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Problem. Let 𝑝 be a prime number. We denote by F𝑝 the prime field of order 𝑝 which
may be constructed as the integers modulo p, that is F𝑝 ≡ Z/(𝑝Z). Let H be a complex
Hilbert space of finite dimension 𝑑 ∈ N*. We consider two unitary operators 𝐴 : H → H
and 𝐵 : H → H satisfying 𝐴𝑝 = 𝐼𝑑 and 𝐵𝑝 = 𝐼𝑑, as well as

∀(𝑙,𝑚) ∈ N2, 𝐴𝑙 𝐵𝑚 = 𝑒−2𝜋𝑖𝑙𝑚/𝑝𝐵𝑚𝐴𝑙. (1)

We suppose that the only subspaces of H invariant under both 𝐴 and 𝐵 are {0} and H.

1. Explain why 𝐴 has at least one eigenvalue 𝜆 ∈ C. Show that 𝜆 is of modulus 1.

The characteristic polynomial 𝑃 (𝑋) := 𝑑𝑒𝑡(𝐴−𝑋𝐼𝑑) is of degree 𝑑 ≥ 1. It has therefore
at least one root 𝜆 ∈ C which is an eigenvalue of 𝐴. Let 𝑣 a non-zero eigenvector of 𝐴
which is associated to 𝜆. We have

⟨𝐴𝑣,𝐴𝑣⟩ = ⟨𝜆𝑣, 𝜆𝑣⟩ = |𝜆|2 ‖ 𝑣 ‖2= ⟨𝑣,𝐴*𝐴𝑣⟩ =‖ 𝑣 ‖2,

which is possible only if |𝜆| = 1.

2. Let 0 ̸= 𝑣 ≡ 𝐵0𝑣 ∈ H be an eigenvector of 𝐴 of norm 1 that is associated with 𝜆. Show
that 𝐵𝑘𝑣 is for all 𝑘 ∈ N an eigenvector for 𝐴. What is the corresponding eigenvalue ?

For 𝑘 = 0, this is due to the definition of 𝑣 ≡ 𝐵0𝑣. For 𝑘 ∈ N*, we can apply (1) with
(𝑙,𝑚) = (1, 𝑘) to obtain

𝐴𝐵𝑘𝑣 = 𝑒−2𝜋𝑖𝑘/𝑝𝐵𝑘𝐴𝑣 = 𝜆𝑘 𝐵
𝑘𝑣, 𝜆𝑘 := 𝜆𝑒−2𝜋𝑖𝑘/𝑝,

which says that 𝐵𝑘𝑣 is an eigenvector for 𝐴 associated with the eigenvalue 𝜆𝑘.

3. What can be said about the (vector) subspace 𝐸 ⊂ H which is generated by the family
of vectors {𝐵𝑘𝑣}𝑘∈N ?

The subspace 𝐸 is obviously stable under the action of 𝐵. In view of the preceding question,
it is also stable under the action of 𝐴. It is of dimension greater than 1 (because the
non-zero vector 𝑣 is in 𝐸). Thus, by assumption, it must coincide with H.

4. Explain why the vectors 𝐵𝑘𝑣 with 0 ≤ 𝑘 ≤ 𝑝− 1 form an orthonormal basis of H built
with eigenvectors of 𝐴. What can be said about the dimension of H ? Prove that the
eigenspace 𝐸𝜆 := {𝑓 ∈ H;𝐴𝑓 = 𝜆𝑓} is of dimension 1. Explain why 𝜆 = 1 is sure to be
an eigenvalue of 𝐴.



Since 𝐵 is unitary and 𝑣 is of norm 1, 𝐵𝑘𝑣 is of norm 1. Since 𝐵𝑝 = 𝐼𝑑, we have

H ≡ 𝐸 ≡

⎧⎨⎩
𝑝−1∑︁
𝑘=0

𝑐𝑘 𝐵
𝑘𝑣 ; 𝑐𝑘 ∈ C

⎫⎬⎭ .

This clearly indicates that the 𝑝 vectors 𝐵𝑘𝑣 with 0 ≤ 𝑘 ≤ 𝑝− 1 generate H. On the other
hand, for 𝑘 ̸= 𝑘, we have

⟨𝐵𝑘𝑣,𝐴𝐵𝑘𝑣⟩ = 𝜆̄𝑘⟨𝐵𝑘𝑣,𝐵𝑘𝑣⟩ = ⟨𝐴*𝐵𝑘𝑣,𝐵𝑘𝑣⟩ = ⟨𝐴−1𝐵𝑘𝑣,𝐵𝑘𝑣⟩ = 𝜆−1
𝑘 ⟨𝐵𝑘𝑣,𝐵𝑘𝑣⟩.

Since 𝜆−1
𝑘 = 𝜆̄𝑘 and 𝜆𝑘 ̸= 𝜆𝑘, we must have ⟨𝐵𝑘𝑣,𝐵𝑘𝑣⟩ = 0. In other words, the vectors

𝐵𝑘𝑣 with 0 ≤ 𝑘 ≤ 𝑝− 1 form an orthonormal basis of H, and therefore 𝑑 = 𝑝.
Now, let 𝑣 ∈ 𝐸𝜆 be a vector which is not colinear with 𝑣 and which is given by

𝑣 =
𝑝−1∑︁
𝑘=0

𝑐𝑘 𝐵
𝑘𝑣.

By applying 𝐴, we deduce that (since 𝜆−1 = 𝜆̄)

𝑣 =
𝑝−1∑︁
𝑘=0

𝑐𝑘 𝜆̄ 𝜆𝑘𝐵
𝑘𝑣.

And therefore

0 =
𝑝−1∑︁
𝑘=1

𝑐𝑘 (1 − 𝜀−2𝜋𝑖𝑘/𝑝)𝐵𝑘𝑣,

which implies that 𝑐𝑘 = 0 for 𝑘 ̸= 1 and yields the expected contradiction. We must have

𝐸𝜆 = {𝑐𝑣 ; 𝑐 ∈ C} , dim𝐸𝜆 = 1.

On the other hand, since 𝐴𝑝 = 𝐼𝑑, we must have 𝜆𝑝
𝑘 = 𝜆𝑝 = 1. Thus 𝜆 is a 𝑝𝑡ℎ root of

unity which implies that 𝜆𝑘 = 1 for some 𝑘.

5. The Hilbert space 𝐿2(F𝑝) is provided with the counting measure on F𝑝 which means
that, given 𝑓 ∈ 𝐿2(F𝑝) and 𝑔 ∈ 𝐿2(F𝑝), we work with the inner product

⟨𝑓, 𝑔⟩ :=
𝑝−1∑︁
𝑛=0

𝑓(𝑛) 𝑔(𝑛).

5.1. Prove that the modulation operator 𝑈 : 𝐿2(F𝑝) −→ 𝐿2(F𝑝) and the translation
operator 𝑉 : 𝐿2(F𝑝) −→ 𝐿2(F𝑝) which are given by

𝑈(𝑓) : F𝑝 −→ C
𝑛 ↦−→ 𝑒−2𝜋𝑖𝑛/𝑝 𝑓(𝑛),

𝑉 (𝑓) : F𝑝 −→ C
𝑛 ↦−→ 𝑓(𝑛− 1),

are unitary operators on 𝐿2(F𝑝).



It suffices to note that 𝑈 and 𝑉 preserve the 𝐿2-norm. Indeed

‖ 𝑈(𝑓) ‖2
𝐿2(F𝑝)=

𝑝−1∑︁
𝑛=0

|𝑒−2𝜋𝑖𝑛/𝑝 𝑓(𝑛)|2 =
𝑝−1∑︁
𝑛=0

|𝑓(𝑛)|2 =‖ 𝑓 ‖2
𝐿2(F𝑝) .

On the other hand

‖ 𝑉 (𝑓) ‖2
𝐿2(F𝑝)=

𝑝−1∑︁
𝑛=0

|𝑓(𝑛− 1)|2 =
𝑝−1∑︁
𝑛=0

|𝑓(𝑛)|2 =‖ 𝑓 ‖2
𝐿2(F𝑝),

where we have used the property according to which the map 𝑛 ↦→ 𝑛− 1 is a bijection on
the field F𝑝 (since −1 ≡ 𝑝− 1).
5.2. Verify that we have 𝑈𝑝 = 𝐼𝑑 and 𝑉 𝑝 = 𝐼𝑑, as well as

∀(𝑙,𝑚) ∈ N2
*, 𝑈 𝑙 𝑉 𝑚 = 𝑒−2𝜋𝑖𝑙𝑚/𝑝 𝑉 𝑚 𝑈 𝑙.

The two first properties come from the relations(︁
𝑒−2𝜋𝑖𝑛/𝑝)︀𝑝 = 1, 𝑛− 𝑝 = 𝑛 (in F𝑝).

On the other hand, we have

𝑈 𝑙𝑉 𝑚(𝑓)(𝑛) = 𝑈 𝑙
(︀
𝑛 ↦→ 𝑓(𝑛−𝑚)

)︀
= 𝑒−2𝜋𝑖𝑛𝑙/𝑝𝑓(𝑛−𝑚),

𝑉 𝑚𝑈 𝑙(𝑓)(𝑛) = 𝑉 𝑚
(︀
𝑛 ↦→ 𝑒−2𝜋𝑖𝑙𝑛/𝑝𝑓(𝑛)

)︀
= 𝑒−2𝜋𝑖𝑙(𝑛−𝑚)/𝑝𝑓(𝑛−𝑚),

which leads to the last relation.

5.3. What can be said about the family of Dirac functions {𝛿ℓ}ℓ ∈ 𝐿2(F𝑝)F𝑝 given by

F𝑝 ∋ 𝑛 ↦−→ 𝛿ℓ(𝑛) :=
{︃

1 if 𝑛 = ℓ,
0 if 𝑛 ̸= ℓ,

ℓ ∈ F𝑝

first from the viewpoint of 𝐿2(F𝑝) and secondly from the perspective of 𝑈 ?

The family {𝛿𝑙}𝑙 forms an orthonormal basis of 𝐿2(F𝑝). Moreover

𝑈(𝛿𝑙)(𝑛) = 𝑒−2𝜋𝑖𝑛/𝑝 (𝛿𝑙)(𝑛) = 𝑒−2𝜋𝑖𝑙/𝑝 (𝛿𝑙)(𝑛),

which indicates that 𝛿𝑙 is an eigenvector of 𝑈 associated with the eigenvalue 𝑒−2𝜋𝑖𝑙/𝑝.

5.4. Find a self-adjoint operator 𝑅 on 𝐿2(F𝑝) which is such that 𝑒−2𝜋𝑖𝑅/𝑝 = 𝑈 . Compute
the mean value of 𝑅 along 𝛿ℓ, that is the quantity ⟨𝛿ℓ, 𝑅𝛿ℓ⟩. What could be a possible
interpretation of 𝑅 ?
It suffices to adjust 𝑅 in such a way that 𝑅(𝛿ℓ) = ℓ𝛿ℓ to ensure that 𝑒−2𝜋𝑖𝑅/𝑝𝛿ℓ = 𝑒−2𝜋𝑖ℓ/𝑝𝛿ℓ

which, in view of the above, guarantees that 𝑒−2𝜋𝑖𝑅/𝑝 = 𝑈 . Thus

𝑅(𝑓)(𝑛) = 𝑅
(︁𝑝−1∑︁

𝑘=0
𝑓(𝑘) 𝛿𝑘

)︁
(𝑛) =

𝑝−1∑︁
𝑘=0

𝑓(𝑘)𝑅(𝛿𝑘)(𝑛) =
𝑝−1∑︁
𝑘=0

𝑓(𝑘) 𝑘 𝛿𝑘(𝑛) = 𝑛𝑓(𝑛),



which make 𝑅 appears as a position operator. This is confirmed by the relation

⟨𝛿ℓ, 𝑅𝛿ℓ⟩ = ⟨𝛿ℓ, ℓ𝛿ℓ⟩ = ℓ,

which says that a state concentrated at the position ℓ returns the value of ℓ.
5.5. What can be said about the family of functions {𝑔ℓ}ℓ ∈ 𝐿2(F𝑝)F𝑝 given by

F𝑝 ∋ 𝑛 ↦−→ 𝑔ℓ(𝑛) := 1
√
𝑝

𝑝−1∑︁
𝑘=0

𝑒−2𝜋𝑖ℓ𝑘/𝑝 𝛿𝑘(𝑛), ℓ ∈ F𝑝

first from the perspective of 𝑉 and secondly from the viewpoint of 𝐿2(F𝑝) ?
First, compute

𝑉 (𝑔ℓ)(𝑛) = 1
√
𝑝

𝑝−1∑︁
𝑘=0

𝑒−2𝜋𝑖ℓ𝑘/𝑝 𝛿𝑘(𝑛− 1) = 1
√
𝑝

𝑝−1∑︁
𝑘=0

𝑒−2𝜋𝑖ℓ𝑘/𝑝 𝛿𝑘+1(𝑛)

= 1
√
𝑝

𝑝∑︁
𝑘=1

𝑒−2𝜋𝑖ℓ(𝑘−1)/𝑝 𝛿𝑘(𝑛) = 𝑒2𝜋𝑖ℓ/𝑝 𝑔ℓ(𝑛).

This means that 𝑔ℓ is an eigenvector of 𝑉 associated with the eigenvalue 𝑒2𝜋𝑖ℓ/𝑝. Since these
eigenvalues are distinct and have a total number of 𝑝, the corresponding eigenvectors 𝑔ℓ

form an orthogonal basis of 𝐿2(F𝑝). Moreover, we can remark that 𝑔ℓ(𝑛) = 𝑒−2𝜋𝑖ℓ𝑛/𝑝/
√
𝑝

so that 𝑔ℓ is a function of norm 1 in 𝐿2(F𝑝). The basis is orthonormal.
5.6. Using the family of functions {𝑔ℓ}ℓ ∈ 𝐿2(F𝑝)F𝑝 , determine a self-adjoint operator 𝑆
on 𝐿2(F𝑝) which is such that 𝑒2𝜋𝑖𝑆/𝑝 = 𝑉 .
As in question 5.4, we can argue on the eigenspaces. It suffices to define 𝑆 through the
conditions 𝑆𝑔ℓ = ℓ𝑔ℓ for all ℓ ∈ F𝑝.
5.7. Do the operators 𝑅 and 𝑆 commute ? Justify the answer.
NO. By contradiction. Assume that 𝑅 and 𝑆 commute. Then, 𝑈 and 𝑉 must commute
which is not the case because from (1) with (𝑙,𝑚) = (1, 1), we have

[𝑈, 𝑉 ] = (1 − 𝑒−2𝜋𝑖/𝑝)𝑉 𝑈 ̸≡ 0.

6. Show that we can construct a unitary (surjective) map 𝑊 from H onto 𝐿2(F𝑝) which
is such that

𝑊𝐴𝑊−1 = 𝑈, 𝑊𝐵𝑊−1 = 𝑉.

Mention the name of the theorem which is associated with the above relation.
We have seen in question 1.4 that we can always assume that 𝜆 = 1. Then, define 𝑊
through the relation 𝑊 (𝐵ℓ𝑣) = 𝛿ℓ for all ℓ ∈ F𝑝. Such map 𝑊 exchanges two orthonormal
basis, and therefore it is a unitary operator. By this way, we also find that, for all ℓ ∈ F𝑝,
we have

𝑊𝐴(𝐵ℓ𝑣) = 𝑊 (𝑒−2𝜋𝑖ℓ/𝑝𝐵ℓ𝑣) = 𝑒−2𝜋𝑖ℓ/𝑝 𝛿ℓ = 𝑈𝛿ℓ = 𝑈𝑊 (𝐵ℓ𝑣) =⇒ 𝑊𝐴 = 𝑈𝑊,



as well as

𝑊𝐵(𝐵ℓ𝑣) = 𝑊𝐵ℓ+1𝑣 = 𝛿ℓ+1 = 𝑉 𝛿ℓ = 𝑉𝑊 (𝐵ℓ𝑣) =⇒ 𝑊𝐵 = 𝑉𝑊.

It suffices to compose with 𝑊−1 on the right to recover the expected result. In this exercice,
we have developed a discrete version of the Stone-von Neumann Theorem.

Problem 2. Let 𝜒 ∈ 𝒞∞
0 (R𝑛;R) be a smooth compactly supported function with 𝜒 ≡ 1

in a neighbourhood of the position 𝜉 = 0. Consider the symbol

𝐾(𝜉) := 𝑖 |𝜉|
(︀
1 − 𝜒(𝜉)

)︀
, |𝜉| := (𝜉2

1 + · · · + 𝜉2
𝑛)1/2 , 𝜉 ∈ R𝑛 .

1. Explain why the function 𝜉 ↦−→ 𝐾(𝜉) is a symbol in the class 𝑆1(R𝑛).

Definet ⟨𝜉⟩ := (1 + |𝜉|2)1/2. By definition, the function 𝐾 is in 𝑆1(R𝑛) if and only if

∀ (𝛼, 𝛽) ∈ (N𝑛)2 , ∃𝐶𝛼,𝛽 ∈ R*
+ ; |𝜕𝛼

𝜉 𝜕
𝛽
𝑥𝐾(𝜉)| ≤ 𝐶𝛼,𝛽 ⟨𝜉⟩1−|𝛼| .

This is evident when |𝛽| ≠ 0. When |𝛽| = 0, we can exploit the Leibniz formula that yields

𝜕𝛼
𝜉 𝐾(𝜉) = 𝑖

∑︁
0≤𝛾≤𝛼

𝐶𝛾
𝛼 𝜕𝛾(︀

|𝜉|
)︀
𝜕𝛼−𝛾[︀

1 − 𝜒(𝜉)
]︀

= 𝑖 𝜕𝛼(︀
|𝜉|

)︀ [︀
1 − 𝜒(𝜉)

]︀
+ 𝑓(𝜉)

For 𝛾 < 𝛼, the function 𝜕𝛼−𝛾
[︀
1 − 𝜒(𝜉)

]︀
is in 𝒞∞

0 (R𝑛;R) and it is equal to 0 in a
neighbourhood of 𝜉 = 0. Thus, we have

𝜕𝛼
𝜉 𝐾(𝜉) = 𝑖 𝜕𝛼(︀

|𝜉|
)︀ [︀

1 − 𝜒(𝜉)
]︀

+ 𝑓(𝜉) , 𝑓 ∈ 𝒞∞
0 (R𝑛;R) .

To conclude, it suffices to remark that 𝜕𝛼
(︀
|𝜉|

)︀
is homogeneous of degree 1 − |𝛼|.

2. Let 𝐾(𝐷) be the pseudo-differential operator associated to the symbol 𝐾, that is

[︀
𝐾(𝐷)𝑢

]︀
(𝑥) = (2𝜋)−𝑛/2

∫︁
R𝑛

𝑒𝑖 𝑥·𝜉 𝐾(𝜉) 𝑢̂(𝜉) 𝑑𝜉 .

2.1. We select some function 𝑢 in the Schwartz space 𝒮(R𝑛). Prove that 𝐾(𝐷)𝑢 is a
bounded function. What more needs to be said about 𝐾(𝐷)𝑢 ?

We have [︀
𝐾(𝐷)𝑢

]︀
(𝑥) = (2𝜋)−𝑛/2

∫︁
R𝑛

𝑒𝑖 𝑥·𝜉 ⟨𝜉⟩−1𝐾(𝜉) ⟨𝜉⟩−𝑛−1 ⟨𝜉⟩𝑛+2 𝑢̂(𝜉) 𝑑𝜉 .

The function ⟨𝜉⟩−1𝐾(𝜉) is bounded because 𝐾 ∈ 𝑆1. The function ⟨𝜉⟩𝑛+2 𝑢̂(𝜉) is bounded
because 𝑢̂ ∈ 𝒮. On the other hand, the function ⟨𝜉⟩−𝑛−1 is integrable on R𝑛. Thus, the
above integral is convergent (with a uniform bound). As viewed in the course (and as can
be proved directly), the function 𝐾(𝐷)𝑢 is in fact in 𝒮(R𝑛).

2.2. Show that 𝐾(𝐷) is (formally) skew-symmetric in the sense that



⟨𝑢,𝐾(𝐷)𝑣⟩ =
∫︁

R𝑛
𝑢(𝑥) 𝐾(𝐷)𝑣(𝑥) 𝑑𝑥 = −⟨𝐾(𝐷)𝑢, 𝑣⟩, ∀(𝑢, 𝑣) ∈ 𝒮(R𝑛).

We know that 𝐾(𝐷) and 𝐾(𝐷)* are in 𝑂𝑃 1(R𝑛). From Plancherel theorem, we have

⟨𝑢,𝐾(𝐷)𝑣⟩𝒮×𝒮 = ⟨𝑢̂,𝐾(𝜉)𝑣⟩𝒮×𝒮 =
∫︁
𝑢̂(𝜉) 𝐾̄(𝜉) ¯̂𝑣(𝜉) 𝑑𝜉 .

Since 𝐾(𝜉) ∈ 𝑖R, this leads to

⟨𝑢,𝐾(𝐷)𝑣⟩𝒮×𝒮 = − ⟨𝐾(𝜉)𝑢̂, 𝑣⟩𝒮×𝒮 = ⟨−𝐾(𝐷)𝑢, 𝑣⟩𝒮×𝒮 = ⟨𝐾(𝐷)*𝑢, 𝑣⟩𝒮×𝒮 .

Just compare the two last terms.

3. We consider the Cauchy problem

(𝒫𝒞)
{︀
𝜕𝑡𝑢 − 𝐾(𝐷)𝑢 = 0 , 𝑢|𝑡=0 = 𝑢0 ∈ 𝐻𝑠(R𝑛) , 𝑠 ∈ R .

We denote by 𝑢̂(𝑡, 𝜉) the Fourier transform of 𝑢(𝑡, ·) with respect to 𝑥 ∈ R𝑛.
3.1. Compute 𝑢̂(𝑡, 𝜉) and deduce from the formula thus obtained that

(ℐ) 𝑢(𝑡, ·) ∈ 𝐻𝑠(R𝑛) , ‖ 𝑢(𝑡, ·) ‖𝐻𝑠(R𝑛) = ‖ 𝑢0(·) ‖𝐻𝑠(R𝑛) , ∀ 𝑡 ∈ R*
+ .

We have 𝑢̂(𝑡, 𝜉) = 𝑒𝑡𝐾(𝜉) 𝑢̂0(𝜉). Since 𝑒𝑡𝐾(𝜉) is of modulus 1, we have

‖ 𝑢(𝑡, 𝑥) ‖𝐻𝑠(R𝑛) = ‖ ⟨𝜉⟩𝑠 𝑢̂(𝑡, 𝜉) ‖𝐿2(R𝑛) =
(︁∫︁

⟨𝜉⟩2 𝑠 |𝑒𝑡 𝐾(𝜉)| |𝑢̂0(𝜉)|2 𝑑𝜉
)︁1/2

=
(︁∫︁

⟨𝜉⟩2 𝑠 |𝑢̂0(𝜉)|2 𝑑𝜉
)︁1/2

= ‖ 𝑢0 ‖𝐻𝑠(R𝑛) .

3.2. Prove that the identity (ℐ) can also be recovered through energy estimates performed
at the level of (𝒫𝒞).

We can follow the following steps : :

∘ We compose (𝒫𝒞) on the left with 𝑜𝑝 ⟨𝜉⟩𝑠 ≡ ⟨𝐷⟩𝑠. Since
[︀
⟨𝐷⟩𝑠;𝐾(𝐷)

]︀
≡ 0, the

expression 𝑤(𝑡, 𝑥) := ⟨𝐷⟩𝑠𝑢(𝑡, 𝑥) must be a solution of{︀
𝜕𝑡𝑤 − 𝐾(𝐷)𝑤 = 0 , 𝑤|𝑡=0 = 𝑤0 := ⟨𝐷⟩𝑠𝑢0 ∈ 𝐿2(R𝑛) .

∘ We perform 𝐿2-energy estimates on this equation. In other words, we multiply the
equation on the left by 2 𝑡𝑤̄(𝑡, 𝑥) and then we integrate in 𝑥 to obtain

𝑑

𝑑𝑡
‖ 𝑤(𝑡, ·) ‖2

𝐿2(R𝑛) + 2 ⟨𝑤,𝐾(𝐷)𝑤⟩𝐿2×𝐿2 = 0 .

Since 𝐾(𝐷) is skew-symmetric, we have

⟨𝑤,𝐾(𝐷)𝑤⟩𝐿2×𝐿2 = ⟨𝐾(𝐷)*𝑤,𝑤⟩𝐿2×𝐿2 = − ⟨𝐾(𝐷)𝑤,𝑤⟩𝐿2×𝐿2 = − ⟨𝑤,𝐾(𝐷)𝑤⟩𝐿2×𝐿2 .

This means that the number ⟨𝑤,𝐾(𝐷)𝑤⟩𝐿2×𝐿2 is purely imaginary. There remains
𝑑

𝑑𝑡
‖ 𝑤(𝑡, ·) ‖2

𝐿2(R𝑛) = 0

which after integration in time, between 0 and 𝑡 furnishes



‖ 𝑢(𝑡, ·) ‖2
𝐻𝑠(R𝑛) = ‖ 𝑤(𝑡, ·) ‖2

𝐿2(R𝑛) = ‖ 𝑤0(·) ‖2
𝐿2(R𝑛) = ‖ 𝑢0(·) ‖2

𝐻𝑠(R𝑛) .

4. Let 𝛿0 be the Dirac mass located at the position 𝑥 = 0. Show that 𝛿0 ∈ 𝐻𝑠(R𝑛) for all
𝑠 ∈ R satisfying 𝑠 < −(𝑛/2).

The Fourier transform of 𝛿0 coincides with 1R𝑛. Thus

‖ 𝛿0 ‖2
𝐻𝑠(R𝑛) = ‖ ⟨𝜉⟩𝑠 ‖2

𝐿2(R𝑛) =
(︁∫︁

S𝑛

∫︁
R+

(1 + 𝑟2)𝑠 𝑟𝑛−1 𝑑𝑟 𝑑𝜃
)︁1/2

.

This becomes integrable on condition that 2 𝑠 + 𝑛 − 1 < −1 which yields the expected
condition 𝑠 < −(𝑛/2).

5. We start with 𝑢0 = 𝛿0. Recall the definition of the wave front set 𝑊𝐹 (𝛿0) of the
distribution 𝛿0. Then describe the content of 𝑊𝐹 (𝛿0).

We want to show that

𝑊𝐹 (𝛿0) =
{︀
(0, 𝜉) ; 𝜉 ∈ R𝑛 ∖ {0}

}︀
.

It is clear that 𝛿 ≡ 0 on all open sets that do not contain 0 ∈ R𝑛 which implies that
𝑊𝐹 (𝛿) ⊂ {0} × R𝑛. Then, if 𝜙 ∈ 𝒞∞

0 (R𝑛) satisfies 𝜙(0) ̸= 0, we find that (modulo
multiplicative constants)

̂︁𝜙 𝛿(𝜉) = (𝜙 ⋆ 𝛿)(𝜉) =
∫︁

R𝑛
𝜙(𝜉 − 𝜂) IR𝑁 (𝜂) 𝑑𝜂 =

∫︁
R𝑛

𝜙(𝜂) 𝑑𝜂 = 𝜙(0) ̸= 0.

The fonction ̂︁𝜙 𝛿(·) is a (non-zero) constant. There is no conic neighboorhood of a direction
𝜉 ∈ R𝑛 ∖ {0} where it can be rapidly decreasing. Thus, all positions (0, 𝜉) are in the wave
front set of 𝛿0.

6. We consider (𝒫𝒞) for the choice 𝑢0 = 𝛿0. We denote by 𝑢 the corresponding solution.
We fix some 𝑡 ∈ R*

+ as well as some 𝜙 ∈ 𝒞∞
0 (R𝑛). Show that we can find a fonction 𝜓 in

the Schwartz space 𝒮(R𝑛) giving rise to

̂︂𝜙𝑢(𝑡, 𝜉) =
∫︁
R𝑛

𝜙(𝜉 − 𝜂) 𝑒𝑖 𝑡 |𝜂| 𝑑𝜂 + 𝜓(𝜉) .

Let again 𝜒 ∈ 𝐶∞
0 (R𝑛) with 𝜒 ≡ 1 in a neighboorhood of 0. Define

𝜒̃(𝜂) := 𝑒𝑖 𝑡 |𝜂| (1−𝜒(𝜂)
)︀

− 𝑒𝑖 𝑡 |𝜂|.

The function 𝜒̃ is smooth, bounded and compactly supported. Retain that

∃𝑅 ∈ [1,+∞[ ; |𝜂| ≥ 𝑅 =⇒ 𝜒̃(𝜂) = 0 .

We take

𝜓(𝜉) :=
∫︁
R𝑛

𝜙(𝜉 − 𝜂) 𝜒(𝜂) 𝑑𝜂 = (𝜙 ⋆ 𝜒)(𝜉) , 𝜙 ∈ 𝒮(R𝑛) , 𝜒 ∈ 𝐿1(R𝑛) .

The function 𝜓 is smooth (of class 𝒞∞) since the same applies to 𝜙. The integrale in 𝜂
concerns only the ball 𝐵(0, 𝑅]. For |𝜂| ≤ 𝑅 and |𝜉| ≥ 4𝑅, we have



1 + |𝜉 − 𝜂|2 ≥ 1 + (|𝜉| −𝑅)2 ≥ 1 + |𝜉|2 − 2𝑅 |𝜉| +𝑅2 ≥ 1
2

(︀
1 + |𝜉|2

)︀
.

On the other hand, since 𝜙 ∈ 𝒞∞
0 (R𝑛) ⊂ 𝒮(R𝑛), we have the control

∀ 𝑘 ∈ N , ∃𝐶𝑘 ∈ R*
+ ; |𝜙(𝜁)| ≤ ⟨𝜁⟩−𝑘 .

It follows that

|𝜉| ≥ 4𝑅 =⇒ |𝜓(𝜉)| ≤ 𝐶𝑘 ⟨𝜉 − 𝜂⟩−𝑘 ‖ 𝜒 ‖𝐿1(R𝑛) ≤ 2−𝑘/2𝐶𝑘 ‖ 𝜒 ‖𝐿1(R𝑛) ⟨𝜉⟩−𝑘,

which means that 𝜓 is indeed rapidly decreasing.

7. In this question, we consider the Cauchy problem

(𝒫𝒞𝛿)
{︀
𝜕𝑡𝑢̃ − 𝑖 |𝐷| 𝑢̃ = 0 , 𝑢̃|𝑡=0 = 𝛿 .

Let 𝑡 ∈ R+. Describe the wave front set 𝑊𝐹
(︀
𝑢̃(𝑡, ·)

)︀
of the distribution 𝑢̃(𝑡, ·). Justify

the answer.

The theorem describing the propagation of the wave front set says that

𝑊𝐹
(︀
𝑢̃(𝑡, ·)

)︀
= Φ𝑡

(︀
𝑊𝐹

(︀
𝛿)

)︀
where Φ𝑡 is the diffeomorphism induced by the Hamiltonian field 𝐻(𝑥, 𝜉) ≡ 𝐻(𝜉) := |𝜉|.
We have to look at⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑

𝑑𝑡
𝑋(𝑡, 𝑦, 𝜂) = −∇𝜉𝐻(𝑋,Ξ) = − Ξ

|Ξ|
, 𝑋(0, 𝑦, 𝜂) = 𝑦 ,

𝑑

𝑑𝑡
Ξ(𝑡, 𝑦, 𝜂) = +∇𝑥𝐻(𝑋,Ξ) = 0 , Ξ(0, 𝑦, 𝜂) = 𝜂 .

This furnishes Ξ(𝑡, 𝑦, 𝜂) = 𝜂 and then

𝑋(𝑡, 𝑦, 𝜂) = 𝑦 − 𝑡
𝜂

|𝜂|
.

A the time 𝑡, the wave front set is contained in the cone with center 0 and radius 𝑡 (the
so-called light cone). In other words

𝑊𝐹
(︀
𝑢̃(𝑡, ·)

)︀
=

{︁(︀
− 𝑡

𝜂

|𝜂|
, 𝜂

)︀
; 𝜂 ∈ R𝑛

}︁
.


