Deformations of complex manifolds: Exam

1. On the course (40 minutes, without documents)

Exercise 1

1 Recall the definition of a holomorphic family of compact complex manifolds.
2 Recall the definition of completeness and versality for such a family.
3 Recall the theorem that gives a sufficient condition on the Kodaira-Spencer map to ensure completeness.
4 Recall the theorem that characterizes versality in terms of the Kodaira-Spencer map.
5 State the Kodaira-Spencer-Nirenberg theorem.

Exercise 2

1 Recall the definition of a sheaf.
2 Is the sheaf of germs of continuous functions on a complex manifold a fine sheaf?
3 Recall the definition of the coboundary δ of the Čech cohomology.
4 Check that $\delta \circ \delta=0$.

2. Problems (1 H 20 , with documents)

Exercise 3

Let V be a 3-dimensional complex vector space and $\left(e_{1}, e_{2}, e_{3}\right)$ a basis. Let $\left(Z_{1}, Z_{2}, Z_{3}\right)$ be the corresponding homogeneous coordinates on $\mathbb{P}^{2}:=P(V)$ the space of lines in V. The tangent sheaf $T \mathbb{P}^{2}$ of \mathbb{P}^{2} is computed through the Euler sequence derived from the differential $d p$ of the quotient map $p: V-\{0\} \rightarrow \mathbb{P}^{2}$:

$$
\begin{array}{rlccccc}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}} & \rightarrow & \mathcal{O}_{\mathbb{P}^{2}}(1) \otimes V & \rightarrow & T \mathbb{P}^{2} & \rightarrow 0 \\
1 & \mapsto & Z_{1} \frac{\partial}{\partial Z_{1}}+Z_{2} \frac{\partial}{\partial Z_{2}}+Z_{3} \frac{\partial}{\partial Z_{3}} & & \\
& & \ell\left(Z_{1}, Z_{2}, Z_{3}\right) \frac{\partial}{\partial Z} & \mapsto & \ell\left(Z_{1}, Z_{2}, Z_{3}\right) d p\left(\frac{\partial}{\partial Z}\right) &
\end{array}
$$

where $\left(\frac{\partial}{\partial Z_{1}}, \frac{\partial}{\partial Z_{2}}, \frac{\partial}{\partial Z_{3}}\right)$ is the basis $\left(e_{1}, e_{2}, e_{3}\right)$ of V seen as a basis of $T V$ and ℓ a linear map.
1 Compute the cohomology groups $\check{H}^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(m)\right)$ and $\check{H}^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(m)\right)$ for all integers m.
Solution: Let W be a 2-dimensional complex vector space and $\left(\epsilon_{1}, \epsilon_{2}\right)$ a basis. Let (X_{1}, X_{2}) be the corresponding homogeneous coordinates on $\mathbb{P}^{1}:=P(W)$. On the open set $U_{1}:=\left\{X_{1} \neq\right.$ $0\}$ set $x_{2}:=\frac{X_{2}}{X_{1}}$ and on the open set $U_{2}:=\left\{X_{2} \neq 0\right\}$ set $x_{1}:=\frac{X_{1}}{X_{2}}$. A frame for $\mathcal{O}_{\mathbb{P}^{1}}(m)$ on U_{1} is $\left(\epsilon_{1}+x_{2} \epsilon_{2}\right)^{\star m}$ and a frame for $\mathcal{O}_{\mathbb{P}^{1}}(m)$ on U_{2} is $\left(x_{1} \epsilon_{1}+\epsilon_{2}\right)^{\star m}$. On the overlap $U_{1} \cap U_{2}$, they compare by

$$
\left(x_{1} \epsilon_{1}+\epsilon_{2}\right)^{\star m}=\underset{1}{x_{2}^{m}}\left(\epsilon_{1}+x_{2} \epsilon_{2}\right)^{\star m} .
$$

A data $\left(U_{1}, f_{1}\left(x_{2}\right)\right),\left(U_{2}, f_{2}\left(x_{1}\right)\right)$ gives a global section of $\mathcal{O}_{\mathbb{P}^{1}}(m)$ if on the overlap

$$
f_{1}\left(x_{2}\right)\left(\epsilon_{1}+x_{2} \epsilon_{2}\right)^{\star m}=f_{2}\left(x_{1}\right)\left(x_{1} \epsilon_{1}+\epsilon_{2}\right)^{\star m}
$$

that is $f_{1}\left(x_{2}\right)=f_{2}\left(x_{1}\right) x_{2}^{m}=f_{2}\left(\frac{1}{x_{2}}\right) x_{2}^{m}$. Expanding as a power series (in the analytic setting or polynomials in the algebraic setting), we infer that f_{1} and f_{2} has to be reciprocal polynomials of degree less or equal to m. We find that in terms of homogeneous polynomials $f_{1}\left(x_{2}\right)\left(\epsilon_{1}+x_{2} \epsilon_{2}\right)^{\star m}=P\left(X_{1}, X_{2}\right)\left(X_{1} \epsilon_{1}+X_{2} \epsilon_{2}\right)^{\star m}$, where $P\left(X_{1}, X_{2}\right):=X_{1}^{m} f_{1}\left(\frac{X_{2}}{X_{1}}\right)$ that is $\check{H}^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(m)\right)=$ Sym $^{m} V^{\star}$.

A 1-Cech cocycle on $U_{1} \cap U_{2}$ is given by a Laurent polynomials ${ }^{1}$

$$
\left(f\left(x_{2}\right)+g\left(\frac{1}{x_{2}}\right)\right)\left(\epsilon_{1}+x_{2} \epsilon_{2}\right)^{\star m} .
$$

From the previous computations, we know that 1-coboundaries are of the form

$$
f_{1}\left(x_{2}\right)-x_{2}^{m} f_{2}\left(\frac{1}{x_{2}}\right)
$$

Hence for $m \geq-1$ all cocycles are coboundaries. For $m \leq-2$, cohomology classes have a unique representative of the form

$$
\begin{array}{r}
\left(\frac{a_{1}}{x_{2}}+\frac{a_{2}}{\left(x_{2}\right)^{2}}+\cdots+\frac{a_{-m-1}}{\left(x_{2}\right)^{-m-1}}\right)\left(\epsilon_{1}+x_{2} \epsilon_{2}\right)^{\star m} \\
=\left(\frac{a_{1}}{X_{1}^{-m-1} X_{2}}+\frac{a_{2}}{X_{1}^{-m-2} X_{2}^{2}}+\cdots+\frac{a_{-m-1}}{X_{1} X_{2}^{-m-1}}\right)\left(X_{1} \epsilon_{1}+X_{2} \epsilon_{2}\right)^{\star m} .
\end{array}
$$

Then $\check{H}^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(m)\right)$ is of dimension $-m-1$.
2 Determine the sheaf cokernel of the multiplication map $\mathcal{O}_{\mathbb{P}^{2}}(m-1) \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(m)$ by Z_{1}.
Solution: The maps

$$
\begin{array}{ll}
\text { On } U_{1} & \left(e_{1}+z_{2}^{1} e_{2}+z_{3}^{1} e_{3}\right)^{\star m-1} \mapsto\left(e_{1}+z_{2}^{1} e_{2}+z_{3}^{1} e_{3}\right)^{\star m} \\
\text { On } U_{2} & \left(z_{1}^{2} e_{1}+e_{2}+z_{3}^{2} e_{3}\right)^{\star m-1} \mapsto z_{1}^{2}\left(z_{1}^{2} e_{1}+e_{2}+z_{3}^{2} e_{3}\right)^{\star m} \\
\text { On } U_{3} & \left(z_{1}^{3} e_{1}+z_{2}^{3} e_{2}+e_{3}\right)^{\star m-1} \mapsto z_{1}^{3}\left(z_{1}^{2} e_{1}+e_{2}+z_{3}^{2} e_{3}\right)^{\star m}
\end{array}
$$

patchs on the overlap, defines a map of sheaves $\mathcal{O}_{\mathbb{P}^{2}}(m-1) \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(m)$ and may be written

$$
\left(Z_{1} e_{1}+Z_{2} e_{2}+Z_{3} e_{3}\right)^{\star m-1} \mapsto Z_{1}\left(Z_{1} e_{1}+Z_{2} e_{2}+Z_{3} e_{3}\right)^{\star m} .
$$

Is is injective on germs. Its cokernel is empty on U_{1} and is $\left(\mathcal{O}_{U_{2}} /\left(z_{1}^{2}\right)\right) \otimes \mathcal{O}_{\mathbb{P}^{2}}(m)$ on U_{2}. It is therefore $\mathcal{O}_{L}(m)$ the structure sheaf of the line L defined by $Z_{1}=0$ tensorised by $\mathcal{O}_{\mathbb{P}^{2}}(m)$. We get the short exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(m-1) \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(m) \rightarrow \mathcal{O}_{L}(m) \rightarrow 0
$$

3 Let m be a non negative integer. Show that $\check{H}^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(m)\right)$ and $\check{H}^{2}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(m)\right)$ vanish.

1. Depending on the setting, algebraic or analytic, we choose we use polynomials or power series.

Solution: From the previous sequence, we infer a long exact sequence

that simplifies

As the maps $S^{m} V^{\star}=S^{m}\left(\mathbb{C} Z_{1} \oplus \mathbb{C} Z_{2} \oplus \mathbb{C} Z_{3}\right) \rightarrow S^{m} W^{\star}=\left(\mathbb{C} Z_{2} \oplus \mathbb{C} Z_{3}\right)$ are surjective, we infer that all the $H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(m)\right)$ are isomorphic to $H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}\right)=0$, and the same for H^{2}.

We will now compute $H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}\right)$ and $H^{2}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}\right)$. Denote $U_{i}:=\left\{Z_{i} \neq 0\right\}$, and $z_{j}^{i}:=\frac{Z_{j}}{Z_{i}}$ on U_{i}. The spaces of regular algebraic functions identify with polynomial rings $\mathbb{C}\left[U_{0}\right]=$ $\mathbb{C}\left[z_{1}^{0}, z_{2}^{0}\right], \mathbb{C}\left[U_{1}\right]=\mathbb{C}\left[z_{0}^{1}, z_{2}^{1}\right]=\mathbb{C}\left[\frac{1}{z_{1}^{0}}, \frac{z_{2}^{0}}{z_{1}^{0}}\right]$ and $\mathbb{C}\left[U_{01}\right]=\mathbb{C}\left[z_{1}^{0}, z_{2}^{0}, \frac{1}{z_{1}^{0}}\right]$. Hence, all 1-Cech cocycles are coboundaries : $H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}\right)=0$. Noting $\mathbb{C}\left[U_{012}\right]=\mathbb{C}\left[z_{1}^{0}, z_{2}^{0}, \frac{1}{z_{1}^{0}}, \frac{1}{z_{2}^{0}}\right]$, we also infer that $H^{2}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}\right)=0$.

4 Compute $\check{H}^{0}\left(\mathbb{P}^{2}, T \mathbb{P}^{2}\right), \check{H}^{1}\left(\mathbb{P}^{2}, T \mathbb{P}^{2}\right)$ and $\check{H}^{2}\left(\mathbb{P}^{2}, T \mathbb{P}^{2}\right)$.
Solution: From the Euler sequence, we infer the long exact sequence

We find $\check{H}^{0}\left(\mathbb{P}^{2}, T \mathbb{P}^{2}\right)=\left(V^{\star} \otimes V\right) / \mathbb{C}, \check{H}^{1}\left(\mathbb{P}^{2}, T \mathbb{P}^{2}\right)=0$ and $\check{H}^{2}\left(\mathbb{P}^{2}, T \mathbb{P}^{2}\right)=0$.
5 Infer from these computations that \mathbb{P}^{2} has no non-trivial deformations.
Solution: As $\check{H}^{2}\left(\mathbb{P}^{2}, T \mathbb{P}^{2}\right)=0$, the Kodaira-Nirenberg-Spencer tells that the Kuranishi family of \mathbb{P}^{2} is an open set in $\check{H}^{1}\left(\mathbb{P}^{2}, T \mathbb{P}^{2}\right)=0$: hence, \mathbb{P}^{2} has no non-trivial deformations.

Exercise 4

Let m be an integer and $F_{m}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(m)\right)$ the Hirzebruch surface. Take for granted that

- $\operatorname{dim} \check{H}^{1}\left(F_{m}, T F_{m}\right)=m-1$ for $m \geq 2$, and 0 for $m=0$ and $m=1$.
- $\operatorname{dim} \check{H}^{2}\left(F_{m}, T F_{m}\right)=0$ for all m.

Let k be an integer. Consider the family obtained by patching two copies of $\mathbb{C} \times \mathbb{C} \times \mathbb{P}^{1}$ by

$$
\left(t_{1}, z_{1}, \zeta_{1}\right) \equiv\left(t_{2}, z_{2}, \zeta_{2}\right) \Longleftrightarrow\left\{\begin{array}{ccc}
t_{1} & = & t_{2} \\
z_{1} & = & \frac{1}{z_{2}} \\
\zeta_{1} & = & z_{2}^{m} \zeta_{2}+t_{2} z_{2}^{k}
\end{array}\right.
$$

Recall that the fiber over $t=0$ is F_{m} and that the other fibers are isomorphic to $F_{m-2 k}$.
1 For which m and k could this family be at $t=0$ the Kuranishi family of F_{m} (i.e. complete at each point of the base \mathbb{C} and versal at $t=0$).

Solution: As this family has a base of dimsension one, and as by Kodaira-Nirenberg-Spencer theorem $\left(\operatorname{dim} \check{H}^{2}\left(F_{m}, T F_{m}\right)=0=\right.$ the base is an open set in $\check{H}^{1}\left(F_{m}, T F_{m}\right)$, we see that m has to be 2 . As the family is trivial for $k=0, k$ has to be 1 .

2 Compute the Kodaira-Spencer map of this family at $t=0$.
Solution: For $m=2$ and $k=1$, the Kodaira-Spencer map reads

$$
\begin{aligned}
\kappa\left(\frac{\partial}{\partial t}\right) & =\frac{\partial z_{1}}{\partial t}\left(t, z_{2}, \zeta_{2}\right) \frac{\partial}{\partial z_{1}}+\frac{\partial \zeta_{1}}{\partial t}\left(t, z_{2}, \zeta_{2}\right) \frac{\partial}{\partial \zeta_{1}} \\
& =-\left(z_{1}\right)^{2} \frac{\partial}{\partial z_{1}}+\frac{1}{z_{1}} \frac{\partial}{\partial \zeta_{1}} .
\end{aligned}
$$

3 Conclude.

Solution: As $\frac{\partial}{\partial \zeta_{1}}$ writes in the other chart $\frac{\partial}{\partial \zeta_{1}}=\frac{\partial \zeta_{2}}{\partial \varsigma_{1}} \frac{\partial}{\partial \zeta_{2}}+\frac{\partial z_{2}}{\partial \zeta_{1}} \frac{\partial}{\partial z_{2}}+\frac{\partial t_{2}}{\partial \zeta_{1}} \frac{\partial}{\partial t_{2}}=\frac{1}{z_{1}^{2}} \frac{\partial}{\partial \zeta_{2}}+\cdots$ the image of the Kodaira-Spencer is not a coboundary. Hence, the Kodaira-Spencer map is surjective ewerywhere and an isomorphism at 0 : the family is hence the Kuranishi family of F_{2}.

