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Exercice 1 [About the basic rules of pseudo-differential calculus]. Let 𝑚 ∈ Z and let
𝑎(𝑥, 𝜉) ∈ 𝑆𝑚

1,0(R𝑛) be a symbol of order 𝑚. recall that the action of the pseudo-differential
operator Op(𝑎) ≡ 𝑎(𝑥,𝐷) is given by

Op(𝑎)𝑢(𝑥) = 1
(2𝜋)𝑛

∫︁
R𝑛
𝑒𝑖𝑥·𝜉 𝑎(𝑥, 𝜉) �̂�(𝜉) 𝑑𝜉 .

1.1. We denote by [Op(𝑎), 𝜕𝑗 ] the commutator of Op(𝑎) with the partial derivative with
respect to the 𝑗èm direction. Prove that [Op(𝑎), 𝜕𝑗 ] is a pseudo-differential operator and
compute its symbol in terms of 𝑎.

In other words
[Op(𝑎), 𝜕𝑗 ] = Op(−𝜕𝑗𝑎),

which can be tested on differential operators.
1.2. Same question for [Op(𝑎), 𝑥𝑗 ] where 𝑥𝑗 is the multiplication operator by 𝑥𝑗 .

In other words
[Op(𝑎), 𝑥𝑗 ] = Op(−𝑖𝜕𝜉𝑗

𝑎),

which again can be tested on differential operators.

Exercice 2 [About the localization of the wave front set]. Let 𝑢 ∈ ℰ ′(R𝑛) be a compactly
supported distribution. We say that a direction 𝜉 ̸= 0 is in ϒ(𝑢) when there exists a
conic neighborhood 𝒞1 of 𝜉 such that �̂� is rapidly decreasing inside 𝒞1. The complement
of ϒ(𝑢) is denoted by Σ(𝑢) := ϒ(𝑢)𝑐. In what follows, we fix some 𝜉 ̸= 0 inside ϒ(𝑢).

2.0. Explain the sense of the sentence "�̂� is of at most polynomial growth ", and then
recall why �̂� is a smooth function of at most polynomial growth.



This means that
∃ 𝑝 ∈ N , |�̂�(𝜁)| ≤ 𝐶 ⟨𝜁⟩𝑝 .

In the present case, since 𝑢 is compactly supported, we have

�̂�(𝜁) = ⟨𝑢, 𝑒𝑖𝜁·⟩ℰ ′,ℰ = ⟨𝑢, 𝜒 𝑒𝑖𝜁·⟩ℰ ′,ℰ , 𝒞∞
𝑐 (R𝑛) ∋ 𝜒 ≡ 1 on supp𝑢 .

On the other hand, since 𝑢 is a tempered distribution, we can find some 𝑝 ∈ N such that

|⟨𝑢, 𝜒 𝑒𝑖𝜁·⟩ℰ ′,ℰ | ≤ 𝒩𝑝(𝜒 𝑒𝑖𝜁·) , 𝒩𝑝(𝜙) := sup
|𝛼|,|𝛽|≤𝑝

‖ 𝑥𝛼 𝜕𝛽
𝑥𝜙 ‖∞ .

Now, with 𝑅 such that supp𝜒 ⊂ 𝐵(0, 𝑅], it suffices to remark that

‖ 𝑥𝛼 𝜕𝛽
𝑥 (𝜒 𝑒𝑖𝜁𝑥) ‖∞. 𝑅𝑝 ⟨𝜁⟩𝑝.

2.1. Explain the sense of the sentence "�̂� is rapidly decreasing inside 𝒞1".

With ⟨𝜁⟩ := (1+ ‖ 𝜁 ‖2)1/2, this means that

∀𝑁 ∈ N , ∃𝐶𝑁 ; ∀ 𝜁 ∈ 𝒞1 , ‖ �̂�(𝜁) ‖≤ 𝐶𝑁 ⟨𝜁⟩−𝑁 . (1)

2.2. Prove that there is a conic neighborhood 𝒞2 of 𝜉 and a constant 𝑐 ∈]0, 1[ such that

∀ 𝜂 ∈ 𝒞2 , ‖ 𝜂 − 𝜁 ‖≤ 𝑐 ‖ 𝜂 ‖ =⇒ 𝜁 ∈ 𝒞1 .

Indication : interpret the condition in terms of 𝜉 := 𝜉

‖ 𝜉 ‖
, 𝜂 := 𝜂

‖ 𝜂 ‖
and 𝜁 := 𝜁

‖ 𝜂 ‖
.

We have 𝜁 ∈ 𝒞1 whenever 𝜁 ∈ 𝒞1. Thus, the statement can be reformulated as the existence
of a conic neighborhood 𝒞2 of 𝜉 (which is a conic neighborhood of 𝜉) such that

∀ 𝜂 ∈ 𝒞2 ∩𝐵(0, 1] , ‖ 𝜂 − 𝜁 ‖≤ 𝑐 =⇒ 𝜁 ∈ 𝒞1 .

Since 𝒞1 is open, we can find some 𝑐 ∈]0, 1[ such that 𝐵(𝜉, 2𝑐] ⊂ 𝒞1. Define 𝒞2 as the
conic neighborhood generated by 𝐵(𝜉, 𝑐[ so that 𝜂 ∈ 𝒞2 ∩𝐵(0, 1] means that ‖ 𝜂 − 𝜉 ‖< 𝑐.
Then

‖ 𝜁 − 𝜉 ‖≤‖ 𝜁 − 𝜂 ‖ + ‖ 𝜂 − 𝜉 ‖≤‖ 𝜁 − 𝜂 ‖ + 𝑐

‖ 𝜂 − 𝜁 ‖≤ 𝑐

}︃
=⇒ ‖ 𝜁 − 𝜉 ‖≤ 2𝑐 ,

which implies that 𝜁 ∈ 𝐵(𝜉, 2𝑐] ⊂ 𝒞1.

2.3. Let 𝜑 be in the Schwartz space 𝒮(R𝑛).

2.3.1. Prove and give a sense to the formula ̂︁𝜑𝑢(𝜂) = 𝐹 (𝜂) +𝐺(𝜂) where

𝐹 (𝜂) :=
∫︁

‖𝜂−𝜁‖≤𝑐‖𝜂‖
𝜑(𝜂 − 𝜁) �̂�(𝜁) 𝑑𝜁 , 𝐺(𝜂) :=

∫︁
‖𝜂−𝜁‖≥𝑐‖𝜂‖

𝜑(𝜂 − 𝜁) �̂�(𝜁) 𝑑𝜁 .



We have ̂︁𝜑𝑢 = 𝜑 ⋆ �̂� in the sense of distributions. Since 𝜑 ∈ 𝒮(R𝑛), the value of ̂︁𝜑𝑢(𝜂) is
well defined according to ̂︁𝜑𝑢(𝜂) = ⟨�̂�(·), 𝜑(𝜂 − ·)⟩𝒮′,𝒮 . (2)

The Fourier transform of a distribution with compact support (like in the case of 𝑢) is
(see the question 2.0) a smooth function of at most polynomial growth (the same applies
to the derivatives), that is

∃ 𝑝 ∈ N , |�̂�(𝜁)| = |⟨𝑢, 𝑒𝑖𝜁·⟩ℰ ′,ℰ | ≤ 𝐶 ⟨𝜁⟩𝑝 . (3)

On the other hand, 𝜑 is in the Schwartz space 𝒮(R𝑛). This property is conserved under
the action of a (fixed) translation : 𝜑(𝜂 − ·) is still in the Schwartz space 𝒮(R𝑛). The
growth (3) is compensated by the decreasing of 𝜑(𝜂− ·) so that the product 𝜑(𝜂− ·) �̂�(·) is
in 𝐿1(R𝑛), and the dual product (2) can be interpreted as a usual integration which can
then be separated into the above two integrals.

2.3.2. Prove that 𝐹 is rapidly decreasing on 𝒞2.

The condition ‖ 𝜂 − 𝜁 ‖≤ 𝑐 ‖ 𝜂 ‖ implies that

‖ 𝜁 ‖≥‖ 𝜂 ‖ − ‖ 𝜂 − 𝜁 ‖≥ (1 − 𝑐) ‖ 𝜂 ‖ .

In view of the question 2.2, knowing that 𝜂 ∈ 𝒞2, it also means that 𝜁 ∈ 𝒞1 so that we
can use (1) to obtain

|𝐹 (𝜂)| ≤ 𝐶𝑁

∫︁
‖𝜂−𝜁‖≤𝑐‖𝜂‖

|𝜑(𝜂 − 𝜁)| (1 − 𝑐)−𝑁 ⟨𝜂⟩−𝑁 𝑑𝜁 ≤ 𝐶𝑁 ⟨𝜂⟩−𝑁 .

with
𝐶𝑁 := 𝐶𝑁

(1 − 𝑐)𝑁
‖ 𝜑 ‖𝐿1(R𝑛) .

This holds true for all 𝑁 ∈ N and for all 𝜂 ∈ 𝒞2, which gives the expected result.

2.3.3. By using Peetre’s inequality

∀ 𝑡 ∈ R , ⟨𝜂⟩𝑡 ≤ 2|𝑡| ⟨𝜁⟩𝑡 ⟨𝜂 − 𝜁⟩|𝑡| ,

prove that 𝐺 is rapidly decreasing.

Since 𝜑 is rapidly decreasing and due to (3), we can assert that

∀𝑁 ∈ N , |𝐺(𝜂)| .
∫︁

‖𝜂−𝜁‖≥𝑐‖𝜂‖
⟨𝜂 − 𝜁⟩−𝑁 ⟨𝜁⟩𝑝 𝑑𝜁 .

We take 𝑁 in the form 𝑁 = 𝑛+ 1 + 𝑝+ 𝑞 with 𝑞 large. This becomes

∀ 𝑞 ∈ N , |𝐺(𝜂)| .
∫︁

‖𝜂−𝜁‖≥𝑐‖𝜂‖
⟨𝜂 − 𝜁⟩−𝑞 ⟨𝜂 − 𝜁⟩−𝑛−1

(︁ ⟨𝜁⟩
⟨𝜂 − 𝜁⟩

)︁𝑝
𝑑𝜁 .



On the domain of integration, we have ⟨𝜂 − 𝜁⟩−1 ≤ 𝑐−1⟨𝜂⟩−1 as well as (using Peetre’s
inequality with 𝑡 = −1)

⟨𝜁⟩
⟨𝜂 − 𝜁⟩

≤ 2 ⟨𝜂⟩ .

There remains

∀ 𝑞 ∈ N , |𝐺(𝜂)| .
∫︁

‖𝜂−𝜁‖≥𝑐‖𝜂‖
𝑐−𝑞 ⟨𝜂⟩−𝑞 ⟨𝜂 − 𝜁⟩−𝑛−1 2𝑝 ⟨𝜂⟩𝑝 𝑑𝜁 . ⟨𝜂⟩𝑝−𝑞 .

Just take 𝑞 = 𝑁 + 𝑝 with any 𝑁 ∈ N.

2.3.4. Show that Σ(𝜑𝑢) ⊂ Σ(𝑢).

From questions 2.2.1, 2.2.2 and 2.2.3, we can infer that ̂︁𝜑𝑢 is rapidly decreasing on 𝒞2
which implies that 𝜉 ∈ ϒ(𝜑𝑢). This is verified for all 𝜉 ∈ ϒ(𝑢) so that ϒ(𝑢) ⊂ ϒ(𝜑𝑢)
which, passing to the complement, is equivalent to Σ(𝜑𝑢) ⊂ Σ(𝑢).

2.3.5. Let 𝜒 ∈ 𝒟(R𝑛), 𝜓 ∈ 𝐶∞(R𝑛) and 𝑣 ∈ 𝒟′(R𝑛). Prove that ϒ(𝜒𝑣) ⊂ ϒ(𝜓𝜒𝑣).

We cannot use directly the question 2.3.4 because 𝜓 ̸∈ 𝒮(R𝑛). However, we can find some
�̃� ∈ 𝒟(R𝑛) such that �̃� is equal to one on the support of 𝜒 so that 𝜒𝑣 ≡ �̃�𝜒𝑣 ∈ ℰ ′(R𝑛).
Since �̃�𝜓 ∈ 𝒮(R𝑛), from the question 2.2.4, we can assert that

ϒ(𝜒𝑣) ⊂ ϒ
(︀
(�̃�𝜓)𝜒𝑣

)︀
≡ ϒ

(︀
𝜓(�̃�𝜒)𝑣

)︀
≡ ϒ(𝜓𝜒𝑣) .

2.4. Below, the symbol "𝑊𝐹 " is for "Wave Front set". From the foregoing, deduce that

∀𝜓 ∈ 𝐶∞(R𝑛) , ∀ 𝑣 ∈ 𝒟′(R𝑛) , 𝑊𝐹 (𝜓𝑣) ⊂ 𝑊𝐹 (𝑣) .

It suffices to show that

(𝑥, 𝜉) ̸∈ 𝑊𝐹 (𝑣) =⇒ (𝑥, 𝜉) ̸∈ 𝑊𝐹 (𝜓 𝑣) .

Fix some (𝑥, 𝜉) ̸∈ 𝑊𝐹 (𝑣). By definition, we can find some cutoff function 𝜒 ∈ 𝒟(R𝑛)
such that 𝜒(𝑥) ̸= 0 and such that ̂︁𝜒𝑣 is rapidly decreasing in a conic neighborhood of 𝜉.
In other words, 𝜉 ∈ ϒ(𝜒𝑣) ⊂ ϒ(𝜓𝜒𝑣) ≡ ϒ

(︀
𝜒(𝜓𝑣)

)︀
. It follows that (𝑥, 𝜉) ̸∈ 𝑊𝐹 (𝜓 𝑣).

Exercice 3 [About the square root of an elliptic operator]. Let 𝑎 be a symbol which is
in 𝑆𝑚

1,0(R𝑛;R) with 𝑚 ∈ R and 𝑛 ∈ N. We assume that

∃ (𝑐,𝑅) ∈ (R*
+)2 ; 𝑎(𝑥, 𝜉) ≥ 𝑐 (1+ ‖ 𝜉 ‖2)𝑚/2 if ‖ 𝜉 ‖≥ 𝑅 .

This is a classical proof (almost done during the course) using the symbolic calculus.

3.1. Prove that we can find an elliptic operator 𝑏0 ∈ 𝑆
(𝑚/2)
1,0 (R𝑛) such that

𝑂𝑝(𝑎) −𝑂𝑝(𝑏0) ∘𝑂𝑝(𝑏0) ∈ 𝑆𝑚−1
1,0 (R𝑛) .



Let 𝜒 ∈ 𝐶∞(R𝑛) be such that

𝜒(𝜉) =
{︃

0 if |𝜉| ≤ 𝑅,
1 if 2𝑅 ≤ |𝜉|.

Take 𝑏0(𝑥, 𝜉) :=
√
𝑎(𝑥, 𝜉)𝜒(𝜉). Remark that 𝑎 can take negative values for |𝜉| ≤ 𝑅. Thus,

it is important here to localize out of the ball of radius 𝑅 to be sure that
√
𝑎 is well

defined. It is clear that 𝑏0 ∈ 𝑆
𝑚/2
1,0 (R𝑛;R*

+) and that 𝑏0 is elliptic since

𝑏0(𝑥, 𝜉) =
√
𝑎(𝑥, 𝜉) ≥

√
𝑐 (1+ ‖ 𝜉 ‖2)𝑚/4 if ‖ 𝜉 ‖≥ 2𝑅 .

On the other hand

𝑂𝑝(𝑎) −𝑂𝑝(𝑏0) ∘𝑂𝑝(𝑏0) = 𝑂𝑝(𝑎− 𝑏2
0) +𝑂𝑝

(︀
𝑆𝑚−1

1,0 (R𝑛)
)︀
.

By construction, we have 𝑎− 𝑏2
0 = 𝑎 (1 − 𝜒2) so that

𝜕𝛼
𝑥 𝜕

𝛽
𝜉 𝑎(𝑥, 𝜉) =

∑︁
𝛾≤𝛽

𝐶𝛾
𝛽 𝜕𝛼

𝑥 𝜕
𝛾
𝜉 𝑎(𝑥, 𝜉) 𝜕𝛽−𝛾

𝜉 (1 − 𝜒2)(𝜉),

which is a sum of products of functions in ∈ 𝑆
𝑚−|𝛾|
1,0 (R𝑛) and functions in ∈ 𝑆−∞

1,0 (R𝑛)
(because 𝜒 ≡ 1 for large |𝜉|). This implies that

𝑂𝑝(𝑎) −𝑂𝑝(𝑏0) ∘𝑂𝑝(𝑏0) ∈ 𝑂𝑝
(︀
𝑆−∞

1,0 (R𝑛)
)︀

+𝑂𝑝
(︀
𝑆𝑚−1

1,0 (R𝑛)
)︀

⊂ 𝑂𝑝
(︀
𝑆𝑚−1

1,0 (R𝑛)
)︀
.

3.2. We fix some 𝑁 ∈ N with 𝑁 ≥ 2. Show by induction that we can find symbols
𝑏𝑘 ∈ 𝑆

(𝑚/2)−𝑘
1,0 (R𝑛) with 0 ≤ 𝑘 ≤ 𝑁 which are adjusted such that

𝑂𝑝(𝑎) −𝑂𝑝(𝑏0 + · · · + 𝑏𝑁 ) ∘𝑂𝑝(𝑏0 + · · · + 𝑏𝑁 ) ∈ 𝑆𝑚−𝑁−1
1,0 (R𝑛) .

By induction, with 𝑏′ = 𝑏0 + · · · + 𝑏𝑘, we can start with

𝑂𝑝(𝑎) −𝑂𝑝(𝑏′) ∘𝑂𝑝(𝑏′) = 𝑂𝑝(𝑐) , 𝑐 ∈ 𝑂𝑝
(︀
𝑆𝑚−𝑘−1

1,0 (R𝑛)
)︀
.

It follows in particular that

𝑅 = 𝑂𝑝(𝑟) := 𝑂𝑝(𝑎) −𝑂𝑝
(︀
𝑏′♯𝑏′)︀ ∈ 𝑂𝑝

(︀
𝑆𝑚−𝑘−1

1,0 (R𝑛)
)︀
.

Due to the elliptic property of 𝑏0 ∈ 𝑆
(𝑚/2)
1,0 (R𝑛), we know that

|𝑏0(𝑥, 𝜉)| ≥
√
𝑐 (1+ ‖ 𝜉 ‖2)𝑚/4 if ‖ 𝜉 ‖≥ 2𝑅.

To obtain 𝑏′, we add to 𝑏0 more decreasing symbols 𝑏𝑗 (when 𝑗 ≥ 1). As a consequence

∃ (𝑐′, 𝑅′) ∈ (R*
+)2 ; |𝑏′(𝑥, 𝜉)| ≥ 𝑐′ (1+ ‖ 𝜉 ‖2)𝑚/4 if ‖ 𝜉 ‖≥ 𝑅′ .



We seek 𝑏𝑘+1 ∈ 𝑆
(𝑚/2)−𝑘−1
1,0 (R𝑛) such that

𝑂𝑝(𝑎) −𝑂𝑝(𝑏′ + 𝑏𝑘+1) ∘𝑂𝑝(𝑏′ + 𝑏𝑘+1) ∈ 𝑂𝑝
(︀
𝑆𝑚−𝑘−2

1,0 (R𝑛)
)︀
,

or equivalently such that

𝑟 − 2 𝑏′ 𝑏𝑘+1 + 𝑏2
𝑘+1 ∈ 𝑆𝑚−𝑘−2

1,0 (R𝑛) .

Since 𝑏2
𝑘+1 ∈ 𝑆𝑚−2𝑘−2

1,0 (R𝑛) ⊂ 𝑆𝑚−𝑘−2
1,0 (R𝑛), this is the same as

𝑟 − 2 𝑏′ 𝑏𝑘+1 = 𝑔 ∈ 𝑆𝑚−𝑘−2
1,0 (R𝑛) .

For ‖ 𝜉 ‖≥ 𝑅′, it suffices to take 𝑏𝑘+1 = (𝑟 − 𝑔)/2𝑏′ and extend this function smoothly
for smaller values of ‖ 𝜉 ‖ to recover some symbol 𝑏𝑘+1 ∈ 𝑆

(𝑚/2)−𝑘−1
1,0 (R𝑛) allowing to

recover the expected property.

Problème [About the canonical commutation relations]. We consider two unbounded
self-adjoint operators 𝐴 and 𝐵 on the Hilbert space ℋ satisfying the exponentiated
commutation relation

(𝐸𝐶𝑅) ∀ (𝑠, 𝑡) ∈ R2 , 𝑒𝑖𝑠𝐴 𝑒𝑖𝑡𝐵 = 𝑒−𝑖𝑠𝑡~ 𝑒𝑖𝑡𝐵 𝑒𝑖𝑠𝐴 ,

where ~ is the reduced Planck constant. In what follows, we consider a function 𝑓 which
is in the Schwarz space 𝒮(R2) and which is real valued. We denote by 𝑓 its Fourier
transform. We define the bounded operator 𝑄(𝑓) by the formula

𝑄(𝑓) := 1
(2𝜋)2

∫︁
R2
𝑓(𝑠, 𝑡) 𝑈(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 .

P.1. Define 𝑈(𝑠, 𝑡) := 𝑒𝑖𝑠𝑡~/2 𝑒𝑖𝑠𝐴 𝑒𝑖𝑡𝐵. Prove that

(𝐶𝐶𝑅) ∀ (𝑠, 𝑡, 𝑠′, 𝑡′) ∈ R4 , 𝑈(𝑠, 𝑡)𝑈(𝑠′, 𝑡′) = 𝑒−𝑖~(𝑠𝑡′−𝑡𝑠′)/2 𝑈(𝑠+ 𝑠′, 𝑡+ 𝑡′) .

It suffices to apply the ECR to find

𝑈(𝑠, 𝑡)𝑈(𝑠′, 𝑡′) = 𝑒𝑖(𝑠𝑡+𝑠′𝑡′)~/2 𝑒𝑖𝑠𝐴 (𝑒𝑖𝑡𝐵 𝑒𝑖𝑠′𝐴) 𝑒𝑖𝑡′𝐵

= 𝑒𝑖(𝑠𝑡+𝑠′𝑡′)~/2 𝑒𝑖𝑠𝐴 (𝑒𝑖𝑠′𝑡~ 𝑒𝑖𝑠′𝐴 𝑒𝑖𝑡𝐵) 𝑒𝑖𝑡′𝐵

= 𝑒𝑖(𝑠𝑡+2𝑠′𝑡+𝑠′𝑡′)~/2 𝑒𝑖(𝑠+𝑠′)𝐴 𝑒𝑖(𝑡+𝑡′)𝐵

= 𝑒𝑖(𝑠𝑡+2𝑠′𝑡+𝑠′𝑡′)~/2 𝑒−𝑖(𝑠+𝑠′)(𝑡+𝑡′)~/2 𝑈(𝑠+ 𝑠′, 𝑡+ 𝑡′) .

P.2. Show that 𝑈(𝑠, 𝑡)* = 𝑈(−𝑠,−𝑡) (where the star * is for the adjoint operation).

There are two possible proofs. Either, we can use the ECR to see that

𝑈(𝑠, 𝑡)* = 𝑒−𝑖𝑠𝑡~/2 𝑒−𝑖𝑡𝐵 𝑒−𝑖𝑠𝐴 = 𝑒−𝑖𝑠𝑡~/2 𝑒𝑖𝑠𝑡~ 𝑒−𝑖𝑠𝐴 𝑒−𝑖𝑡𝐵 = 𝑈(−𝑠,−𝑡) .



Or we can remark that 𝑈(𝑠, 𝑡) is by construction a unitary operator whose inverse is the
adjoint. Now, from the CCR, we have directly access to 𝑈(𝑠, 𝑡)𝑈(−𝑠,−𝑡) = 𝐼𝑑.

P.3. Recall that 𝑓 is real valued. Explain why 𝑄(𝑓) is well defined and self-adjoint.

Since 𝑈(𝑠, 𝑡) is a unitary operator and 𝑓 is in 𝒮(R2), we can find some constant 𝐶 such
that ‖ 𝑓(𝑠, 𝑡) 𝑈(𝑠, 𝑡) ‖≤ (1 + 𝑠2 + 𝑡2)−2 where ‖ · ‖ is for the norm operator. The integral
is then absolutely convergent (in the sense of a Bochner integral), and we can compute

𝑄(𝑓) −𝑄(𝑓)* = 1
(2𝜋)2

∫︁
R2

[︀
𝑓(𝑠, 𝑡) 𝑈(𝑠, 𝑡) − ¯̂

𝑓(𝑠, 𝑡) 𝑈(𝑠, 𝑡)*]︀
𝑑𝑠 𝑑𝑡 .

Since 𝑓 is real valued, we have ¯̂
𝑓(𝑠, 𝑡) = 𝑓(−𝑠,−𝑡). From question P.2, we get

𝑄(𝑓) −𝑄(𝑓)* = 1
(2𝜋)2

∫︁
R2

[︀
𝑓(𝑠, 𝑡) 𝑈(𝑠, 𝑡) − 𝑓(−𝑠,−𝑡) 𝑈(−𝑠,−𝑡)

]︀
𝑑𝑠 𝑑𝑡 = 0 ,

just by changing (𝑠, 𝑡) into (−𝑠,−𝑡) in the second integral.

P.4. Prove that 𝑈(𝑠, 𝑡)𝑄(𝑓) := 𝑄(𝑓 ′) where the function 𝑓 ′ is defined by its Fourier
transform which is given by

𝑓 ′(𝑠′, 𝑡′) := 𝑒𝑖~(𝑠′𝑡−𝑠𝑡′)/2 𝑓(𝑠′ − 𝑠, 𝑡′ − 𝑡).

From the CCR, we have

𝑈(𝑠, 𝑡)𝑄(𝑓) = 1
(2𝜋)2

∫︁
R2
𝑓(𝑠′, 𝑡′) 𝑈(𝑠, 𝑡)𝑈(𝑠′, 𝑡′) 𝑑𝑠′ 𝑑𝑡′

= 1
(2𝜋)2

∫︁
R2
𝑓(𝑠′, 𝑡′) 𝑒−𝑖~(𝑠𝑡′−𝑡𝑠′)/2 𝑈(𝑠+ 𝑠′, 𝑡+ 𝑡′) 𝑑𝑠′ 𝑑𝑡′

= 1
(2𝜋)2

∫︁
R2
𝑓(𝑠′′ − 𝑠, 𝑡′′ − 𝑡) 𝑒−𝑖~(𝑠(𝑡′′−𝑡)−𝑡(𝑠′′−𝑠))/2 𝑈(𝑠′′, 𝑡′′) 𝑑𝑠′′ 𝑑𝑡′′

= 1
(2𝜋)2

∫︁
R2
𝑒−𝑖~(𝑠′′𝑡−𝑠𝑡′′)/2 𝑓 ′(𝑠′′, 𝑡′′) 𝑒−𝑖~(𝑠(𝑡′′−𝑡)−𝑡(𝑠′′−𝑠))/2 𝑈(𝑠′′, 𝑡′′) 𝑑𝑠′′ 𝑑𝑡′′.

After simplification of the exponential factors, we can recognize 𝑄(𝑓 ′).

P.5. Prove that we have

𝑈(𝑠, 𝑡)*𝑄(𝑓)𝑈(𝑠, 𝑡) = 𝑈(−𝑠,−𝑡)𝑄(𝑓)𝑈(𝑠, 𝑡) = 𝑄(𝑔)

where the function 𝑔 is such that 𝑔(𝑠′, 𝑡′) = 𝑒𝑖~(𝑠′𝑡−𝑠𝑡′) 𝑓(𝑠′, 𝑡′).

Exchanging the role of 𝑓 and 𝑔 and using question P.4., the above relation is equivalent to

𝑈(𝑠, 𝑡)𝑄(𝑓)𝑈(−𝑠,−𝑡) = 𝑄(𝑓 ′)𝑈(−𝑠,−𝑡) = 𝑄(𝑔) .

It suffices to show that

(♯) 𝑄(𝑓 ′)𝑈(−𝑠,−𝑡) = 𝑄(𝑓 ′′) , ̂︁𝑓 ′′(𝑠′, 𝑡′) := 𝑒𝑖~(𝑠′𝑡−𝑠𝑡′)/2 ̂︀𝑓 ′(𝑠′ + 𝑠, 𝑡′ + 𝑡)

https://en.wikipedia.org/wiki/Bochner_integral


to recover that̂︁𝑓 ′′(𝑠′, 𝑡′) := 𝑒𝑖~(𝑠′𝑡−𝑠𝑡′)/2 𝑒𝑖~((𝑠′+𝑠)𝑡−𝑠(𝑡′+𝑡))/2 ̂︀𝑓 ′(𝑠′, 𝑡′) = 𝑒𝑖~(𝑠′𝑡−𝑠𝑡′) 𝑓(𝑠′, 𝑡′)

as expected. Now, the proof of (♯) follows the same lines as in question P.4.
P.6. Explain why we have 𝑄(𝑓)𝑄(𝑔) = 𝑄(𝑓 ⋆ 𝑔) for all (𝑓, 𝑔) ∈ 𝒮(R2) where 𝑓 ⋆ 𝑔 is the
Moyal product described by

𝑓 ⋆ 𝑔(𝑠, 𝑡) := 1
(2𝜋)2

∫︁
R2
𝑒−𝑖~(𝑠𝑡′−𝑡𝑠′)/2 𝑓(𝑠− 𝑠′, 𝑡− 𝑡′) 𝑔(𝑠′, 𝑡′) 𝑑𝑠′ 𝑑𝑡′.

We have

𝑄(𝑓 ⋆ 𝑔) = 1
(2𝜋)2

∫︁
R2

(︁ 1
(2𝜋)2

∫︁
R2
𝑒−𝑖~(𝑠𝑡′−𝑡𝑠′)/2 𝑓(𝑠− 𝑠′, 𝑡− 𝑡′) 𝑔(𝑠′, 𝑡′) 𝑑𝑠′ 𝑑𝑡′

)︁
𝑈(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

= 1
(2𝜋)4

∫︁
R2

∫︁
R2
𝑒−𝑖~((𝑠′+𝑠′′)𝑡′−(𝑡′+𝑡′′)𝑠′)/2 𝑓(𝑠′′, 𝑡′′) 𝑔(𝑠′, 𝑡′)𝑈(𝑠′ + 𝑠′′, 𝑡′ + 𝑡′′) 𝑑𝑠′ 𝑑𝑡′ 𝑑𝑠′′ 𝑑𝑡′′.

We can exploit the CCR in the form

𝑈(𝑠′ + 𝑠′′, 𝑡′ + 𝑡′′) = 𝑒𝑖~(𝑠′′𝑡′−𝑡′′𝑠′)/2 𝑈(𝑠′′, 𝑡′′)𝑈(𝑠′, 𝑡′) ,

to obtain

𝑄(𝑓 ⋆ 𝑔) = 1
(2𝜋)4

∫︁
R2

∫︁
R2
𝑓(𝑠′′, 𝑡′′) 𝑔(𝑠′, 𝑡′)𝑈(𝑠′′, 𝑡′′)𝑈(𝑠′, 𝑡′) 𝑑𝑠′ 𝑑𝑡′ 𝑑𝑠′′ 𝑑𝑡′′

=
(︁ 1

(2𝜋)2

∫︁
R2
𝑓(𝑠′′, 𝑡′′)𝑈(𝑠′′, 𝑡′′) 𝑑𝑠′′ 𝑑𝑡′′

)︁(︁ 1
(2𝜋)2

∫︁
R2
𝑔(𝑠′, 𝑡′)𝑈(𝑠′, 𝑡′) 𝑑𝑠′ 𝑑𝑡′

)︁
= 𝑄(𝑓)𝑄(𝑔) .

P.7. Let 𝜑 and 𝜓 in ℋ as well as 𝑠 and 𝑡 in R. We assume that 𝑓 is such that 𝑄(𝑓) = 0.
By exploiting the relation

0 = ⟨𝑈(𝑠, 𝑡)𝜑,𝑄(𝑓)𝑈(𝑠, 𝑡)𝜓⟩ ,

show that the operator 𝑄 is injective on 𝒮(R2).
With 𝑔 as in question P.5, we must have

0 = ⟨𝑈(𝑠, 𝑡)𝜑,𝑄(𝑓)𝑈(𝑠, 𝑡)𝜓⟩ = ⟨𝜑,𝑈(−𝑠,−𝑡)𝑄(𝑓)𝑈(𝑠, 𝑡)𝜓⟩ = ⟨𝜑,𝑄(𝑔)𝜓⟩ .

In view of the definition of 𝑔, this is the same as

0 =
∫︁
R2
𝑒𝑖~(𝑠′𝑡−𝑠𝑡′) 𝑓(𝑠′, 𝑡′) ⟨𝜑,𝑈(𝑠′, 𝑡′)𝜓⟩ 𝑑𝑠′ 𝑑𝑡′ .

We can recognize above the Fourier transform of the continuous function

𝐹 (𝑠′, 𝑡′) := 𝑓(𝑠′, 𝑡′) ⟨𝜑,𝑈(𝑠′, 𝑡′)𝜓⟩

evaluated at the point ~ (−𝑡, 𝑠). This must be zero for all values of (𝑠, 𝑡). By Fourier
inversion formula, this is possible if and only if 𝐹 is zero at all positions (𝑠′, 𝑡′). Now,
for 𝜑 = 𝑈(𝑠′, 𝑡′)𝜓 with ‖ 𝜓 ‖= 1, we find that

0 = 𝐹 (𝑠′, 𝑡′) = 𝑓(𝑠′, 𝑡′) ⟨𝑈(𝑠′, 𝑡′)𝜓,𝑈(𝑠′, 𝑡′)𝜓⟩ = 𝑓(𝑠′, 𝑡′) ⟨𝜓,𝜓⟩ = 𝑓(𝑠′, 𝑡′) ,

and therefore 𝑓 = 0.


