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Problem. Let p be a prime number. We denote by I, the prime field of order p which
may be constructed as the integers modulo p, that is F, = Z/(pZ). Let H be a complex
Hilbert space of finite dimension d € N,. We consider two unitary operators A : H — H
and B : H — H satisfying AP = Id and BP = Id, as well as

Y(l,m) € N?, Al B™ = e~ 2milm/p pm gl (1)

We suppose that the only subspaces of H invariant under both A and B are {0} and H.
1. Explain why A has at least one eigenvalue A € C. Show that A is of modulus 1.

The characteristic polynomial P(X) := det(A — X1d) is of degree d > 1. It has therefore
at least one root A € C which is an eigenvalue of A. Let v a non-zero eigenvector of A
which is associated to \. We have

(Av, Av) = (v, \v) = [A]? || v [P= (v, A" Av) = v ||,

which is possible only if |\| = 1.
2. Let 0 # v = B% € H be an eigenvector of A of norm 1 that is associated with A. Show

that B*v is for all £ € N an eigenvector for A. What is the corresponding eigenvalue ?

For k = 0, this is due to the definition of v = B%. For k € N,, we can apply (1) with
(I,m) = (1,k) to obtain

ABky = o 2mk/P Bk gy — b Bkv, Ap = )\6—27r7§k/p,

which says that B*v is an eigenvector for A associated with the eigenvalue \p.

3. What can be said about the (vector) subspace £ C H which is generated by the family
of vectors {B*v}ren ?

The subspace E is obviously stable under the action of B. In view of the preceding question,
it is also stable under the action of A. It is of dimension greater than 1 (because the
non-zero vector v is in E). Thus, by assumption, it must coincide with H.

4. Explain why the vectors B¥v with 0 < k < p— 1 form an orthonormal basis of H built
with eigenvectors of A. What can be said about the dimension of H 7 Prove that the
eigenspace Ey := {f € H; Af = Af} is of dimension 1. Explain why A\ =1 is sure to be
an eigenvalue of A.



Since B is unitary and v is of norm 1, B*v is of norm 1. Since BP = Id, we have

p—1
H=F= {chBkv; ckG(C}.
k=0

This clearly indicates that the p vectors B*v with 0 < k < p—1 generate H. On the other
hand, for k # k, we have

(Bkv,ABi“w = \i(B*v, B*v) = (A*Bkv,Bi“w = <A71Bkv,Bi€v> = /\,;1<Bkv,Bi€v>.

Since /\,;1 = \; and A\, # A, we must have (Bkv, Bi“v> = 0. In other words, the vectors
By with 0 < k < p — 1 form an orthonormal basis of H, and therefore d = p.

Now, let v € Ey be a vector which is not colinear with v and which is given by

U= e A\ BFv
k=0
And therefore
p—1
0= Z e (1 — e 2mk/Py ghyy
k=1

which implies that ¢, = 0 for k # 1 and yields the expected contradiction. We must have
E)\ ={cv;ceC}, dim FE = 1.

On the other hand, since AP = Id, we must have X, = X’ = 1. Thus X is a p" root of

unity which implies that A\, = 1 for some k.

5. The Hilbert space L? (Fp) is provided with the counting measure on F,, which means
that, given f € L*(F,) and g € L*(F,), we work with the inner product

p—1

(f.9) =) f(n)g(n).

n=0

5.1. Prove that the modulation operator U : L*(F,) — L*(F,) and the translation
operator V : L*(F,) — L?(F,) which are given by

Uuif) :F, — C V(f):F, — C
n —s e 2™/ f(n), n — f(n—1),

are unitary operators on L?(F,).



It suffices to note that U and V preserve the L?-norm. Indeed

U I v,)= Z =27/ £ (n) Z F)P =l f 72w, -

On the other hand

V() 122, Z [f(n = 1) Z LF@)1? =1 f 122z,

where we have used the property according to which the map n — n — 1 is a bijection on
the field ¥, (since —1=p—1).
5.2. Verify that we have UP = I'd and VP = Id, as well as

V(,m) N, UV =emimbymyl,
The two first properties come from the relations
(e_%m/p)p =1, n—p=mn (inFp).

On the other hand, we have

U'VT(f)(n) =U'(n = f(n—m)) = e TP f(n —m),
VmUl(f)(n) _ Vm(n — e—27riln/pf( ) _ e—27rzl n—m /pf(n _ m)7

which leads to the last relation.

5.3. What can be said about the family of Dirac functions {d,}¢ € L?(F,)¥» given by

1 if n=/4,

0 if n#¢, tely

F, > n+— d6,(n) ::{

first from the viewpoint of L?(F,) and secondly from the perspective of U ?

The family {6} forms an orthonormal basis of L*(F,). Moreover

U(8)(n) = e ™7 (8)(n) = e >™/7 (5) (n),

which indicates that §; is an eigenvector of U associated with the eigenvalue e 2™4/P.

5.4. Find a self-adjoint operator R on L?(F,) which is such that e —2mik/p — 7. Compute
the mean value of R along dy, that is the quantity (s, Ro;). What could be a possible
interpretation of R ?

It suffices to adjust R in such a way that R(d¢) = £dy to ensure that e~ 2miR/pg, — o—2mil/pg,
which, in view of the above, guarantees that e~ 2™1/P = U. Thus

p—1

— R(Y F(K) ) (0) = 3 £V RGM) = X F(K) kéi(n) = nf(n),
k=0 k=0

k=0



which make R appears as a position operator. This is confirmed by the relation
(0g, ROg) = (g, 00g) = ¢,

which says that a state concentrated at the position ¢ returns the value of £.
5.5. What can be said about the family of functions {g;}, € L?(F,)"» given by

1 !
VP i

first from the perspective of V and secondly from the viewpoint of L?(F,) ?

F,>n+— gi(n): e~ 2R/ 5, (n), teF,

First, compute
p—1 ' 1 bt
6727m£k/p 5k(n - 1)

1
\/ﬁ k;O ) \/ﬁ w0
1 : ‘
ﬁ Z 6727m€(k71)/p 6]4:(”) = 627”e/p gZ(n)

V(ge)(n) = e~ 2R/ 5, (n)

This means that g is an eigenvector of V- associated with the eigenvalue e*™/? . Since these
etgenvalues are distinct and have a total number of p, the corresponding eigenvectors gy
form an orthogonal basis of L*(F,). Moreover, we can remark that g,(n) = 6_27”[”/7’/\/]7
so that gy is a function of norm 1 in LQ(IF'p). The basis is orthonormal.

5.6. Using the family of functions {g,}, € L? (FP)FP, determine a self-adjoint operator S
on L%(F,) which is such that e?™5/P = V.

As in question 5.4, we can argue on the eigenspaces. It suffices to define S through the
conditions Sgy = Lge for all £ € Fy,.

5.7. Do the operators R and S commute 7 Justify the answer.

NO. By contradiction. Assume that R and S commute. Then, U and V must commute
which is not the case because from (1) with (I,m) = (1,1), we have

(U, V] =(1—e2m/P) VU £ 0.

6. Show that we can construct a unitary (surjective) map W from H onto L?(F,) which
is such that
WAW ™! = U, WBW-!=V.

Mention the name of the theorem which is associated with the above relation.

We have seen in question 1.4 that we can always assume that X = 1. Then, define W
through the relation W (Btv) = 8, for all £ € Fp,. Such map W exchanges two orthonormal
basis, and therefore it is a unitary operator. By this way, we also find that, for all £ € Fp,
we have

WA(B) = W(e 2™/PBly) = ¢ 2m/P 5, = Usy = UW(Bv) = WA=UW,



as well as
WB(B%) =WB"w=06,, =V =VW(B%) =— WB=VW.

It suffices to compose with W~ on the right to recover the expected result. In this exercice,
we have developed a discrete version of the Stone-von Neumann Theorem.

Problem 2. Let x € C§°(R™;R) be a smooth compactly supported function with x =1
in a neighbourhood of the position £ = 0. Consider the symbol

K@) =il (1-x(©), [El=E+ -+ feR"
1. Explain why the function ¢ — K () is a symbol in the class S1(R™).

Definet (€) := (1+ |€]>)Y/2. By definition, the function K is in SY(R™) if and only if
V(o) € (N")?, 3Cap €RY; |FOJK(E)] < Cap ()11

This is evident when |B| # 0. When |B| = 0, we can exploit the Leibniz formula that yields
GEK(E) =1 Y CLo(lgl) 971 = x(&)] = i 9*(|¢]) [t — x(&)] + F(&)

0<<a

For v < a, the function 0*7[1 — x(§)] is in C§°(R™;R) and it is equal to 0 in a
neighbourhood of & = 0. Thus, we have

OEE(E) =i 0%(lg]) [L—x()] + f(),  feCFR,R).

To conclude, it suffices to remark that 0*(|¢|) is homogeneous of degree 1 — |a|.

2. Let K (D) be the pseudo-differential operator associated to the symbol K, that is

K(D)ul() = @m)~2 [ e K(€) (o) de.

n

2.1. We select some function u in the Schwartz space S(R™). Prove that K(D)u is a
bounded function. What more needs to be said about K (D)u ?

We have

[K(D)u](z) = (2m)"/ /n e THE(E) (OO M ale) dg.
The function (€)™ K (€) is bounded because K € S'. The function (£)"*2 (&) is bounded
because 4 € S. On the other hand, the function (€)~""! is integrable on R™. Thus, the
above integral is convergent (with a uniform bound). As viewed in the course (and as can
be proved directly), the function K(D)u is in fact in S(R™).

2.2. Show that K (D) is (formally) skew-symmetric in the sense that



(u, K(D)v) = / : u(z) K(D)v(z)dx = —(K(D)u,v), V(u,v) € S(R™).

We know that K (D) and K(D)* are in OP'(R™). From Plancherel theorem, we have
(1, K (D)o)sxs = (i, K(€)0)sxs = [ al€) K(€) 9(6) de.

Since K (&) € iR, this leads to
(u, K(D)v)sxs = — (K(§)l, 0)sxs = (=K (D)u,v)sxs = (K(D)"u,v)sxs -

Just compare the two last terms.

3. We consider the Cauchy problem

(PC) {Ou — K(D)u=0, up—o = up € H*(R"), seR.

We denote by (t, £) the Fourier transform of u(t,-) with respect to x € R™.
3.1. Compute 4(t, ) and deduce from the formula thus obtained that

@t e HRY), () e =l wol) Iy, FEERY.
We have 0(t, &) = et ay(€). Since €€ is of modulus 1, we have
ult,2) iy = | (€)° ,€) ey = ([ (€07 1450 Jao(e)P? d)
= ([ier 120©F &) =1l vo ey -

3.2. Prove that the identity (Z) can also be recovered through energy estimates performed
at the level of (PC).

We can follow the following steps : :

o We compose (PC) on the left with op(§)* = (D)*. Since [(D)%; K(D)] = 0, the

expression w(t, x) := (D)%u(t, z) must be a solution of
{Ow — K(D)w =0, Wi—o = wo = (D)*ug € L*(R™).
o We perform L?-energy estimates on this equation. In other words, we multiply the

equation on the left by 2%w(t,x) and then we integrate in x to obtain

d
p [ w(t, ) | 72mny +2 (w, K(D)w) 2,2 = 0.

Since K (D) is skew-symmetric, we have

(w,K(D) w>L2><L2 = (K(D)*w,w>L2XL2 = — <K(D) w,w>L2XL2 = — <w,K(D) w>L2><L2 .
This means that the number (w, K(D)w)2y 2 is purely imaginary. There remains

d

i | w(t,-) H%Q(R”) =0

which after integration in time, between 0 and t furnishes



[t ) Wy = [l w0t ) 122 gny = I wo () I Z2eny = 1l 10() Ny -

4. Let dp be the Dirac mass located at the position x = 0. Show that 6y € H*(R") for all
s € R satisfying s < —(n/2).

The Fourier transform of dg coincides with 1gn. Thus

B 1/2
180 ey = I (€)° oy = ([, [ (1 7t drao) .
+

This becomes integrable on condition that 2s +n — 1 < —1 which yields the expected
condition s < —(n/2).

5. We start with ug = dp. Recall the definition of the wave front set WFE(dy) of the
distribution dp. Then describe the content of W F(dy).

We want to show that
WE(d) = {(0,€); £ €R™\ {0}}.

It is clear that 6 = 0 on all open sets that do not contain 0 € R™ which implies that
WF() C {0} x R™. Then, if ¢ € C°(R") satisfies ¢(0) # 0, we find that (modulo
multiplicative constants)

P56 = (69O = [

S(€—n) Irgn(n) dn :/ @(n) dn = (0) # 0.
R’n

R

The fonction g;\(S() is a (non-zero) constant. There is no conic neighboorhood of a direction
& € R"\ {0} where it can be rapidly decreasing. Thus, all positions (0,€) are in the wave
front set of &g.

6. We consider (PC) for the choice ug = dp. We denote by u the corresponding solution.
We fix some ¢t € R% as well as some ¢ € C5°(R"). Show that we can find a fonction v in
the Schwartz space S(R™) giving rise to

Fulte) = [ ele—m) e dn + v(6).

Let again x € C§°(R™) with x =1 in a neighboorhood of 0. Define

() = et (1=x(m)) _ citinl

The function x is smooth, bounded and compactly supported. Retain that
R € [1,+o0]; Inl>R = x(n)=0.

We take

0e) = [ pE—mxm dn = (G=0E), PeSEY, xeL'®).

The function 1 is smooth (of class C*°) since the same applies to ¢. The integrale in n
concerns only the ball B(0, R]. For |n| < R and |£| > 4 R, we have



L+l > 14 (e - B2 2 14 [P 2RI+ R > 5 (1+16P).
On the other hand, since p € C§°(R™) C S(R™), we have the control
VkeN, 3G eRL; QIO
It follows that
€| >4R = PWEI<Ce &= I x @y <27%2Ck | X lp@ny (€)7F,

which means that ¢ is indeed rapidly decreasing.

7. In this question, we consider the Cauchy problem

(PCO)  {Ba — i |Dla=0,  dp_g=20.

Let t € R;. Describe the wave front set WF (u(t,-)) of the distribution (¢, -). Justify

the answer.

The theorem describing the propagation of the wave front set says that
WR(at,) = ®(VF(5)

where @y is the diffeomorphism induced by the Hamiltonian field H(z,&) = H(&) = |£].
We have to look at

d _ =
%X(tyyﬂ?) = _V§H<X7:‘) = _ﬁv X(an7n) =Y,
d _ — -
This furnishes Z(t,y,n) = n and then
Ui
u

A the time t, the wave front set is contained in the cone with center 0 and radius t (the
so-called light cone). In other words

WF@@O)Z{Ft%Tm;nGR@-



