6 Groups and permutations

C = {5, 6, 7). By considering A~' and B, solve the two equations
AAX = B,and AAXAB =C.

1.3 Permutations of a finite set

We shall now discuss permutations of a non-empty set X. We shall show (in
Section 1.5) that the permutations of X form a group, and we shall use this
to examine the nature of the permutations. This is most effective when X is a
finite set, and we shall assume that this is so during this and the next section.
Before we can consider permutations we need to understand what we mean by
a function and, when it exists, its inverse function. As (for the moment) we are
only considering functions between finite sets, we can afford to take a fairly
relaxed view about functions; a more detailed discussion of functions (between
arbitrary sets) is given in Section 1.5.

A function f : X — X from a finite set X to itself is a rule which assigns
to each x in X a unique element, which we write as f (x), of X. We can define
such a function by giving the rule explicitly; for example, when X = {a, b, ¢)
we can define f : X — X by therule f(a) =b, f(b) = cand f(c) = a. Note
that f cyclically permutes the elements a, b and ¢, and this is our first example
of a permutation. Two functions, say f:X—>Xandg:X — Xare equal if
f(x) = g(x) for every x in X, and in this case we write f = g. The identity
function I - X — X on X is the function given by the rule I(x) = x for all x
in X.

Suppose now that we have two functions f and g from X to itself. Then for
every x in X there is a unique element g(x) in X, and for every y in X there
is a unique element f(y) in X. If we choose x first, and then take y = g(x),
we have created a rule which takes us from x to the element f(g(x)). This
rule defines a function which we denote by fg : X — X. We call this function
the composition (or sometimes the product) of f and g, and it is obtained by
applying g first, and then f. This function is sometimes denoted by f o g, but
it is usual to use the less cumbersome notation fg.

Given a function f : X — X, thefunctiong : X — X is the inverse of f if,
for every x in X, we have f(g(x)) =x and g(f(x)) = x, or, more succinctly,
if fg =1 = gf, where [ is the identity function on X. It is important to note
that not every function f : X — X has an inverse function. Indeed, f has an
inverse function precisely when, for every y in X, there is exactly one x in X
such that f(x) =y, for then the inverse function is the rule which takes y back
to x. We say that a function f: X — X is invertible when the inverse of f
exists, and then we denote the inverse by f -1 Note that if f is invertible, then
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sois £, and (f~1)~! = f. We are now ready to define what we mean by a
permutation of a set X,

Definition 1.3.1 A permutation of X is an invertible map f : X — X. The set
of permutations of X is denoted by P(X). 0

Theorem 1.3.2 The set P(X) of permutations of a finite non-empty set X is a
group with respect to the composition of functions.

We remark that it is usual to speak of the product of permutations rather than
the composition of permutations.

Proof We must show that the operation = defined on P(X) by fxg = fg (the
composition) satisfies the requirements of Definition 1.2.1. First, we show that

* is associative. Let f, g and k be any functions, and let u = gf and v = hg.
Then, for every x in X,

(h(gN)x) = (hu)x)

= :?C&V
= imq o&v
=v(f(x)
= (vf)x)
= ((hg) f)(x).

This shows that k(gf) = (hg)f and, as a consequence of this, we can now
use the notation kg f (without brackets) for the composition of three (or more)
functions in an unambiguous way.

Next, the identity map / : X — X is the identity element of P(X) because if
f is any permutation of X, then ff = f = I f; explicitly, forevery x, fI(x) =
F(x)y = I(f(x)). Next,if f is any permutation of X, then f is invertible, and the
inverse function ' is also a permutation of X (because it too is invertible).
Moreover, f ! is the inverse of f in the sense of groups because ff~' =
I = f~! f. Finally, suppose that f and g are permutations of X. Then fg is
invertible (and so is a permutation of X) with inverse g=' ~!; indeed

(1.3.1)

(feXg™' f N =fleg ' =fif =5 =1,
and similarly, (¢~' f~")(fg) = I. This completes the proof. 0

Examples of permutation groups will occur throughout this text. However,
for the rest of this and the next section we shall focus on the group of permu-
tations of the finite set {1, 2, ..., r} of integers.




~ PV O TR LA TR L e T ]

Definition 1.3.3 The symmetric group S, is the group of permutations of
{1,...,n}L |

As a permutation p is a function we can use the vsual notation p(k) for the
image of an integer £ under p. However, it is customary, and convenient, to
write p in the form

|A 1 2 - a
?,R:n@bo:_

where the image p{k) of k is placed in the second row underneath k in the
first row; for example, the permutation 8 of {1, 2, 3, 4} such that g(1) =4,
B(2) =2, B(3) = 1 and B(4) == 3 is denoted by

1 2 3 4
4 21 3

It is not necessary to order the columns according to the natural order of the
top row, and we may use any order that we wish; for example,
_ 1 P n o1 a; -+ a
blm_...ma_bl_: )
A permutation p is said to fix k, and k is a fixed point of p, if p(k) = k. By
convention, we may omit any integers in the expression for p that are fixed by

p (and any integers that are omitted in this expression may be assumed to be
fixed by p). For example, if p is a permutation of {1, ..., 9}, and if

({1 8 3 7
P=\s 17 3)
then p interchanges 1 and &, and 3 and 7, and it fixes 2, 4, 5, 6 and 9.
If o and § are permutations of {1, . .., »} then a8 is the permutation obtained

by applying B first and then «. The following simple example illustrates a purely
mechanical way of computing this composition: if

. {1 2 3 4 = 1 2 3 4
““l2431) P 23 41
then (re-arranging ¢ so that its top row coincides with the bottom row of 8, and
remembering that we apply B first) we have

(23 4 IN/1 23 4\ (123 4
W=y 31 2232 1)s3 12

Note that e # B (thatis, o and B do not commute), We shall now define what
we mean by disjoint permutations, and then show that disjoint permutations
commiite.
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Definition 1.3.4 We say that two permutations « and 8 are disjoint if, for every
kin{l,..., n}, either a(k) = k or Btk) = k. O

Theorem 1.3.5 Ifa and B are disjoint permutations then aff = Bo.

Proof Takeany kin {1, ..., n}. Aseither « or B fixes k we may suppose that
ofk) = k. Letk' = B(k); then a(B(k)) = a(k’) and Sla(k)) = B(k) = k' so we
need to show that « fixes &' This is true (by assumption) if 8 does not fix &',
0 we may suppose that 8 fixes k', But then (k) = k' = B(k’), and applying
B!, we see that k = &', so again « fixes &', O

A permutation that cyclically permutes some set of integers is called a cycle.
More precisely, we have the following definition.

Definition 1.3.6 The cycle (n; ... n,) is the permutation

My Hy - g1 Ny

ny ny - omg o j
Explicitly, this maps n; ton,; 4 when 1 < j < g, and n, to ny, and it fixes all
other integers in {1, ..., n}. We say that this cycle has Jength ¢, or that it is a
g-cycle. |

Notice that we can write a cycle in three different ways; for example,

1 35 1 2 3 45
:mewqulmumup_v.

To motivate the discussion that follows, observe that if

1 2 3 4 35 6 7
5721 4 3 6)°

then (by inspection} o = (1 54)(27 6 3) and so, by Theorem 1.3.5,

g =

o =(154)2763)=(2763)154).

We shall now show that this is typical of a/l permutations. Take any permutation
pof {1,...,n}, and any integer k in this set. By applying o repeatedly we
obtain the points &, p(k), p2(k), .. .. and as two of these points must coincide,
we see that there are integers p and g with p”(k) = p¥(k) where, say, ¢ < p.
As p~! exists, pP~9(k) = k. Now let u be the smallest positive integer with the
property that p*(k) = k; then the distinct numbers k, p(k), p2(k), . .., p*~1(k)
are cyclically permuted by p. We call

Ok) = {k, p(k), p*(k), ..., p"~ (k). (1.3.2)

the orbiz of k under p. Now every pointmin {1, ..., ) lies in some orbit (which
will have exactly one element if and only if p fixes m), and it is evident that
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two orbits are either identical or disjoint. Thus we can write
{L,....n} = Ok U---UOkp), (1.3.3)

where the orbits O(k;) are pairwise disjoint sets, and where each of these sets is
cyclically permuted by p. We call (1.3.3) the orbit-decompositionof {1, ..., n}.
Each orbit O(k) in (1.3.2) provides us with an associated cycle

po =k p(k) p*(k) -+ "7 (R)).

Note that p and gy have exactly the same effect on the integers in O(k), but that
po fixes every integer thatis notin O(k}. Now consider the decomposition (1.3.3)
of {1, ..., n}into mutually disjoint orbits, and let p; be the cycle associated to
the orbit G(k ;). Then it is clear that the cycles p; are pairwise disjoint (because
their corresponding orbits are); thus they commute with each other. Finally, if
x € Oy, then p;(x) = p(x), and p;(x) = x if i # j,sothat p = py--- Om- We
summarize this result in our next theorem.

Theorem 1.3.7 Let p be a permutation of {1, ..., n}. Then p can be expressed
as a product of disjoint {commuting) cycles.

It is evident that the expression p = p - - - P that was derived from the orbit
decomposition (1.3.3) is unique up to the order of the ‘factors’ p;. Indeed if
= [i1 - - py, Where the y; are pairwise disjoint cycles, then the set of points
not fixed by wu;, constitutes an orbit for p, so that u; must be some p;. In
particulat, the number m of factors in this preduct is uniquely determined by
o, and we shall return to this later. We pause to name this representation of p.

Definition 1.3.8 The representation p = py - - - p, which is derived from the
orbit decomposition (1.3.3), and which is unique up to the order of the factors
p;. is called the standard representation of p as a product of cycles. O

Let us illustrate these ideas with an example. Consider

. (123456789
P=\7 18 46 9 2 35

as a permutation of {1,...,9). The orbits of p are {1,7,2}, {3, 8}, {4} and
{5, 6, 9}, and the standard representation of p as a product of disjoint cycles is
(1723(38)4)(569).

There is an interesting corollary of Theorem 1.3.7. First, if u is a cycle of
length k, then u* (that is, u applied k times) is the identity map. Suppose now
that p = p1 - - - 0, 15 the standard representation of p, and let & be any positive
integer. As the p; commute, we have

pt = (o1 o) =i - 05

1.4 The sign of a permutation 11

It follows that if & is the least common multiple of g, ..., ¢, where ¢, is the
length of the cycle p;, then o = I. For example if p = (134)(2956X78),
then p'? = I, In fact, it is not difficult to see that the least common multiple d
of the g; is the smallest positive integer ¢ for which o' = I. As d divides n!,
this shows that p"' = [ for every permutation p of {1, ..., n}.

Exercise 1.3
1. Show that

1 23 45 6 7 8 9
4 7 9 2 6 81 5 3

2. Show that (123 4) = (1 4)(1 3)(1 2). Express (12 3 4 5) as a product of
2-cycles. Express (1 2 ... n) as a product of 2-cycles.
3. Express the permutation

1 2 3 456 7 89 10
8 7 10 9 4 3 6 5 1 2

as a product of cycles, and hence (using Exercise 1.3.2) as a product of
2-cycles. Use this to express o~ ! as a product of 2-cycles.

4. Show that the set {7, (12)(34), (13)(24), (14)23)} of permutations is a
group.

5. Suppose that the permutation o of {1, ..., n} satisfies p*> = /. Show that p
is a product of 3-cycles, and deduce that if # is not divisible by 3 then p
fixes some kin {1, ..., n}.

= (1427)39)5 6 8).

b”

1.4 The sign of a permutation

A 2-cycle (r 5) (which interchanges the distinct integers r and s and leaves all
other integers fixed) is called a transposition. Notice that (r 5) = (5 r), and that
(r 5) is its own inverse. Common experience tells us that any permutation can

be achieved by a succession of transpositions, and this suggests the following
result.

Theorem 1.4.1 Every permutation is a product of transpositions.

Proof As every permutation is a product of cycles, and as for distinct integers
a; we have (by inspection)

(araz -~ ap) = (a1 ap)--(a) aa)a; az), (1.4.1)

the result follow immediately. &
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In fact (}.4.1) leads to the following quantitative version of Theorem 1.4.1.

Theorem 1.4.2 Let o be a permutation acting on {1, .. ., n}, and suppose that
p partitions {1, ..., n} into m orbits. Then p can be expressed as a composition

of n — m transpositions.

Proof Letp = p - - - py, be the standard representation of o as a product of dis-
joint cycles, and let n1; be the length of the cycle p;. Thus 3, n; = n.Ifn; = 2
then, from (1.4.1), p; can be written as a product of n; — 1 transpositions. It
n; = 1 then p; is the identity, so that no transpositions are needed for this factor.
However, in this case n; — 1 = 0. It follows that we can express o as a product
of 3 = 1) transpositions, and this number is # — m. O

We come now to the major result of this section, namely the number of
transpositions used to express a permutation p as a product of transpositions.
Although this number is not uniquely determined by p, we will show that its
parity (that is, whether it is even or odd) is determined by p. First, however, we
prove a preliminary result.

Lemma 1.4.3 Suppose that the identity permutation I on {1,2, ..., n} can be
expressed as a product of m transpositions. Then m is even.

Proof The proof is by induction on #, and we begin with the case n = 2. In
this case we write [ = 1; - - - T,,, where each t; is the transposition (12). As
(12)" = (12)if m is odd, we see that m must be even, so the conclusion is true
whenn = 2.

We now suppose that the conclusion holds when the permutations act on
{1,2,...,n — 1}, and consider the situation in which f = 7, - - - 7,5, where each
1; is atransposition actingon {1, .. ., n}. Clearly, m # 1, thusm > 2. Suppose,
for the moment, that 7,, does not fix n. Then, for a suitable choice of a, b and
¢, we have one of the following situations:

(nb)na)="(abn)=(na)ab),
(a b)na)=(anb)=(nb)ab),
(bc)na)=(nalbc)
(raYna)=1T = (ab)ab).

Tm—1Tm =

It follows that we can now write I as a product of m transpositions in which the
first transposition to be applied fixes » (this was proved under the assumption
that t,,(n) # #n, and [ is already in this form if t, (1) = n). In other words, we
may assume that 1,,,(n) = n. We can now apply the same argumentto 7 - - - T
(providing thatm — 1 > 2), and the process can be continued to the point where
we can write /] = 7, - - - T,,, Wwhere each of 72, .. ., T, fixes n. But then 7; also
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fixes n, because
) =1 - Tun) = I(n)=n.

Thus, we can now write / = 7, - - - 1,,, where each 1 i s a transposition acting
on{l,...,n — 1}. The induction hypothesis now implies that # is even and the
proof is complete. O

The main result now follows.

Theorem 1.4.4 Suppose that a permutation p can be expressed both as a prod-

uct of p transpositions, and also as a product of q transpositions. Then p and
q are both even, or both odd.

Proof Suppose that 7 - - T, =0+ g, Where each 1; and each o; is a
.:mn%om:_on. Theno,o4—1 -+ 07 7, = I, so that, byLemma .43, p+g¢q
is even. It follows from this that p and ¢ are both even, or both odd. a

As an example, consider the permutation © = (135)2468)7) acting on
{1,...,8}. Here, n = 8 and N{p) = 3 so that, by Lemma 1.4.3, p can be ex-
pressed as a product of five transpositions. Theorem 1.4.4 now implies that if
we write p as a product of tranpositions in any way whatsoever, then there will
necessarily be an odd number of transpositions in the product, This discussion
suggests the following definition.

Definition 1.4.5 The sign (o) of a permutation g is (—1)7, where p can be
expressed as a product of ¢ transpositions. We say that p is an even permutation
if £(p) = 1, and an odd permutation if e(p)=—1. a

Observe from (1.4.1) thatif pis a p-cycle then e(p) = (—1)7*!; thus a cycle of
even length is odd, and a cycle of odd length is even. If the permutations « and
£ can be expressed as products of p and ¢ transpositions, respectively, then the

composition o8 can be expressed asa product of p + g transpositions; thus the
next two results are clear.

Theorem 1.4.6 If « and B are permutations, then e(apf) = e(w)e(B). In par-
ticular, e(e) = e(a™ ). .

Theorem 1.4.7 The product of two even permutations is an even permutation.,
The inverse of an even permutation is an even permitation. More generally, the
set of even permutations in S, is a group.

Definition 1.4.8 The alternating group A, is the group of all even meBEmnoum
in §,.
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It is easy to find the number of elements in the symmetric group S, and in the
alternating group A,.

Theorem 1.4.9 The symmetric group S, has n! elements, and the alternating
group A, has n!/2 elements.

Proof Elementary combinatorial arguments show that §, has exactly »! ele-
ments for, in order to construct a permutation of {1, ..., n}, there are n ways to
choose the image of 1, then n — 1 ways to choose the image of 2 {distinct from
the image of 1}, and so on. Thus S, has n! elements.

Now let o be the transposition {12} and let f : §, — S, be the function
defined by f(p) = op. We note that f is invertible, with f -1 = f, because,
for every p, F{f{0)) = flop) =oop = p. It is clear that f maps even per-
mutations to odd permutations, and odd permutations to even permutations
and, as f is invertible, there are the same number of even permutations in S,
as there are odd permutations. Thus there are exactly #!/2 even permutations
in §,. O

Theorem 1.4.1 says that every permutation is a product of 2-cycles. Are
there any other values of m with the property that every permutation a product
of m-cycles? The answer is given in the next theorem.

Theorem 1.4.10 Let p be a permutation of {1, ..., n}, and let m be an integer
satisfying 2 < m < n. Then p is a product of m-cycles if and only if either p is
an even permutation, or m is an even integer.

Proof Take any integer m with 2 < m < n. Suppose first that o is an even
permutation. The identity

(e @mXaras) = (@1 araz a4 AGmXap - -+ 2403 Q) 82),

where the g; are distinct (and which can be verified by inspection) shows that it
suffices to express p asa product of terms 7,7, where 7; and ; are transpositions
with exactly one entry in common. Now as p is even it can certainly be be written
as a product of terms of the form t;7;, where each t; is a transposition, and
clearly we may assume that ; # 7;. If 7; and 7; have no elements in common
then we can use the identity

(ab)(cd) =(ab)Xac)ac)cd),

to obtain p as a product of the desired terms.
Letus now suppose that g is an odd permutation. If p 1s a product of m-cycles,
say, p = p1 -+ pr, then

—1 = (o) = e(pr} - -2(p) = [(=1"'T,

o= 2 AR R TSRS TR g e E T AR T T =

so that m is even. Finally, take any even m, and let oo = (123 .- m). As op
is odd, we see that opp is even. It follows that opp, and hence p itself, can be
written as a product of m-cycles. O

Exercise 1.4

57 21 4 3 6
2. Find all six elements of S5 and determine which are even and which are

odd. Find all twelve even permutations of S;.

3. The order of a permutation p is the smallest positive integer m suchthat

o™ (that is, p applied m times) is the identity map.

{a) What is the order of the permutation (1234)(56789)?

(b) Which element of S5 has the highest order, and what is this order?
(¢) Show that every element of order 14 in 5y is odd.

4. (i) By considering (1 a)(1 #)(1 &), show that any permutation in S, can be
written as a product of the transpositions (1, 2), (13), ..., {1 #), each of
which may be used more than once.

(i1) Use (i) to show that any permutation in §, can be written as a product
of the transpositions (1, 2), (23}, ..., (n — L n), each of which may be used
more than once.

[This is the basis of bell-ringing, for a bell-ringer can only ‘change places’
with a neighbouring bell-ringer.]

5. Show that any subgroup of S, (that is, a subset of §, that is a group in its
own right) which is not contained in A, contains an equal number of even
and odd permutations.

1. Show that the permutation A_ 23456 ._._v is odd.

1.5 Permutations of an arbitrary set

This section is devoted to a careful look at functions between arbitrary sets. The
reader will have already met functions defined by algebraic rules (for example,
x2 4 3x + 5), but we need to understand what one means by a function between
sets in the absence of any arithmetic. We can say that a function f : X — Yis
a rule that assigns to each x in X a unique y in ¥ and this seems clear enough,
but what do we actually mean by a rule, and why should it be easier to define a
‘rule’ than a function? In fact, it is easier to think about a function in terms of
its graph, and this is what we shall do next. As an example, the graph G(f} of
the function f(x) = x?, where x € IR, is the set

G(f)={(x,xD) 1 x € R) = {(x, f(x)) e R*: x € R}



