## Microlocal Analysis

Terminal Examination - the 12/12/2022 (2h)

## Documents are not allowed

Exercice 1 [About the basic rules of pseudo-differential calculus]. Let $m \in \mathbb{Z}$ and let $a(x, \xi) \in S_{1,0}^{m}\left(\mathbb{R}^{n}\right)$ be a symbol of order $m$. recall that the action of the pseudo-differential operator $\operatorname{Op}(a) \equiv a(x, D)$ is given by

$$
\operatorname{Op}(a) u(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a(x, \xi) \hat{u}(\xi) d \xi .
$$

1.1. We denote by $\left[\operatorname{Op}(a), \partial_{j}\right]$ the commutator of $\operatorname{Op}(a)$ with the partial derivative with respect to the $j$ èm direction. Prove that $\left[\mathrm{Op}(a), \partial_{j}\right]$ is a pseudo-differential operator and compute its symbol in terms of $a$.

$$
\begin{aligned}
\operatorname{Op}(a)\left(\partial_{j} u\right)-\partial_{j}(\operatorname{Op}(a)(u)) & =\frac{1}{(2 \pi)^{n}} \int e^{i x \xi} a(x, \xi)\left(i \xi_{j}\right) \hat{u}(\xi) d \xi-\frac{1}{(2 \pi)^{n}} \int \frac{\partial}{\partial x_{j}}\left(e^{i x \xi} a(x, \xi)\right) \hat{u}(\xi) d \xi \\
& =\frac{-1}{(2 \pi)^{n}} \int e^{i x \xi} \frac{\partial}{\partial x_{j}} a(x, \xi) \hat{u}(\xi) d \xi
\end{aligned}
$$

In other words

$$
\left[\mathrm{Op}(a), \partial_{j}\right]=\mathrm{Op}\left(-\partial_{j} a\right),
$$

which can be tested on differential operators.
1.2. Same question for $\left[\mathrm{Op}(a), x_{j}\right]$ where $x_{j}$ is the multiplication operator by $x_{j}$.

$$
\begin{aligned}
\operatorname{Op}(a)\left(x_{j} u\right)-x_{j} \operatorname{Op}(a)(u) & =\frac{i}{(2 \pi)^{n}} \int e^{i x \xi} a(x, \xi) \partial_{j} \hat{u}(\xi) d \xi-\frac{1}{(2 \pi)^{n}} \int x_{j} e^{i x \xi} a(x, \xi) \hat{u}(\xi) d \xi \\
& =\frac{-i}{(2 \pi)^{n}} \int \frac{\partial}{\partial \xi_{j}}\left(e^{i x \xi} a(x, \xi)\right) \hat{u}(\xi) d \xi-\frac{1}{(2 \pi)^{n}} \int x_{j} e^{i x \xi} a(x, \xi) \hat{u}(\xi) d \xi \\
& =\frac{-i}{(2 \pi)^{n}} \int e^{i x \xi} \frac{\partial}{\partial \xi_{j}} a(x, \xi) \hat{u}(\xi) d \xi
\end{aligned}
$$

In other words

$$
\left[\mathrm{Op}(a), x_{j}\right]=\mathrm{Op}\left(-i \partial_{\xi_{j}} a\right),
$$

which again can be tested on differential operators.
Exercice 2 [About the localization of the wave front set]. Let $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ be a compactly supported distribution. We say that a direction $\xi \neq 0$ is in $\Upsilon(u)$ when there exists a conic neighborhood $\mathcal{C}_{1}$ of $\xi$ such that $\hat{u}$ is rapidly decreasing inside $\mathcal{C}_{1}$. The complement of $\Upsilon(u)$ is denoted by $\Sigma(u):=\Upsilon(u)^{c}$. In what follows, we fix some $\xi \neq 0$ inside $\Upsilon(u)$.
2.0. Explain the sense of the sentence " $\hat{u}$ is of at most polynomial growth ", and then recall why $\hat{u}$ is a smooth function of at most polynomial growth.

This means that

$$
\exists p \in \mathbb{N}, \quad|\hat{u}(\zeta)| \leq C\langle\zeta\rangle^{p} .
$$

In the present case, since $u$ is compactly supported, we have

$$
\hat{u}(\zeta)=\left\langle u, e^{i \zeta \cdot}\right\rangle_{\mathcal{E}^{\prime}, \mathcal{E}}=\left\langle u, \chi e^{i \zeta \cdot}\right\rangle_{\mathcal{E}^{\prime}, \mathcal{E}}, \quad \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right) \ni \chi \equiv 1 \text { on supp u } .
$$

On the other hand, since $u$ is a tempered distribution, we can find some $p \in \mathbb{N}$ such that

$$
\left|\left\langle u, \chi e^{i \zeta \cdot}\right\rangle_{\mathcal{E}^{\prime}, \mathcal{E}}\right| \leq \mathcal{N}_{p}\left(\chi e^{i \zeta \cdot}\right), \quad \mathcal{N}_{p}(\varphi):=\sup _{|\alpha|,|\beta| \leq p}\left\|x^{\alpha} \partial_{x}^{\beta} \varphi\right\|_{\infty} .
$$

Now, with $R$ such that supp $\chi \subset B(0, R]$, it suffices to remark that

$$
\left\|x^{\alpha} \partial_{x}^{\beta}\left(\chi e^{i \zeta x}\right)\right\|_{\infty} \lesssim R^{p}\langle\zeta\rangle^{p} .
$$

2.1. Explain the sense of the sentence " $\hat{u}$ is rapidly decreasing inside $\mathcal{C}_{1}$ ".

With $\langle\zeta\rangle:=\left(1+\|\zeta\|^{2}\right)^{1 / 2}$, this means that

$$
\begin{equation*}
\forall N \in \mathbb{N}, \quad \exists C_{N} ; \quad \forall \zeta \in \mathcal{C}_{1}, \quad\|\hat{u}(\zeta)\| \leq C_{N}\langle\zeta\rangle^{-N} . \tag{1}
\end{equation*}
$$

2.2. Prove that there is a conic neighborhood $\mathcal{C}_{2}$ of $\xi$ and a constant $\left.c \in\right] 0,1[$ such that

$$
\forall \eta \in \mathcal{C}_{2}, \quad\|\eta-\zeta\| \leq c\|\eta\| \Longrightarrow \zeta \in \mathcal{C}_{1}
$$

Indication : interpret the condition in terms of $\check{\xi}:=\frac{\xi}{\|\xi\|}, \tilde{\eta}:=\frac{\eta}{\|\eta\|}$ and $\tilde{\zeta}:=\frac{\zeta}{\|\eta\|}$.
We have $\zeta \in \mathcal{C}_{1}$ whenever $\tilde{\zeta} \in \mathcal{C}_{1}$. Thus, the statement can be reformulated as the existence of a conic neighborhood $\mathcal{C}_{2}$ of $\dot{\xi}$ (which is a conic neighborhood of $\xi$ ) such that

$$
\forall \tilde{\eta} \in \mathcal{C}_{2} \cap B(0,1], \quad\|\tilde{\eta}-\tilde{\zeta}\| \leq c \Longrightarrow \tilde{\zeta} \in \mathcal{C}_{1} .
$$

Since $\mathcal{C}_{1}$ is open, we can find some $\left.c \in\right] 0,1\left[\right.$ such that $B(\check{\xi}, 2 c] \subset \mathcal{C}_{1}$. Define $\mathcal{C}_{2}$ as the conic neighborhood generated by $B\left(\check{\xi}\right.$, $c\left[\right.$ so that $\tilde{\eta} \in \mathcal{C}_{2} \cap B(0,1]$ means that $\|\tilde{\eta}-\check{\xi}\|<c$. Then

$$
\left.\begin{array}{l}
\|\tilde{\zeta}-\check{\xi}\| \leq\|\tilde{\zeta}-\eta\|+\|\tilde{\eta}-\check{\xi}\| \leq\|\tilde{\zeta}-\eta\|+c \\
\|\tilde{\eta}-\tilde{\zeta}\| \leq c
\end{array}\right\} \Longrightarrow\|\tilde{\zeta}-\check{\xi}\| \leq 2 c,
$$

which implies that $\tilde{\zeta} \in B(\check{\xi}, 2 c] \subset \mathcal{C}_{1}$.
2.3. Let $\phi$ be in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
2.3.1. Prove and give a sense to the formula $\widehat{\phi u}(\eta)=F(\eta)+G(\eta)$ where

$$
F(\eta):=\int_{\|\eta-\zeta\| \leq c\|\eta\|} \hat{\phi}(\eta-\zeta) \hat{u}(\zeta) d \zeta, \quad G(\eta):=\int_{\|\eta-\zeta\| \geq c\|\eta\|} \hat{\phi}(\eta-\zeta) \hat{u}(\zeta) d \zeta .
$$

We have $\widehat{\phi u}=\hat{\phi} \star \hat{u}$ in the sense of distributions. Since $\hat{\phi} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the value of $\widehat{\phi u}(\eta)$ is well defined according to

$$
\begin{equation*}
\widehat{\phi u}(\eta)=\langle\hat{u}(\cdot), \hat{\phi}(\eta-\cdot)\rangle_{\mathcal{S}^{\prime}, \mathcal{S}} . \tag{2}
\end{equation*}
$$

The Fourier transform of a distribution with compact support (like in the case of $u$ ) is (see the question 2.0) a smooth function of at most polynomial growth (the same applies to the derivatives), that is

$$
\begin{equation*}
\exists p \in \mathbb{N}, \quad|\hat{u}(\zeta)|=\left|\left\langle u, e^{i \zeta^{\cdot}}\right\rangle_{\mathcal{E}^{\prime}, \mathcal{E}}\right| \leq C\langle\zeta\rangle^{p} \tag{3}
\end{equation*}
$$

On the other hand, $\hat{\phi}$ is in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$. This property is conserved under the action of a (fixed) translation : $\hat{\phi}(\eta-\cdot)$ is still in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$. The growth (3) is compensated by the decreasing of $\hat{\phi}(\eta-\cdot)$ so that the product $\hat{\phi}(\eta-\cdot) \hat{u}(\cdot)$ is in $L^{1}\left(\mathbb{R}^{n}\right)$, and the dual product (2) can be interpreted as a usual integration which can then be separated into the above two integrals.
2.3.2. Prove that $F$ is rapidly decreasing on $\mathcal{C}_{2}$.

The condition $\|\eta-\zeta\| \leq c\|\eta\|$ implies that

$$
\|\zeta\| \geq\|\eta\|-\|\eta-\zeta\| \geq(1-c)\|\eta\| .
$$

In view of the question 2.2, knowing that $\eta \in \mathcal{C}_{2}$, it also means that $\zeta \in \mathcal{C}_{1}$ so that we can use (1) to obtain

$$
|F(\eta)| \leq C_{N} \int_{\|\eta-\zeta\| \leq c\|\eta\|}|\hat{\phi}(\eta-\zeta)|(1-c)^{-N}\langle\eta\rangle^{-N} d \zeta \leq \tilde{C}_{N}\langle\eta\rangle^{-N}
$$

with

$$
\tilde{C}_{N}:=\frac{C_{N}}{(1-c)^{N}}\|\hat{\phi}\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

This holds true for all $N \in \mathbb{N}$ and for all $\eta \in \mathcal{C}_{2}$, which gives the expected result.
2.3.3. By using Peetre's inequality

$$
\forall t \in \mathbb{R}, \quad\langle\eta\rangle^{t} \leq 2^{|t|}\langle\zeta\rangle^{t}\langle\eta-\zeta\rangle^{|t|}
$$

prove that $G$ is rapidly decreasing.
Since $\hat{\phi}$ is rapidly decreasing and due to (3), we can assert that

$$
\forall N \in \mathbb{N}, \quad|G(\eta)| \lesssim \int_{\|\eta-\zeta\| \geq c\|\eta\|}\langle\eta-\zeta\rangle^{-N}\langle\zeta\rangle^{p} d \zeta
$$

We take $N$ in the form $N=n+1+p+q$ with $q$ large. This becomes

$$
\forall q \in \mathbb{N}, \quad|G(\eta)| \lesssim \int_{\|\eta-\zeta\| \geq c\|\eta\|}\langle\eta-\zeta\rangle^{-q}\langle\eta-\zeta\rangle^{-n-1}\left(\frac{\langle\zeta\rangle}{\langle\eta-\zeta\rangle}\right)^{p} d \zeta
$$

On the domain of integration, we have $\langle\eta-\zeta\rangle^{-1} \leq c^{-1}\langle\eta\rangle^{-1}$ as well as (using Peetre's inequality with $t=-1$ )

$$
\frac{\langle\zeta\rangle}{\langle\eta-\zeta\rangle} \leq 2\langle\eta\rangle
$$

There remains

$$
\forall q \in \mathbb{N}, \quad|G(\eta)| \lesssim \int_{\|\eta-\zeta\| \geq c\|\eta\|} c^{-q}\langle\eta\rangle^{-q}\langle\eta-\zeta\rangle^{-n-1} 2^{p}\langle\eta\rangle^{p} d \zeta \lesssim\langle\eta\rangle^{p-q}
$$

Just take $q=N+p$ with any $N \in \mathbb{N}$.
2.3.4. Show that $\Sigma(\phi u) \subset \Sigma(u)$.

From questions 2.2.1, 2.2.2 and 2.2.3, we can infer that $\widehat{\phi u}$ is rapidly decreasing on $\mathcal{C}_{2}$ which implies that $\xi \in \Upsilon(\phi u)$. This is verified for all $\xi \in \Upsilon(u)$ so that $\Upsilon(u) \subset \Upsilon(\phi u)$ which, passing to the complement, is equivalent to $\Sigma(\phi u) \subset \Sigma(u)$.
2.3.5. Let $\chi \in \mathcal{D}\left(\mathbb{R}^{n}\right), \psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$. Prove that $\Upsilon(\chi v) \subset \Upsilon(\psi \chi v)$.

We cannot use directly the question 2.3.4 because $\psi \notin \mathcal{S}\left(\mathbb{R}^{n}\right)$. However, we can find some $\tilde{\chi} \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ such that $\tilde{\chi}$ is equal to one on the support of $\chi$ so that $\chi v \equiv \tilde{\chi} \chi v \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$. Since $\tilde{\chi} \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, from the question 2.2.4, we can assert that

$$
\Upsilon(\chi v) \subset \Upsilon((\tilde{\chi} \psi) \chi v) \equiv \Upsilon(\psi(\tilde{\chi} \chi) v) \equiv \Upsilon(\psi \chi v)
$$

2.4. Below, the symbol "WF" is for "Wave Front set". From the foregoing, deduce that

$$
\forall \psi \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad \forall v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right), \quad W F(\psi v) \subset W F(v)
$$

It suffices to show that

$$
(x, \xi) \notin W F(v) \Longrightarrow(x, \xi) \notin W F(\psi v) .
$$

Fix some $(x, \xi) \notin W F(v)$. By definition, we can find some cutoff function $\chi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ such that $\chi(x) \neq 0$ and such that $\widehat{\chi v}$ is rapidly decreasing in a conic neighborhood of $\xi$. In other words, $\xi \in \Upsilon(\chi v) \subset \Upsilon(\psi \chi v) \equiv \Upsilon(\chi(\psi v))$. It follows that $(x, \xi) \notin W F(\psi v)$.

Exercice 3 [About the square root of an elliptic operator]. Let $a$ be a symbol which is in $S_{1,0}^{m}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ with $m \in \mathbb{R}$ and $n \in \mathbb{N}$. We assume that

$$
\exists(c, R) \in\left(\mathbb{R}_{+}^{*}\right)^{2} ; \quad a(x, \xi) \geq c\left(1+\|\xi\|^{2}\right)^{m / 2} \quad \text { if } \quad\|\xi\| \geq R
$$

This is a classical proof (almost done during the course) using the symbolic calculus.
3.1. Prove that we can find an elliptic operator $b_{0} \in S_{1,0}^{(m / 2)}\left(\mathbb{R}^{n}\right)$ such that

$$
O p(a)-O p\left(b_{0}\right) \circ O p\left(b_{0}\right) \in S_{1,0}^{m-1}\left(\mathbb{R}^{n}\right)
$$

Let $\chi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be such that

$$
\chi(\xi)=\left\{\begin{array}{lll}
0 & \text { if } & |\xi| \leq R \\
1 & \text { if } & 2 R \leq|\xi|
\end{array}\right.
$$

Take $b_{0}(x, \xi):=\sqrt{a}(x, \xi) \chi(\xi)$. Remark that a can take negative values for $|\xi| \leq R$. Thus, it is important here to localize out of the ball of radius $R$ to be sure that $\sqrt{a}$ is well defined. It is clear that $b_{0} \in S_{1,0}^{m / 2}\left(\mathbb{R}^{n} ; \mathbb{R}_{+}^{*}\right)$ and that $b_{0}$ is elliptic since

$$
b_{0}(x, \xi)=\sqrt{a}(x, \xi) \geq \sqrt{c}\left(1+\|\xi\|^{2}\right)^{m / 4} \quad \text { if } \quad\|\xi\| \geq 2 R
$$

On the other hand

$$
O p(a)-O p\left(b_{0}\right) \circ O p\left(b_{0}\right)=O p\left(a-b_{0}^{2}\right)+O p\left(S_{1,0}^{m-1}\left(\mathbb{R}^{n}\right)\right)
$$

By construction, we have $a-b_{0}^{2}=a\left(1-\chi^{2}\right)$ so that

$$
\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)=\sum_{\gamma \leq \beta} C_{\beta}^{\gamma} \partial_{x}^{\alpha} \partial_{\xi}^{\gamma} a(x, \xi) \partial_{\xi}^{\beta-\gamma}\left(1-\chi^{2}\right)(\xi)
$$

which is a sum of products of functions in $\in S_{1,0}^{m-|\gamma|}\left(\mathbb{R}^{n}\right)$ and functions in $\in S_{1,0}^{-\infty}\left(\mathbb{R}^{n}\right)$ (because $\chi \equiv 1$ for large $|\xi|$ ). This implies that

$$
O p(a)-O p\left(b_{0}\right) \circ O p\left(b_{0}\right) \in O p\left(S_{1,0}^{-\infty}\left(\mathbb{R}^{n}\right)\right)+O p\left(S_{1,0}^{m-1}\left(\mathbb{R}^{n}\right)\right) \subset O p\left(S_{1,0}^{m-1}\left(\mathbb{R}^{n}\right)\right)
$$

3.2. We fix some $N \in \mathbb{N}$ with $N \geq 2$. Show by induction that we can find symbols $b_{k} \in S_{1,0}^{(m / 2)-k}\left(\mathbb{R}^{n}\right)$ with $0 \leq k \leq N$ which are adjusted such that

$$
O p(a)-O p\left(b_{0}+\cdots+b_{N}\right) \circ O p\left(b_{0}+\cdots+b_{N}\right) \in S_{1,0}^{m-N-1}\left(\mathbb{R}^{n}\right)
$$

By induction, with $b^{\prime}=b_{0}+\cdots+b_{k}$, we can start with

$$
O p(a)-O p\left(b^{\prime}\right) \circ O p\left(b^{\prime}\right)=O p(c), \quad c \in O p\left(S_{1,0}^{m-k-1}\left(\mathbb{R}^{n}\right)\right)
$$

It follows in particular that

$$
R=O p(r):=O p(a)-O p\left(b^{\prime} \sharp b^{\prime}\right) \in O p\left(S_{1,0}^{m-k-1}\left(\mathbb{R}^{n}\right)\right) \text {. }
$$

Due to the elliptic property of $b_{0} \in S_{1,0}^{(m / 2)}\left(\mathbb{R}^{n}\right)$, we know that

$$
\left|b_{0}(x, \xi)\right| \geq \sqrt{c}\left(1+\|\xi\|^{2}\right)^{m / 4} \quad \text { if } \quad\|\xi\| \geq 2 R
$$

To obtain $b^{\prime}$, we add to $b_{0}$ more decreasing symbols $b_{j}$ (when $j \geq 1$ ). As a consequence

$$
\exists\left(c^{\prime}, R^{\prime}\right) \in\left(\mathbb{R}_{+}^{*}\right)^{2} ; \quad\left|b^{\prime}(x, \xi)\right| \geq c^{\prime}\left(1+\|\xi\|^{2}\right)^{m / 4} \quad \text { if } \quad\|\xi\| \geq R^{\prime}
$$

We seek $b_{k+1} \in S_{1,0}^{(m / 2)-k-1}\left(\mathbb{R}^{n}\right)$ such that

$$
O p(a)-O p\left(b^{\prime}+b_{k+1}\right) \circ O p\left(b^{\prime}+b_{k+1}\right) \in O p\left(S_{1,0}^{m-k-2}\left(\mathbb{R}^{n}\right)\right)
$$

or equivalently such that

$$
r-2 b^{\prime} b_{k+1}+b_{k+1}^{2} \in S_{1,0}^{m-k-2}\left(\mathbb{R}^{n}\right)
$$

Since $b_{k+1}^{2} \in S_{1,0}^{m-2 k-2}\left(\mathbb{R}^{n}\right) \subset S_{1,0}^{m-k-2}\left(\mathbb{R}^{n}\right)$, this is the same as

$$
r-2 b^{\prime} b_{k+1}=g \in S_{1,0}^{m-k-2}\left(\mathbb{R}^{n}\right)
$$

For $\|\xi\| \geq R^{\prime}$, it suffices to take $b_{k+1}=(r-g) / 2 b^{\prime}$ and extend this function smoothly for smaller values of $\|\xi\|$ to recover some symbol $b_{k+1} \in S_{1,0}^{(m / 2)-k-1}\left(\mathbb{R}^{n}\right)$ allowing to recover the expected property.

Problème [About the canonical commutation relations]. We consider two unbounded self-adjoint operators $A$ and $B$ on the Hilbert space $\mathcal{H}$ satisfying the exponentiated commutation relation

$$
\begin{equation*}
\forall(s, t) \in \mathbb{R}^{2}, \quad e^{i s A} e^{i t B}=e^{-i s t \hbar} e^{i t B} e^{i s A} \tag{ECR}
\end{equation*}
$$

where $\hbar$ is the reduced Planck constant. In what follows, we consider a function $f$ which is in the Schwarz space $\mathcal{S}\left(\mathbb{R}^{2}\right)$ and which is real valued. We denote by $\hat{f}$ its Fourier transform. We define the bounded operator $Q(f)$ by the formula

$$
Q(f):=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{f}(s, t) U(s, t) d s d t
$$

P.1. Define $U(s, t):=e^{i s t \hbar / 2} e^{i s A} e^{i t B}$. Prove that

$$
\begin{equation*}
\forall\left(s, t, s^{\prime}, t^{\prime}\right) \in \mathbb{R}^{4}, \quad U(s, t) U\left(s^{\prime}, t^{\prime}\right)=e^{-i \hbar\left(s t^{\prime}-t s^{\prime}\right) / 2} U\left(s+s^{\prime}, t+t^{\prime}\right) \tag{CCR}
\end{equation*}
$$

It suffices to apply the ECR to find

$$
\begin{aligned}
U(s, t) U\left(s^{\prime}, t^{\prime}\right) & =e^{i\left(s t+s^{\prime} t^{\prime}\right) \hbar / 2} e^{i s A}\left(e^{i t B} e^{i s^{\prime} A}\right) e^{i t^{\prime} B} \\
& =e^{i\left(s t+s^{\prime} t^{\prime}\right) \hbar / 2} e^{i s A}\left(e^{i s^{\prime} t \hbar} e^{i s^{\prime} A} e^{i t B}\right) e^{i t^{\prime} B} \\
& =e^{i\left(s t+2 s^{\prime} t+s^{\prime} t^{\prime}\right) \hbar / 2} e^{i\left(s+s^{\prime}\right) A} e^{i\left(t+t^{\prime}\right) B} \\
& =e^{i\left(s t+2 s^{\prime} t+s^{\prime} t^{\prime}\right) \hbar / 2} e^{-i\left(s+s^{\prime}\right)\left(t+t^{\prime}\right) \hbar / 2} U\left(s+s^{\prime}, t+t^{\prime}\right)
\end{aligned}
$$

P.2. Show that $U(s, t)^{*}=U(-s,-t)$ (where the star $*$ is for the adjoint operation).

There are two possible proofs. Either, we can use the ECR to see that

$$
U(s, t)^{*}=e^{-i s t \hbar / 2} e^{-i t B} e^{-i s A}=e^{-i s t \hbar / 2} e^{i s t \hbar} e^{-i s A} e^{-i t B}=U(-s,-t)
$$

Or we can remark that $U(s, t)$ is by construction a unitary operator whose inverse is the adjoint. Now, from the $C C R$, we have directly access to $U(s, t) U(-s,-t)=I d$.
P.3. Recall that $f$ is real valued. Explain why $Q(f)$ is well defined and self-adjoint.

Since $U(s, t)$ is a unitary operator and $f$ is in $\mathcal{S}\left(\mathbb{R}^{2}\right)$, we can find some constant $C$ such that $\|\hat{f}(s, t) U(s, t)\| \leq\left(1+s^{2}+t^{2}\right)^{-2}$ where $\|\cdot\|$ is for the norm operator. The integral is then absolutely convergent (in the sense of a Bochner integral), and we can compute

$$
Q(f)-Q(f)^{*}=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}}\left[\hat{f}(s, t) U(s, t)-\overline{\hat{f}}(s, t) U(s, t)^{*}\right] d s d t
$$

Since $f$ is real valued, we have $\overline{\hat{f}}(s, t)=f(-s,-t)$. From question P.2, we get

$$
Q(f)-Q(f)^{*}=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}}[\hat{f}(s, t) U(s, t)-\hat{f}(-s,-t) U(-s,-t)] d s d t=0
$$

just by changing $(s, t)$ into $(-s,-t)$ in the second integral.
P.4. Prove that $U(s, t) Q(f):=Q\left(f^{\prime}\right)$ where the function $f^{\prime}$ is defined by its Fourier transform which is given by

$$
\hat{f}^{\prime}\left(s^{\prime}, t^{\prime}\right):=e^{i \hbar\left(s^{\prime} t-s t^{\prime}\right) / 2} \hat{f}\left(s^{\prime}-s, t^{\prime}-t\right)
$$

From the CCR, we have

$$
\begin{aligned}
U(s, t) Q(f) & =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{f}\left(s^{\prime}, t^{\prime}\right) U(s, t) U\left(s^{\prime}, t^{\prime}\right) d s^{\prime} d t^{\prime} \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{f}\left(s^{\prime}, t^{\prime}\right) e^{-i \hbar\left(s t^{\prime}-t s^{\prime}\right) / 2} U\left(s+s^{\prime}, t+t^{\prime}\right) d s^{\prime} d t^{\prime} \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{f}\left(s^{\prime \prime}-s, t^{\prime \prime}-t\right) e^{-i \hbar\left(s\left(t^{\prime \prime}-t\right)-t\left(s^{\prime \prime}-s\right)\right) / 2} U\left(s^{\prime \prime}, t^{\prime \prime}\right) d s^{\prime \prime} d t^{\prime \prime} \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} e^{-i \hbar\left(s^{\prime \prime} t-s t^{\prime \prime}\right) / 2} \hat{f}^{\prime}\left(s^{\prime \prime}, t^{\prime \prime}\right) e^{-i \hbar\left(s\left(t^{\prime \prime}-t\right)-t\left(s^{\prime \prime}-s\right)\right) / 2} U\left(s^{\prime \prime}, t^{\prime \prime}\right) d s^{\prime \prime} d t^{\prime \prime}
\end{aligned}
$$

After simplification of the exponential factors, we can recognize $Q\left(f^{\prime}\right)$.
P.5. Prove that we have

$$
U(s, t)^{*} Q(f) U(s, t)=U(-s,-t) Q(f) U(s, t)=Q(g)
$$

where the function $g$ is such that $\hat{g}\left(s^{\prime}, t^{\prime}\right)=e^{i \hbar\left(s^{\prime} t-s t^{\prime}\right)} \hat{f}\left(s^{\prime}, t^{\prime}\right)$.
Exchanging the role of $f$ and $g$ and using question P.4., the above relation is equivalent to

$$
U(s, t) Q(f) U(-s,-t)=Q\left(f^{\prime}\right) U(-s,-t)=Q(g)
$$

It suffices to show that

$$
Q\left(f^{\prime}\right) U(-s,-t)=Q\left(f^{\prime \prime}\right), \quad \widehat{f^{\prime \prime}}\left(s^{\prime}, t^{\prime}\right):=e^{i \hbar\left(s^{\prime} t-s t^{\prime}\right) / 2} \widehat{f}^{\prime}\left(s^{\prime}+s, t^{\prime}+t\right)
$$

to recover that

$$
\widehat{f^{\prime \prime}}\left(s^{\prime}, t^{\prime}\right):=e^{i \hbar\left(s^{\prime} t-s t^{\prime}\right) / 2} e^{i \hbar\left(\left(s^{\prime}+s\right) t-s\left(t^{\prime}+t\right)\right) / 2} \widehat{f}^{\prime}\left(s^{\prime}, t^{\prime}\right)=e^{i \hbar\left(s^{\prime} t-s t^{\prime}\right)} \hat{f}\left(s^{\prime}, t^{\prime}\right)
$$

as expected. Now, the proof of $(\sharp)$ follows the same lines as in question P.4.
P.6. Explain why we have $Q(f) Q(g)=Q(f \star g)$ for all $(f, g) \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ where $f \star g$ is the Moyal product described by

$$
\widehat{f \star g}(s, t):=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} e^{-i \hbar\left(s t^{\prime}-t s^{\prime}\right) / 2} \hat{f}\left(s-s^{\prime}, t-t^{\prime}\right) \hat{g}\left(s^{\prime}, t^{\prime}\right) d s^{\prime} d t^{\prime}
$$

We have

$$
\begin{aligned}
& Q(f \star g)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}}\left(\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} e^{-i \hbar\left(s t^{\prime}-t s^{\prime}\right) / 2} \hat{f}\left(s-s^{\prime}, t-t^{\prime}\right) \hat{g}\left(s^{\prime}, t^{\prime}\right) d s^{\prime} d t^{\prime}\right) U(s, t) d s d t \\
& =\frac{1}{(2 \pi)^{4}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} e^{-i \hbar\left(\left(s^{\prime}+s^{\prime \prime}\right) t^{\prime}-\left(t^{\prime}+t^{\prime \prime}\right) s^{\prime}\right) / 2} \hat{f}\left(s^{\prime \prime}, t^{\prime \prime}\right) \hat{g}\left(s^{\prime}, t^{\prime}\right) U\left(s^{\prime}+s^{\prime \prime}, t^{\prime}+t^{\prime \prime}\right) d s^{\prime} d t^{\prime} d s^{\prime \prime} d t^{\prime \prime}
\end{aligned}
$$

We can exploit the $C C R$ in the form

$$
U\left(s^{\prime}+s^{\prime \prime}, t^{\prime}+t^{\prime \prime}\right)=e^{i \hbar\left(s^{\prime \prime} t^{\prime}-t^{\prime \prime} s^{\prime}\right) / 2} U\left(s^{\prime \prime}, t^{\prime \prime}\right) U\left(s^{\prime}, t^{\prime}\right)
$$

to obtain

$$
\begin{aligned}
Q(f \star g) & =\frac{1}{(2 \pi)^{4}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \hat{f}\left(s^{\prime \prime}, t^{\prime \prime}\right) \hat{g}\left(s^{\prime}, t^{\prime}\right) U\left(s^{\prime \prime}, t^{\prime \prime}\right) U\left(s^{\prime}, t^{\prime}\right) d s^{\prime} d t^{\prime} d s^{\prime \prime} d t^{\prime \prime} \\
& =\left(\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{f}\left(s^{\prime \prime}, t^{\prime \prime}\right) U\left(s^{\prime \prime}, t^{\prime \prime}\right) d s^{\prime \prime} d t^{\prime \prime}\right)\left(\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{g}\left(s^{\prime}, t^{\prime}\right) U\left(s^{\prime}, t^{\prime}\right) d s^{\prime} d t^{\prime}\right) \\
& =Q(f) Q(g)
\end{aligned}
$$

P.7. Let $\phi$ and $\psi$ in $\mathcal{H}$ as well as $s$ and $t$ in $\mathbb{R}$. We assume that $f$ is such that $Q(f)=0$. By exploiting the relation

$$
0=\langle U(s, t) \phi, Q(f) U(s, t) \psi\rangle
$$

show that the operator $Q$ is injective on $\mathcal{S}\left(\mathbb{R}^{2}\right)$.
With $g$ as in question P.5, we must have

$$
0=\langle U(s, t) \phi, Q(f) U(s, t) \psi\rangle=\langle\phi, U(-s,-t) Q(f) U(s, t) \psi\rangle=\langle\phi, Q(g) \psi\rangle
$$

In view of the definition of $g$, this is the same as

$$
0=\int_{\mathbb{R}^{2}} e^{i \hbar\left(s^{\prime} t-s t^{\prime}\right)} \hat{f}\left(s^{\prime}, t^{\prime}\right)\left\langle\phi, U\left(s^{\prime}, t^{\prime}\right) \psi\right\rangle d s^{\prime} d t^{\prime}
$$

We can recognize above the Fourier transform of the continuous function

$$
F\left(s^{\prime}, t^{\prime}\right):=\hat{f}\left(s^{\prime}, t^{\prime}\right)\left\langle\phi, U\left(s^{\prime}, t^{\prime}\right) \psi\right\rangle
$$

evaluated at the point $\hbar(-t, s)$. This must be zero for all values of $(s, t)$. By Fourier inversion formula, this is possible if and only if $F$ is zero at all positions $\left(s^{\prime}, t^{\prime}\right)$. Now, for $\phi=U\left(s^{\prime}, t^{\prime}\right) \psi$ with $\|\psi\|=1$, we find that

$$
0=F\left(s^{\prime}, t^{\prime}\right)=\hat{f}\left(s^{\prime}, t^{\prime}\right)\left\langle U\left(s^{\prime}, t^{\prime}\right) \psi, U\left(s^{\prime}, t^{\prime}\right) \psi\right\rangle=\hat{f}\left(s^{\prime}, t^{\prime}\right)\langle\psi, \psi\rangle=\hat{f}\left(s^{\prime}, t^{\prime}\right)
$$

and therefore $f=0$.

