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22. Let § be a set, X a subset, and assume neither 5 nor X is empty. Let R be a
ring. Let F(S, R) be the ring of all mappings of § into R, and let

p: F(S, R)— F(X, R)

be the restriction, ie. if feF(S,R), then p(f) is just f viewed as a
map of X into R. Show that p is surjective. Describe the kernel of p.

23. Let K be a field and 5 a set. Let x, be an element of S. Let F(S, K) be the
ring of mappings of § into K, and let J be the set of maps feF (S, K) such
that f(xy) =0. Show that J is a maximal ideal. Show that F(S, K)/J is

isomorphic to K.

74. Let R be a commutative ring. A map D:R-—R is called a derivation if
D(x + y) = Dx + Dy, and D(xy) = (Dx)y + x(Dy) for ali x, yeR. If D;, D,
are derivations, define the bracket product

[(D,D,}=D,D; —D;- D,
Show that [P, D,] is a derivation.

Example. Let R be the ring of infinitely differentiable real-valued func-
tions of, say, two real variables. Any differential operator

2 —
bx,smx E mx.s%

with coefficients f, g which are infinitely differentiable functions, is a deriva-
tion on R.

i, §4. QUOTIENT FIELDS

In the preceding sections, we have assumed that the reader is acquainted
with the rational numbers, in order to give examples for more abstract
concepts. We shall now study how one can define the rationals from the

_integers. Furthermore, in the next chapter, we shall study polynomials
over a field. One is accustomed to form quotients f/g (g # 0) of poly-
nomials, and such quotients are calied rational functions. Qur discussion
will apply to this situation also.

Before giving the abstract discussion, we analyze the case of the
rational numbers more closely. In elementary school, what is done
(or what shouid be done), is to give rules for determining when two
quotients of rational numbers are equal. This is needed, because, for
instance, 2 =&, The point is that a fraction is determined by a pair of
numbers, in this special example (3, 4), but also by other pairs, e.g. (6, 8).
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we get our cue how to define the fraction, namely as a certain equiva-
lence class of pairs. Next, onec must give rules for adding fractions, and
the rules we shall give in general are precisely the same as those which
are (or should be) given in elementary school.

Oc._. discussion will apply to an arbitrary integral ring R. (Recall
that integral means that 1+#0, that R is commutative and without
divisors of 0.)

Let (a,b) and (c, d) be pairs of elements in R, with b # 0 and d # 0,
c<.o mrm: say that these pairs are equivalent if ad = bc. We contend that
this is an equivalence relation. Going back to the definition of Chapter
I, §5, we see that ER1 and ER 3 are obvious. As for ER 2, suppose
that (g, b) is equivalent to (c,d) and (c,d) is equivalent to (e, f). By
definition, .

ad = bc¢ and cf = de.
Multiplying the first equality by f and the second by b, we obtain
adf = bef  and bef = bde,

S_..m:.nw adf = bde, and daf — dbe = 0. Then d(af — be) = 0. Since R has
no divisors of 0, it follows that af — be = 0, ie. af = be. This means that
(a, b) is equivalent to (e, f), and proves ER 2.

We denote the equivalence class of (a, b) by a/b. We must now define
how to add and multiply such classes.

If a/b and ¢/d are such classes, we define their sum to be

and their product to be

We must m.:o..s. of course that in defining the sum and product as above,
.:a H.nw::. is independent of the choice of pairs (a, b) and (c, d) represent-
ing the given classes. We shall do this for the sum. Suppose that

alb = a'/b’ and c/d = c'/d'.

We must show that

ad + be  dd + b¢
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This is true if and only if

b'd(ad + bc) = bd(a'd’ + b'¢),

H

or in other words

(1) bd'ad + b'd'bc = bda'd’ + bdb'c'.

wcﬁaw\na‘wmna&\.Hn,&cwmwmcav:on.Cmmsmﬁrmmvénmmmmﬁoaoo
that (1) holds. We leave the analogous statement for the product as an
exercise.

We now contend that the set of all quotients a/b with b # 0 is a ring,
the operations of addition and multiplication being defined as above.
Note first that there is a unit element, namely 1/1, where 1 is the unit
element of R. One must now verify all the other axioms of a ring. This
is tedious, but obvious at each step. As an example, we shall prove the

associativity of addition. For three quotients a/b, c/d, and e/f we have

a 4

LC +wnalm_+®n mH\a&+\wn+§m.

bd T bdf

b d
On the other hand,

S SR S
b \d f/ b

of +de adf + bef + bde
af bdf

It is then clear that the expressions on the right-hand sides of these
equations are equal, thereby proving associativity of addition. The other
axioms are equally easy to prove, and we shall omit this tedious routine,
We note that our ring of quotients is commutative.

Let us denote the ring of ali quotients a/b by K. We contend that K
is a field. To see this, all we need to do is prove that every non-zero
element has a multiplicative inverse. But the zero element of K is 0/1,
and if a/b = 0/1 then a = 0. Hence any non-zero element can be written
in the form a/b with b # 0 and a # 0. Its inverse is then b/a, as one sees
.directly from the definition of multiplication of quotients.

Finally, observe that we have a natural map of R into K, namely the
map

a— afl.

It is again routine to verify that this map is an injective ring-homo-
morphism. Any injective ring-homomorphism wili be called an embed-
ding. We see that R is embedded in K in a natural way.

We call K the quotient field of R. When R = Z, then K is by defini-

N N ~ 1 1 -~ P
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defined in the next chapter, its quotient field is called the field of ratienal
functions.

Suppose that R is a subring of a field F. The set of all elements gb~ !
with a, be R and b # 0 is easily seen to form a field, which is a subfield
of F. We also call this field the quotient field of R in F. There can be
no confusion with this terminology, because the quotient field of R as
defined previously is isomorphic to this subfield, under the map

alb—ab™ 1!,

The verification is trivial, and in view of this, the element ab~! of F is
also denoted by a/b.

Example. Let K be a field and as usual, Q the rational numbers.
There does not necessarily exist an embedding of Q into K (for instance,
K may be finite}. However, if an embedding of Q into K exists, there is
only one. This is easily seen, because any homomorphism

f:Q-K

must be such that f(1) = ¢ (unit element of K). Then for any integer
n >0 one sees by induction that f () = ne, and consequently

J{—n)= —ne.

Furthermore,

e=f(1)=flan"")=f(n)f(n"1)

s0 :.b.mﬁ S =f(n)"' =(ne)~'. Thus for any quotient m/n = mn~!
with integers m, n and n > 0 we must have

Slmin) = (me)(ne) ' .
thus showing that f s uniquely determined. Tt is then customary to

identify Q inside K and view every rational number as an element of K.

Finally, we make some remarks on the extension of an embedding of
a ring into a field.

Let R be an integral ring, and
JiR-E

an embedding of R into some field E. Let K be the quotient field of R.
Then f admits a unique extension to an embedding of K intn F thos ic
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To see the uniqueness, observe that if f* is an extension of f, and
f*K—-E
is an embedding, then for all g, be R we must have

F*(afb) = f¥@)/ f*(b) = f(@)/f(b),

so the effect of f* on K is determined by the effect of f on R. Con-
versely, one can define f* by the formuia

S*(a/b) = f(a)/f(B),

and it is seen at once that the value of f* is independent of the choice of
the representation of the quotient a/b, that is if a/b = ¢/d with

a,b,c,deR and bd # 0,

then

f@)/fb) = f)f(d).

One also verifies routinely that f* so defined is a homomorphism, there-
by proving the existence.

I, §4. EXERCISES

1. Put in all details in the proof of the existence of the extension f* at the end
of this section.

2. A (ring-) isomorphism of a ring onto itself is also called an automorphism. Let
R be an integral ring, and ¢: R — R an automorphism of R. Show that ¢
admits 2 unique extension to an automorphism of the quotient field.




