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Exercice 1 [About the basic rules of pseudo-differential calculus]. Let m € Z and let
a(r,§) € S7H(R™) be a symbol of order m. recall that the action of the pseudo-differential
operator Op(a) = a(x, D) is given by

1

Op(a)u(r) = s

[ e aw.) (o) de.

1.1. We denote by [Op(a), d;] the commutator of Op(a) with the partial derivative with
respect to the j™ direction. Prove that [Op(a),d;] is a pseudo-differential operator and
compute its symbol in terms of a.
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In other words

[Op(a), 8;] = Op(—0dja),
which can be tested on differential operators.

1.2. Same question for [Op(a), z;] where x; is the multiplication operator by x;.
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In other words
[Op(a)vxj] = Op(_iafja)v

which again can be tested on differential operators.

Exercice 2 [About the localization of the wave front set]. Let u € £'(R™) be a compactly
supported distribution. We say that a direction £ # 0 is in Y(u) when there exists a
conic neighborhood C; of £ such that @ is rapidly decreasing inside C;. The complement
of T(u) is denoted by X(u) := T(u)¢. In what follows, we fix some £ # 0 inside T (u).

2.0. Explain the sense of the sentence "4 is of at most polynomial growth ", and then
recall why 4 is a smooth function of at most polynomial growth.



This means that
dpeN, [a(C)| < C ()P

In the present case, since u is compactly supported, we have

A

() = (u, € )ere = (u,x e Vere,  CX(R™)>x =1 on suppu.
On the other hand, since u is a tempered distribution, we can find some p € N such that

u, x €)erel SN (xe®),  Nplp):= sup [ 205 [|loo -
ol |8<p

Now, with R such that suppx C B(0, R], it suffices to remark that

1207 (x €%) lloo S RP (C)".

2.1. Explain the sense of the sentence "G is rapidly decreasing inside C1".

With (¢) := (14 || ¢ ||)'/?, this means that
VNeN, 3C0y; V¢elr, Ja@)l<cn)™N. (1)
2.2. Prove that there is a conic neighborhood Cs of £ and a constant ¢ €]0, 1[ such that
Vnetly, |n-Cl<clnll= ¢e€Cr.
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We have ¢ € C; whenever ¢ € C}. Thus, the statement can be reformulated as the existence
of a conic neighborhood Co of § (which is a conic neighborhood of ) such that

Indication : interpret the condition in terms offv =

VijeCnB0,1, |7-C||<c = (ed.

Since Cy is open, we can find some ¢ €]0,1] such that B(g, 2¢] C Cy. Define Co as the
conic neighborhood generated by B(&, [ so that 71 € Co N B(0,1] means that || 7 — & ||< c.
Then

IC—El<IC=nll+Ia—EI<IC—nll+e
I7=¢ll<e

}:>||5—5||§2c,

which implies that ¢ € B(g, 2¢] C Cy.
2.3. Let ¢ be in the Schwartz space S(R™).
2.3.1. Prove and give a sense to the formula ¢u(n) = F(n) + G(n) where

~

P = | b -a(ydc, 6= | by — ) a(C) dc.
[In—=<lI<clInl| [ln—=<¢lI>clInll



We have @ = ¢ x4 in the sense of distributions. Since ¢ € S(R™), the value of &L(T]) is
well defined according to

u(n) = (a(-), (n = ))s,s- (2)

The Fourier transform of a distribution with compact support (like in the case of u) is
(see the question 2.0) a smooth function of at most polynomial growth (the same applies
to the derivatives), that is

IpeN, [a(Q)] = [(ue)erel < OO (3)

On the other hand, é is in the Schwartz space S(R™). This property is conserved under
the action of a (fized) translation : ¢(n — ) is still in the Schwartz space S(R™). The
growth (3) is compensated by the decreasing of ¢(n —-) so that the product ¢(n—-)a(-) is
in L*(R™), and the dual product (2) can be interpreted as a usual integration which can
then be separated into the above two integrals.

2.3.2. Prove that F' is rapidly decreasing on C,.
The condition || n —C ||< c || n || implies that

IClzllnll=ln=¢llz0=c) lInl -

In view of the question 2.2, knowing that n € Co, it also means that € C1 so that we
can use (1) to obtain

[F(n)| < Cn 6= QI (1 =)™ M (m~Nd¢ < Cn (m~".
lIn—clI<elnll
with i Cn A
Cn = =N | &2 @mny -
This holds true for all N € N and for all n € Ca, which gives the expected result.

2.3.3. By using Peetre’s inequality

vieR,  (p)'<2()f (n- M,
prove that G is rapidly decreasing.

Since (ﬁ is rapidly decreasing and due to (3), we can assert that

YNEN, 6wl S [ tn— )N (P dc .
[ln—=<¢lI>clInll

We take N in the form N =n+ 1+ p+ q with q large. This becomes

()
(n—2¢)

VgeN,  [GIs [
lIn—ClI=clinll

n=O7 -0 (=) e



On the domain of integration, we have (n —¢)~' < e Yn)~! as well as (using Peetre’s
inequality with t = —1)

(n—2¢) <2

There remains
VgeN, G| / )~ =) 2P ()P d¢ S ()P
ln—¢ll=clinll

Just take ¢ = N + p with any N € N.
2.3.4. Show that X(¢u) C X(u).

From questions 2.2.1, 2.2.2 and 2.2.83, we can infer that ggz\L is rapidly decreasing on Co
which implies that & € Y (¢u). This is verified for all £ € Y(u) so that Y(u) C Y(ou)
which, passing to the complement, is equivalent to X(¢u) C X(u).

2.3.5. Let x € D(R"), ¢ € C*°(R") and v € D'(R™). Prove that Y(xv) C T(¢xv).

We cannot use directly the question 2.3.4 because ¥ ¢ S(R™). However, we can find some
X € D(R™) such that x is equal to one on the support of x so that yv = xxv € E'(R™).
Since X1 € S(R™), from the question 2.2.4, we can assert that

T(xv) C T((X¥)xv) = T (¥(xx)v) = T(¥xv).

2.4. Below, the symbol "WF" is for " Wave Front set". From the foregoing, deduce that

Y e C°[R"), VYveD(RY), WEF®v)C WE(v).

It suffices to show that
(,§) ¢ WF(v) = (2,8) ¢ WF(Yv).

Fiz some (x,&) ¢ WF(v). By definition, we can find some cutoff function x € D(R")
such that x(x) # 0 and such that xv is rapidly decreasing in a conic neighborhood of §.
In other words, £ € T(xv) C Y(¢Yxv) = YT (x(¢v)). It follows that (z,&) € WF (¢ v).

Exercice 3 [About the square root of an elliptic operator|. Let a be a symbol which is
in ST (R™;R) with m € R and n € N. We assume that
I(e,R) € (R alw,§) Zc(1+ [ D)™ if €[> R,

This is a classical proof (almost done during the course) using the symbolic calculus.

3.1. Prove that we can find an elliptic operator by € S?E/ 2) (R™) such that

Op(a) — Op(by) o Op(by) € S{’fo_l(R”) .



Let x € C*°(R"™) be such that

_J o if ISR,
X(f)_{ 1 if 2R< .

Take bo(z, ) = va(z, &) x(§). Remark that a can take negative values for || < R. Thus,
it is important here to localize out of the ball of radius R to be sure that \/a is well

defined. It is clear that by € STf(R";Ri) and that by is elliptic since
bo(,€) = Va(x,&) = Ve (L+ | £ |H)™* if [ €]=2R.
On the other hand
Op(a) = Op(bo) © Op(by) = Op(a — b3) + Op(S75 (R™)).
By construction, we have a — b = a (1 — x?) so that

030 a(x,&) = Y O3 05dYa(x,€) 97 (1—x*)(E).

<B

which is a sum of products of functions in € S |7'(1&”) and functions in € Sy °(R™)
(because x =1 for large |£|). This implies that

Op(a) — Op(bo) © Op(bo) € Op(S;5°(R™)) + Op(S75 H(R™)) € Op(S75 " (R™)).

3.2. We fix some N € N with N > 2. Show by induction that we can find symbols
b € Sﬁgm_k(ﬂ%n) with 0 < k < N which are adjusted such that

Op(a) — Op(bo + -+ + by) 0 Op(bo + - - - + by) € ST N H(R™).
By induction, with b’ = bg + - -+ + by, we can start with
Op(a) = Op(t/) 0 Op(¥) = Op(c), ¢ € Op(ST5 "~ (R)).
It follows in particular that
R = Op(r) := Op(a) = Op(¥'2¥) € Op(STy ' (R™)).
Due to the elliptic property of by € S(m/Q) (R™), we know that

[bo(, )] = Ve (L[| € 12)™* if [ €= 2R

To obtain b', we add to by more decreasing symbols b; (when j > 1). As a consequence

3 R) e Ry W@l = A+ )™ i [1€I1= R



We seek b1 € S(m/Q) (]R”) such that
Op(a) — Op(V/ + b41) 0 Op(t + br11) € Op(S75**(R™)),
or equivalently such that
r— 20 by + by € ST PR
Since b7, € 570 2k=2(Rn) ST F=2(R™), this is the same as
r—2b by =g€ Sy k2R,

For || £ ||> R/, it suffices to take b1 = (r — g)/2b' and extend thz’s functz’on smoothly

for smaller values of || £ || to recover some symbol b1 € Sy allowing to

recover the expected property.

Probléme [About the canonical commutation relations]. We consider two unbounded
self-adjoint operators A and B on the Hilbert space H satisfying the exponentiated
commutation relation

(ECR) v (S, t) c RQ , e’iSA eitB — e—isth eitB eiSA ’

where A is the reduced Planck constant. In what follows, we consider a function f which
is in the Schwarz space S(R?) and which is real valued. We denote by f its Fourier
transform. We define the bounded operator Q(f) by the formula

1

Qf) = e f(s t) U(s,t) dsdt.

P.1. Define U(s, t) := ?t/2 ¢i54 B Prove that
(CCR) V(s t,s ") eRY, U(s,t)U(s',t) = e M2 (s 5 ¢+ 1),

It suffices to apply the ECR to find

i(st+s't')h/2 eisA (eitB eis’A) eit’B

U(s,t)U(s',t) (
i(st+s't')h/2 eisA (eis’tﬁ eis’A eitB) eit’B
(
(

i(st+2s"t+s't')h/2 ei(s—f—s’)A ei(t—l—t’)B

i(st2st+s' )2 o—i(stsNHN/2 [ (g 4 o 4 1) .

e
e
e
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2. Show that U(s,t)* = U(—s, —t) (where the star * is for the adjoint operation).
There are two possible proofs. Either, we can use the ECR to see that

U(S,t)* _ efisth/2 efitB efisA _ efisth/Z eisth ef'isA ef'itB _ U(—S, —t) )



Or we can remark that U(s,t) is by construction a unitary operator whose inverse is the
adjoint. Now, from the CCR, we have directly access to U(s,t)U(—s, —t) = Id.

P.3. Recall that f is real valued. Explain why Q(f) is well defined and self-adjoint.

Since Ul(s,t) is a unitary operator and f is in S(R?), we can find some constant C such
that || f(s,t) U(s,t) [|< (14 82 +t2)72 where || - || is for the norm operator. The integral
is then absolutely convergent (in the sense of a Bochner integral), and we can compute

QU -0’ = 5 /R [f(s,8) U(s,t) — f(s,8) U(s,t)"] dsd.

Since f is real valued, we have f(s,t) = f(—s,—t). From question P.2, we get

1

Q= Q)" = G

s [ 1F5.0) Uls,0) = f(=s,~0) Ul-s, ~1)] ds e =0,

Just by changing (s,t) into (—s, —t) in the second integral.

P.4. Prove that U(s,t) Q(f) := Q(f’) where the function f’ is defined by its Fourier
transform which is given by

f’(s’,t') — eih(s’tfst’)/Z ]6(8/ — s, . t).

From the CCR, we have
Us,) Q(f) = () Uls, ) UG, ) ds' dt!

= 2/ f(5/7t) efzh(st/,tsl)/Z U(s+s’,t+t’) ds’ dt’
R

f(s — s, o t) e~ th(s(t"—t)—t(s"—s))/2 U(S”,t”) ds" dt"

_ / e—zh( s"t—st"")/2 f/(S”,t”) e—ih(s(t”—t)—t(s”—s))/2 U(s”,t”) ds" dt".
™ R2

After simplification of the exponential factors, we can recognize Q(f').

P.5. Prove that we have

U(s, )" Q(f)U(s,t) =U(=s,-1) Q(f) U(s,t) = Q(9)
where the function g is such that §(s',t') = e?(s't=st) f(' ).

Ezxchanging the role of f and g and using question P.J., the above relation is equivalent to
U(S, t) Q(f) U(_87 _t) - Q(f/) U(_87 _t) - Q(g) :
It suffices to show that

(ﬂ) Q(f/) U(—S, —t) _ Q(f//> 7 ‘?T/(S/,t/) — eih(s’tfst’)/2 J/c\/(sl + S,t/ + t)


https://en.wikipedia.org/wiki/Bochner_integral

to recover that

ﬁ(s',t’) — €72)‘1(5'15—575’)/2 eiﬁ((s’—f—s)t—s(t’-{—t))/Q ,]/E/(S/,t/) _ eiﬁ(s’t—st’) f(Sl,t,)

as expected. Now, the proof of (§) follows the same lines as in question P.J.

P.6. Explain why we have Q(f) Q(g9) = Q(f x g) for all (f,g) € S(R?) where f x g is the
Moyal product described by

—

frg(s,t) = (2m)2 /2 el f(S -5 t— t/) @(s’,t’) ds' dt'.
Q R
We have
1 1 s 8 )
Q(f*g) = o) /]Rz<(27r)2 /]R2 e =tN/2 fg o b —t') §(s', 1) ds' dt’) U(s,t) dsdt
1

— efih((s’+s”)t/7(t/+t”)s’)/2 f(s",t”) §(8/7t/) U(SI + S//ﬂf/ + t”) ds' dt' ds" dt".
(27‘(‘)4 RrR2 JR2

We can exploit the CCR in the form
U(Sl + S,I,t/ + t”) — ("t =t"s")/2 U(s”,t”) U(S/,t/) :

to obtain
WS*g) = (271r%4 /Ra /RQ Fs" ") a(s' ) U(s",1") UI(S/’t') ds' dt' ds" dt”
= (iarp J F6 Ut as ) (G Lot Ui eyas ar)
=Q(f)Q(g) .

P.7. Let ¢ and ¢ in H as well as s and ¢ in R. We assume that f is such that Q(f) = 0.
By exploiting the relation

0=(U(s,t) 9, Q(f) U(s,t) V),
show that the operator @ is injective on S(R?).
With g as in question P.5, we must have
0=(U(s,t) 6, Q(f)U(s,t) ) = (¢, U(=s,=t) Q(f) U(s, 1) ) = (¢, Q(9) ¥) .
In view of the definition of g, this is the same as
0= / 6ih,(s/t—st/) fA(S/7 t/) <¢7 U(S/, t/)¢> dS/ dt/ )
RQ
We can recognize above the Fourier transform of the continuous function
F(s' 1) == f(s', 1) (¢, U(s, 1))
evaluated at the point h(—t,s). This must be zero for all values of (s,t). By Fourier

inversion formula, this is possible if and only if F is zero at all positions (s',t"). Now,

for ¢ = U(s', ) with || ¢ ||= 1, we find that
0=F(s,t") = f(s,¢) (U, ), U ) = f(s', 1) (0,0) = f(s', 1),
and therefore f = 0.



