Microlocal Analysis

Terminal Examination - the 12/12/2022 (2h)

Documents are not allowed

Exercice 1 [About the basic rules of pseudo-differential calculus]. Let $m \in \mathbb{Z}$ and let $a(x, \xi) \in S_{1,0}^{m}\left(\mathbb{R}^{n}\right)$ be a symbol of order m. We recall that the action of the pseudodifferential operator $\operatorname{Op}(a) \equiv a(x, D)$ is given by

$$
\operatorname{Op}(a) u(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a(x, \xi) \hat{u}(\xi) d \xi .
$$

1.1. We denote by $\left[\mathrm{Op}(a), \partial_{j}\right]$ the commutator of $\mathrm{Op}(a)$ with the partial derivative with respect to the j^{em} direction. Prove that $\left[\mathrm{Op}(a), \partial_{j}\right]$ is a pseudo-differential operator and compute its symbol in terms of a.
1.2. Same question for $\left[\mathrm{Op}(a), x_{j}\right]$ where x_{j} is the multiplication operator by x_{j}.

Exercice 2 [About the localization of the wave front set]. Let $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ be a compactly supported distribution. We say that a direction $\xi \neq 0$ is in $\Upsilon(u)$ when there exists a conic neighborhood \mathcal{C}_{1} of ξ such that \hat{u} is rapidly decreasing inside \mathcal{C}_{1}. The complement of $\Upsilon(u)$ is denoted by $\Sigma(u):=\Upsilon(u)^{c}$. In what follows, we fix some $\xi \neq 0$ inside $\Upsilon(u)$.
2.0. Explain the sense of the sentence " \hat{u} is of at most polynomial growth ", and then recall why \hat{u} is a smooth function of at most polynomial growth.
2.1. Explain the sense of the sentence " \hat{u} is rapidly decreasing inside \mathcal{C}_{1} ".
2.2. Prove that there is a conic neighborhood \mathcal{C}_{2} of ξ and a constant $\left.c \in\right] 0,1[$ such that

$$
\forall \eta \in \mathcal{C}_{2}, \quad\|\eta-\zeta\| \leq c\|\eta\| \Longrightarrow \zeta \in \mathcal{C}_{1}
$$

Indication : interpret the condition in terms of

$$
\check{\xi}:=\frac{\xi}{\|\xi\|}, \quad \tilde{\eta}:=\frac{\eta}{\|\eta\|}, \quad \tilde{\zeta}:=\frac{\zeta}{\|\eta\|} .
$$

2.3. Let ϕ be in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
2.3.1. Prove and give a sense to the formula $\widehat{\phi u}(\eta)=F(\eta)+G(\eta)$ where

$$
F(\eta):=\int_{\|\eta-\zeta\| \leq c\|\eta\|} \hat{\phi}(\eta-\zeta) \hat{u}(\zeta) d \zeta, \quad G(\eta):=\int_{\|\eta-\zeta\| \geq c\|\eta\|} \hat{\phi}(\eta-\zeta) \hat{u}(\zeta) d \zeta .
$$

2.3.2. Prove that F is rapidly decreasing on \mathcal{C}_{2}.
2.3.3. By using Peetre's inequality

$$
\forall t \in \mathbb{R}, \quad\langle\eta\rangle^{t} \leq 2^{|t|}\langle\zeta\rangle^{t}\langle\eta-\zeta\rangle^{|t|}
$$

prove that G is rapidly decreasing.
2.3.4. Show that $\Sigma(\phi u) \subset \Sigma(u)$.
2.3.5. Let $\chi \in \mathcal{D}\left(\mathbb{R}^{n}\right), \psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$. Prove that $\Upsilon(\chi v) \subset \Upsilon(\psi \chi v)$.
2.4. Below, the symbol "WF" is for "Wave Front set". From the foregoing, deduce that

$$
\forall \psi \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad \forall v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right), \quad W F(\psi v) \subset W F(v)
$$

Exercice 3 [About the square root of an elliptic operator]. Let a be a symbol which is in $S_{1,0}^{m}\left(\mathbb{R}^{n} ; \mathbb{R}_{+}^{*}\right)$ with $m \in \mathbb{R}$ and $n \in \mathbb{N}$. We assume that

$$
\exists(c, R) \in\left(\mathbb{R}_{+}^{*}\right)^{2} ; \quad a(x, \xi) \geq c\left(1+\|\xi\|^{2}\right)^{m / 2} \quad \text { if } \quad\|\xi\| \geq R
$$

3.1. Prove that we can find an elliptic operator $b_{0} \in S_{1,0}^{(m / 2)}\left(\mathbb{R}^{n}\right)$ such that

$$
O p(a)-O p\left(b_{0}\right) \circ O p\left(b_{0}\right) \in S_{1,0}^{m-1}\left(\mathbb{R}^{n}\right)
$$

3.2. We fix some $N \in \mathbb{N}$ with $N \geq 2$. Show by induction that we can find symbols $b_{k} \in S_{1,0}^{(m / 2)-k}\left(\mathbb{R}^{n}\right)$ with $0 \leq k \leq N$ which are adjusted such that

$$
O p(a)-O p\left(b_{0}+\cdots+b_{N}\right) \circ O p\left(b_{0}+\cdots+b_{N}\right) \in S_{1,0}^{m-N-1}\left(\mathbb{R}^{n}\right)
$$

Problème [About the canonical commutation relations]. We consider two unbounded self-adjoint operators A and B on the Hilbert space \mathcal{H} satisfying the exponentiated commutation relation

$$
\begin{equation*}
\forall(s, t) \in \mathbb{R}^{2}, \quad e^{i s A} e^{i t B}=e^{-i s t \hbar} e^{i t B} e^{i s A} \tag{ECR}
\end{equation*}
$$

where \hbar is the reduced Planck constant. In what follows, we consider a function f which is in the Schwarz space $\mathcal{S}\left(\mathbb{R}^{2}\right)$ and which is real valued. We denote by \hat{f} its Fourier transform. We define $U(s, t):=e^{i s t \hbar / 2} e^{i s A} e^{i t B}$ together with the bounded operator $Q(f)$ by the formula

$$
Q(f):=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{f}(s, t) U(s, t) d s d t
$$

P.1. Prove that
(CCR)

$$
\forall\left(s, t, s^{\prime}, t^{\prime}\right) \in \mathbb{R}^{4}, \quad U(s, t) U\left(s^{\prime}, t^{\prime}\right)=e^{-i \hbar\left(s t^{\prime}-t s^{\prime}\right) / 2} U\left(s+s^{\prime}, t+t^{\prime}\right)
$$

P.2. Show that $U(s, t)^{*}=U(-s,-t)$ (where the star $*$ is for the adjoint operation).
P.3. Recall that f is real valued. Explain why $Q(f)$ is well defined and self-adjoint.
P.4. Prove that $U(s, t) Q(f):=Q\left(f^{\prime}\right)$ where the function f^{\prime} is defined by its Fourier transform which is given by

$$
\hat{f}^{\prime}\left(s^{\prime}, t^{\prime}\right):=e^{i \hbar\left(s^{\prime} t-s t^{\prime}\right) / 2} \hat{f}\left(s^{\prime}-s, t^{\prime}-t\right) .
$$

P.5. Prove that we have

$$
U(s, t)^{*} Q(f) U(s, t)=U(-s,-t) Q(f) U(s, t)=Q(g)
$$

where the function g is such that $\hat{g}\left(s^{\prime}, t^{\prime}\right)=e^{i \hbar\left(s^{\prime} t-s t^{\prime}\right)} \hat{f}\left(s^{\prime}, t^{\prime}\right)$.
P.6. Explain why we have $Q(f) Q(g)=Q(f \star g)$ for all $(f, g) \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ where $f \star g$ is the Moyal product described by

$$
\widehat{f \star g}(s, t):=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} e^{-i \hbar\left(s t^{\prime}-t s^{\prime}\right) / 2} \hat{f}\left(s-s^{\prime}, t-t^{\prime}\right) \hat{g}\left(s^{\prime}, t^{\prime}\right) d s^{\prime} d t^{\prime} .
$$

P.7. Let ϕ and ψ in \mathcal{H} as well as s and t in \mathbb{R}. We assume that f is such that $Q(f)=0$. By exploiting the relation

$$
0=\langle U(s, t) \phi, Q(f) U(s, t) \psi\rangle,
$$

show that the operator Q is injective on $\mathcal{S}\left(\mathbb{R}^{2}\right)$.

