + w2, v2 − w2, x2 + y2, x2 − y2)P.

Theorem 2.2 For (v1, w1, x1, y1), (v2, w2, x2, y2) ∈ S′ such that (v1, w1, x1, y1) ∼ (v2, w2, x2, y2),
the following equality holds∑

t∈Z2

av1+taw1+t

∑
s∈Z2

ax1+say1+s =
∑
t∈Z2

av2+taw2+t

∑
s∈Z2

ax2+say2+s.

A proof of the above theorem can be found in [17, §3].

2.1.1 Theta null values in dimensions 1 and 2

In this section we make the equations of Theorem 2.1 and Theorem 2.2 explicit in the case of
dimensions 1 and 2. Let Fq be a finite field of characteristic 3 having q elements and let R = W (Fq)
denote the Witt vectors with values in Fq. There exists a canonical lift σ ∈ Aut(R) of the 3-rd
power Frobenius of Fq. Let A be an abelian scheme over R with ample symmetric line bundle L
of degree 1 on A.

Dimension 1. Suppose that A is a proper smooth elliptic curve over R, and let (a0 : a1 : a2 : a3)
be the theta null point with respect to a symmetric theta structure of type (Z/4Z)R for (A,L4)
where L = L(0A) and 0A denotes the zero section of A. By symmetry we have a1 = a3, and
Theorem 2.2 implies that the projective point (a0 : a1 : a2) lies on the smooth genus 3 curve
A1(Θ4) ⊆ Proj(Z[ 12 , x0, x1, x2]) = P2

Z[ 12 ]
with defining equation

(x2
0 + x2

2)x0x2 = 2x4
1. (7)

The latter classical equation is known as Riemann’s relation. We remark that the points on A1(Θ4)
give the moduli of elliptic curves with symmetric 4-theta structure.

Now assume that A has ordinary reduction and that A is the canonical lift of AFq
. Theorem 2.1

implies that the coordinates of the projective point (a0 : a1 : a2) satisfy the equation

x0y2 + x2y0 = 2x1y1, (8)

where xi = ai and yi = aσi for i = 0, 1, 2.

Dimension 2. Now suppose that A has relative dimension 2 over R and that we are given a
symmetric theta structure of type (Z/4Z)2 for the pair (A,L4). Let (aij)(i,j)∈(Z/4Z)2 denote the
theta null point with respect to the latter theta structure. By symmetry we have

a11 = a33, a10 = a30, a01 = a03, a13 = a31, a32 = a12, a21 = a23.
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The 2-dimensional analogue of Riemann’s equation (8) are the equations

(x2
00 + x2

02 + x2
20 + x2

22)(x00x02 + x20x22) = 2(x2
01 + x2

21)
2

(x2
00 + x2

02 + x2
20 + x2

22)(x00x20 + x02x22) = 2(x2
10 + x2

12)
2

(x2
00 + x2

02 + x2
20 + x2

22)(x00x22 + x20x02) = 2(x2
11 + x2

13)
2

(x00x20 + x02x22)(x00x22 + x02x20) = 4x2
01x

2
21

(x00x02 + x20x22)(x00x22 + x02x20) = 4x2
10x

2
12

(x00x02 + x20x22)(x00x20 + x02x22) = 4x2
11x

2
13

(x2
00 + x2

02 + x2
20 + x2

22)x13x11 = (x2
12 + x2

10)(x
2
01 + x2

21)
(x2

00 + x2
02 + x2

20 + x2
22)x01x21 = (x2

12 + x2
10)(x

2
11 + x2

13)
(x2

00 + x2
02 + x2

20 + x2
22)x10x12 = (x2

01 + x2
21)(x

2
11 + x2

13)
(x02x20 + x00x22)x11x13 = 2x01x10x21x12

(x20x00 + x22x02)x10x12 = 2x11x13x21x01

(x00x02 + x20x22)x21x01 = 2x11x13x10x12

(x02x20 + x00x22)(x2
01 + x2

21) = 2x10x12(x2
11 + x2

13)
(x00x02 + x20x22)(x2

11 + x2
13) = 2x10x12(x2

01 + x2
21)

(x02x20 + x00x22)(x2
10 + x2

12) = 2x21x01(x2
11 + x2

13)
(x20x00 + x22x02)(x2

13 + x2
11) = 2x21x01(x2

10 + x2
12)

(x20x00 + x22x02)(x2
21 + x2

01) = 2x11x13(x2
10 + x2

12)
(x00x02 + x20x22)(x2

12 + x2
10) = 2x11x13(x2

01 + x2
21)

x01x21(x2
01 + x2

21) = x10x12(x2
10 + x2

12)
x01x21(x2

01 + x2
21) = x11x13(x2

11 + x2
13).

(9)

By Theorem 2.2 the point (aij)(i,j)∈(Z/4Z)2 is a solution of the equations (9), i.e. the above equations
hold for xij = aij . The latter equations determine a three dimensional subscheme A2(Θ4) of the
projective space

P9
Z[ 12 ] = Proj

(
Z[

1
2
, x00, x01, x02, x10, x11, x12, x13, x20, x21, x22]

)
.

The points on A2(Θ4) give the moduli of abelian surfaces with symmetric theta structure of type
(Z/4Z)2. We remark that the point

(a00 : a01 : a02 : a10 : a11 : a12 : a13 : a20 : a21 : a22) ∈ P9
Z[ 12 ](R)

is a solution of the equations (9) if and only if the projective coordinates(
a2
00 + a2

02 + a2
20 + a2

22 : 2(a2
01 + a2

21) : 2(a2
12 + a2

10) : 2(a2
11 + a2

13)
)
,(

a2
01 + a2

21 : a00a02 + a20a22 : 2a11a13 : 2a10a12

)
,(

a2
12 + a2

10 : 2a11a13 : a00a20 + a02a22 : 2a01a21

)
,(

a2
11 + a2

13 : 2a10a12 : 2a01a21 : a00a22 + a02a20

)
describe the same point in P3

Z[ 12 ]
(R). In fact the above formulas define a morphism to the space

of abelian surfaces with 2-theta structure which embeds in P3
Z[ 12 ]

. Together with the Riemann
equations, the following corollary of Theorem 2.1 forms the basis of our construction algorithm
for CM abelian surfaces.

Corollary 2.3 Assume that A has ordinary reduction and that A is the canonical lift of AFq . Let
(aij) denote the theta null point of A with respect to a given symmetric 4-theta structure. Then
the coordinates of the point

(a00 : a01 : a02 : a10 : a11 : a12 : a13 : a20 : a21 : a22) ∈ P9
Z[ 12 ](R)

satisfy the following relations

x00y02 + x02y00 + x20y22 + x22y20 − 2(x01y01 + x21y21) = 0
x00y20 + x20y00 + x02y22 + x22y02 − 2(x10y10 + x12y12) = 0
x00y22 + x22y00 + x02y20 + x20y02 − 2(x13y13 + x11y11) = 0

x01y21 + x21y01 − (x12y10 + x10y12) = 0
x01y21 + x21y01 − (x11y13 + x13y11) = 0,

(10)
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where xij = aij and yij = aσij.

2.2 Galois properties of the canonical theta structure

For our notation and standard definitions we refer to [17] and [2]. Let R be a complete noetherian
local ring with perfect residue field k of characteristic p > 2. Suppose that we are given an abelian
scheme A over R which has ordinary reduction. Let L be an ample symmetric line bundle of degree
1 on A. We set q = pd where d ≥ 1 is an integer. Assume that there exists a σ ∈ Aut(R) lifting the
q-th power Frobenius automorphism of k. Recall that there exists a canonical lift F : A→ A(q) of
the relative q-Frobenius morphism and a canonical ample symmetric line bundle L(q) of degree 1
on A(q) such that F ∗L(q) ∼= Lq (see [2, §5]). Let A(σ) be defined by the Cartesian diagram

A(σ)
pr //

��

A

��
Spec(R)

Spec(σ)// Spec(R),

(11)

where the right hand vertical arrow is the structure morphism. Let L(σ) be the pull back of L
along the morphism pr : A(σ) → A which is defined by the diagram (11).

Now let n ≥ 1 be a natural number such that (n, p) = 1, i.e. the numbers n and p are coprime.
Assume that we are given a symmetric theta structure Θn of type Zn = (Z/nZ)gR for Ln where
g = dimR(A). We denote by L(σ)

n the n-th power of L(σ). We obtain a theta structure Θ(σ)
n for L(σ)

n

on A(σ) by extension of scalars along Spec(σ) applied to the theta structure Θn : G(Zn)
∼→ G(Ln)

and by chaining with the natural isomorphism Zn
∼→ Zn,σ and the inverse of its dual. Assume

that A is the canonical lift of Ak. Our assumption implies that the abelian schemes A(q) and A(σ)

are canonical lifts which are canonically isomorphic over the residue field k. In the following we
will assume that the special fibers of A(q) and A(σ) are indeed equal. There exists a canonical
isomorphism τ : A(q) ∼→ A(σ) over R lifting the identity on special fibers.

We claim that τ∗L(σ) ∼= L(q). We set M = τ∗L(σ) ⊗ (L(q))−1. It follows by the definition of
L(q) that the class of M reduces to the trivial class. Note that τ∗L(σ) is symmetric. By [2, Th.5.1]
also the line bundle L(q) is symmetric. As a consequence the line bundle M is symmetric and
gives an element of Pic0

A(q)/R[2](R). We observe that the group Pic0
A(q)/R[2] is finite étale because

of the assumption p > 2. We conclude by the connectedness of the ring R that the class of M is
the trivial class. Hence our claim follows.

By the above discussion there exists an isomorphism γ : τ∗L(σ) ∼→ L(q). We define a Gm,R-
invariant morphism of theta groups τ∗ : G(L(σ)) → G(L(q)) by setting (x, ϕ) 7→

(
y, T ∗y γ◦τ∗ϕ◦γ−1

)
where y = τ−1(x) and ϕ : L(σ) ∼→ TxL(σ). Obviously, our definition is independent of the choice
of γ. For trivial reasons the morphism τ∗ gives an isomorphism.

Theorem 2.4 There exists a canonical theta structure Θ(q)
n of type Zn for L(q)

n depending on Θn

such that

τ∗ ◦Θ(σ)
n = Θ(q)

n . (12)

Proof. Assume that we have chosen an isomorphism

Zq = (Z/qZ)gR
∼→ A[q]et, (13)

where A[q]et denotes the maximal étale quotient of A[q]. In order to do so we may have to extend
R locally-étale. By [2, Th.2.2] there exists a canonical theta structure Θcan

q of type Zq for the
pair

(
A,Lq

)
depending on the isomorphism (13). We remark that the canonical theta structure is

symmetric by [2, Th.5.1] and Lemma 3.2. By Lemma 3.3 there exists a semi-canonical symmetric
product theta structure Θnq = Θn × Θcan

q of type Znq = (Z/nqZ)gR for the pair
(
A,Lnq

)
where

Lnq = L⊗nq. It follows from [3, Prop.5.3] that the theta structure Θnq descends along the Frobenius
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lift F to a canonical theta structure Θ(q)
n for L(q)

n . We choose Θ(q)
n = Θnq(id) where our notation

is as in [3, §5.2]. In the following we will prove that Θ(q)
n has the desired pull back property (12).

First we check the pull back property for the induced Lagrangian structures. Let δn, δ
(q)
n and

δ
(σ)
n be the Lagrangian structures which are induced by Θn, Θ(q)

n and Θ(σ)
n , respectively. We claim

that

δ(σ)
n = τ ◦ δ(q)n . (14)

As Θ(q)
n = Θnq(id) (notation as in [3, §5.2]) the restriction of the Lagrangian structure δ(q)n to

Zn equals the restriction of F ◦ δn. As a consequence the restrictions of the morphisms τ ◦ δ(q)n

and δ(σ)
n coincide on the special fiber. By general theory the reduction functor on the category of

finite étale schemes over R gives an equivalence of categories. We conclude that the equality (14)
restricted to Zn is true over R. The equality for ZDn can be proven analogously. Note that ZDn is
étale because of the assumption (n, p) = 1. Hence the claim follows.

It remains to show, on top of Lagrangian structures, the equality of theta structures as claimed
in (12). By [2, Prop.4.5] the theta structures Θn, Θ(σ)

n and Θ(q)
n give rise to sections s, s(σ) and

s(q) of theta exact sequences

0 // Gm,R

id

��

// G(L(q)
n ) //
OO

τ∗

H(L(q)
n )

τ

��

// 0

Zn

s(q)

ccGGGGGGGG

δ(q)
n

;;wwwwwwwww

s(σ){{wwwwwwww
δ(σ)

n

##GG
GG

GG
GG

G

0 // Gm,R
// G(L(σ)

n ) // H(L(σ)
n ) // 0.

(15)

We claim that the diagram (15) commutes. By definition, the squares of the above diagram com-
mute. By equation (14) the right hand triangle commutes. It remains to show that

τ∗ ◦ s(σ) = s(q). (16)

The difference of τ∗ ◦ s(σ) and s(q) gives a point ϕ ∈ HomR(Zn,GmR) = µn,R(R). It suffices to
show that the point ϕ reduces to the neutral element of µn,k, because the group µn,R is étale
and the ring R is connected. In the following we prove that ϕ has trivial reduction. Consider the
diagram

G(Ln)
εq //

OO

Θn

G(Lnq)OO

Θnq

G(Lnq)∗ //? _oo G(Lnq)∗/K̃OO
∼=

can,F // G(L(q)
n )
OO

Θ(q)
n

G(Zn)
Eq // G(Znq) Gm,R × Zn × ZDnq //

∼=

OO

? _oo Gm,R × Zn × (ZDnq/K) // G(Zn)

where Eq and εq are defined as in [3, §5.3], K = Ker(F ) and K̃ is a canonical lift of K to the
theta group G(Lnq). The group G(Lnq)∗ is defined as the centralizer of K̃ in G(Lnq). By Lemma
3.4 the left hand square of the above diagram is commutative. The lift K̃ is induced by some
isomorphism α : F ∗L(q)

n
∼→ Lnq. Let x ∈ Zn, y = δn(x, 1) and z = δ

(q)
n (x, 1). Suppose that

s(x) = Θn(1, x, 1) = (y, ψy) and s(q)(x) = Θ(q)
n (1, x, 1) = (z, γz). Note that z = F (y). It follows by

the commutativity of the above diagram that

ψ⊗qy = T ∗y α ◦ F ∗γz ◦ α−1. (17)

Equation (17) says in down-to-earth terms that, on the special fiber, the isomorphism γz is the
pull back of ψy under the isomorphism pr : A(σ) → A where the latter is defined by the diagram
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(11). This proves that the above character ϕ is trivial on the special fibre. This proves the equality
(16) and hence the diagram (15) is commutative. The proof for ZDn is analogous.

We remark that the equality (12) implies by means of descent that Θ(q)
n is defined over R. This

completes the proof of the theorem. �

3 On the theory of algebraic theta functions

In this section we prove some basic facts about algebraic theta functions which are needed in the
proof of Theorem 2.1. These results are absent from the literature. For an introduction to algebraic
theta functions we refer to [17].

3.1 Symmetric theta structures

In this section we recall the notion of a symmetric theta structure. The symmetry turns out to be an
essential ingredient in the proof of the theta relations of Theorem 2.1. We give a characterization
of the symmetry of a theta structure in terms of the symmetry of the associated line bundles. This
characterization is not obvious from the definitions given in [17, §2]. The results of this section
imply that the canonical theta structure, whose existence is proven in [2], is a symmetric theta
structure. Note that our definition of symmetry is weaker than the one given in [17, §2].

Let A be an abelian scheme over a ring R and let L be a line bundle on A. Consider the
morphism

ϕL : A→ Pic0
A/R, x 7→ 〈T ∗xL ⊗ L−1〉

where 〈·〉 denotes the class in Pic0
A/R. We denote the kernel of ϕL by A[L]. The line bundle L is

called symmetric if [−1]∗L ∼= L.
Now assume that we are given an isomorphism ψ : L ∼→ [−1]∗L. We denote the theta group of

the line bundle L by G(L). Let (x, ϕ) ∈ G(L), where x ∈ A[L] and ϕ : L ∼→ T ∗xL is an isomorphism,
and let τϕ denote the composed isomorphism

L ψ→ [−1]∗L [−1]∗ϕ−→ [−1]∗T ∗xL = T ∗−x[−1]∗L
T∗−xψ

−1

−→ T ∗−xL.

One defines a morphism δ−1 : G(L) → G(L) by setting δ−1(x, ϕ) = (−x, τϕ). We remark that
the definition of τϕ does not depend on the choice of the isomorphism ψ. Obviously δ−1 is an
automorphism of order 2 of the group G(L).

Let K be a finite constant group over R. We define an automorphism D−1 of the standard
theta group G(K) = Gm,R ×K ×KD by mapping (α, x, l) 7→ (α,−x, l−1). Assume now that we
are given a theta structure Θ : G(K) ∼→ G(L).

Definition 3.1 The theta structure Θ is called symmetric if the following equality holds

Θ ◦D−1 = δ−1 ◦Θ. (18)

Note that we do not assume that the line bundle L is totally symmetric as it is done in [17,
§2]. In the following we will give a necessary and sufficient condition for a theta structure to be
symmetric. Recall (see [2, §4]) that the theta structure Θ corresponds to a Lagrangian structure
of type K and isomorphisms

αK : I∗KMK
∼→ L and αKD : I∗KDMKD

∼→ L,

where IK : A → AK and IKD : A → AKD are isogenies with kernel K and KD, and MK and
MKD are line bundles on AK and AKD , respectively.

Lemma 3.2 The theta structure Θ is symmetric if and only if the line bundles MK and MKD

are symmetric.
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Proof. We prove that the equality (18) holds on the image of the morphism

sK : K → G(K), x 7→ (1, x, 1)

if and only if the line bundleMK is symmetric. An analogous proof exists for the dual construction.
Consider the following diagram

A[L] oo proj

OO

j

G(L)
δ−1 //

OO

Θ

G(L)
OO

Θ

K
sK // G(K)

D−1 // G(K).

Here the morphism j denotes the inclusion induced by the Lagrangian structure, which is part of
the theta structure Θ. By [2, Prop.4.2 and Prop.4.5] we have Θ(1, x, 1) =

(
j(x), T ∗j(x)αK ◦ α−1

K

)
.

We conclude that

δ−1

(
Θ(1, x, 1)

)
=
(
−j(x), T ∗−j(x)ψ

−1 ◦ [−1]∗(T ∗j(x)αK ◦ α−1
K ) ◦ ψ

)
where ψ : L ∼→ [−1]∗L is an isomorphism as above. On the other hand one has

Θ
(
D−1(1, x, 1)

)
=
(
− j(x), T ∗−j(x)αK ◦ α−1

K

)
.

Hence the equation (18) restricted to elements of the form (1, x, 1) translates as

T ∗−j(x)ψ
−1 ◦ [−1]∗(T ∗j(x)αK ◦ α−1

K ) ◦ ψ = T ∗−j(x)αK ◦ α−1
K .

The latter equality is equivalent to

[−1]∗α−1
K ◦ ψ ◦ αK = T ∗−j(x)([−1]∗α−1

K ◦ ψ ◦ αK).

The latter equality means that the composed isomorphism

I∗KMK
αK→ L ψ→ [−1]∗L

[−1]∗α−1
K−→ [−1]∗I∗KMK = I∗K [−1]∗MK

is invariant under T ∗−j(x) for all x ∈ K. This is true if and only if this isomorphism equals the pull

back of an isomorphism MK
∼→ [−1]∗MK along IK . Thus the lemma is proven. �

3.2 Product theta structures

The construction of product theta structures is considered as known to the experts. But the reader
should be aware of the fact that a product theta structure of given theta structures does not
always exist. In this section we clarify the situation by proving the existence of a product theta
structure under a reasonable coprimality assumption. We provide detailed proofs because of the
lack of a suitable reference.

Let A be an abelian scheme of relative dimension g over a ring R and let L be an ample
symmetric line bundle of degree 1 on A. For an integer n ≥ 1 we set Zn = (Z/nZ)gR. Now let
n,m ≥ 1 be integers such that (n,m) = 1, i.e. the numbers n and m are coprime. Assume we are
given theta structures

Θn : G(Zn)
∼→ G(Ln) and Θm : G(Zm) ∼→ G(Lm).

We consider Zn and Zm as subgroups of Znm via the morphisms that map component-wise 1 7→ m
and 1 7→ n, respectively.

Lemma 3.3 There exists a natural product theta structure

Θnm : G(Znm) ∼→ G(Lnm)

depending on the theta structures Θn and Θm.
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Proof. Let εn, εm, En, Em, ηn, ηm, Hn and Hm be defined as in [3, §5.3]. We claim that for all
g ∈ G(Ln) and h ∈ G(Lm) we have

εn(h)εm(g) = εm(g)εn(h), (19)

where the product is taken in G(Lnm). Let δn and δm denote the Lagrangian structures that are
induced by Θn and Θm. We set δnm = δn × δm. Condition (19) is equivalent to

eLnm

(
δnm(xg, lg), δnm(xh, lh)

)
= 1,

where the elements δnm(xg, lg) and δnm(xh, lh) are the images of εm(g) and εn(h), respectively,
under the natural projection G(Lnm) → H(Lnm). The vanishing of the commutator pairing follows
from the bilinearity and the assumption (n,m) = 1. This proves the above claim. As a consequence
there exists a canonical morphism of groups

ε : G(Ln)×G(Lm) → G(Lnm) given by (g, h) 7→ εm(g)εn(h).

Because of our assumption (n,m) = 1 the subgroup C = ker(ε) is contained in the subtorus
Gm,S ×Gm,S of G(Ln)×G(Lm). In the following we will prove that ε is surjective. Consider the
diagram

G(Ln)×G(Lm) ε //

πn×πm

��

G(Lnm)

π

��
H(Ln)×H(Lm) can //

s

[[

H(Lnm)

where π and πn × πm denote the natural projections. Let s be the section of πn × πm induced by
the theta structures Θn and Θm. We have π ◦ ε = πn × πm (up to canonical isomorphism). As
a consequence we have π ◦ ε ◦ s = (πn × πm) ◦ s = id. We conclude that π ◦ ε ◦ s ◦ π = π. Let
g ∈ G(Lnm). Then by the latter equality the group element ε(s(π(g))) differs from g by a unit.
Hence the morphism ε maps a suitable multiple of s(π(g)) to g. This implies the surjectivity of ε.
As a consequence ε induces an isomorphism

ε̃ :
(
G(Ln)×G(Lm)

)
/C → G(Lnm)

By the same reasoning as above one can define a natural morphism E : G(Zn)×G(Zm) → G(Znm),
and it is readily verified that the induced morphism Ẽ :

(
G(Zn) × G(Zm)

)
/C → G(Znm) is an

isomorphism of groups. Let Θnm denote the composed isomorphism

G(Znm) Ẽ
−1

−→
(
G(Zn)×G(Zm)

)
/C

Θn×Θm−→
(
G(Ln)×G(Lm)

)
/C

ε̃→ G(Lnm).

The morphism Θnm establishes the theta structure whose existence is claimed in the lemma. �

Now let Θnm be as in Lemma 3.3 and define the m-compatibility of theta structures as in [3, §5.3].

Lemma 3.4 Assume that Θn is symmetric. Then Θnm is m-compatible with Θn.

Proof. Let εn, εm, En, Em, ηn, ηm, Hn and Hm be defined as in [3, §5.3]. Note that by the defini-
tion of Θnm there is an equality Θnm◦Em = εm◦Θn. It remains to check that ηm◦Θnm = Θn◦Hm.
In other words, we have to prove that

Θn ◦Hm ◦ Em = ηm ◦ εm ◦Θn and Θn ◦Hm ◦ En = ηm ◦ εn ◦Θm. (20)

Using the definition we compute Hm(En(α, x, l)) = (αnm, 0, 1). As (n,m) = 1, it follows that the
image of ηm ◦ εn is contained in Gm,R. Hence the right hand equation in (20) is a consequence of
the Gm,R-equivariance of Θn and Θm. It remains to prove the left hand equation. We have

ηm ◦ εm = δm and Hm ◦ Em = Dm (21)
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where Dm denotes the map G(Zn) → G(Zn), (α, x, l) 7→ (αm
2
,mx, lm) and δm : G(Ln) → G(Ln)

is given by
g 7→ g(m2+m)/2 · δ−1(g)(m

2−m)/2.

Here δ−1 is defined as in Section 3.1. The right hand equation in (21) follows by expanding
the definitions. The left hand equation in (21) is proven in [17, §2, Prop.5]. A straight forward
calculation yields that for all g ∈ G(Zn) one has

Dm(g) = g(m2+m)/2 ·D−1(g)(m
2−m)/2. (22)

The left hand equality in (20) is implied by the equalities (21) and (22) using the assumption that
Θn is symmetric, i.e. equation (18) holds. This completes the proof of the lemma. �

3.3 Descent of theta structures by isogeny

In this section we prove some lemma which forms an important ingredient of the proof of Theorem
2.1. The lemma is about special theta relations which are induced by descent along isogenies. A
proof of this key lemma in terms of algebraic theta functions is absent from the literature. In the
following we use the notion of compatibility as defined in [3, §5.2-5.3].

Let R be a local ring, and let πA : A → Spec(R) and πB : B → Spec(R) be abelian schemes
of relative dimension g. We set Zn = (Z/nZ)gR for an integer n ≥ 1. As usual, we consider
Zn as embedded in Zmn via the morphism that maps component-wise 1 7→ n. Let M be an
ample symmetric line bundle on B. Suppose that we are given 2-compatible theta structures
Σj : G(Zjm) ∼→ G(Mj) for some m ≥ 1, where j ∈ {1, 2}. Let F : A→ B be an isogeny of degree
dg. Assume that there exists an ample symmetric line bundle L on A such that F ∗M ∼= L. Now
assume that we are given 2-compatible theta structures Θj : G(Zjmd)

∼→ G(Lj) such that Θj and
Σj are F -compatible. By general theory there exist theta group equivariant isomorphisms

µj : πA,∗Lj
∼→ V (Zjmd) and γj : πB,∗Mj ∼→ V (Zjm).

Suppose that we have chosen rigidifications of L and M. This defines, by means of µj and γj ,
theta functions qMj ∈ V (Zjm) and qLj ∈ V (Zjmd) (see [17, §1] [3, §5.1]). Here we denote the
module of algebraic theta functions by V (Zn) = Hom(Zn,OR) for an integer n ≥ 1. The following
lemma generalizes [3, Lem.6.4].

Lemma 3.5 There exists a λ ∈ R∗ such that for all x ∈ Z2m one has

qM2(x) = λqL2(x).

Proof. By Mumford’s 2-Multiplication Formula [17, §3] there exists a λ ∈ R∗ such that for all
z ∈ Zm and x ∈ Z2m we have

(1 ? δz)(x) = λ
∑

y∈x+Zm

δz(x− y)qM2(y) = λqM2(x− z).

Here 1 denotes the finite theta function which takes the value 1 on all of Zm. The Isogeny Theorem
[17, §1,Th.4] implies that there exists a λ ∈ R∗ such that for x ∈ Z2dm we have

F ∗(1 ? δz)(x) =
{
λqM2(x− z), x ∈ Z2m

0 , else

Also there exists a λ1, λ2 ∈ R∗ such that for x ∈ Zmd we have

F ∗(1)(x) =
{
λ1, x ∈ Zm
0 , else and F ∗(δz) = λ2δz.
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Again by Mumford’s multiplication formula there exists a λ ∈ R∗ such that for all x ∈ Z2md we
have (

F ∗(1) ? F ∗(δz)
)
(x) = λ

∑
y∈x+Zmd

F ∗(1)(x+ y)δz(x− y)qL2d(y)

=
{
λqL2(x− z), x ∈ Z2m

0 , else

The Lemma now follows from the observation that F ∗(1) ? F ∗(δz) and F ∗(1 ? δz) differ by a unit.
�

3.4 Products of abelian varieties with theta structure

In this section we prove the existence of finite products abelian varieties with theta structures.
This kind of product is needed in the proof of the 3-multiplication formula.

Let A1, . . . , An be abelian schemes over a ring R. Assume we are given a line bundle Li on Ai
and a theta structure Θi of type Ki for (A,Li) for all i = 1, . . . , n. We set

A =
n∏
i=1

Ai, K =
n∏
i=1

Ki and L =
n⊗
i=1

p∗iLi

where pi : A→ Ai denotes the projection on the i-th factor.

Lemma 3.6 There exists a natural product theta structure of type K for (A,L) depending on the
theta structures Θi, where i = 1, . . . n.

Proof. We remark that there exists a canonical isomorphism
∏n
i=1H(Li)

∼→ H(L). Consider the
morphism ϕ :

∏n
i=1G(Li) → G(L) given by (xi, ψi) 7→

(
(xi)i=1...n,⊗ni=1p

∗
iψi
)
. Note that

n⊗
i=1

p∗i T
∗
xi
Li =

n⊗
i=1

T ∗(x1,...,xn)p
∗
iLi = T ∗(x1,...,xn)L.

Obviously, C = ker(ϕ) ⊆ Gn
m,R. We claim that ϕ is surjective. Consider the diagram∏n

i=1G(Li)
ϕ //

π1×...×πn

��

G(L)

π

��∏n
i=1H(Li)

can //

s

ZZ

H(L)

,

where πi (i = 1, . . . , n) and π denote the natural projections. Let s be the canonical section of
π1 × . . .× πn induced by the theta structures Θi. We have π ◦ ϕ = π1 × . . .× πn (up to canonical
isomorphism). As a consequence we have π ◦ ϕ ◦ s = (π1 × . . . × πn) ◦ s = id. We conclude that
π ◦ ϕ ◦ s ◦ π = π. Let g ∈ G(L). Then by the latter equality the group element ϕ(s(π(g))) differs
from g by a unit. Hence the morphism ϕ maps a suitable multiple of s(π(g)) to g. This implies
the surjectivity of ϕ and proves our claim.

Analogously, one defines a surjective morphism Φ :
∏n
i=1G(Ki) → G(K) having kernel equal

to C. Let ϕ̃ and Φ̃ denote the induced isomorphisms(
n∏
i=1

G(Li)

)
/C

∼→ G(L) and

(
n∏
i=1

G(Ki)

)
/C

∼→ G(K).

The theta structure Θ whose existence is claimed in the lemma is given by the composed isomor-
phism

G(K) Φ̃−1

−→

(
n∏
i=1

G(Ki)

)
/C

Θ1×...×Θn−→

(
n∏
i=1

G(Li)

)
/C

ϕ̃−→ G(L).

This completes the proof of the lemma. �
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3.5 An algebraic proof of the 3-multiplication formula

In the following we give a 3-multiplication formula for algebraic theta functions in the context of
Mumford’s theory [17]. Our method of proof extends to an arbitrary n-product of algebraic theta
functions. For this reason it seems to be instructive to give a detailed proof in terms of Mumford’s
algebraic theta functions. The following proof generalizes in a straight forward manner Mumford’s
proof of his 2-multiplication formula [17, §3]. The classical complex analytic 3-multiplication for-
mula does not apply in our case because we are working in an arithmetic setting. The theory of
algebraic theta functions allows us to keep track of the reduction modulo the prime 3. Let us re-
mind the reader, that our aim is to use the 3-multiplication formula in order to lift theta null points
from the special fiber to characteristic 0. For the proof of the complex analytic 3-multiplication
formula we refer to [1, Ch.7.6].

Let A be an abelian scheme over a local ring R and let ξ denote the isogeny A3 → A3 given by

(x1, x2, x3) 7→ (x1 − 2x2, x1 + x2 − x3, x1 + x2 + x3)

Assume we are given an ample line bundle L on A and theta structures Θi of type Ki for Li where
i ∈ I = {1, 2, 3, 6}. We assume that the theta structures Θi, i ∈ I, are compatible in the sense of
[3, §5.3]. We set

Mi,j,l = p∗1Li ⊗ p∗2Lj ⊗ p∗3Ll,

where pr : A3 → A, r = 1, 2, 3, is the projection on the r-th factor, and Ki,j,l = Ki ×Kj ×Kl for
i, j, l ∈ I. By Lemma 3.6 there exist product theta structures Θ1,1,1 and Θ3,6,2 of type K1,1,1 and
K3,6,2 for M1,1,1 and M3,6,2, respectively, depending on the theta structures Θi where i ∈ I.

Proposition 3.7 There exists an isomorphism

ξ∗M1,1,1
∼→M3,6,2. (23)

Proof. Let b = (b1, b2) ∈ A2 and a ∈ A. We define

s1 : A2 → A3, (x1, x2) 7→ (a, x1, x2) and s2 : A→ A3, x 7→ (x, b1, b2).

One computes

s∗2M3,6,2 = s∗2p
∗
1L3 ⊗ s∗2p

∗
2L6 ⊗ s∗2p

∗
3L2 = (p1 ◦ s2)∗L3 ⊗ (p2 ◦ s2)∗L6 ⊗ (p3 ◦ s2)∗L2 = L3.

and

s∗2ξ
∗M1,1,1 = (p1 ◦ ξ ◦ s2)∗L ⊗ (p2 ◦ ξ ◦ s2)∗L ⊗ (p3 ◦ ξ ◦ s2)∗L

= T ∗−2b1L ⊗ T ∗b1−b2L ⊗ T ∗b1+b2L = L3.

The latter equality follows by the Theorem of the Square. Now take a = 0A where 0A denotes
the zero section of A. Let p23 : A3 → A2 be the projection on the 2-nd and 3-rd factor and let
p̃m : A2 → A denote the projection on the m-th factor (m = 1, 2). We have

s∗1M3,6,2 = (p1 ◦ s1)∗L3 ⊗ s∗1(p
∗
2L6 ⊗ p∗3L2)

= (p1 ◦ s1)∗L3 ⊗ (p23 ◦ s1)∗(p̃∗1L6 ⊗ p̃∗2L2) = p̃∗1L6 ⊗ p̃∗2L2.

By [17, §3,Prop.1] we conclude that

s∗1ξ
∗M1,1,1 = (p1 ◦ ξ ◦ s1)∗L ⊗ (p23 ◦ ξ ◦ s1)∗(p̃∗1L ⊗ p̃∗2L)

= p̃∗1[2]∗[−1]∗L ⊗ (p̃∗1L ⊗ p̃∗2L)2 = p̃∗1L6 ⊗ p̃∗2L2.

The latter equality follows by the symmetry of L. Note that p23 ◦ ξ ◦ s1 equals the isogeny used in
[17, §3,Prop.1]. The proposition now follows by applying the Seesaw Principle. �

Lemma 3.8 The theta structure Θ3,6,2 is ξ-compatible with Θ1,1,1.
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Proof. We have to check the compatibility assumptions of [2, §5.2]. We have already shown in
Proposition 3.7 that there exists an isomorphism α : ξ∗M1,1,1

∼→M3,6,2. Let τ be the morphism
A → A3, x 7→ (2x, x, 3x). The kernel of ξ is given by the restriction of τ to A[6]. In the following
we will identify the groups K6 ×KD

6 , K1,1,1 ×KD
1,1,1 and K3,6,2 ×KD

3,6,2 with their images under
the Lagrangian decompositions induced by the theta structures Θ6, Θ1,1,1 and Θ3,6,2, respectively.
Note that A[6] is contained in the image of K6×KD

6 under τ . By the compatibility assumptions we
have τ

(
K6) ⊆ K3,6,2 and τ

(
KD

6

)
⊆ KD

3,6,2. We conclude that condition (†) of [2, §5.2] is satisfied
with Z1 = τ

(
A[6] ∩K6

)
and Z2 = τ

(
A[6] ∩KD

6

)
. The isomorphism (23) gives rise to a subgroup

K̃ ≤ G(M3,6,2) lifting the kernel of ξ. Let G(M3,6,2)∗ denote the centralizer of K̃ in G(M3,6,2).
By [17, §1,Prop.2] we have

G(M3,6,2)∗ =
{
g ∈ G(M3,6,2)|ξ

(
π3,6,2(g)

)
∈ A3[M1,1,1]

}
(24)

where π3,6,2 : G(M3,6,2) → A3[M3,6,2] is the natural projection. Here we denote

A3[Mi,j,l] = {x ∈ A3|T ∗xMi,j,l
∼= Mi,j,l}

for all i, j, l ∈ I. Because of the equality (24) we have

Z⊥1 = {(x, y, z) ∈ K3,6,2|ξ(x, y, z) ∈ K1,1,1} and Z⊥2 = {(x, y, z) ∈ KD
3,6,2|ξ(x, y, z) ∈ KD

1,1,1}

(notation as in [2, §5.2]). Obviously the isogeny ξ induces a surjective morphism σ : Z⊥1 → K1,1,1

having kernel Z1. Let σ1 be the inverse of the isomorphism Z⊥1 /Z1
∼→ K1,1,1 induced by σ. Let σ2

be defined as in [3, §5.2]. It remains to check the commutativity of the following diagram

G(M3,6,2)∗/K̃ oo Θ3,6,2

can,ξ

��

Gm,R × Z⊥1 /Z1 × Z⊥2 /Z2OO

id×σ1×σ2

G(M1,1,1) oo Θ1,1,1 Gm,R ×K1,1,1 ×KD
1,1,1

(25)

where the left hand vertical morphism is defined as in the proof of [17, §1,Prop.2]. We claim that
the group Gm,R × Z⊥1 /Z1 × Z⊥2 /Z2 is generated by Gm,R and elements of the form

(1, 2x, x, 3x, l2, l, l3), (1, 2x, x,−3x, l2, l, l−3) and (1, 2x,−2x, 0, l2, l−2, 1)

where (x, l) ∈ K6 ×KD
6 . Let ξ′ denote the isogeny A3 → A3 given by

(x1, x2, x3) 7→ (2x1 + 2x2 + 2x3,−2x1 + x2 + x3,−3x2 + 3x3).

Assume we are given an element (1, x, l) of Gm,R × Z⊥1 × Z⊥2 . We denote ξ(x, l) = (x̄, l̄). Choose
x̃ ∈ K6,6,6 and l̃ ∈ KD

6,6,6 such that [6](x̃, l̃) = (x̄, l̄). One verifies that ξ ◦ ξ′ = [6] and hence the
element ξ′(x̃, l̃) ∈ K3,6,2 × KD

3,6,2 differs from (x, l) by an element of Z1 × Z2. This implies the
above claim.

In the sequel we will prove the commutativity of the diagram (25) for elements of the form
(1, 2x, x, 3x, l2, l, l3). The proof for elements of the form

(1, 2x, x,−3x, l2, l, l−3) and (1, 2x,−2x, 0, l2, l−2, 1)

goes analogously and is left to the reader. We define

ι : G(K6) → G(K3,6,2), (α, x, l) 7→ (α6, 2x, x, 3x, l2, l, l3)

and set κ = Θ3,6,2 ◦ ι ◦ Θ−1
6 . Let G(K6)] = ι−1G(K3,6,2)∗ and G(L6)] = Θ6

(
G(K6)]

)
. We define

ϕ3 : G(L) → G(M1,1,1) and Φ3 : G(K1) → G(K1,1,1) to be the restriction on the 3-rd factor of the
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morphism ϕ and Φ introduced in the proof of Lemma 3.6. It is readily checked that the following
diagram (dotted arrows ignored) is commutative

G(L6)]

η6

��

oo Θ6

κ

&&NNNNNNNNNNN
G(K6)]

H6

��

ι

((RRRRRRRRRRRRRR

G(M3,6,2)∗/K̃ oo
Θ3,6,2

can,ξ

��

Gm,R × Z⊥1 /Z1 × Z⊥2 /Z2OO

id×σ1×σ2G(L) oo Θ1

ϕ3

&&NNNNNNNNNNN G(K1)
Φ3

((RRRRRRRRRRRRRR

G(M1,1,1) oo Θ1,1,1 Gm,R ×K1,1,1 ×KD
1,1,1.

Here η6 and H6 are defined as in [3, §5.3]. Note that the upper left square is commutative since
Θ6 and Θ1 are assumed to be 6-compatible.

In order to show that the diagram (25) is commutative on the subset of elements of the form
(1, 2x, x, 3x, l2, l, l3) it suffices to prove that the following diagram commutes

G(L6)] κ //

η6

��

G(M3,6,2)∗/K̃

can,ξ

��
G(L)

ϕ3 // G(M1,1,1).

Consider the commutative diagram

A3
ξ //

OO
τ

A3
OO
i3

A
[6] // A

where i3(x) = (0, 0, x). There exist isomorphisms

β : [6]∗L ∼→ L36 and γ : i∗3M1,1,1
∼→ L.

The existence of the isomorphism β is implied by the symmetry of L. Consider the isomorphism
δ given by the composition

τ∗M3,6,2
τ∗α−1

−→ τ∗ξ∗M1,1,1 = (ξ ◦ τ)∗M1,1,1 = (i3 ◦ [6])∗M1,1,1 = [6]∗i∗3M1,1,1
[6]∗γ−→ [6]∗L β→ L36,

where α is as above. The isomorphism δ induces a morphism

can, τ : G(M3,6,2) → G(L36), (x, ψ) 7→
(
p2(x), T ∗p2(x)δ ◦ τ

∗ψ ◦ δ−1
)

where p2 : A3 → A denotes the projection on the second factor. We claim that the following
diagram is commutative

G(L6) κ //

ε6

��

G(M3,6,2)

can,τ
yyrrrrrrrrrr

G(L36)

(26)
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where ε6 is defined as in [3, §5.3]. Let g =
(
(x, l), ψ

)
∈ G(L6) and h = Θ−1

6 (g). By definition we
have

ι(h) = Φ
(
H2(h), h,H3(h)

)
and hence

κ(g) = ϕ
(
η2(g), g, η3(g)

)
=
(
(2x, x, 3x, l2, l, l3), p∗1η2(ψ)⊗ p∗2ψ ⊗ p∗3η3(ψ)

)
.

The image of κ(g) under the canonical morphism induced by δ is given by(
x, T ∗x δ ◦ τ∗

(
p∗1η2(ψ)⊗ p∗2ψ ⊗ p∗3η3(ψ)

)
◦ δ−1

)
.

Choose isomorphisms ρ2 : [2]∗L ∼→ L4 and ρ3 : [3]∗L ∼→ L9. Consider the composed isomorphism
δ′ given by

τ∗M3,6,2 = τ∗(p∗1L3 ⊗ p∗2L6 ⊗ p∗3L2) = (p1 ◦ τ)∗L3 ⊗ (p2 ◦ τ)∗L6 ⊗ (p3 ◦ τ)∗L2

= [2]∗L3 ⊗ L6 ⊗ [3]∗L2 ρ2⊗id⊗ρ3−→ L36.

The isomorphism δ′ differs from δ by a unit. Thus we have

T ∗x δ ◦ τ∗
(
p∗1η2(ψ)⊗ p∗2ψ ⊗ p∗3η3(ψ)

)
◦ δ−1

= T ∗x δ
′ ◦ τ∗

(
p∗1η2(ψ)⊗ p∗2ψ ⊗ p∗3η3(ψ)

)
◦ (δ′)−1

= T ∗x δ
′ ◦
(
(p1 ◦ τ)∗η2(ψ)⊗ (p2 ◦ τ)∗ψ ⊗ (p3 ◦ τ)∗η3(ψ)

)
◦ (δ′)−1

= T ∗x δ
′ ◦
(
[2]∗η2(ψ)⊗ ψ ⊗ [3]∗η3(ψ)

)
◦ (δ′)−1

=
(
T ∗xρ2 ◦ [2]∗η2(ψ) ◦ ρ−1

2

)
⊗ ψ ⊗

(
T ∗xρ3 ◦ [3]∗η3(ψ) ◦ ρ−1

3

)
= ε2(ψ)⊗ ψ ⊗ ε3(ψ) = ε6(ψ).

This proves our claim, i.e. the commutativity of diagram (26). The isomorphism γ induces a
morphism

can, i3 : G(M1,1,1) → G(L), (x, ψ) 7→
(
p3(x), T ∗p3(x)γ ◦ i

∗
3ψ ◦ γ−1

)
where p3 : A3 → A denotes the projection on the 3rd factor. Consider the diagram

G(M3,6,2)∗ //

can,τ

��

kk
κ

VVVVVVVVVVVVVVVVVVVVVVV G(M3,6,2)∗/K̃
can,ξ // G(M1,1,1)

can,i3

��

G(L6)]

ε6

sshhhhhhhhhhhhhhhhhhhhhhhh
η6

))SSSSSSSSSSSSSSSSSS

G(L36) oo ? _G(L36)∗ // G(L36)∗/Ã[6]
can,[6]

// G(L).

ϕ3

KK

Here G(L36)∗ denotes the centralizer of the lifted subgroup Ã[6] in G(L36). By the above discussion
the left hand triangle is commutative. By the same reasoning as above it follows that the composed
morphism

G(L)
ϕ3−→ G(M1,1,1)

can,i3−→ G(L)

equals the identity. This implies that the canonical morphism induced by γ is surjective. As a
consequence the commutativity of diagram (25) is equivalent to the commutativity of the following
diagram

G(L6)] κ //

η6

��

G(M3,6,2)∗/K̃

can,ξ

��
G(L) oo can,i3

G(M1,1,1).

(27)
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Let
g ∈ G(L6)] and κ(g) = (x, ψ).

By definition the image of κ(g) under the canonical morphism induced by δ is given by(
p2(x), T ∗p2(x)δ ◦ τ

∗ψ ◦ δ−1
)
.

Since τ
(
p2(x)

)
= x it follows that

T ∗p2(x)δ ◦ τ
∗ψ ◦ δ−1 = T ∗p2(x)

(
β ◦ [6]∗γ ◦ τ∗α−1

)
◦ τ∗ψ ◦

(
β ◦ [6]∗γ ◦ τ∗α−1

)−1

= T ∗p2(x)β ◦ T
∗
p2(x)

[6]∗γ ◦ T ∗p2(x)τ
∗α−1 ◦ τ∗ψ ◦ τ∗α ◦ [6]∗γ−1 ◦ β−1

= T ∗p2(x)β ◦ [6]∗T ∗p2(6x)γ ◦ τ
∗T ∗xα

−1 ◦ τ∗ψ ◦ τ∗α ◦ [6]∗γ−1 ◦ β−1

= T ∗p2(x)β ◦ [6]∗T ∗p2(6x)γ ◦ τ
∗(T ∗xα−1 ◦ ψ ◦ α

)
◦ [6]∗γ−1 ◦ β−1

= T ∗p2(x)β ◦ [6]∗T ∗p2(6x)γ ◦ τ
∗ξ∗ψ′ ◦ [6]∗γ−1 ◦ β−1

where ξ∗ψ′ = T ∗xα
−1 ◦ψ ◦α. Note that such an isomorphism ψ′ exists since κ(g) ∈ G(M3,6,2)∗. We

remark that the pair
(
ξ(x), ψ′

)
∈ G(M1,1,1) is the image of κ(g) under the canonical morphism

induced by α. Continuing the above calculation we get

T ∗p2(x)δ ◦ τ
∗ψ ◦ δ−1 = T ∗p2(x)β ◦ [6]∗T ∗p2(6x)γ ◦ τ

∗ξ∗ψ′ ◦ [6]∗γ−1 ◦ β−1

= T ∗p2(x)β ◦ [6]∗T ∗p2(6x)γ ◦ [6]∗i∗3ψ
′ ◦ [6]∗γ−1 ◦ β−1

= T ∗p2(x)β ◦ [6]∗
(
T ∗p2(6x)γ ◦ i

∗
3ψ
′ ◦ γ−1

)
◦ β−1

= T ∗p2(x)β ◦ [6]∗
(
T ∗p3(ξ(x))γ ◦ i

∗
3ψ
′ ◦ γ−1

)
◦ β−1.

By definition the pair
g′ =

(
p3

(
ξ(x)

)
, T ∗p3(ξ(x))γ ◦ i

∗
3ψ
′ ◦ γ−1

)
is the image of

(
ξ(x), ψ′

)
under the canonical morphism induced by γ. We conclude by the above

equality, the commutativity of diagram (26) and the definition of η6 that g′ = η6(g). Thus we have
shown that diagram (27) is commutative. As a consequence diagram (25) is commutative. This
finishes the proof of the lemma. �

Assume that we have chosen G(K1,1,1)- and G(K3,6,2)-equivariant isomorphisms

µ1,1,1 : π3,∗M1,1,1
∼→ V (K1,1,1) and µ3,6,2 : π3,∗M3,6,2

∼→ V (K3,6,2)

where π3 denotes the structure morphism of A3. The following lemma is a generalization of the
Addition Formula which is stated in [17, §3]. We use the intuitively simplified notation introduced
in the proof of Lemma 3.8.

Corollary 3.9 There exists a λ ∈ R∗ such that for all g ∈ V (K1,1,1) we have

ξ∗g(x, y, z) =
{
λg(ξ(x, y, z)), ξ(x, y, z) ∈ K1,1,1

0 , else

where (x, y, z) ∈ K3,6,2.

Proof. By Lemma 3.8 we can apply the Isogeny Theorem (see [17, §1,Th.4] [3, §5.2,Th.5.4]) in
order to obtain the formula given in the lemma. �

Assume that we have chosen G(Ki)-equivariant isomorphisms

µi : π∗Li
∼→ G(Ki), i ∈ I,
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where π denotes the structure morphism of A, and that we have rigidified the line bundle L. This
defines theta functions qLi ∈ V (Ki) (see [17, §1] and [3, §5.1]).

Let ∆ : A→ A3 the diagonal morphism. There exists a canonical isomorphism β : ∆∗M1,1,1
∼→ L3.

The following theorem describes the morphism of OR-modules ϕ defined as the composition

π∗L ⊗ π∗L ⊗ π∗L
can→ π3,∗M1,1,1

can→ π3,∗∆∗∆∗M1,1,1 = π∗∆∗M1,1,1
π∗β−→ π∗L3,

where the left hand morphism is the Künneth morphism, in terms of finite theta functions.

Definition 3.10 For s1, s2, s3 ∈ π∗L and f1, f2, f3 ∈ V (K1) such that µ(si) = fi (i = 1, 2, 3) we
set

f1 ? f2 ? f3 = (µ1 ⊗ µ1 ⊗ µ1)
(
s1 ⊗ s2 ⊗ s3

)
.

We define for x ∈ K3

Gx = {(y, z) ∈ K6,2 | ξ(x, y, z) ∈ K1,1,1}.

Theorem 3.11 (3-multiplication formula) There exists a λ ∈ R∗ such that for all x ∈ K3

and f1, f2, f3 ∈ V (K1) we have

(f1 ? f2 ? f3)(x) = λ
∑

(y,z)∈Gx

f1(x− 2y)f2(x+ y − z)f3(x+ y + z)qL6(y)qL2(z).

Proof. Consider the commutative diagram

A

i1

��

∆

!!B
BB

BB
BB

B

A3
ξ // A3

(28)

where i1 : A → A3 is defined by x 7→ (x, 0, 0) and ∆ is the diagonal morphism. Note that
there exists an isomorphism γ : i∗1M3,6,2

∼→ L3. By Proposition 3.7 there exists an isomorphism
α : ξ∗M1,1,1

∼→M3,6,2. Because of the commutativity of the diagram (28) the morphism ϕ defined
above equals up to a unit the composed morphism

π∗L ⊗ π∗L ⊗ π∗L
can−→ π3,∗M1,1,1

can−→ π3,∗∆∗∆∗M1,1,1

= π∗∆∗M1,1,1 = π∗i
∗
1ξ
∗M1,1,1

π∗i
∗
1α−→ π∗i

∗
1M3,6,2

π∗γ−→ π∗L3.

Passing over from sections to finite theta functions we get a diagram

V (K1)⊗ V (K1)⊗ V (K1)
can→ V (K1,1,1)

ξ∗→ V (K3,6,2)
eval→ V (K3). (29)

The left hand map is defined to be the canonical isomorphism mapping

f1 ? f2 ? f3 7→ f̃1f̃2f̃3

where f̃i is the function on K1,1,1 defined by

f̃i(x1, x2, x3) = fi(xi), i = 1, 2, 3.

The map ξ∗ is given by Corollary 3.9. The right hand eval-map in diagram (29) corresponds to the
map on sections which maps a section s1 ⊗ s2 ⊗ s3 ∈ π∗M3,6,2 to the section (s2)0(s3)0s1 where
(·)0 indicates the evaluation at zero by means of the chosen rigidification. The claim now follows
by expressing (s2)0 and (s3)0 in terms of theta null values (see [17, §1,Cor.3]). �
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4 Explicit CM construction in characteristic 3

In this section we apply Corollary 2.3 to the explicit CM construction of invariants of ordinary
abelian surfaces by canonical lifting from characteristic 3. The CM algorithm has two main phases:

• first (see Section 4.4), the multivariate Newton lifting of a given canonical theta null point
based on the equations of Corollary 2.3 by means of the algorithm of Lercier and Lubicz [12,
Th.2],

• second (see Section 4.5), the LLL reconstruction of the defining polynomials over Z for the
ideal of relations between the canonically lifted moduli, following Gaudry et al. [8].

The existence of the lifting algorithm is a consequence of the following facts. The ordinary locus at
3 of the moduli space of abelian varieties with symmetric 4-theta structure, which is constructed in
[18], is smooth. The space of pairs of ordinary abelian varieties with symmetric 4-theta structure
admitting a compatible isogeny of degree 3g, where g is the dimension, forms an étale covering of
the latter space.

The lifting algorithm applies to a rationally parametrized moduli space X over Zq, and a
complete intersection in X × X. We replace the rational parametrization with a local analytic
parametrization. We describe the construction in detail in the application to the explicit moduli
of abelian varieties of dimensions 1 and 2 described herein, but the approach applies in greater
generality to any dimension.

4.1 Complexity hypothesis

We will denote by Fq a finite field of characteristic p > 0 having q elements. Let Zq denote the
ring of Witt vectors with values in Fq. There exists a canonical lift σ ∈ Aut(Zq) of the p-th power
Frobenius morphism of Fq. If a is an element of Zq we denote by ā its reduction modulo p in
Fq. We say that we have computed an element x ∈ Zq to precision m if we can write down a
bit-string representing its class in the quotient ring Zq/pmZq. In order to assess the complexity
of our algorithms we use the computational model of a Random Access Machine [21]. We assume
that the multiplication of two n-bit length integers takes O(nµ) bit operations. One has µ = 1 + ε
(for n sufficiently large), µ = log2(3) and µ = 2 using the FFT multiplication algorithm, the
Karatsuba algorithm and a naive multiplication method, respectively. Let x, y ∈ Zq/pmZq. For
the following we assume the sparse modulus representation which is explained in [4, pp.239]. Under
this assumption one can compute the product xy to precision m by performing O(mµ log(q)µ) bit
operations.

4.2 A lifting algorithm for moduli of elliptic curves

We first describe a canonical lifting algorithm for theta null points of elliptic curves, hence take an
abelian scheme E of relative dimension 1 over Zq. Its theta null point (a0 : a1 : a2 : a1) determines
a Legendre model for E of the form

y2 = x(x− 1)(x− λ), where λ =
(

2a0a2

a2
0 + a2

2

)2

.

In particular we make use of the maps of modular curves

A1(Θ4) −→ A1(Θ4[2]) −→ X(2),

where the first map is (a0 : a1 : a2) 7→ (a0 : a2) is the restriction to the 2-torsion part of the theta
structure, and X(2) is the full modular curve of level 2 with function field generated by λ.

We recall that the curve A1(Θ4) is determined by Riemann’s equation (7) and the correspon-
dence equation (8) determines a curve in the product A1(Θ4) × A1(Θ4). Projecting this corre-
spondence curve onto the 2-torsion part with coordinates (x0 : x2) and (y0 : y2), gives rise to an
affine curve

x4 − 4x3y3 + 6x2y2 − 4xy + y4 = 0, (30)
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by setting x = x2/x0 and y = y2/y0. This curve is singular of geometric genus 3, with singularities

{(0, 0), (1, 1), (−1,−1), (i,−i)},

where i2 = −1 in Zq. It is easily verified that all x in {∞, 0, 1,−1, i, i} determine degenerate,
singular cubic curves. Moreover, the special fiber at 3 takes the form

(x3 − y)(x− y3) = 0,

whose singularities consist of all points (x, xσ) for x in F9. Outside of the image of the above
degenerate points, the remaining F9-rational points are supersingular.

The remaining points correspond to theta null points of ordinary elliptic curves, for which
it is easily verified that the conditions of Lercer-Lubicz [12] for an Artin-Schreier equation are
satisfied. Hence their Newton algorithm applies to uniquely lift a solution to equation (30) with
the constraint to y = xσ. From a solution to this system, we set (a0 : a2) = (1 : x) and determine
a1 by one Newton lifting step. This gives the following theorem.

Theorem 4.1 There exists a deterministic algorithm which has as input the theta null point (āi)
of an elliptic curve Ē over Fq and as output the theta null point (ai) of its canonical lift E to a
given precision m ≥ 1, with time complexity

O(log(m)dµmµ)

where d = log(q).

4.3 A lifting algorithm for split abelian surfaces

As in Section 2.1.1 we let Ag(Θ4[2]) denote the moduli space of 4-theta null points, projected on
the coordinates which are parametrized by the 2-torsion subgroup. We recall that

a00a22 − a02a20 = 0,

determines one component in A2(Θ4[2]) of split abelian surfaces. We refer to Runge [23]) for a
complex analytic description of this locus as a degenerate Humbert surface.

The remaining components are obtained by the action of a geometric automorphism group
acting on theta structures and preserving the moduli of abelian varieties. Explicitly this group is
generated by the projective automorphism group generated by the matrices

1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1

 ,


1 0 1 0
−1 0 1 0
0 1 0 1
0 −1 0 1

 ,


1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 i

 ,


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 ·
acting on Ag(Θ4[2]) ∼= P3. These automorphism determine a transitive action on the 10 compo-
nents of the Humbert surface. In particular, given a theta null point of a split abelian variety, by
means of an automorphism (defined over an extension of degree at most 2), we may assume that
it lies on the locus a00a22 = a02a20.

We now recall that the locus a00a22 = a02a20 is the image of A1(Θ4[2])×A1(Θ4[2]) in A2(Θ4[2])
by a Segre embedding(

(a0 : a2), (a′0 : a′2)
)
7−→ (a00 : a02 : a20 : a22) = (a0a

′
0 : a0a

′
2 : a2a

′
0 : a2a

′
2).

The canonical lift of this theta null point is obtained by means of the canonical lifting to algorithm
applied to (a00 : a20) = (a02 : a22) and to (a00 : a02) = (a20 : a22). This yields the canonical lift of
the theta null point with the same complexity as for elliptic curves. We summarize this result in
the general theorem for abelian surfaces in the next section.
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4.4 A lifting algorithm for moduli of abelian surfaces

We use the notation introduced in Section 4.1. For the rest of this section let A be an abelian
scheme of relative dimension 2 over Zq having ordinary reduction. Suppose A is the canonical lift
of AFq . Let L be an ample symmetric line bundle of degree 1 on A and assume we are given a
theta structure of type (Z/4Z)2 for (A,L4). We denote the theta null point with respect to the
latter theta structure by (aij) where (i, j) ∈ (Z/4Z)2.

Theorem 4.2 There exists a deterministic algorithm which has as input the theta null point (āij)
of AFq and as output the theta null point (aij) of A to a given precision m ≥ 1, with time complexity

O(log(m)dµmµ)

where d = log(q).

Proof. The complexity result of Theorem 4.2 is an analytic version of [12, Th.2]. We explain
below how our system of equations can be adapted to an analytic context from which the result
will follow.

By means of a geometric automorphism, we may assume that a00 is a unit and embed the
corresponding open subscheme of A2(Θ4) in A9. We identify its image in A2(Θ4[2]) with A3. We
denote the open analytic subspace of sections in A9(Zq) = Z9

q by X, and suppose that α is a point
of X. This determines a projection Ψ : X → Z3

q, under which we denote a = Ψ(α).
In the following we let U ⊆ Z3

q be an analytic neighborhood of a, and we construct an analytic
map Φ : U → Z3

q, such that Φ(a) = 0. We first choose pairwise distinct polynomials

f1, f2, f3 ∈ Z[{xij}, {yij}]

from the equations (10) of Corollary 2.3, and let Ξ be the function X ×X → Z3
q given by

(x, y) 7→
(
f1(x, y), f2(x, y), f3(x, y)

)
.

By the smoothness of the ordinary locus at the prime 3 of the moduli space of abelian surfaces
with symmetric theta structure of type (Z/4Z)2 we conclude that there exists an analytic local
inverse Π : U → X of Ψ such that Π(a) = α where U ⊆ Z3

q is a neighborhood of a with respect to
the 3-adic topology. Note that for an arbitrary choice of square roots we have

a01 =
λ

2
(√
b00b01 + b10b11 +

√
b00b01 − b10b11

)
, a21 =

λ

2
(√
b00b01 + b10b11 −

√
b00b01 − b10b11

)
,

a10 =
λ

2
(√
b00b10 + b01b11 +

√
b00b10 − b01b11

)
, a12 =

λ

2
(√
b00b10 + b01b11 −

√
b00b10 − b01b11

)
,

a11 =
λ

2
(√
b00b11 + b01b10 +

√
b00b11 − b01b10

)
, a13 =

λ

2
(√
b00b11 + b01b10 −

√
b00b11 − b01b10

)
,

where
b00 = 1, b01 =

√
λ−1(a00a02 + a20a22),

b20 =
√
λ−1(a00a20 + a02a22), b22 =

√
λ−1(a00a22 + a02a20),

and where λ = (a2
00 + a2

02 + a2
20 + a2

22)/2. The above formulas can be deduced from Mumford’s
2-multiplication formula [17, §3]. We note that the zero set of bij and of

b00b01 ± b10b11, b00b10 ± b01b11, b00b11 ± b01b10,

lie over the components of the moduli of split abelian varieties. Applying the algorithm of the
previous section to such points, we may thus assume that the map is unramified at (aij).

Consider the subset Y ⊆ X × X which is defined by the equations of Corollary 2.3. Let
pi : Y ⊆ X ×X → X (i = 1, 2) be the map induced by the projection on the ith factor. The map
pi forms an étale covering. We can choose a local analytic section i1 : V → Y of the projection
p1 in a neighbourhood V of α such that i1(α) = (α, ασ). Let Σ = p2 ◦ i1. Note that Σ(α) = ασ.
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By Serre-Tate theory the morphism Σ is analytic in a neighborhood of α. More precisely, this is a
consequence of the representability of the local deformation space of an ordinary abelian variety
over Fq by a formal torus and the fact that the unique lift of the relative 3-Frobenius equals up
to isomorphism the 3rd powering map on this torus (see [9] and [16]).

We define Φ to be the composition

U
∆ // U × U

Π2
// X ×X

Id×Σ
// X ×X

Ξ // Z3
q

where ∆ is the diagonal map and Π2 = Π×Π. The equality Φ(a) = 0 holds by Corollary 2.3. By
the above discussion, Φ is analytic and is defined on the open disc U with center a and radius
1. The fact that the radius equals 1 can be deduced from the interpretation of the points in the
image of Ψ as moduli points of abelian varieties with 2-theta structure.

In the following we verify that the assumptions of [12, Th.2] are satisfied. For an analytic
function F we denote its first order derivative by DF . We have Φ(x) ≡ 0 mod 3 for all x ∈ U ,
because all points of U reduce to the same canonical theta null point satisfying the equations (9)
and (10), and hence DΦ(a) ≡ 0 mod 3. We write DΞX

and DΞY
for the submatrices of DΞ being

the derivative of Ξ with respect to the first and second factor of the product X ×X. By the chain
rule we conclude that

0 ≡ DΦ(a) = DΞX

(
Π(a),Π(a)σ

)
DΠ(a) +DΞY

(
Π(a),Π(a)σ

)
DΣ

(
Π(a)

)
DΠ(a) mod 3. (31)

By general theory [9] the Frobenius lift acts on the Serre-Tate formal torus as the 3-rd powering
map and hence DΣ

(
Π(a)

)
≡ 0 mod 3. We conclude by equation (31) that

DΞX

(
Π(a),Π(a)σ

)
DΠ(a) ≡ 0 mod 3. (32)

Next we prove by contradiction that for a suitable choice of the triple (f1, f2, f3) (notation as
above) we have

det
(
DΞY

(
Π(a),Π(a)σ

)
DΠ(a)

)
6≡ 0 mod 3. (33)

We remark that in the lifting algorithm the choice of the triple (f1, f2, f3) has to be done depending
on the initial data. Suppose condition (33) is not satisfied for any triple (f1, f2, f3). Then by the
Jacobi criterion we conclude that the moduli space of pairs of ordinary abelian surfaces with sym-
metric 4-theta structure and compatible (3, 3)-isogeny is not smooth at the point

(
Π(a),Π(a)σ

)
.

This contradicts the fact that the latter space forms an étale covering of the smooth space X.
Clearly the equations (32) and (33) imply the assumptions of [12, Th.2]. By the algorithm sug-
gested there and the above discussion we can compute x ∈ U such that Φ(x) ≡ 0 mod 3m for given
precision m with complexity as stated in the theorem.

In the following we explain why the output of the latter algorithm is indeed the theta null
point of the canonical lift to given precision. We claim that for x ∈ U one has an equivalence

x ≡ a mod 3m ⇔ Φ(x) ≡ 0 mod 3m. (34)

It suffices to prove that Φ(x) ≡ 0 mod 3m implies x ≡ a mod 3m since the converse is obvious. The
proof is done by induction on m. Assume that equivalence (34) holds for some m ≥ 1. Assume
that Φ(x) ≡ 0 mod 32m. By the induction hypothesis we have δ = 3−m(x − a) ∈ Z3

q. Then by
Taylor expansion of the analytic function Φ at a we get

0 ≡ Φ(x) = Φ(a+ 3mδ) ≡ Φ(a) +DΦ(a)3mδ + . . . ≡ DΦ(a)3mδ mod 32m. (35)

By equation (35) we conclude that

0 ≡ DΦ(a)δ mod 3m. (36)
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We set

DX = DΞX

(
Π(a),Π(aσ)

)
DΠ(a),

DY = DΞY

(
Π(a),Π(aσ)

)
DΠ(a).

By (31) the equation (36) is equivalent to

δ ≡ D(δ) mod 3m (37)

where D is the linear operator given by

y 7→ −
(
D−1
Y DXy

)σ−1

Here we have used that the map Σ already exists as an endomorphism of U which commutes with
the application Π. Note that by condition (33) the matrix DY is invertible. By condition (32) the
entries of the matrix D−1

Y DX are all divisible by 3. As a consequence we conclude from equation
(37) that δ ≡ 0 mod 3m. This proves our claim.

In the following we will show how to compute the matrices DX and DY , since they are needed
for the algorithm of Lercier and Lubicz [12]. By the above discussion, we can compute compatible
branches of the local inverse Π at a and aσ such that Π(aσ) = Π(a)σ. From this it is straightforward
to compute DΞX

(
Π(a),Π(aσ)

)
and DΞY

(
Π(a),Π(aσ)

)
. Next we explain how to compute DΠ(a).

Let Λ : Z9
q → Z20

q be defined by

x = (xij) 7−→ (Λ1(x), . . . ,Λ20(x))

where Λi are the Riemann relations (9), so that Λ(Π(a)) = 0. By the chain rule we conclude that

DΛ

(
Π(a)

)
DΠ(a) = 0. (38)

Let π : Z3
q → Z6

q be the morphism such that Π(a) =
(
a, π(a)

)
. Then DΠ is the vertical join of the

unit matrix of rank 3 and Dπ where Dπ denotes the derivative of π. We write

DΛ =
(
D

(1)
Λ D

(2)
Λ

)
where D(1)

Λ and D(2)
Λ have 3 and 6 columns, respectively. Note that by the smoothness of the space

X the rank of D(2)
Λ at Π(a) equals 6. There exists a matrix T ∈ GL20(Zq) such that the matrix

E = T ·D(2)
Λ

(
Π(a)

)
is in echelon form. It follows from equation (38) and the above discussion that

E ·Dπ(a) = −T ·D(1)
Λ

(
Π(a)

)
.

From this it is straightforward to compute Dπ(a) inverting the unique invertible (6, 6)-square
submatrix of E. We remark that the above computation can be done modulo any given precision.
This completes the proof of Theorem 4.2. �

We conclude this section by a practical remark. Our implementation uses a multivariate version
of the algorithm of R. Harley (compare [28, §3.10]) for solving generalized Artin-Schreier equations
instead of the the method suggested in [12].

4.5 LLL reconstruction

From the theory of complex multiplication we know that the invariants of canonical lifts are
algebraic over Q. We briefly recall the method of Gaudry et al. [8] for LLL reconstruction of
algebraic relations over Z. Let γ be a p-adic integer in an extension of degree r over Zp, and let m
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be the precision to which it is determined. We assume that the degree n of its minimal polynomial
over Q is known, i.e. that there exists f(x) ∈ Z[x], with

f(γ) = anγ
n + . . .+ a0 = 0,

where the ai ∈ Z are unknown. We determine a basis of the left kernel in Zn+r+1 of the vertical
join of the matrix 

1 0 · · · 0
γ1,0 γ1,1 · · · γ1,(r−1)

...
...

γn,0 γn,1 · · · γn,(r−1)


with pm times the r × r identity matrix, where γi,j are defined by

γi = γi,0 + γi,1w1 + . . .+ γi,(r−1)wr−1,

in terms of a Zp basis {1, w1, . . . , wr−1} for Zq. The minimal polynomial f(x) is determined by
LLL as a short vector (a0, . . . , an, ε1, . . . , εr) in the kernel.

The complexity of the LLL step depends on the values r, n, and m. The values of r and n
can be recovered by a curve selection and analysis of the Galois theory of the class fields. The
required precision m, determined by the size of the output, is less well-understood, and we express
the complexity in terms of these three parameters. Using the L2 variant of LLL by Nguy˜̂en and
Stehlé [20], the complexity estimate of [8] gives O((n + r)5(n + r +m)m) in general, and in our
case the special structure of the lattice gives a complexity of O((n+ r)4(n+ r +m)m).

5 Moduli equations and parametrizations

In this section we give the equations which form a higher dimensional analogue of Riemann’s
quartic theta relation. Then we state the classical Thomae formulas in an algebraic context,
relating the invariants of genus 2 curves to theta null points. Finally we apply the algorithm of
Section 4 to the construction of CM invariants of abelian surfaces and genus 2 curves.

5.1 The Thomae formulas for genus 2

Let R be an unramified local ring of odd residue characteristic, and H a hyperelliptic curve over
R given by an affine equation

y2 =
5∏
i=1

(x− ei),

where the ei ∈ R are pairwise distinct in the residue field. Let (J, ϕ) denote the Jacobian of H
where ϕ denotes the canonical polarization. There exists a finite unramified extension S of R and
an ample symmetric line bundle L of degree 1 on JS which induces the polarization ϕS . We assume
that S is chosen such that there exists an S-rational symmetric theta structure Θ of type (Z/4Z)2

for the pair (JS ,L). Let (aij), where (i, j) ∈ (Z/4Z)2, denote the theta null point with respect to
the latter theta structure.

Theorem 5.1 (Thomae formulas) With the notation as above, one has

a00 = 1 a02 = 4

√
(e1 − e4)(e2 − e5)(e3 − e4)
(e1 − e5)(e2 − e4)(e3 − e5)

a20 = 4

√
(e1 − e2)(e1 − e4)
(e1 − e3)(e1 − e5)

a22 = 4

√
(e1 − e2)(e2 − e5)(e3 − e4)
(e1 − e3)(e2 − e4)(e3 − e5)

such that a2
02 = (e1 − e3)/(e1 − e2)a2

20a
2
22.

24



For a complex analytic proof of the Thomae formulas see [19, p.120].
Conversely, let A be an abelian surface over S with ample symmetric line bundle L of degree

1 on A. Assume we are given a symmetric theta structure of type (Z/4Z)2 for the pair (A,L4),
and let (aij) denote the theta null point with respect to the latter theta structure. We associate
a curve to the theta null point in the following way. Let µ be a solution of the equation (possibly
over an unramified extension)

µ2 − (a4
00 − a4

02 + a4
20 − a4

22)
(a2

00a
2
20 − a2

02a
2
22)

µ+ 1 = 0,

and set
λ1 =

(a00a02

a22a20

)2

, λ2 =
(a02

a22

)2

µ, λ3 =
(a00

a20

)2

µ·

Corollary 5.2 The curve

y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3)

has as Jacobian the abelian surface A.

Proof. Inverting Theorem 5.1, one verifies that the roots µ give rise to values (λ1, λ2, λ3) in the
set {(

e1 − e3
e1 − e2

,
e1 − e4
e1 − e2

,
e1 − e5
e1 − e2

)
,

(
e1 − e3
e1 − e2

,
e1 − e3
e1 − e5

,
e1 − e3
e1 − e4

)}
,

which determine curves isomorphic to the curve with affine equation y2 =
∏5
i=1(x− ei). �

Unfortunately, the Rosenhain invariants (λ1, λ2, λ3) of the above curve are not determined
by the 2-torsion part (a00 : a02 : a20 : a22) of the theta null point. Instead we must pass to a
(2, 2)-isogenous curve to determine a genus 2 curve parametrized by this theta null point.

Theorem 5.3 The curve

y2 = x(x− 1)(x− µ1)(x− µ2)(x− µ3),

where

µ1 =
(a2

00 + a2
02 + a2

20 + a2
22)(a00a02 + a20a22)

2(a00a20 + a02a22)(a00a22 + a02a20)

µ2 =
(a2

00 − a2
02 + a2

20 − a2
22)(a00a02 + a20a22)

2(a00a22 + a02a20)(a00a20 − a02a22)

µ3 =
(a2

00 + a2
02 + a2

20 + a2
22)(a

2
00 − a2

02 + a2
20 − a2

22)
(a00a02 + a20a22)(a00a02 − a20a22)

has Jacobian (2, 2)-isogenous of the abelian surface A.

Proof. The Richelot isogeny determined by the polynomials

G1 = x, G2 = (x− 1)(x− λ1), G3 = (x− λ2)(x− λ3),

determines a curve isomorphic to the above curve. �

Thus we obtain a rational map from the space A2(Θ4[2]), determined by the 2-torsion part
(a00 : a02 : a20 : a22) of a theta null point, to the moduli space M2(2) of genus 2 curves with
level-2 structure, determined by the Rosenhain invariants (µ1, µ2, µ3). The latter point specifies an
ordered six-tuple of Weierstrass points over (∞, 0, 1, µ1, µ2, µ3). We note that this map is defined
on the open subspace outside of the components defining split abelian surfaces.
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5.2 Examples of canonical lifts

In this section we give examples of canonical lifts of 3-adic theta null points. The examples were
computed using implementations of our algorithms in the computer algebra system Magma [13].
Generic algorithms and databases of CM invariants for genus 2 curves can be found from the
authors’ web pages (see [6]).

Example 1. Consider the genus 2 hyperelliptic curve H̄ over F3 defined by the equation

y2 = x5 + x3 + x+ 1.

Let J̄ denote the Jacobian of H̄. The abelian surface J̄ is ordinary. Over an extension of degree 40
there exists a theta structure of type (Z/4Z)2 for (J̄ ,L4) where L is the line bundle corresponding
to the canonical polarization. Let (āij) denote the theta null point of (J̄ ,L4) with respect to the
latter theta structure. We can assume that ā00 = 1. Note that the coordinates ā02, ā20 and ā22 are
defined over an extension of degree 10. We set F310 = F3[z] where z10 +2z6 +2z5 +2z4 +z+2 = 0.
We choose

ā02 = z9089, ā20 = z18300 and ā22 = z8601.

By the algorithm described in Section 4 we lift the triple (ā02, ā20, ā22) to the unramified extension
of Z3 of degree 10. We denote the lifted coordinates by a02, a20 and a22. Let Pij be the minimal
polynomial of aij over Q. A search for algebraic relations using the LLL-algorithm yields

P02 = x80 − 69x76 + 4911x72 + 20749x68 + 299094x64 − 202217x60

+1093161x56 − 7393871x52 + 11951456x48 + 7541235x44

−26349059x40 + 7541235x36 + 11951456x32 − 7393871x28

+1093161x24 − 202217x20 + 299094x16 + 20749x12 + 4911x8

−69x4 + 1,
P20 = x20 − 5x19 + 23x18 − 53x17 + 112x16 − 203x15 + 279x14 − 345x13

+360x12 − 333x11 + 329x10 − 333x9 + 360x8 − 345x7 + 279x6

−203x5 + 112x4 − 53x3 + 23x2 − 5x+ 1,
P22 = x80 + 5x76 + 184x72 + 2254x68 + 4470x64 + 160109x60 + 768428x56

+421488x52 + 36971535x48 − 75225290x44 + 44767882x40

−43287046x36 + 86078086x32 − 75568556x28 + 31873762x24

−7293064x20 + 989181x16 − 32859x12 + 4318x8 + 44x4 + 1.

We conclude that the field k0 generated by the coordinates a02, a20 and a22 is a Galois extension
of Q having degree 160. Note that k0 contains Q(i).

The characteristic polynomial of the absolute Frobenius endomorphism of J̄ equals

x4 + 3x3 + 5x2 + x+ 9.

Let K = EndF3(J̄) ⊗ Q. The field K is a normal CM field of dimension 4 whose Galois group
equals Z/4Z. The class number of K equals 1. The maximal totally real subfield of K is given
by Q(

√
13). Note that K equals its own reflex field K∗. The compositum k0K

∗ forms an abelian
extension of K∗ having conductor 8 and Galois group (Z/2Z)2×Z/10Z. Note that the polynomial
P20 generates the ray class field of K∗ modulo 2.

We remark that the curve H with defining equation

y2 = 52x5 − 156x4 + 208x3 − 156x2 + 64x− 11

is a canonical lift of H̄ in the sense that H reduces to the curve H̄ and the Jacobian of H
is isomorphic to the canonical lift of J̄ . For a list of curves of genus 2 over Q having complex
multiplication we refer to [27].
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Example 2. Let H̄ be the hyperelliptic curve over F36 = F3[z] where z3 − z + 1 = 0, defined by
the affine equation

y2 = x(x− 1)(x− z)(x− z8)(x− z2).

We may associate a theta null point to H̄ over an extension and apply our algorithm to de-
termine the canonical lifted Rosenhain invariants from the lift of the theta null point. By LLL
reconstruction, the Igusa invariants

j1 =
J5

2

J10
, j2 =

J3
2J4

J10
, j4 =

J2J8

J10
,

of the canonically lifted curve H satisfy the minimal polynomials

1167579244112528766379604000052855618647029683j61
− 15257677849803613955571236222133142793627666039890131548110848j51
+ 1196131879277094213213237826625656616667290986216439120696238769598103552j41
− 1502690183964538566290599551441994054504503089078463931648679137089316924162048j31
+ 9494960051498045134856366244512386171442968847268749046183153757319495998347673600000j21
− 9489242494532768198621993753759532669268063460725268563272920396343489385558179840000000000j1
+ 3154745183558232433309182902721654489400212652045192101874580090073682713333727232000000000000000

31524639591038276692249308001427101703469801441j62
− 16745634807723620828207592940844036495138204085628428409110528j52
− 12265164179615739710029144012197055859859725320474999182497036825001984j42
+ 352141775319032803460285640460530428476805227032807841788375367068285927424j32
− 115886117015701373170818041387627276397709556079989081954770457714548434534400000j22
+ 6241088101000204747012315559761320786612924621590641411279130896395801722880000000000j2
− 119116948667007461483450210289814155018636097544277843858343319784591982592000000000000000

22981462261866903708649745533040357141829485250489j64
− 38333133385822330975872342595626396239705000243787196311246336j54
− 13445890564402694049486311582599736771794395285600128293985309687808j44
− 25587083283087299157726904789352095023627415391850896175427316095123456j34
− 20922653078662308982945894934868322119306736601817862795598824527101952000j24
− 6125981423009705673176896782997851830442900916324351082547267950870528000000j4
− 1226005575547426252457067048464156648937773482166774996185845610840064000000000

We note that neither of these Jacobians has good ordinary reduction at 2, thus extend the realm
of applicability of the 2-adic CM method [8].

6 Conclusion and perspectives

This work generalizes prior higher dimensional 2-adic canonical lifting algorithms to a 3-adic
setting. Firstly, in Theorem 2.1, we introduce the moduli equations which provide the higher
dimensional analogues of the modular curve X0(3). Secondly, we describe a general multivariate
Hensel lifting algorithm in an analytic framework (removing the need for a rational parametrization
of a variety). As an application our work gives an explicit CM construction for moduli of genus
2 curves (and their Jacobian surfaces), yielding a 3-adic alternative to the 2-adic construction of
Gaudry et al. [8], and extending the domain of applicability to additional quartic CM fields. We
expect that our method extends to primes p > 3, for which the primary ingredient will be an
analogue of our Theorem 2.1. With an increasing complexity for the resulting schemes, as both p
and the dimension grow, we expect our approach through analytic parametrizations will become
essential.

Acknowledgments. We are grateful to Y. Kopeliovich for explaining his results and for giving
some very valuable references to the literature.
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