
PLURI-CANONICAL SYSTEMS FOR SURFACES OF GENERAL TYPE

AFTER ZARISKI, MUMFORD, KODAIRA, BOMBIERI, REIDER

1. THE RESULTS

Let S be a compact complex surface of general type, Smin its minimal model gotten by contracting
the finite number of (−1)-curves. It is a smooth surface with nef canonical line bundle KSmin

. It
then can be shown that Smin has at most b2 curves on which the canonical line bundle KSmin

restricts
to a non-ample bundle (i.e. whose intersection number with KSmin

is non positive). These are (−2)
smooth rational curves. Artin has shown that there is a normal surface S∗ with a finite number of
rational double points gotten by contracting those curves.

We will sketch two proofs of the following part of the results of Kodaira, Bombieri and Reider.

Theorem 1.1.
For m ≥ 4, the m-pluricanonical map Φm : Smin → P(|mKSmin

|) is a morphism.

This in particular implies that the canonical line bundle of Smin is in fact semi-ample (a result
previously obtained by Mumford using the works of Artin on S∗ and the work of Zariski on base
points of linear systems). Using the finite generation of the algebra associated with OPn(1) on Pn

and the morphism Φ4 , we infer that the canonical ring R(Smin) := ⊕mH0(Smin, K
m
Smin

) of Smin is
finitely generated. Its projective spectrum proj(R(Smin)) =: Scan is the abstract canonical model of
S. It contains no (−2)-curves but it is in general singular.

The second theorem of Kodaira and Bombieri is

Theorem 1.2.
For m ≥ 5, the m-pluricanonical map Φm : Scan → P(|mKSmin

|) is an embedding.

The proof is based on the same kind of arguments.

2. AN EXAMPLE

We describe an example due to Bombieri showing the sharpness of the bound in the theorem 1.1.
Start with Fermat quintic S ′ in P3 given in homogeneous coordinates by x5

1 + x5
2 + x5

3 + x5
4 = 0.

The group Z5 acts freely by ε · (x1, x2, x3, x4) = (x1, εx2, ε
2x3, ε

3x4) and the quotient S is a smooth
surface. On the open set U = {x1 6= 0}, with affine coordinates x, y, z, with the equation f(x, y, z) =
1 + x2 + y2 + z2 = 0 for S ′, the m-pluricanonical forms on S ′ are given in the form

w′ =
Qm(x, y, z)

(∂f
∂z

)m
(dx ∧ dy)m

where Qm is a polynomial of degree at most m. A form on S is exactly a form on S ′ that is invariant
under the group action. Note that ε · dx ∧ dy = ε3dx ∧ dy, ε · ∂

∂z
= 1/ε3 ∂

∂z
. This shows that Qm

1
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homogenized has to contain only monomials of the form xi1xi2xi3 ....xim where 6m +
∑

(ik − 1) ≡
0 mod5 i.e.

∑
ik ≡ 0 mod5.

For m = 3, these are x1x
2
2, x

2
1x3, x2x

2
4, x

2
3x4.

For m = 4, these are x1x
3
3, x

2
1x

2
4, x

3
1x2, x1x2x3x4, x

2
2x

2
3, x

3
2x4, x3x

3
4.

Hence, 3KS has two base points, whereas 4KS is free.

3. KODAIRA’ S PROOF

From now on S will be a minimal surface of general type. Its canonical line bundle K = KS is nef
and K2 > 0.

3.1. The main lines. Choose a point x in S outside the locus of the (−2)-curves for simplicity
(Otherwise the divisor of (−2)-curves has to be included in the coming discussion on connectedness).
Denote by O(mK − x) the sheaf of local holomorphic sections of Km that vanishes at x. From the
long exact sequence associated with

0 → O(mK − x) → O(mK) → Cx → 0

we find that the surjectivity of the evaluation map of m-forms at x would follow from the inequality

h1(O(mK − x)) = h1(O(mK)).(3.1)

Let e be an integer greater than 1 such that dim|eK| ≥ 1. Kodaira shows that

(i) If m ≥ e + 2, then h1(O(mK − x)) ≤ h1(O((m− e)K)).
(ii) If m ≥ e + 2, then h1(O((m− e)K)) ≥ h1(O(mK)).

From (ii), (the m arithmetic subsequences of dimensions are non increasing) there exists an integer
m0 from which the dimensions h1(O((m − e)K)) and h1(O(mK)) are equal. For m ≥ e + 2 and
m ≥ m0, |mK| is base point free. Therefore, an easy vanishing theorem gives for p ≥ 2, the equality
h1(O(pK)) = h1(O(K)⊗O((p− 1)K)) = 0. One can choose m0 = e + 2. (We could have instead
argued with Kawamata-Viehweg vanishing)

Now, Riemann-Roch formula for m ≥ 2 reads

Pm := h0(O(mK)) =
m(m− 1)

2
K2 + χ(S).

Kodaira shows that in fact P2 ≥ 2 and that finally e = 2 and m0 = 4 suits our purpose.
The proof of (ii) is like that of (i) actually easier. We will not give it. The rough idea for (i) is taken

from the sequence

0 → H1(mK −D − x) → H1(mK − x) → H1(D, mK − x) → 0

where D is a curve in |eK| that passes through x so thatO(D−x) = O(D). and H1(mK−D−x) =
H1((m− e)K). The proof of (ii) hence reduces to a vanishing on the curve D. The difficulty is that
in general D is neither irreducible nor smooth.
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3.2. Vanishing theorem. This step is a careful examination of conditions needed on an irreducible
curve to infer vanishing theorems from vanishing on smooth curves.

Theorem 3.1. Let C be an irreducible curve in S, L → S a holomorphic line bundle, and x point of
multiplicity µ in C. Let k be a positive integer.

If degC(L− (K + C)) > (k − µ + 1)+µ, then H1(C, L− kx) = 0.

Note that if the point x has a large multiplicity in C, the vanishing is true for large k.

Proof. Consider η : C̃ → C the normalization of the curve C. For a point x in C, η−1(x) can be
written as a divisor

∑
λ µλpλ where λ runs through the set Λ of irreducible components of the germ

(C, x).
We define the conductor

δ = δk
x := (k − µ + 1)+

∑
λ∈Λ

µλpλ.

Its degree is (k − µ + 1)+µ. Its main feature is that it provides an inclusion, where ι is the natural
inclusion of C in S

η? (OC̃ (KC̃ + (ι ◦ η)?(L− (K + C))− δ)) ⊂ OC(L− kx)(3.2)

with a co-kernel M supported on non-simple points of C. Take it for granted for a moment. The
condition on the degree stated in the theorem exactly amounts to assume the ampleness of (ι◦η)?(L−
(K + C))− δ. The vanishing of H1(C̃,OC̃(KC̃ + (ι ◦ η)?(L− (K + C))− δ)) follows. Taking the
vanishing of H1(C, M) into account, this ends the proof.

The proof of the inclusion (3.2) is local and reduces to

η?(OC̃(KC̃ − (ι ◦ η)?(K + C)− δ)) ⊂ OC(−kx)(3.3)

Assume for simplicity that the curve C is locally given in C2
(w,z) by the equation R(w, z) = wm−zq =

0 with q ≥ m (to insure multiplicity m at x) and q ∧m = 1 (to ensure local irreducibility of (C, x)).
Fix (a, b) such that aq + bm = 1. With a local coordinate t on C̃, the normalization map η is given
by (tq, tm).

The idea is to take a function Φ in OC̃ , to write it as Φ = η?φ for a function φ in the fraction field
ofOC , and check that Φ being in the idealOC̃(KC̃− (ι◦η)?(K +C)−δ) makes it possible to choose
φ in OC(−kx).

From the equation wm − zq = 0, one sees that the function φ can be chosen as a polynomial of de-
gree strictly less than m in w. More explicitly, factor R(w, z) as

∏m
i=1(w−wi(z)). The wi(z) = εizq/m

are the m-th root of zq. Note that wm−zq

w−wi
=

∑m−1
l=0 wlwm−1−l

i and that φ(wi, z) = φ(εizq/m, z) =

φ((εaiz1/m)q, (εaiz1/m)m) = Φ(εaiz1/m).
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Then, applying Lagrange formula and Cauchy computation of power series coefficients (on C̃ for
a function on C),

φ(w, z) =
∑

i

R(w, z)

w − wi

φ(wi, z)

∂wR(wi, z)
=

m−1∑
l=0

wl
∑

i

wm−1−l
i

Φ(εaiz1/m)

∂wR(wi, z)

=
1

2
√
−1π

m−1∑
l=0

wl

+∞∑
n=0

(tm)n

∫
|t|=c

∑
i

(εitq)m−1−l Φ(εait)

∂wR(εitq, tm)

d(tm)

(tm)n+1

=
1

2
√
−1π

m−1∑
l=0

wl

+∞∑
n=0

zn

∫
|t|=c

∑
i

(εitq)m−1−l Φ(εait)

(tm)n+1
η?

(
dz

∂wR(w, z)

)
If

m(n + 1) + pole(η?

(
dz

∂wR(w, z)

)
) ≤ q(m− 1− l) + zero(Φ)

the last integral vanishes. Hence, if we assume that

zero(Φ) ≥ pole(η?

(
dz

∂wR(w, z)

)
) + (k −m + 1)m

the last integral vanishes for all the indices (l, n) with n + 1 ≤ (m − 1 − l) + (k − m + 1) (i.e.
n + l ≤ k − 1). �

3.3. Connectedness of pluricanonical divisors. Using Hodge index theorem on surfaces, Kodaira
shows a connectedness property of pluricanonical divisors. This will help to order the irreducible
components of pluricanonical divisors in a way suitable for applying vanishing theorems.

Lemma 3.2. Every decomposition D = X + Y of a divisor D ∈ |eK| into a sum of two non-
numerically zero effective divisors fulfills XY ≥ 1.

Proof. Write the orthogonal decompositions X = rK + α and Y = sK + β, where Kα = Kβ = 0.
The class α + β is X + Y − (r + s)K = (e − r − s)K. By orthogonality, α + β ∼ 0. We are
interested in XY = rsK2 − α2. For K is nef, the coefficients r and s are non-negative. For K is
big, K2 > 0. If α ∼ 0, then r and s are positive, hence the result. Otherwise, Hodge index theorem
(K2 > 0, Kα = 0, α 6∼ 0) implies α2 < 0. �

Lemma 3.3. One can order the irreducible components of a pluricanonical divisor D = C1 + C2 +
· · ·+ Cn ∈ |eK| in such a way that

K · C1 ≥ 1 (C1 + C2 + · · ·+ Ci−1) · Ci ≥ 1.

3.4. End of the proof. Choose a point x ∈ S not in the locus the (−2)-curves. For |eK| is of positive
dimension, there is a divisor D in |eK| passing through x. Order its irreducible components thanks
to the previous lemma. Set Θi := O(mK − (Ci + Ci+1 + · · ·+ Cn)− x). Define the integer h to be
the greater i such that x belongs to Ci. Then,

• ∀i ≤ h, Θi = O(mK − (Ci + Ci+1 + · · ·+ Cn))
• Θ1 = O((m− e)K) ⊂ Θ2 ⊂ · · · ⊂ Θn+1 = O(mK − x)
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• Θi+1/Θi = OCi
(mK − (Ci+1 + · · ·+ Cn)− δihx)

To apply the vanishing theorem to Θi+1/Θi (for i 6= h), one has compute the degree of mK −
(Ci+1 + · · ·+ Cn)− (K + Ci) = (m− e− 1)K + (C1 + C2 + · · ·+ Ci−1) on Ci. It is positive for K
is nef and by the connectedness property. For i = h, K · Ch is also positive, because x is not in the
locus the (−2)-curves. Therefore, for m ≥ e+2, the cohomology groups H1(Θi+1/Θi) vanishes and

h1(O(mK − x)) = h1(Θn+1) ≤ h1(Θ1) = h1(O((m− e)K)

as required in (i).

4. TWO WORDS ON REIDER’S PROOF

Let S be a surface, L → S a nef line bundle and x a base point for the linear system |KS + L|. In
others words, x fails to impose conditions on |KS + L|. By a converse to the residue theorem due to
Griffiths and Harris, there exists a rank 2 vector bundle E → S with determinant equal to L and a
section s ∈ H0(X, L) whose zero locus is exactly x. Write its Kozsul complex

0 → detE? → E? s→Mx → 0.

It follows that c2(E) = 1. Hence, if L2 = c1(E)2 ≥ 5 then c1(E)2 > 4c2(E) and E is unstable in the
sense of Bogomolov. We have the following diagram

0
↓
A
↓

0 → O s→ E → L⊗Mx → 0
t

↘ ↓
B ⊗ IZ

↓
0

with (A−B)2 > 0 and (A−B) ·H > 0 for every ample divisor H (this in particular implies that A

is destabilizing E, A ·H > c1(E)·H
2

).
One can how that t provides a non-zero section of B that vanishes at x. Its divisor C is a curve

containing x. For t = 0 on the irreducible components of C, there is a map OC → A|C so that
A ·C = (L−C) ·C ≥ 0. On the other hand 1 = c2(E) = A ·B + degZ ≥ (L−C) ·C. With a little
bit more care, one can show that either (L · C = 0 and C2 = −1) or (L · C = 1 and C2 = 0).

Applied for L = 3K, we infer that on a minimal surface of general type (L2 ≥ 5) the linear surface
|4K| is base point free.
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