

Microlocal Analysis

Documents are not allowed

Problem. Let p be a prime number. We denote by \mathbb{F}_p the prime field of order p which may be constructed as the integers modulo p, that is $\mathbb{F}_p \equiv \mathbb{Z}/(p\mathbb{Z})$. Let \mathbf{H} be a complex Hilbert space of finite dimension $d \in \mathbb{N}_*$. We consider two unitary operators $A : \mathbf{H} \to \mathbf{H}$ and $B : \mathbf{H} \to \mathbf{H}$ satisfying $A^p = Id$ and $B^p = Id$, as well as

$$\forall (l,m) \in \mathbb{N}^2, \qquad A^l B^m = e^{-2\pi i lm/p} B^m A^l. \tag{1}$$

We suppose that the only subspaces of **H** invariant under both A and B are $\{0\}$ and **H**.

1. Explain why A has at least one eigenvalue $\lambda \in \mathbb{C}$. Show that λ is of modulus 1.

The characteristic polynomial P(X) := det(A - XId) is of degree $d \ge 1$. It has therefore at least one root $\lambda \in \mathbb{C}$ which is an eigenvalue of A. Let v a non-zero eigenvector of A which is associated to λ . We have

$$\langle Av, Av \rangle = \langle \lambda v, \lambda v \rangle = |\lambda|^2 \parallel v \parallel^2 = \langle v, A^*Av \rangle = \parallel v \parallel^2,$$

which is possible only if $|\lambda| = 1$.

2. Let $0 \neq v \equiv B^0 v \in \mathbf{H}$ be an eigenvector of A of norm 1 that is associated with λ . Show that $B^k v$ is for all $k \in \mathbb{N}$ an eigenvector for A. What is the corresponding eigenvalue ?

For k = 0, this is due to the definition of $v \equiv B^0 v$. For $k \in \mathbb{N}_*$, we can apply (1) with (l,m) = (1,k) to obtain

$$AB^{k}v = e^{-2\pi i k/p} B^{k}Av = \lambda_{k} B^{k}v, \qquad \lambda_{k} := \lambda e^{-2\pi i k/p},$$

which says that $B^k v$ is an eigenvector for A associated with the eigenvalue λ_k .

3. What can be said about the (vector) subspace $E \subset \mathbf{H}$ which is generated by the family of vectors $\{B^k v\}_{k \in \mathbb{N}}$?

The subspace E is obviously stable under the action of B. In view of the preceding question, it is also stable under the action of A. It is of dimension greater than 1 (because the non-zero vector v is in E). Thus, by assumption, it must coincide with \mathbf{H} .

4. Explain why the vectors $B^k v$ with $0 \le k \le p-1$ form an orthonormal basis of **H** built with eigenvectors of A. What can be said about the dimension of **H**? Prove that the eigenspace $E_{\lambda} := \{f \in \mathbf{H}; Af = \lambda f\}$ is of dimension 1. Explain why $\lambda = 1$ is sure to be an eigenvalue of A.

Since B is unitary and v is of norm 1, $B^k v$ is of norm 1. Since $B^p = Id$, we have

$$\mathbf{H} \equiv E \equiv \left\{ \sum_{k=0}^{p-1} c_k \, B^k v \, ; \, c_k \in \mathbb{C} \right\}.$$

This clearly indicates that the p vectors $B^k v$ with $0 \le k \le p-1$ generate **H**. On the other hand, for $k \ne \tilde{k}$, we have

$$\langle B^k v, AB^{\tilde{k}}v \rangle = \bar{\lambda}_{\tilde{k}} \langle B^k v, B^{\tilde{k}}v \rangle = \langle A^*B^k v, B^{\tilde{k}}v \rangle = \langle A^{-1}B^k v, B^{\tilde{k}}v \rangle = \lambda_k^{-1} \langle B^k v, B^{\tilde{k}}v \rangle.$$

Since $\lambda_k^{-1} = \bar{\lambda}_k$ and $\lambda_k \neq \lambda_{\tilde{k}}$, we must have $\langle B^k v, B^{\tilde{k}} v \rangle = 0$. In other words, the vectors $B^k v$ with $0 \leq k \leq p-1$ form an orthonormal basis of **H**, and therefore d = p. Now, let $\tilde{v} \in E_{\lambda}$ be a vector which is not collinear with v and which is given by

$$\tilde{v} = \sum_{k=0}^{p-1} c_k B^k v.$$

By applying A, we deduce that (since $\lambda^{-1} = \overline{\lambda}$)

$$\tilde{v} = \sum_{k=0}^{p-1} c_k \,\bar{\lambda} \,\lambda_k B^k v.$$

And therefore

$$0 = \sum_{k=1}^{p-1} c_k \left(1 - \varepsilon^{-2\pi i k/p} \right) B^k v,$$

which implies that $c_k = 0$ for $k \neq 1$ and yields the expected contradiction. We must have

$$E_{\lambda} = \{ cv ; c \in \mathbb{C} \}, \qquad \dim E_{\lambda} = 1.$$

On the other hand, since $A^p = Id$, we must have $\lambda_k^p = \lambda^p = 1$. Thus λ is a p^{th} root of unity which implies that $\lambda_k = 1$ for some k.

5. The Hilbert space $L^2(\mathbb{F}_p)$ is provided with the counting measure on \mathbb{F}_p which means that, given $f \in L^2(\mathbb{F}_p)$ and $g \in L^2(\mathbb{F}_p)$, we work with the inner product

$$\langle f,g\rangle:=\sum_{n=0}^{p-1}f(n)\,\bar{g}(n).$$

5.1. Prove that the modulation operator $U : L^2(\mathbb{F}_p) \longrightarrow L^2(\mathbb{F}_p)$ and the translation operator $V : L^2(\mathbb{F}_p) \longrightarrow L^2(\mathbb{F}_p)$ which are given by

are unitary operators on $L^2(\mathbb{F}_p)$.

It suffices to note that U and V preserve the L^2 -norm. Indeed

$$\| U(f) \|_{L^{2}(\mathbb{F}_{p})}^{2} = \sum_{n=0}^{p-1} |e^{-2\pi i n/p} f(n)|^{2} = \sum_{n=0}^{p-1} |f(n)|^{2} = \| f \|_{L^{2}(\mathbb{F}_{p})}^{2}.$$

On the other hand

$$\|V(f)\|_{L^{2}(\mathbb{F}_{p})}^{2} = \sum_{n=0}^{p-1} |f(n-1)|^{2} = \sum_{n=0}^{p-1} |f(n)|^{2} = \|f\|_{L^{2}(\mathbb{F}_{p})}^{2},$$

where we have used the property according to which the map $n \mapsto n-1$ is a bijection on the field \mathbb{F}_p (since $-1 \equiv p-1$).

5.2. Verify that we have $U^p = Id$ and $V^p = Id$, as well as

$$\forall (l,m) \in \mathbb{N}^2_*, \qquad U^l V^m = e^{-2\pi i lm/p} V^m U^l.$$

The two first properties come from the relations

$$\left(e^{-2\pi i n/p}\right)^p = 1, \qquad n-p = n \ (in \mathbb{F}_p).$$

On the other hand, we have

$$\begin{split} U^{l}V^{m}(f)(n) &= U^{l}(n \mapsto f(n-m)) = e^{-2\pi i n l/p} f(n-m), \\ V^{m}U^{l}(f)(n) &= V^{m}(n \mapsto e^{-2\pi i l n/p} f(n)) = e^{-2\pi i l(n-m)/p} f(n-m), \end{split}$$

which leads to the last relation.

5.3. What can be said about the family of Dirac functions $\{\delta_\ell\}_\ell \in L^2(\mathbb{F}_p)^{\mathbb{F}_p}$ given by

$$\mathbb{F}_p \ni n \longmapsto \delta_{\ell}(n) := \begin{cases} 1 & \text{if } n = \ell, \\ 0 & \text{if } n \neq \ell, \end{cases} \qquad \ell \in \mathbb{F}_p$$

first from the viewpoint of $L^2(\mathbb{F}_p)$ and secondly from the perspective of U?

The family $\{\delta_l\}_l$ forms an orthonormal basis of $L^2(\mathbb{F}_p)$. Moreover

$$U(\delta_l)(n) = e^{-2\pi i n/p} \left(\delta_l\right)(n) = e^{-2\pi i l/p} \left(\delta_l\right)(n),$$

which indicates that δ_l is an eigenvector of U associated with the eigenvalue $e^{-2\pi i l/p}$.

5.4. Find a self-adjoint operator R on $L^2(\mathbb{F}_p)$ which is such that $e^{-2\pi i R/p} = U$. Compute the mean value of R along δ_ℓ , that is the quantity $\langle \delta_\ell, R\delta_\ell \rangle$. What could be a possible interpretation of R?

It suffices to adjust R in such a way that $R(\delta_{\ell}) = \ell \delta_{\ell}$ to ensure that $e^{-2\pi i R/p} \delta_{\ell} = e^{-2\pi i \ell/p} \delta_{\ell}$ which, in view of the above, guarantees that $e^{-2\pi i R/p} = U$. Thus

$$R(f)(n) = R\left(\sum_{k=0}^{p-1} f(k)\,\delta_k\right)(n) = \sum_{k=0}^{p-1} f(k)\,R(\delta_k)(n) = \sum_{k=0}^{p-1} f(k)\,k\,\delta_k(n) = nf(n),$$

which make R appears as a <u>position</u> operator. This is confirmed by the relation

$$\langle \delta_{\ell}, R\delta_{\ell} \rangle = \langle \delta_{\ell}, \ell\delta_{\ell} \rangle = \ell$$

which says that a state concentrated at the position ℓ returns the value of ℓ . 5.5. What can be said about the family of functions $\{g_\ell\}_\ell \in L^2(\mathbb{F}_p)^{\mathbb{F}_p}$ given by

$$\mathbb{F}_p \ni n \longmapsto g_{\ell}(n) := \frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} e^{-2\pi i \ell k/p} \, \delta_k(n), \qquad \ell \in \mathbb{F}_p$$

first from the perspective of V and secondly from the viewpoint of $L^2(\mathbb{F}_p)$? First, compute

$$V(g_{\ell})(n) = \frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} e^{-2\pi i \ell k/p} \,\delta_k(n-1) = \frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} e^{-2\pi i \ell k/p} \,\delta_{k+1}(n)$$
$$= \frac{1}{\sqrt{p}} \sum_{k=1}^{p} e^{-2\pi i \ell (k-1)/p} \,\delta_k(n) = e^{2\pi i \ell/p} \,g_{\ell}(n).$$

This means that g_{ℓ} is an eigenvector of V associated with the eigenvalue $e^{2\pi i \ell/p}$. Since these eigenvalues are distinct and have a total number of p, the corresponding eigenvectors g_{ℓ} form an orthogonal basis of $L^2(\mathbb{F}_p)$. Moreover, we can remark that $g_{\ell}(n) = e^{-2\pi i \ell n/p}/\sqrt{p}$ so that g_{ℓ} is a function of norm 1 in $L^2(\mathbb{F}_p)$. The basis is orthonormal.

5.6. Using the family of functions $\{g_\ell\}_\ell \in L^2(\mathbb{F}_p)^{\mathbb{F}_p}$, determine a self-adjoint operator S on $L^2(\mathbb{F}_p)$ which is such that $e^{2\pi i S/p} = V$.

As in question 5.4, we can argue on the eigenspaces. It suffices to define S through the conditions $Sg_{\ell} = \ell g_{\ell}$ for all $\ell \in \mathbb{F}_p$.

5.7. Do the operators R and S commute ? Justify the answer.

NO. By contradiction. Assume that R and S commute. Then, U and V must commute which is not the case because from (1) with (l,m) = (1,1), we have

$$[U, V] = (1 - e^{-2\pi i/p}) VU \neq 0.$$

6. Show that we can construct a unitary (surjective) map W from **H** onto $L^2(\mathbb{F}_p)$ which is such that

$$WAW^{-1} = U, \qquad WBW^{-1} = V.$$

Mention the name of the theorem which is associated with the above relation.

We have seen in question 1.4 that we can always assume that $\lambda = 1$. Then, define W through the relation $W(B^{\ell}v) = \delta_{\ell}$ for all $\ell \in \mathbb{F}_p$. Such map W exchanges two orthonormal basis, and therefore it is a unitary operator. By this way, we also find that, for all $\ell \in \mathbb{F}_p$, we have

$$WA(B^{\ell}v) = W(e^{-2\pi i\ell/p}B^{\ell}v) = e^{-2\pi i\ell/p}\,\delta_{\ell} = U\delta_{\ell} = UW(B^{\ell}v) \implies WA = UW,$$

as well as

$$WB(B^{\ell}v) = WB^{\ell+1}v = \delta_{\ell+1} = V\delta_{\ell} = VW(B^{\ell}v) \implies WB = VW.$$

It suffices to compose with W^{-1} on the right to recover the expected result. In this exercice, we have developed a discrete version of the Stone-von Neumann Theorem.

Problem 2. Let $\chi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n; \mathbb{R})$ be a smooth compactly supported function with $\chi \equiv 1$ in a neighbourhood of the position $\xi = 0$. Consider the symbol

$$K(\xi) := i |\xi| (1 - \chi(\xi)), \qquad |\xi| := (\xi_1^2 + \dots + \xi_n^2)^{1/2}, \qquad \xi \in \mathbb{R}^n.$$

1. Explain why the function $\xi \mapsto K(\xi)$ is a symbol in the class $S^1(\mathbb{R}^n)$.

Definet $\langle \xi \rangle := (1 + |\xi|^2)^{1/2}$. By definition, the function K is in $S^1(\mathbb{R}^n)$ if and only if $\forall (\alpha, \beta) \in (\mathbb{N}^n)^2$, $\exists C_{\alpha, \beta} \in \mathbb{R}^*_+$; $|\partial_{\xi}^{\alpha} \partial_x^{\beta} K(\xi)| \leq C_{\alpha, \beta} \langle \xi \rangle^{1-|\alpha|}$.

This is evident when $|\beta| \neq 0$. When $|\beta| = 0$, we can exploit the Leibniz formula that yields

$$\partial_{\xi}^{\alpha}K(\xi) = i \sum_{0 \le \gamma \le \alpha} C_{\alpha}^{\gamma} \; \partial^{\gamma}(|\xi|) \; \partial^{\alpha-\gamma} [1-\chi(\xi)] = i \; \partial^{\alpha}(|\xi|) \left[1-\chi(\xi)\right] + f(\xi)$$

For $\gamma < \alpha$, the function $\partial^{\alpha-\gamma}[1-\chi(\xi)]$ is in $\mathcal{C}_0^{\infty}(\mathbb{R}^n;\mathbb{R})$ and it is equal to 0 in a neighbourhood of $\xi = 0$. Thus, we have

$$\partial_{\xi}^{\alpha}K(\xi) = i \; \partial^{\alpha}(|\xi|) \left[1 - \chi(\xi)\right] + f(\xi) \,, \qquad f \in \mathcal{C}_{0}^{\infty}(\mathbb{R}^{n};\mathbb{R}) \,.$$

To conclude, it suffices to remark that $\partial^{\alpha}(|\xi|)$ is homogeneous of degree $1 - |\alpha|$.

2. Let K(D) be the pseudo-differential operator associated to the symbol K, that is

$$[K(D) u](x) = (2\pi)^{-n/2} \int_{\mathbf{R}^n} e^{i x \cdot \xi} K(\xi) \hat{u}(\xi) d\xi.$$

2.1. We select some function u in the Schwartz space $\mathcal{S}(\mathbb{R}^n)$. Prove that K(D)u is a bounded function. What more needs to be said about K(D)u?

We have

$$[K(D) u](x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i x \cdot \xi} \langle \xi \rangle^{-1} K(\xi) \langle \xi \rangle^{-n-1} \langle \xi \rangle^{n+2} \hat{u}(\xi) d\xi$$

The function $\langle \xi \rangle^{-1} K(\xi)$ is bounded because $K \in S^1$. The function $\langle \xi \rangle^{n+2} \hat{u}(\xi)$ is bounded because $\hat{u} \in S$. On the other hand, the function $\langle \xi \rangle^{-n-1}$ is integrable on \mathbb{R}^n . Thus, the above integral is convergent (with a uniform bound). As viewed in the course (and as can be proved directly), the function K(D)u is in fact in $S(\mathbb{R}^n)$.

2.2. Show that K(D) is (formally) skew-symmetric in the sense that

$$\langle u, K(D)v \rangle = \int_{\mathbf{R}^n} u(x) \ \overline{K(D)v}(x) \, dx = -\langle K(D)u, v \rangle, \qquad \forall (u,v) \in \mathcal{S}(\mathbf{R}^n)$$

We know that K(D) and $K(D)^*$ are in $OP^1(\mathbf{R}^n)$. From Plancherel theorem, we have

$$\langle u, K(D)v \rangle_{\mathcal{S} \times \mathcal{S}} = \langle \hat{u}, K(\xi)\hat{v} \rangle_{\mathcal{S} \times \mathcal{S}} = \int \hat{u}(\xi) \ \bar{K}(\xi) \ \bar{v}(\xi) \ d\xi.$$

Since $K(\xi) \in i \mathbf{R}$, this leads to

$$\langle u, K(D)v \rangle_{\mathcal{S} \times \mathcal{S}} = -\langle K(\xi)\hat{u}, \hat{v} \rangle_{\mathcal{S} \times \mathcal{S}} = \langle -K(D)u, v \rangle_{\mathcal{S} \times \mathcal{S}} = \langle K(D)^*u, v \rangle_{\mathcal{S} \times \mathcal{S}}.$$

Just compare the two last terms.

3. We consider the Cauchy problem

$$(\mathcal{PC}) \qquad \left\{ \partial_t u - K(D) \, u = 0 \,, \qquad u_{|t=0} = u_0 \in H^s(\mathbb{R}^n) \,, \qquad s \in \mathbb{R} \,. \right.$$

We denote by $\hat{u}(t,\xi)$ the Fourier transform of $u(t,\cdot)$ with respect to $x \in \mathbb{R}^n$.

3.1. Compute $\hat{u}(t,\xi)$ and deduce from the formula thus obtained that

$$(\mathcal{I}) \qquad u(t,\cdot) \in H^s(\mathbb{R}^n), \qquad || \ u(t,\cdot) \ ||_{H^s(\mathbb{R}^n)} = || \ u_0(\cdot) \ ||_{H^s(\mathbb{R}^n)}, \qquad \forall t \in \mathbb{R}^*_+.$$

We have $\hat{u}(t,\xi) = e^{tK(\xi)} \hat{u}_0(\xi)$. Since $e^{tK(\xi)}$ is of modulus 1, we have

$$\| u(t,x) \|_{H^{s}(\mathbf{R}^{n})} = \| \langle \xi \rangle^{s} \, \hat{u}(t,\xi) \|_{L^{2}(\mathbf{R}^{n})} = \left(\int \langle \xi \rangle^{2s} |e^{t \, K(\xi)}| |\hat{u}_{0}(\xi)|^{2} \, d\xi \right)^{1/2} \\ = \left(\int \langle \xi \rangle^{2s} |\hat{u}_{0}(\xi)|^{2} \, d\xi \right)^{1/2} = \| u_{0} \|_{H^{s}(\mathbf{R}^{n})} \, .$$

3.2. Prove that the identity (\mathcal{I}) can also be recovered through energy estimates performed at the level of (\mathcal{PC}) .

We can follow the following steps : :

• We compose (\mathcal{PC}) on the left with $op \langle \xi \rangle^s \equiv \langle D \rangle^s$. Since $[\langle D \rangle^s; K(D)] \equiv 0$, the expression $w(t,x) := \langle D \rangle^s u(t,x)$ must be a solution of

$$\{\partial_t w - K(D) w = 0, \qquad w_{|t=0} = w_0 := \langle D \rangle^s u_0 \in L^2(\mathbb{R}^n).$$

• We perform L^2 -energy estimates on this equation. In other words, we multiply the equation on the left by $2^t \bar{w}(t, x)$ and then we integrate in x to obtain

$$\frac{d}{dt} \parallel w(t,\cdot) \parallel^2_{L^2(\mathbf{R}^n)} + 2 \langle w, K(D) w \rangle_{L^2 \times L^2} = 0.$$

Since K(D) is skew-symmetric, we have

$$\langle w, K(D) w \rangle_{L^2 \times L^2} = \langle K(D)^* w, w \rangle_{L^2 \times L^2} = - \langle K(D) w, w \rangle_{L^2 \times L^2} = - \overline{\langle w, K(D) w \rangle_{L^2 \times L^2}}$$

This means that the number $\langle w, K(D) w \rangle_{L^2 \times L^2}$ is purely imaginary. There remains

$$\frac{d}{dt} \parallel w(t,\cdot) \parallel^2_{L^2(\mathbf{R}^n)} = 0$$

which after integration in time, between 0 and t furnishes

$$|| u(t, \cdot) ||_{H^{s}(\mathbb{R}^{n})}^{2} = || w(t, \cdot) ||_{L^{2}(\mathbb{R}^{n})}^{2} = || w_{0}(\cdot) ||_{L^{2}(\mathbb{R}^{n})}^{2} = || u_{0}(\cdot) ||_{H^{s}(\mathbb{R}^{n})}^{2}.$$

4. Let δ_0 be the Dirac mass located at the position x = 0. Show that $\delta_0 \in H^s(\mathbb{R}^n)$ for all $s \in \mathbb{R}$ satisfying s < -(n/2).

The Fourier transform of δ_0 coincides with $1_{\mathbb{R}^n}$. Thus

$$\| \delta_0 \|_{H^s(\mathbb{R}^n)}^2 = \| \langle \xi \rangle^s \|_{L^2(\mathbb{R}^n)}^2 = \left(\int_{\mathbb{S}^n} \int_{\mathbb{R}_+} (1+r^2)^s r^{n-1} dr d\theta \right)^{1/2}$$

This becomes integrable on condition that 2s + n - 1 < -1 which yields the expected condition s < -(n/2).

5. We start with $u_0 = \delta_0$. Recall the definition of the wave front set $WF(\delta_0)$ of the distribution δ_0 . Then describe the content of $WF(\delta_0)$.

We want to show that

 $WF(\delta_0) = \{(0,\xi); \xi \in \mathbb{R}^n \setminus \{0\}\}.$

It is clear that $\delta \equiv 0$ on all open sets that do not contain $0 \in \mathbf{R}^n$ which implies that $WF(\delta) \subset \{0\} \times \mathbf{R}^n$. Then, if $\varphi \in \mathcal{C}_0^{\infty}(\mathbf{R}^n)$ satisfies $\varphi(0) \neq 0$, we find that (modulo multiplicative constants)

$$\widehat{\varphi\,\delta}(\xi) \,=\, (\hat{\varphi}\star\hat{\delta})(\xi) \,=\, \int_{\mathbf{R}^n}\,\hat{\varphi}(\xi-\eta)\,\,\mathbb{I}_{\mathbf{R}^N}(\eta)\,\,d\eta \,=\, \int_{\mathbf{R}^n}\,\hat{\varphi}(\eta)\,\,d\eta \,=\, \varphi(0)\neq 0.$$

The fonction $\widehat{\varphi \delta}(\cdot)$ is a (non-zero) constant. There is no conic neighboorhood of a direction $\xi \in \mathbf{R}^n \setminus \{0\}$ where it can be rapidly decreasing. Thus, all positions $(0,\xi)$ are in the wave front set of δ_0 .

6. We consider (\mathcal{PC}) for the choice $u_0 = \delta_0$. We denote by u the corresponding solution. We fix some $t \in \mathbb{R}^*_+$ as well as some $\varphi \in \mathcal{C}^{\infty}_0(\mathbb{R}^n)$. Show that we can find a fonction ψ in the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ giving rise to

$$\widehat{\varphi u}(t,\xi) = \int_{\mathbb{R}^n} \widehat{\varphi}(\xi-\eta) \ e^{it |\eta|} \ d\eta + \psi(\xi)$$

Let again $\chi \in C_0^{\infty}(\mathbb{R}^n)$ with $\chi \equiv 1$ in a neighboorhood of 0. Define

$$\tilde{\chi}(\eta) := e^{i t |\eta| (1 - \chi(\eta))} - e^{i t |\eta|}$$

The function $\tilde{\chi}$ is smooth, bounded and compactly supported. Retain that

 $\exists R \in [1, +\infty[; \qquad |\eta| \ge R \implies \tilde{\chi}(\eta) = 0.$

 $We \ take$

$$\psi(\xi) := \int_{\mathbb{R}^n} \hat{\varphi}(\xi - \eta) \ \chi(\eta) \ d\eta = \left(\hat{\varphi} \star \chi\right)(\xi), \qquad \hat{\varphi} \in \mathcal{S}(\mathbb{R}^n), \quad \chi \in L^1(\mathbb{R}^n).$$

The function ψ is smooth (of class \mathcal{C}^{∞}) since the same applies to φ . The integrale in η concerns only the ball B(0, R]. For $|\eta| \leq R$ and $|\xi| \geq 4R$, we have

$$1 + |\xi - \eta|^2 \ge 1 + (|\xi| - R)^2 \ge 1 + |\xi|^2 - 2R|\xi| + R^2 \ge \frac{1}{2} (1 + |\xi|^2).$$

On the other hand, since $\varphi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n)$, we have the control

$$\forall \, k \in \mathbf{N} \,, \qquad \exists \, C_k \in \mathbf{R}^*_+ \,; \qquad |\hat{\varphi}(\zeta)| \leq \langle \zeta \rangle^{-k} \,.$$

It follows that

$$|\xi| \ge 4 R \implies |\psi(\xi)| \le C_k \ \langle \xi - \eta \rangle^{-k} \parallel \chi \parallel_{L^1(\mathbb{R}^n)} \le 2^{-k/2} C_k \parallel \chi \parallel_{L^1(\mathbb{R}^n)} \langle \xi \rangle^{-k},$$

which means that ψ is indeed rapidly decreasing.

7. In this question, we consider the Cauchy problem

 $\left(\mathcal{PC}\delta\right) \qquad \left\{ \left.\partial_t \tilde{u} \,-\, i \,\left|D\right| \tilde{u} = 0 \,, \qquad \tilde{u}_{|t=0} = \delta \,. \right.$

Let $t \in \mathbb{R}_+$. Describe the wave front set $WF(\tilde{u}(t, \cdot))$ of the distribution $\tilde{u}(t, \cdot)$. Justify the answer.

The theorem describing the propagation of the wave front set says that

 $WF(\tilde{u}(t,\cdot)) = \Phi_t(WF(\delta))$

where Φ_t is the diffeomorphism induced by the Hamiltonian field $H(x,\xi) \equiv H(\xi) := |\xi|$. We have to look at

$$\begin{cases} \frac{d}{dt}X(t,y,\eta) = -\nabla_{\xi}H(X,\Xi) = -\frac{\Xi}{|\Xi|}, \quad X(0,y,\eta) = y, \\ \frac{d}{dt}\Xi(t,y,\eta) = +\nabla_{x}H(X,\Xi) = 0, \quad \Xi(0,y,\eta) = \eta. \end{cases}$$

This furnishes $\Xi(t, y, \eta) = \eta$ and then

$$X(t, y, \eta) = y - t \frac{\eta}{|\eta|}.$$

A the time t, the wave front set is contained in the cone with center 0 and radius t (the so-called light cone). In other words

$$WF(\tilde{u}(t,\cdot)) = \left\{ \left(-t \ \frac{\eta}{|\eta|}, \eta\right); \ \eta \in \mathbf{R}^n \right\}.$$