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Problem. Let 𝑝 be a prime number. We denote by F𝑝 the prime field of order 𝑝 which
may be constructed as the integers modulo p, that is F𝑝 ≡ Z/(𝑝Z). Let H be a complex
Hilbert space of finite dimension 𝑑 ∈ N*. We consider two unitary operators 𝐴 : H → H
and 𝐵 : H → H satisfying 𝐴𝑝 = 𝐼𝑑 and 𝐵𝑝 = 𝐼𝑑, as well as

∀(𝑙,𝑚) ∈ N2, 𝐴𝑙 𝐵𝑚 = 𝑒−2𝜋𝑖𝑙𝑚/𝑝𝐵𝑚𝐴𝑙. (1)

We suppose that the only subspaces of H invariant under both 𝐴 and 𝐵 are {0} and H.

1. Explain why 𝐴 has at least one eigenvalue 𝜆 ∈ C. Show that 𝜆 is of modulus 1.

The characteristic polynomial 𝑃 (𝑋) := 𝑑𝑒𝑡(𝐴−𝑋𝐼𝑑) is of degree 𝑑 ≥ 1. It has therefore
at least one root 𝜆 ∈ C which is an eigenvalue of 𝐴. Let 𝑣 a non-zero eigenvector of 𝐴
which is associated to 𝜆. We have

⟨𝐴𝑣,𝐴𝑣⟩ = ⟨𝜆𝑣, 𝜆𝑣⟩ = |𝜆|2 ‖ 𝑣 ‖2= ⟨𝑣,𝐴*𝐴𝑣⟩ =‖ 𝑣 ‖2,

which is possible only if |𝜆| = 1.

2. Let 0 ̸= 𝑣 ≡ 𝐵0𝑣 ∈ H be an eigenvector of 𝐴 of norm 1 that is associated with 𝜆. Show
that 𝐵𝑘𝑣 is for all 𝑘 ∈ N an eigenvector for 𝐴. What is the corresponding eigenvalue ?

For 𝑘 = 0, this is due to the definition of 𝑣 ≡ 𝐵0𝑣. For 𝑘 ∈ N*, we can apply (1) with
(𝑙,𝑚) = (1, 𝑘) to obtain

𝐴𝐵𝑘𝑣 = 𝑒−2𝜋𝑖𝑘/𝑝𝐵𝑘𝐴𝑣 = 𝜆𝑘 𝐵
𝑘𝑣, 𝜆𝑘 := 𝜆𝑒−2𝜋𝑖𝑘/𝑝,

which says that 𝐵𝑘𝑣 is an eigenvector for 𝐴 associated with the eigenvalue 𝜆𝑘.

3. What can be said about the (vector) subspace 𝐸 ⊂ H which is generated by the family
of vectors {𝐵𝑘𝑣}𝑘∈N ?

The subspace 𝐸 is obviously stable under the action of 𝐵. In view of the preceding question,
it is also stable under the action of 𝐴. It is of dimension greater than 1 (because the
non-zero vector 𝑣 is in 𝐸). Thus, by assumption, it must coincide with H.

4. Explain why the vectors 𝐵𝑘𝑣 with 0 ≤ 𝑘 ≤ 𝑝− 1 form an orthonormal basis of H built
with eigenvectors of 𝐴. What can be said about the dimension of H ? Prove that the
eigenspace 𝐸𝜆 := {𝑓 ∈ H;𝐴𝑓 = 𝜆𝑓} is of dimension 1. Explain why 𝜆 = 1 is sure to be
an eigenvalue of 𝐴.



Since 𝐵 is unitary and 𝑣 is of norm 1, 𝐵𝑘𝑣 is of norm 1. Since 𝐵𝑝 = 𝐼𝑑, we have

H ≡ 𝐸 ≡

⎧⎨⎩
𝑝−1∑︁
𝑘=0

𝑐𝑘 𝐵
𝑘𝑣 ; 𝑐𝑘 ∈ C

⎫⎬⎭ .

This clearly indicates that the 𝑝 vectors 𝐵𝑘𝑣 with 0 ≤ 𝑘 ≤ 𝑝− 1 generate H. On the other
hand, for 𝑘 ̸= 𝑘, we have

⟨𝐵𝑘𝑣,𝐴𝐵𝑘𝑣⟩ = �̄�𝑘⟨𝐵𝑘𝑣,𝐵𝑘𝑣⟩ = ⟨𝐴*𝐵𝑘𝑣,𝐵𝑘𝑣⟩ = ⟨𝐴−1𝐵𝑘𝑣,𝐵𝑘𝑣⟩ = 𝜆−1
𝑘 ⟨𝐵𝑘𝑣,𝐵𝑘𝑣⟩.

Since 𝜆−1
𝑘 = �̄�𝑘 and 𝜆𝑘 ̸= 𝜆𝑘, we must have ⟨𝐵𝑘𝑣,𝐵𝑘𝑣⟩ = 0. In other words, the vectors

𝐵𝑘𝑣 with 0 ≤ 𝑘 ≤ 𝑝− 1 form an orthonormal basis of H, and therefore 𝑑 = 𝑝.
Now, let 𝑣 ∈ 𝐸𝜆 be a vector which is not colinear with 𝑣 and which is given by

𝑣 =
𝑝−1∑︁
𝑘=0

𝑐𝑘 𝐵
𝑘𝑣.

By applying 𝐴, we deduce that (since 𝜆−1 = �̄�)

𝑣 =
𝑝−1∑︁
𝑘=0

𝑐𝑘 �̄� 𝜆𝑘𝐵
𝑘𝑣.

And therefore

0 =
𝑝−1∑︁
𝑘=1

𝑐𝑘 (1 − 𝜀−2𝜋𝑖𝑘/𝑝)𝐵𝑘𝑣,

which implies that 𝑐𝑘 = 0 for 𝑘 ̸= 1 and yields the expected contradiction. We must have

𝐸𝜆 = {𝑐𝑣 ; 𝑐 ∈ C} , dim𝐸𝜆 = 1.

On the other hand, since 𝐴𝑝 = 𝐼𝑑, we must have 𝜆𝑝
𝑘 = 𝜆𝑝 = 1. Thus 𝜆 is a 𝑝𝑡ℎ root of

unity which implies that 𝜆𝑘 = 1 for some 𝑘.

5. The Hilbert space 𝐿2(F𝑝) is provided with the counting measure on F𝑝 which means
that, given 𝑓 ∈ 𝐿2(F𝑝) and 𝑔 ∈ 𝐿2(F𝑝), we work with the inner product

⟨𝑓, 𝑔⟩ :=
𝑝−1∑︁
𝑛=0

𝑓(𝑛) 𝑔(𝑛).

5.1. Prove that the modulation operator 𝑈 : 𝐿2(F𝑝) −→ 𝐿2(F𝑝) and the translation
operator 𝑉 : 𝐿2(F𝑝) −→ 𝐿2(F𝑝) which are given by

𝑈(𝑓) : F𝑝 −→ C
𝑛 ↦−→ 𝑒−2𝜋𝑖𝑛/𝑝 𝑓(𝑛),

𝑉 (𝑓) : F𝑝 −→ C
𝑛 ↦−→ 𝑓(𝑛− 1),

are unitary operators on 𝐿2(F𝑝).



It suffices to note that 𝑈 and 𝑉 preserve the 𝐿2-norm. Indeed

‖ 𝑈(𝑓) ‖2
𝐿2(F𝑝)=

𝑝−1∑︁
𝑛=0

|𝑒−2𝜋𝑖𝑛/𝑝 𝑓(𝑛)|2 =
𝑝−1∑︁
𝑛=0

|𝑓(𝑛)|2 =‖ 𝑓 ‖2
𝐿2(F𝑝) .

On the other hand

‖ 𝑉 (𝑓) ‖2
𝐿2(F𝑝)=

𝑝−1∑︁
𝑛=0

|𝑓(𝑛− 1)|2 =
𝑝−1∑︁
𝑛=0

|𝑓(𝑛)|2 =‖ 𝑓 ‖2
𝐿2(F𝑝),

where we have used the property according to which the map 𝑛 ↦→ 𝑛− 1 is a bijection on
the field F𝑝 (since −1 ≡ 𝑝− 1).
5.2. Verify that we have 𝑈𝑝 = 𝐼𝑑 and 𝑉 𝑝 = 𝐼𝑑, as well as

∀(𝑙,𝑚) ∈ N2
*, 𝑈 𝑙 𝑉 𝑚 = 𝑒−2𝜋𝑖𝑙𝑚/𝑝 𝑉 𝑚 𝑈 𝑙.

The two first properties come from the relations(︁
𝑒−2𝜋𝑖𝑛/𝑝)︀𝑝 = 1, 𝑛− 𝑝 = 𝑛 (in F𝑝).

On the other hand, we have

𝑈 𝑙𝑉 𝑚(𝑓)(𝑛) = 𝑈 𝑙
(︀
𝑛 ↦→ 𝑓(𝑛−𝑚)

)︀
= 𝑒−2𝜋𝑖𝑛𝑙/𝑝𝑓(𝑛−𝑚),

𝑉 𝑚𝑈 𝑙(𝑓)(𝑛) = 𝑉 𝑚
(︀
𝑛 ↦→ 𝑒−2𝜋𝑖𝑙𝑛/𝑝𝑓(𝑛)

)︀
= 𝑒−2𝜋𝑖𝑙(𝑛−𝑚)/𝑝𝑓(𝑛−𝑚),

which leads to the last relation.

5.3. What can be said about the family of Dirac functions {𝛿ℓ}ℓ ∈ 𝐿2(F𝑝)F𝑝 given by

F𝑝 ∋ 𝑛 ↦−→ 𝛿ℓ(𝑛) :=
{︃

1 if 𝑛 = ℓ,
0 if 𝑛 ̸= ℓ,

ℓ ∈ F𝑝

first from the viewpoint of 𝐿2(F𝑝) and secondly from the perspective of 𝑈 ?

The family {𝛿𝑙}𝑙 forms an orthonormal basis of 𝐿2(F𝑝). Moreover

𝑈(𝛿𝑙)(𝑛) = 𝑒−2𝜋𝑖𝑛/𝑝 (𝛿𝑙)(𝑛) = 𝑒−2𝜋𝑖𝑙/𝑝 (𝛿𝑙)(𝑛),

which indicates that 𝛿𝑙 is an eigenvector of 𝑈 associated with the eigenvalue 𝑒−2𝜋𝑖𝑙/𝑝.

5.4. Find a self-adjoint operator 𝑅 on 𝐿2(F𝑝) which is such that 𝑒−2𝜋𝑖𝑅/𝑝 = 𝑈 . Compute
the mean value of 𝑅 along 𝛿ℓ, that is the quantity ⟨𝛿ℓ, 𝑅𝛿ℓ⟩. What could be a possible
interpretation of 𝑅 ?
It suffices to adjust 𝑅 in such a way that 𝑅(𝛿ℓ) = ℓ𝛿ℓ to ensure that 𝑒−2𝜋𝑖𝑅/𝑝𝛿ℓ = 𝑒−2𝜋𝑖ℓ/𝑝𝛿ℓ

which, in view of the above, guarantees that 𝑒−2𝜋𝑖𝑅/𝑝 = 𝑈 . Thus

𝑅(𝑓)(𝑛) = 𝑅
(︁𝑝−1∑︁

𝑘=0
𝑓(𝑘) 𝛿𝑘

)︁
(𝑛) =

𝑝−1∑︁
𝑘=0

𝑓(𝑘)𝑅(𝛿𝑘)(𝑛) =
𝑝−1∑︁
𝑘=0

𝑓(𝑘) 𝑘 𝛿𝑘(𝑛) = 𝑛𝑓(𝑛),



which make 𝑅 appears as a position operator. This is confirmed by the relation

⟨𝛿ℓ, 𝑅𝛿ℓ⟩ = ⟨𝛿ℓ, ℓ𝛿ℓ⟩ = ℓ,

which says that a state concentrated at the position ℓ returns the value of ℓ.
5.5. What can be said about the family of functions {𝑔ℓ}ℓ ∈ 𝐿2(F𝑝)F𝑝 given by

F𝑝 ∋ 𝑛 ↦−→ 𝑔ℓ(𝑛) := 1
√
𝑝

𝑝−1∑︁
𝑘=0

𝑒−2𝜋𝑖ℓ𝑘/𝑝 𝛿𝑘(𝑛), ℓ ∈ F𝑝

first from the perspective of 𝑉 and secondly from the viewpoint of 𝐿2(F𝑝) ?
First, compute

𝑉 (𝑔ℓ)(𝑛) = 1
√
𝑝

𝑝−1∑︁
𝑘=0

𝑒−2𝜋𝑖ℓ𝑘/𝑝 𝛿𝑘(𝑛− 1) = 1
√
𝑝

𝑝−1∑︁
𝑘=0

𝑒−2𝜋𝑖ℓ𝑘/𝑝 𝛿𝑘+1(𝑛)

= 1
√
𝑝

𝑝∑︁
𝑘=1

𝑒−2𝜋𝑖ℓ(𝑘−1)/𝑝 𝛿𝑘(𝑛) = 𝑒2𝜋𝑖ℓ/𝑝 𝑔ℓ(𝑛).

This means that 𝑔ℓ is an eigenvector of 𝑉 associated with the eigenvalue 𝑒2𝜋𝑖ℓ/𝑝. Since these
eigenvalues are distinct and have a total number of 𝑝, the corresponding eigenvectors 𝑔ℓ

form an orthogonal basis of 𝐿2(F𝑝). Moreover, we can remark that 𝑔ℓ(𝑛) = 𝑒−2𝜋𝑖ℓ𝑛/𝑝/
√
𝑝

so that 𝑔ℓ is a function of norm 1 in 𝐿2(F𝑝). The basis is orthonormal.
5.6. Using the family of functions {𝑔ℓ}ℓ ∈ 𝐿2(F𝑝)F𝑝 , determine a self-adjoint operator 𝑆
on 𝐿2(F𝑝) which is such that 𝑒2𝜋𝑖𝑆/𝑝 = 𝑉 .
As in question 5.4, we can argue on the eigenspaces. It suffices to define 𝑆 through the
conditions 𝑆𝑔ℓ = ℓ𝑔ℓ for all ℓ ∈ F𝑝.
5.7. Do the operators 𝑅 and 𝑆 commute ? Justify the answer.
NO. By contradiction. Assume that 𝑅 and 𝑆 commute. Then, 𝑈 and 𝑉 must commute
which is not the case because from (1) with (𝑙,𝑚) = (1, 1), we have

[𝑈, 𝑉 ] = (1 − 𝑒−2𝜋𝑖/𝑝)𝑉 𝑈 ̸≡ 0.

6. Show that we can construct a unitary (surjective) map 𝑊 from H onto 𝐿2(F𝑝) which
is such that

𝑊𝐴𝑊−1 = 𝑈, 𝑊𝐵𝑊−1 = 𝑉.

Mention the name of the theorem which is associated with the above relation.
We have seen in question 1.4 that we can always assume that 𝜆 = 1. Then, define 𝑊
through the relation 𝑊 (𝐵ℓ𝑣) = 𝛿ℓ for all ℓ ∈ F𝑝. Such map 𝑊 exchanges two orthonormal
basis, and therefore it is a unitary operator. By this way, we also find that, for all ℓ ∈ F𝑝,
we have

𝑊𝐴(𝐵ℓ𝑣) = 𝑊 (𝑒−2𝜋𝑖ℓ/𝑝𝐵ℓ𝑣) = 𝑒−2𝜋𝑖ℓ/𝑝 𝛿ℓ = 𝑈𝛿ℓ = 𝑈𝑊 (𝐵ℓ𝑣) =⇒ 𝑊𝐴 = 𝑈𝑊,



as well as

𝑊𝐵(𝐵ℓ𝑣) = 𝑊𝐵ℓ+1𝑣 = 𝛿ℓ+1 = 𝑉 𝛿ℓ = 𝑉𝑊 (𝐵ℓ𝑣) =⇒ 𝑊𝐵 = 𝑉𝑊.

It suffices to compose with 𝑊−1 on the right to recover the expected result. In this exercice,
we have developed a discrete version of the Stone-von Neumann Theorem.

Problem 2. Let 𝜒 ∈ 𝒞∞
0 (R𝑛;R) be a smooth compactly supported function with 𝜒 ≡ 1

in a neighbourhood of the position 𝜉 = 0. Consider the symbol

𝐾(𝜉) := 𝑖 |𝜉|
(︀
1 − 𝜒(𝜉)

)︀
, |𝜉| := (𝜉2

1 + · · · + 𝜉2
𝑛)1/2 , 𝜉 ∈ R𝑛 .

1. Explain why the function 𝜉 ↦−→ 𝐾(𝜉) is a symbol in the class 𝑆1(R𝑛).

Definet ⟨𝜉⟩ := (1 + |𝜉|2)1/2. By definition, the function 𝐾 is in 𝑆1(R𝑛) if and only if

∀ (𝛼, 𝛽) ∈ (N𝑛)2 , ∃𝐶𝛼,𝛽 ∈ R*
+ ; |𝜕𝛼

𝜉 𝜕
𝛽
𝑥𝐾(𝜉)| ≤ 𝐶𝛼,𝛽 ⟨𝜉⟩1−|𝛼| .

This is evident when |𝛽| ≠ 0. When |𝛽| = 0, we can exploit the Leibniz formula that yields

𝜕𝛼
𝜉 𝐾(𝜉) = 𝑖

∑︁
0≤𝛾≤𝛼

𝐶𝛾
𝛼 𝜕𝛾(︀

|𝜉|
)︀
𝜕𝛼−𝛾[︀

1 − 𝜒(𝜉)
]︀

= 𝑖 𝜕𝛼(︀
|𝜉|

)︀ [︀
1 − 𝜒(𝜉)

]︀
+ 𝑓(𝜉)

For 𝛾 < 𝛼, the function 𝜕𝛼−𝛾
[︀
1 − 𝜒(𝜉)

]︀
is in 𝒞∞

0 (R𝑛;R) and it is equal to 0 in a
neighbourhood of 𝜉 = 0. Thus, we have

𝜕𝛼
𝜉 𝐾(𝜉) = 𝑖 𝜕𝛼(︀

|𝜉|
)︀ [︀

1 − 𝜒(𝜉)
]︀

+ 𝑓(𝜉) , 𝑓 ∈ 𝒞∞
0 (R𝑛;R) .

To conclude, it suffices to remark that 𝜕𝛼
(︀
|𝜉|

)︀
is homogeneous of degree 1 − |𝛼|.

2. Let 𝐾(𝐷) be the pseudo-differential operator associated to the symbol 𝐾, that is

[︀
𝐾(𝐷)𝑢

]︀
(𝑥) = (2𝜋)−𝑛/2

∫︁
R𝑛

𝑒𝑖 𝑥·𝜉 𝐾(𝜉) �̂�(𝜉) 𝑑𝜉 .

2.1. We select some function 𝑢 in the Schwartz space 𝒮(R𝑛). Prove that 𝐾(𝐷)𝑢 is a
bounded function. What more needs to be said about 𝐾(𝐷)𝑢 ?

We have [︀
𝐾(𝐷)𝑢

]︀
(𝑥) = (2𝜋)−𝑛/2

∫︁
R𝑛

𝑒𝑖 𝑥·𝜉 ⟨𝜉⟩−1𝐾(𝜉) ⟨𝜉⟩−𝑛−1 ⟨𝜉⟩𝑛+2 �̂�(𝜉) 𝑑𝜉 .

The function ⟨𝜉⟩−1𝐾(𝜉) is bounded because 𝐾 ∈ 𝑆1. The function ⟨𝜉⟩𝑛+2 �̂�(𝜉) is bounded
because �̂� ∈ 𝒮. On the other hand, the function ⟨𝜉⟩−𝑛−1 is integrable on R𝑛. Thus, the
above integral is convergent (with a uniform bound). As viewed in the course (and as can
be proved directly), the function 𝐾(𝐷)𝑢 is in fact in 𝒮(R𝑛).

2.2. Show that 𝐾(𝐷) is (formally) skew-symmetric in the sense that



⟨𝑢,𝐾(𝐷)𝑣⟩ =
∫︁

R𝑛
𝑢(𝑥) 𝐾(𝐷)𝑣(𝑥) 𝑑𝑥 = −⟨𝐾(𝐷)𝑢, 𝑣⟩, ∀(𝑢, 𝑣) ∈ 𝒮(R𝑛).

We know that 𝐾(𝐷) and 𝐾(𝐷)* are in 𝑂𝑃 1(R𝑛). From Plancherel theorem, we have

⟨𝑢,𝐾(𝐷)𝑣⟩𝒮×𝒮 = ⟨�̂�,𝐾(𝜉)𝑣⟩𝒮×𝒮 =
∫︁
�̂�(𝜉) �̄�(𝜉) ¯̂𝑣(𝜉) 𝑑𝜉 .

Since 𝐾(𝜉) ∈ 𝑖R, this leads to

⟨𝑢,𝐾(𝐷)𝑣⟩𝒮×𝒮 = − ⟨𝐾(𝜉)�̂�, 𝑣⟩𝒮×𝒮 = ⟨−𝐾(𝐷)𝑢, 𝑣⟩𝒮×𝒮 = ⟨𝐾(𝐷)*𝑢, 𝑣⟩𝒮×𝒮 .

Just compare the two last terms.

3. We consider the Cauchy problem

(𝒫𝒞)
{︀
𝜕𝑡𝑢 − 𝐾(𝐷)𝑢 = 0 , 𝑢|𝑡=0 = 𝑢0 ∈ 𝐻𝑠(R𝑛) , 𝑠 ∈ R .

We denote by �̂�(𝑡, 𝜉) the Fourier transform of 𝑢(𝑡, ·) with respect to 𝑥 ∈ R𝑛.
3.1. Compute �̂�(𝑡, 𝜉) and deduce from the formula thus obtained that

(ℐ) 𝑢(𝑡, ·) ∈ 𝐻𝑠(R𝑛) , ‖ 𝑢(𝑡, ·) ‖𝐻𝑠(R𝑛) = ‖ 𝑢0(·) ‖𝐻𝑠(R𝑛) , ∀ 𝑡 ∈ R*
+ .

We have �̂�(𝑡, 𝜉) = 𝑒𝑡𝐾(𝜉) �̂�0(𝜉). Since 𝑒𝑡𝐾(𝜉) is of modulus 1, we have

‖ 𝑢(𝑡, 𝑥) ‖𝐻𝑠(R𝑛) = ‖ ⟨𝜉⟩𝑠 �̂�(𝑡, 𝜉) ‖𝐿2(R𝑛) =
(︁∫︁

⟨𝜉⟩2 𝑠 |𝑒𝑡 𝐾(𝜉)| |�̂�0(𝜉)|2 𝑑𝜉
)︁1/2

=
(︁∫︁

⟨𝜉⟩2 𝑠 |�̂�0(𝜉)|2 𝑑𝜉
)︁1/2

= ‖ 𝑢0 ‖𝐻𝑠(R𝑛) .

3.2. Prove that the identity (ℐ) can also be recovered through energy estimates performed
at the level of (𝒫𝒞).

We can follow the following steps : :

∘ We compose (𝒫𝒞) on the left with 𝑜𝑝 ⟨𝜉⟩𝑠 ≡ ⟨𝐷⟩𝑠. Since
[︀
⟨𝐷⟩𝑠;𝐾(𝐷)

]︀
≡ 0, the

expression 𝑤(𝑡, 𝑥) := ⟨𝐷⟩𝑠𝑢(𝑡, 𝑥) must be a solution of{︀
𝜕𝑡𝑤 − 𝐾(𝐷)𝑤 = 0 , 𝑤|𝑡=0 = 𝑤0 := ⟨𝐷⟩𝑠𝑢0 ∈ 𝐿2(R𝑛) .

∘ We perform 𝐿2-energy estimates on this equation. In other words, we multiply the
equation on the left by 2 𝑡�̄�(𝑡, 𝑥) and then we integrate in 𝑥 to obtain

𝑑

𝑑𝑡
‖ 𝑤(𝑡, ·) ‖2

𝐿2(R𝑛) + 2 ⟨𝑤,𝐾(𝐷)𝑤⟩𝐿2×𝐿2 = 0 .

Since 𝐾(𝐷) is skew-symmetric, we have

⟨𝑤,𝐾(𝐷)𝑤⟩𝐿2×𝐿2 = ⟨𝐾(𝐷)*𝑤,𝑤⟩𝐿2×𝐿2 = − ⟨𝐾(𝐷)𝑤,𝑤⟩𝐿2×𝐿2 = − ⟨𝑤,𝐾(𝐷)𝑤⟩𝐿2×𝐿2 .

This means that the number ⟨𝑤,𝐾(𝐷)𝑤⟩𝐿2×𝐿2 is purely imaginary. There remains
𝑑

𝑑𝑡
‖ 𝑤(𝑡, ·) ‖2

𝐿2(R𝑛) = 0

which after integration in time, between 0 and 𝑡 furnishes



‖ 𝑢(𝑡, ·) ‖2
𝐻𝑠(R𝑛) = ‖ 𝑤(𝑡, ·) ‖2

𝐿2(R𝑛) = ‖ 𝑤0(·) ‖2
𝐿2(R𝑛) = ‖ 𝑢0(·) ‖2

𝐻𝑠(R𝑛) .

4. Let 𝛿0 be the Dirac mass located at the position 𝑥 = 0. Show that 𝛿0 ∈ 𝐻𝑠(R𝑛) for all
𝑠 ∈ R satisfying 𝑠 < −(𝑛/2).

The Fourier transform of 𝛿0 coincides with 1R𝑛. Thus

‖ 𝛿0 ‖2
𝐻𝑠(R𝑛) = ‖ ⟨𝜉⟩𝑠 ‖2

𝐿2(R𝑛) =
(︁∫︁

S𝑛

∫︁
R+

(1 + 𝑟2)𝑠 𝑟𝑛−1 𝑑𝑟 𝑑𝜃
)︁1/2

.

This becomes integrable on condition that 2 𝑠 + 𝑛 − 1 < −1 which yields the expected
condition 𝑠 < −(𝑛/2).

5. We start with 𝑢0 = 𝛿0. Recall the definition of the wave front set 𝑊𝐹 (𝛿0) of the
distribution 𝛿0. Then describe the content of 𝑊𝐹 (𝛿0).

We want to show that

𝑊𝐹 (𝛿0) =
{︀
(0, 𝜉) ; 𝜉 ∈ R𝑛 ∖ {0}

}︀
.

It is clear that 𝛿 ≡ 0 on all open sets that do not contain 0 ∈ R𝑛 which implies that
𝑊𝐹 (𝛿) ⊂ {0} × R𝑛. Then, if 𝜙 ∈ 𝒞∞

0 (R𝑛) satisfies 𝜙(0) ̸= 0, we find that (modulo
multiplicative constants)

̂︁𝜙 𝛿(𝜉) = (𝜙 ⋆ 𝛿)(𝜉) =
∫︁

R𝑛
𝜙(𝜉 − 𝜂) IR𝑁 (𝜂) 𝑑𝜂 =

∫︁
R𝑛

𝜙(𝜂) 𝑑𝜂 = 𝜙(0) ̸= 0.

The fonction ̂︁𝜙 𝛿(·) is a (non-zero) constant. There is no conic neighboorhood of a direction
𝜉 ∈ R𝑛 ∖ {0} where it can be rapidly decreasing. Thus, all positions (0, 𝜉) are in the wave
front set of 𝛿0.

6. We consider (𝒫𝒞) for the choice 𝑢0 = 𝛿0. We denote by 𝑢 the corresponding solution.
We fix some 𝑡 ∈ R*

+ as well as some 𝜙 ∈ 𝒞∞
0 (R𝑛). Show that we can find a fonction 𝜓 in

the Schwartz space 𝒮(R𝑛) giving rise to

̂︂𝜙𝑢(𝑡, 𝜉) =
∫︁
R𝑛

𝜙(𝜉 − 𝜂) 𝑒𝑖 𝑡 |𝜂| 𝑑𝜂 + 𝜓(𝜉) .

Let again 𝜒 ∈ 𝐶∞
0 (R𝑛) with 𝜒 ≡ 1 in a neighboorhood of 0. Define

�̃�(𝜂) := 𝑒𝑖 𝑡 |𝜂| (1−𝜒(𝜂)
)︀

− 𝑒𝑖 𝑡 |𝜂|.

The function �̃� is smooth, bounded and compactly supported. Retain that

∃𝑅 ∈ [1,+∞[ ; |𝜂| ≥ 𝑅 =⇒ �̃�(𝜂) = 0 .

We take

𝜓(𝜉) :=
∫︁
R𝑛

𝜙(𝜉 − 𝜂) 𝜒(𝜂) 𝑑𝜂 = (𝜙 ⋆ 𝜒)(𝜉) , 𝜙 ∈ 𝒮(R𝑛) , 𝜒 ∈ 𝐿1(R𝑛) .

The function 𝜓 is smooth (of class 𝒞∞) since the same applies to 𝜙. The integrale in 𝜂
concerns only the ball 𝐵(0, 𝑅]. For |𝜂| ≤ 𝑅 and |𝜉| ≥ 4𝑅, we have



1 + |𝜉 − 𝜂|2 ≥ 1 + (|𝜉| −𝑅)2 ≥ 1 + |𝜉|2 − 2𝑅 |𝜉| +𝑅2 ≥ 1
2

(︀
1 + |𝜉|2

)︀
.

On the other hand, since 𝜙 ∈ 𝒞∞
0 (R𝑛) ⊂ 𝒮(R𝑛), we have the control

∀ 𝑘 ∈ N , ∃𝐶𝑘 ∈ R*
+ ; |𝜙(𝜁)| ≤ ⟨𝜁⟩−𝑘 .

It follows that

|𝜉| ≥ 4𝑅 =⇒ |𝜓(𝜉)| ≤ 𝐶𝑘 ⟨𝜉 − 𝜂⟩−𝑘 ‖ 𝜒 ‖𝐿1(R𝑛) ≤ 2−𝑘/2𝐶𝑘 ‖ 𝜒 ‖𝐿1(R𝑛) ⟨𝜉⟩−𝑘,

which means that 𝜓 is indeed rapidly decreasing.

7. In this question, we consider the Cauchy problem

(𝒫𝒞𝛿)
{︀
𝜕𝑡�̃� − 𝑖 |𝐷| �̃� = 0 , �̃�|𝑡=0 = 𝛿 .

Let 𝑡 ∈ R+. Describe the wave front set 𝑊𝐹
(︀
�̃�(𝑡, ·)

)︀
of the distribution �̃�(𝑡, ·). Justify

the answer.

The theorem describing the propagation of the wave front set says that

𝑊𝐹
(︀
�̃�(𝑡, ·)

)︀
= Φ𝑡

(︀
𝑊𝐹

(︀
𝛿)

)︀
where Φ𝑡 is the diffeomorphism induced by the Hamiltonian field 𝐻(𝑥, 𝜉) ≡ 𝐻(𝜉) := |𝜉|.
We have to look at⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑

𝑑𝑡
𝑋(𝑡, 𝑦, 𝜂) = −∇𝜉𝐻(𝑋,Ξ) = − Ξ

|Ξ|
, 𝑋(0, 𝑦, 𝜂) = 𝑦 ,

𝑑

𝑑𝑡
Ξ(𝑡, 𝑦, 𝜂) = +∇𝑥𝐻(𝑋,Ξ) = 0 , Ξ(0, 𝑦, 𝜂) = 𝜂 .

This furnishes Ξ(𝑡, 𝑦, 𝜂) = 𝜂 and then

𝑋(𝑡, 𝑦, 𝜂) = 𝑦 − 𝑡
𝜂

|𝜂|
.

A the time 𝑡, the wave front set is contained in the cone with center 0 and radius 𝑡 (the
so-called light cone). In other words

𝑊𝐹
(︀
�̃�(𝑡, ·)

)︀
=

{︁(︀
− 𝑡

𝜂

|𝜂|
, 𝜂

)︀
; 𝜂 ∈ R𝑛

}︁
.


