Microlocal Analysis

Correction of the Terminal Examination (2h)

## Documents are not allowed

Problem. Let $p$ be a prime number. We denote by $\mathbb{F}_{p}$ the prime field of order $p$ which may be constructed as the integers modulo p , that is $\mathbb{F}_{p} \equiv \mathbb{Z} /(p \mathbb{Z})$. Let $\mathbf{H}$ be a complex Hilbert space of finite dimension $d \in \mathbb{N}_{*}$. We consider two unitary operators $A: \mathbf{H} \rightarrow \mathbf{H}$ and $B: \mathbf{H} \rightarrow \mathbf{H}$ satisfying $A^{p}=I d$ and $B^{p}=I d$, as well as

$$
\begin{equation*}
\forall(l, m) \in \mathbb{N}^{2}, \quad A^{l} B^{m}=e^{-2 \pi i l m / p} B^{m} A^{l} \tag{1}
\end{equation*}
$$

We suppose that the only subspaces of $\mathbf{H}$ invariant under both $A$ and $B$ are $\{0\}$ and $\mathbf{H}$. 1. Explain why $A$ has at least one eigenvalue $\lambda \in \mathbb{C}$. Show that $\lambda$ is of modulus 1 .

The characteristic polynomial $P(X):=\operatorname{det}(A-X I d)$ is of degree $d \geq 1$. It has therefore at least one root $\lambda \in \mathbb{C}$ which is an eigenvalue of $A$. Let $v$ a non-zero eigenvector of $A$ which is associated to $\lambda$. We have

$$
\langle A v, A v\rangle=\langle\lambda v, \lambda v\rangle=|\lambda|^{2}\|v\|^{2}=\left\langle v, A^{*} A v\right\rangle=\|v\|^{2}
$$

which is possible only if $|\lambda|=1$.
2. Let $0 \neq v \equiv B^{0} v \in \mathbf{H}$ be an eigenvector of $A$ of norm 1 that is associated with $\lambda$. Show that $B^{k} v$ is for all $k \in \mathbb{N}$ an eigenvector for $A$. What is the corresponding eigenvalue ?

For $k=0$, this is due to the definition of $v \equiv B^{0} v$. For $k \in \mathbb{N}_{*}$, we can apply (1) with $(l, m)=(1, k)$ to obtain

$$
A B^{k} v=e^{-2 \pi i k / p} B^{k} A v=\lambda_{k} B^{k} v, \quad \lambda_{k}:=\lambda e^{-2 \pi i k / p}
$$

which says that $B^{k} v$ is an eigenvector for $A$ associated with the eigenvalue $\lambda_{k}$.
3. What can be said about the (vector) subspace $E \subset \mathbf{H}$ which is generated by the family of vectors $\left\{B^{k} v\right\}_{k \in \mathbb{N}}$ ?
The subspace $E$ is obviously stable under the action of $B$. In view of the preceding question, it is also stable under the action of $A$. It is of dimension greater than 1 (because the non-zero vector $v$ is in $E$ ). Thus, by assumption, it must coincide with $\mathbf{H}$.
4. Explain why the vectors $B^{k} v$ with $0 \leq k \leq p-1$ form an orthonormal basis of $\mathbf{H}$ built with eigenvectors of $A$. What can be said about the dimension of $\mathbf{H}$ ? Prove that the eigenspace $E_{\lambda}:=\{f \in \mathbf{H} ; A f=\lambda f\}$ is of dimension 1 . Explain why $\lambda=1$ is sure to be an eigenvalue of $A$.

Since $B$ is unitary and $v$ is of norm $1, B^{k} v$ is of norm 1. Since $B^{p}=I d$, we have

$$
\mathbf{H} \equiv E \equiv\left\{\sum_{k=0}^{p-1} c_{k} B^{k} v ; c_{k} \in \mathbb{C}\right\}
$$

This clearly indicates that the $p$ vectors $B^{k} v$ with $0 \leq k \leq p-1$ generate $\mathbf{H}$. On the other hand, for $k \neq \tilde{k}$, we have

$$
\left\langle B^{k} v, A B^{\tilde{k}} v\right\rangle=\bar{\lambda}_{\tilde{k}}\left\langle B^{k} v, B^{\tilde{k}} v\right\rangle=\left\langle A^{*} B^{k} v, B^{\tilde{k}} v\right\rangle=\left\langle A^{-1} B^{k} v, B^{\tilde{k}} v\right\rangle=\lambda_{k}^{-1}\left\langle B^{k} v, B^{\tilde{k}} v\right\rangle
$$

Since $\lambda_{k}^{-1}=\bar{\lambda}_{k}$ and $\lambda_{k} \neq \lambda_{\tilde{k}}$, we must have $\left\langle B^{k} v, B^{\tilde{k}} v\right\rangle=0$. In other words, the vectors $B^{k} v$ with $0 \leq k \leq p-1$ form an orthonormal basis of $\mathbf{H}$, and therefore $d=p$.
Now, let $\tilde{v} \in E_{\lambda}$ be a vector which is not colinear with $v$ and which is given by

$$
\tilde{v}=\sum_{k=0}^{p-1} c_{k} B^{k} v
$$

By applying $A$, we deduce that (since $\lambda^{-1}=\bar{\lambda}$ )

$$
\tilde{v}=\sum_{k=0}^{p-1} c_{k} \bar{\lambda} \lambda_{k} B^{k} v
$$

And therefore

$$
0=\sum_{k=1}^{p-1} c_{k}\left(1-\varepsilon^{-2 \pi i k / p}\right) B^{k} v
$$

which implies that $c_{k}=0$ for $k \neq 1$ and yields the expected contradiction. We must have

$$
E_{\lambda}=\{c v ; c \in \mathbb{C}\}, \quad \operatorname{dim} E_{\lambda}=1
$$

On the other hand, since $A^{p}=I d$, we must have $\lambda_{k}^{p}=\lambda^{p}=1$. Thus $\lambda$ is a $p^{t h}$ root of unity which implies that $\lambda_{k}=1$ for some $k$.
5. The Hilbert space $L^{2}\left(\mathbb{F}_{p}\right)$ is provided with the counting measure on $\mathbb{F}_{p}$ which means that, given $f \in L^{2}\left(\mathbb{F}_{p}\right)$ and $g \in L^{2}\left(\mathbb{F}_{p}\right)$, we work with the inner product

$$
\langle f, g\rangle:=\sum_{n=0}^{p-1} f(n) \bar{g}(n)
$$

5.1. Prove that the modulation operator $U: L^{2}\left(\mathbb{F}_{p}\right) \longrightarrow L^{2}\left(\mathbb{F}_{p}\right)$ and the translation operator $V: L^{2}\left(\mathbb{F}_{p}\right) \longrightarrow L^{2}\left(\mathbb{F}_{p}\right)$ which are given by

$$
\begin{array}{rlrl}
U(f): \mathbb{F}_{p} & \longrightarrow \mathbb{C} & V(f): \mathbb{F}_{p} & \longrightarrow \mathbb{C} \\
n & \longmapsto e^{-2 \pi i n / p} f(n), & n & \longmapsto f(n-1),
\end{array}
$$

are unitary operators on $L^{2}\left(\mathbb{F}_{p}\right)$.

It suffices to note that $U$ and $V$ preserve the $L^{2}$-norm. Indeed

$$
\|U(f)\|_{L^{2}\left(\mathbb{F}_{p}\right)}^{2}=\sum_{n=0}^{p-1}\left|e^{-2 \pi i n / p} f(n)\right|^{2}=\sum_{n=0}^{p-1}|f(n)|^{2}=\|f\|_{L^{2}\left(\mathbb{F}_{p}\right)}^{2}
$$

On the other hand

$$
\|V(f)\|_{L^{2}\left(\mathbb{F}_{p}\right)}^{2}=\sum_{n=0}^{p-1}|f(n-1)|^{2}=\sum_{n=0}^{p-1}|f(n)|^{2}=\|f\|_{L^{2}\left(\mathbb{F}_{p}\right)}^{2}
$$

where we have used the property according to which the map $n \mapsto n-1$ is a bijection on the field $\mathbb{F}_{p}$ (since $-1 \equiv p-1$ ).
5.2. Verify that we have $U^{p}=I d$ and $V^{p}=I d$, as well as

$$
\forall(l, m) \in \mathbb{N}_{*}^{2}, \quad U^{l} V^{m}=e^{-2 \pi i l m / p} V^{m} U^{l}
$$

The two first properties come from the relations

$$
\left(e^{-2 \pi i n / p}\right)^{p}=1, \quad n-p=n\left(i n \mathbb{F}_{p}\right)
$$

On the other hand, we have

$$
\begin{aligned}
& U^{l} V^{m}(f)(n)=U^{l}(n \mapsto f(n-m))=e^{-2 \pi i n l / p} f(n-m) \\
& V^{m} U^{l}(f)(n)=V^{m}\left(n \mapsto e^{-2 \pi i l n / p} f(n)\right)=e^{-2 \pi i l(n-m) / p} f(n-m)
\end{aligned}
$$

which leads to the last relation.
5.3. What can be said about the family of Dirac functions $\left\{\delta_{\ell}\right\}_{\ell} \in L^{2}\left(\mathbb{F}_{p}\right)^{\mathbb{F}_{p}}$ given by

$$
\mathbb{F}_{p} \ni n \longmapsto \delta_{\ell}(n):=\left\{\begin{array}{lll}
1 & \text { if } & n=\ell, \\
0 & \text { if } & n \neq \ell,
\end{array} \quad \ell \in \mathbb{F}_{p}\right.
$$

first from the viewpoint of $L^{2}\left(\mathbb{F}_{p}\right)$ and secondly from the perspective of $U$ ?
The family $\left\{\delta_{l}\right\}_{l}$ forms an orthonormal basis of $L^{2}\left(\mathbb{F}_{p}\right)$. Moreover

$$
U\left(\delta_{l}\right)(n)=e^{-2 \pi i n / p}\left(\delta_{l}\right)(n)=e^{-2 \pi i l / p}\left(\delta_{l}\right)(n)
$$

which indicates that $\delta_{l}$ is an eigenvector of $U$ associated with the eigenvalue $e^{-2 \pi i l / p}$.
5.4. Find a self-adjoint operator $R$ on $L^{2}\left(\mathbb{F}_{p}\right)$ which is such that $e^{-2 \pi i R / p}=U$. Compute the mean value of $R$ along $\delta_{\ell}$, that is the quantity $\left\langle\delta_{\ell}, R \delta_{\ell}\right\rangle$. What could be a possible interpretation of $R$ ?
It suffices to adjust $R$ in such a way that $R\left(\delta_{\ell}\right)=\ell \delta_{\ell}$ to ensure that $e^{-2 \pi i R / p} \delta_{\ell}=e^{-2 \pi i \ell / p} \delta_{\ell}$ which, in view of the above, guarantees that $e^{-2 \pi i R / p}=U$. Thus

$$
R(f)(n)=R\left(\sum_{k=0}^{p-1} f(k) \delta_{k}\right)(n)=\sum_{k=0}^{p-1} f(k) R\left(\delta_{k}\right)(n)=\sum_{k=0}^{p-1} f(k) k \delta_{k}(n)=n f(n)
$$

which make $R$ appears as a position operator. This is confirmed by the relation

$$
\left\langle\delta_{\ell}, R \delta_{\ell}\right\rangle=\left\langle\delta_{\ell}, \ell \delta_{\ell}\right\rangle=\ell
$$

which says that a state concentrated at the position $\ell$ returns the value of $\ell$.
5.5. What can be said about the family of functions $\left\{g_{\ell}\right\}_{\ell} \in L^{2}\left(\mathbb{F}_{p}\right)^{\mathbb{F}_{p}}$ given by

$$
\mathbb{F}_{p} \ni n \longmapsto g_{\ell}(n):=\frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} e^{-2 \pi i \ell k / p} \delta_{k}(n), \quad \ell \in \mathbb{F}_{p}
$$

first from the perspective of $V$ and secondly from the viewpoint of $L^{2}\left(\mathbb{F}_{p}\right)$ ?
First, compute

$$
\begin{aligned}
V\left(g_{\ell}\right)(n) & =\frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} e^{-2 \pi i \ell k / p} \delta_{k}(n-1)=\frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} e^{-2 \pi i \ell k / p} \delta_{k+1}(n) \\
& =\frac{1}{\sqrt{p}} \sum_{k=1}^{p} e^{-2 \pi i \ell(k-1) / p} \delta_{k}(n)=e^{2 \pi i \ell / p} g_{\ell}(n) .
\end{aligned}
$$

This means that $g_{\ell}$ is an eigenvector of $V$ associated with the eigenvalue $e^{2 \pi i \ell / p}$. Since these eigenvalues are distinct and have a total number of $p$, the corresponding eigenvectors $g_{\ell}$ form an orthogonal basis of $L^{2}\left(\mathbb{F}_{p}\right)$. Moreover, we can remark that $g_{\ell}(n)=e^{-2 \pi i \ell n / p} / \sqrt{p}$ so that $g_{\ell}$ is a function of norm 1 in $L^{2}\left(\mathbb{F}_{p}\right)$. The basis is orthonormal.
5.6. Using the family of functions $\left\{g_{\ell}\right\}_{\ell} \in L^{2}\left(\mathbb{F}_{p}\right)^{\mathbb{F}_{p}}$, determine a self-adjoint operator $S$ on $L^{2}\left(\mathbb{F}_{p}\right)$ which is such that $e^{2 \pi i S / p}=V$.
As in question 5.4, we can argue on the eigenspaces. It suffices to define $S$ through the conditions $S g_{\ell}=\ell g_{\ell}$ for all $\ell \in \mathbb{F}_{p}$.
5.7. Do the operators $R$ and $S$ commute ? Justify the answer.

NO. By contradiction. Assume that $R$ and $S$ commute. Then, $U$ and $V$ must commute which is not the case because from (1) with $(l, m)=(1,1)$, we have

$$
[U, V]=\left(1-e^{-2 \pi i / p}\right) V U \not \equiv 0
$$

6. Show that we can construct a unitary (surjective) map $W$ from $\mathbf{H}$ onto $L^{2}\left(\mathbb{F}_{p}\right)$ which is such that

$$
W A W^{-1}=U, \quad W B W^{-1}=V
$$

Mention the name of the theorem which is associated with the above relation.
We have seen in question 1.4 that we can always assume that $\lambda=1$. Then, define $W$ through the relation $W\left(B^{\ell} v\right)=\delta_{\ell}$ for all $\ell \in \mathbb{F}_{p}$. Such map $W$ exchanges two orthonormal basis, and therefore it is a unitary operator. By this way, we also find that, for all $\ell \in \mathbb{F}_{p}$, we have

$$
W A\left(B^{\ell} v\right)=W\left(e^{-2 \pi i \ell / p} B^{\ell} v\right)=e^{-2 \pi i \ell / p} \delta_{\ell}=U \delta_{\ell}=U W\left(B^{\ell} v\right) \quad \Longrightarrow \quad W A=U W
$$

as well as

$$
W B\left(B^{\ell} v\right)=W B^{\ell+1} v=\delta_{\ell+1}=V \delta_{\ell}=V W\left(B^{\ell} v\right) \quad \Longrightarrow \quad W B=V W .
$$

It suffices to compose with $W^{-1}$ on the right to recover the expected result. In this exercice, we have developed a discrete version of the Stone-von Neumann Theorem.

Problem 2. Let $\chi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ be a smooth compactly supported function with $\chi \equiv 1$ in a neighbourhood of the position $\xi=0$. Consider the symbol

$$
K(\xi):=i|\xi|(1-\chi(\xi)), \quad|\xi|:=\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{1 / 2}, \quad \xi \in \mathbb{R}^{n}
$$

1. Explain why the function $\xi \longmapsto K(\xi)$ is a symbol in the class $S^{1}\left(\mathbb{R}^{n}\right)$.

Definet $\langle\xi\rangle:=\left(1+|\xi|^{2}\right)^{1 / 2}$. By definition, the function $K$ is in $S^{1}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\forall(\alpha, \beta) \in\left(\mathbb{N}^{n}\right)^{2}, \quad \exists C_{\alpha, \beta} \in \mathbb{R}_{+}^{*} ; \quad\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} K(\xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{1-|\alpha|} .
$$

This is evident when $|\beta| \neq 0$. When $|\beta|=0$, we can exploit the Leibniz formula that yields

$$
\partial_{\xi}^{\alpha} K(\xi)=i \sum_{0 \leq \gamma \leq \alpha} C_{\alpha}^{\gamma} \partial^{\gamma}(|\xi|) \partial^{\alpha-\gamma}[1-\chi(\xi)]=i \partial^{\alpha}(|\xi|)[1-\chi(\xi)]+f(\xi)
$$

For $\gamma<\alpha$, the function $\partial^{\alpha-\gamma}[1-\chi(\xi)]$ is in $\mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and it is equal to 0 in a neighbourhood of $\xi=0$. Thus, we have

$$
\partial_{\xi}^{\alpha} K(\xi)=i \partial^{\alpha}(|\xi|)[1-\chi(\xi)]+f(\xi), \quad f \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right) .
$$

To conclude, it suffices to remark that $\partial^{\alpha}(|\xi|)$ is homogeneous of degree $1-|\alpha|$.
2. Let $K(D)$ be the pseudo-differential operator associated to the symbol $K$, that is

$$
[K(D) u](x)=(2 \pi)^{-n / 2} \int_{\mathbf{R}^{n}} e^{i x \cdot \xi} K(\xi) \hat{u}(\xi) d \xi
$$

2.1. We select some function $u$ in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$. Prove that $K(D) u$ is a bounded function. What more needs to be said about $K(D) u$ ?

We have

$$
[K(D) u](x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi}\langle\xi\rangle^{-1} K(\xi)\langle\xi\rangle^{-n-1}\langle\xi\rangle^{n+2} \hat{u}(\xi) d \xi .
$$

The function $\langle\xi\rangle^{-1} K(\xi)$ is bounded because $K \in S^{1}$. The function $\langle\xi\rangle^{n+2} \hat{u}(\xi)$ is bounded because $\hat{u} \in \mathcal{S}$. On the other hand, the function $\langle\xi\rangle^{-n-1}$ is integrable on $\mathbb{R}^{n}$. Thus, the above integral is convergent (with a uniform bound). As viewed in the course (and as can be proved directly), the function $K(D) u$ is in fact in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
2.2. Show that $K(D)$ is (formally) skew-symmetric in the sense that

$$
\langle u, K(D) v\rangle=\int_{\mathbf{R}^{n}} u(x) \overline{K(D) v}(x) d x=-\langle K(D) u, v\rangle, \quad \forall(u, v) \in \mathcal{S}\left(\mathbf{R}^{n}\right)
$$

We know that $K(D)$ and $K(D)^{*}$ are in $O P^{1}\left(\mathbf{R}^{n}\right)$. From Plancherel theorem, we have $\langle u, K(D) v\rangle_{\mathcal{S} \times \mathcal{S}}=\langle\hat{u}, K(\xi) \hat{v}\rangle_{\mathcal{S} \times \mathcal{S}}=\int \hat{u}(\xi) \bar{K}(\xi) \overline{\hat{v}}(\xi) d \xi$.
Since $K(\xi) \in i \mathbf{R}$, this leads to

$$
\langle u, K(D) v\rangle_{\mathcal{S} \times \mathcal{S}}=-\langle K(\xi) \hat{u}, \hat{v}\rangle_{\mathcal{S} \times \mathcal{S}}=\langle-K(D) u, v\rangle_{\mathcal{S} \times \mathcal{S}}=\left\langle K(D)^{*} u, v\right\rangle_{\mathcal{S} \times \mathcal{S}} .
$$

Just compare the two last terms.
3. We consider the Cauchy problem
$(\mathcal{P C}) \quad\left\{\partial_{t} u-K(D) u=0, \quad u_{\mid t=0}=u_{0} \in H^{s}\left(\mathbb{R}^{n}\right), \quad s \in \mathbb{R}\right.$.
We denote by $\hat{u}(t, \xi)$ the Fourier transform of $u(t, \cdot)$ with respect to $x \in \mathbb{R}^{n}$.
3.1. Compute $\hat{u}(t, \xi)$ and deduce from the formula thus obtained that

$$
\begin{equation*}
u(t, \cdot) \in H^{s}\left(\mathbb{R}^{n}\right), \quad\|u(t, \cdot)\|_{H^{s}\left(\mathbb{R}^{n}\right)}=\left\|u_{0}(\cdot)\right\|_{H^{s}\left(\mathbb{R}^{n}\right)}, \quad \forall t \in \mathbb{R}_{+}^{*} \tag{I}
\end{equation*}
$$

We have $\hat{u}(t, \xi)=e^{t K(\xi)} \hat{u}_{0}(\xi)$. Since $e^{t K(\xi)}$ is of modulus 1 , we have

$$
\begin{aligned}
\|u(t, x)\|_{H^{s}\left(\mathbf{R}^{n}\right)}=\left\|\langle\xi\rangle^{s} \hat{u}(t, \xi)\right\|_{L^{2}\left(\mathbf{R}^{n}\right)} & =\left(\int\langle\xi\rangle^{s s}\left|e^{t K(\xi)}\right|\left|\hat{u}_{0}(\xi)\right|^{2} d \xi\right)^{1 / 2} \\
& =\left(\int\langle\xi\rangle^{2 s}\left|\hat{u}_{0}(\xi)\right|^{2} d \xi\right)^{1 / 2}=\left\|u_{0}\right\|_{H^{s}\left(\mathbf{R}^{n}\right)}
\end{aligned}
$$

3.2. Prove that the identity $(\mathcal{I})$ can also be recovered through energy estimates performed at the level of $(\mathcal{P C})$.

We can follow the following steps : :

- We compose $(\mathcal{P C})$ on the left with op $\langle\xi\rangle^{s} \equiv\langle D\rangle^{s}$. Since $\left[\langle D\rangle^{s} ; K(D)\right] \equiv 0$, the expression $w(t, x):=\langle D\rangle^{s} u(t, x)$ must be a solution of

$$
\left\{\partial_{t} w-K(D) w=0, \quad w_{\mid t=0}=w_{0}:=\langle D\rangle^{s} u_{0} \in L^{2}\left(\mathbb{R}^{n}\right) .\right.
$$

- We perform $L^{2}$-energy estimates on this equation. In other words, we multiply the equation on the left by $2^{t} \bar{w}(t, x)$ and then we integrate in $x$ to obtain

$$
\frac{d}{d t}\|w(t, \cdot)\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2}+2\langle w, K(D) w\rangle_{L^{2} \times L^{2}}=0 .
$$

Since $K(D)$ is skew-symmetric, we have

This means that the number $\langle w, K(D) w\rangle_{L^{2} \times L^{2}}$ is purely imaginary. There remains

$$
\frac{d}{d t}\|w(t, \cdot)\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2}=0
$$

which after integration in time, between 0 and $t$ furnishes

$$
\|u(t, \cdot)\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}=\|w(t, \cdot)\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\left\|w_{0}(\cdot)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\left\|u_{0}(\cdot)\right\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2} .
$$

4. Let $\delta_{0}$ be the Dirac mass located at the position $x=0$. Show that $\delta_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$ for all $s \in \mathbb{R}$ satisfying $s<-(n / 2)$.

The Fourier transform of $\delta_{0}$ coincides with $1_{\mathbb{R}^{n}}$. Thus

$$
\left\|\delta_{0}\right\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}=\left\|\langle\xi\rangle^{s}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\left(\int_{\mathbb{S}^{n}} \int_{\mathbb{R}_{+}}\left(1+r^{2}\right)^{s} r^{n-1} d r d \theta\right)^{1 / 2}
$$

This becomes integrable on condition that $2 s+n-1<-1$ which yields the expected condition $s<-(n / 2)$.
5. We start with $u_{0}=\delta_{0}$. Recall the definition of the wave front set $W F\left(\delta_{0}\right)$ of the distribution $\delta_{0}$. Then describe the content of $W F\left(\delta_{0}\right)$.

We want to show that

$$
W F\left(\delta_{0}\right)=\left\{(0, \xi) ; \xi \in \mathbb{R}^{n} \backslash\{0\}\right\}
$$

It is clear that $\delta \equiv 0$ on all open sets that do not contain $0 \in \mathbf{R}^{n}$ which implies that $W F(\delta) \subset\{0\} \times \mathbf{R}^{n}$. Then, if $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ satisfies $\varphi(0) \neq 0$, we find that (modulo multiplicative constants)

$$
\widehat{\varphi \delta}(\xi)=(\hat{\varphi} \star \hat{\delta})(\xi)=\int_{\mathbf{R}^{n}} \hat{\varphi}(\xi-\eta) \mathbb{I}_{\mathbf{R}^{N}}(\eta) d \eta=\int_{\mathbf{R}^{n}} \hat{\varphi}(\eta) d \eta=\varphi(0) \neq 0
$$

The fonction $\widehat{\varphi \delta}(\cdot)$ is a (non-zero) constant. There is no conic neighboorhood of a direction $\xi \in \mathbf{R}^{n} \backslash\{0\}$ where it can be rapidly decreasing. Thus, all positions $(0, \xi)$ are in the wave front set of $\delta_{0}$.
6. We consider $(\mathcal{P C})$ for the choice $u_{0}=\delta_{0}$. We denote by $u$ the corresponding solution. We fix some $t \in \mathbb{R}_{+}^{*}$ as well as some $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Show that we can find a fonction $\psi$ in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ giving rise to

$$
\widehat{\varphi u}(t, \xi)=\int_{\mathbb{R}^{n}} \hat{\varphi}(\xi-\eta) e^{i t|\eta|} d \eta+\psi(\xi)
$$

Let again $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\chi \equiv 1$ in a neighboorhood of 0 . Define

$$
\tilde{\chi}(\eta):=e^{i t|\eta|(1-\chi(\eta))}-e^{i t|\eta|}
$$

The function $\tilde{\chi}$ is smooth, bounded and compactly supported. Retain that

$$
\exists R \in[1,+\infty[; \quad|\eta| \geq R \quad \Longrightarrow \quad \tilde{\chi}(\eta)=0
$$

We take

$$
\psi(\xi):=\int_{\mathbb{R}^{n}} \hat{\varphi}(\xi-\eta) \chi(\eta) d \eta=(\hat{\varphi} \star \chi)(\xi), \quad \hat{\varphi} \in \mathcal{S}\left(\mathbb{R}^{n}\right), \quad \chi \in L^{1}\left(\mathbb{R}^{n}\right)
$$

The function $\psi$ is smooth (of class $\mathcal{C}^{\infty}$ ) since the same applies to $\varphi$. The integrale in $\eta$ concerns only the ball $B(0, R]$. For $|\eta| \leq R$ and $|\xi| \geq 4 R$, we have

$$
1+|\xi-\eta|^{2} \geq 1+(|\xi|-R)^{2} \geq 1+|\xi|^{2}-2 R|\xi|+R^{2} \geq \frac{1}{2}\left(1+|\xi|^{2}\right)
$$

On the other hand, since $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have the control

$$
\forall k \in \mathbf{N}, \quad \exists C_{k} \in \mathbf{R}_{+}^{*} ; \quad|\hat{\varphi}(\zeta)| \leq\langle\zeta\rangle^{-k}
$$

It follows that

$$
|\xi| \geq 4 R \quad \Longrightarrow \quad|\psi(\xi)| \leq C_{k}\langle\xi-\eta\rangle^{-k}\|\chi\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq 2^{-k / 2} C_{k}\|\chi\|_{L^{1}\left(\mathbb{R}^{n}\right)}\langle\xi\rangle^{-k}
$$ which means that $\psi$ is indeed rapidly decreasing.

7. In this question, we consider the Cauchy problem
$(\mathcal{P C} \delta) \quad\left\{\partial_{t} \tilde{u}-i|D| \tilde{u}=0, \quad \tilde{u}_{\mid t=0}=\delta\right.$.
Let $t \in \mathbb{R}_{+}$. Describe the wave front set $W F(\tilde{u}(t, \cdot))$ of the distribution $\tilde{u}(t, \cdot)$. Justify the answer.

The theorem describing the propagation of the wave front set says that

$$
W F(\tilde{u}(t, \cdot))=\Phi_{t}(W F(\delta))
$$

where $\Phi_{t}$ is the diffeomorphism induced by the Hamiltonian field $H(x, \xi) \equiv H(\xi):=|\xi|$. We have to look at

$$
\left\{\begin{array}{rlr}
\frac{d}{d t} X(t, y, \eta)=-\nabla_{\xi} H(X, \Xi)=-\frac{\Xi}{|\Xi|}, & X(0, y, \eta)=y \\
\frac{d}{d t} \Xi(t, y, \eta)=+\nabla_{x} H(X, \Xi)=0, & \Xi(0, y, \eta)=\eta
\end{array}\right.
$$

This furnishes $\Xi(t, y, \eta)=\eta$ and then

$$
X(t, y, \eta)=y-t \frac{\eta}{|\eta|}
$$

A the time $t$, the wave front set is contained in the cone with center 0 and radius $t$ (the so-called light cone). In other words

$$
W F(\tilde{u}(t, \cdot))=\left\{\left(-t \frac{\eta}{|\eta|}, \eta\right) ; \eta \in \mathbf{R}^{n}\right\} .
$$

