

Microlocal Analysis

Terminal Examination - the 12/12/2022 (2h)

Documents are not allowed

Exercise 1 [About the basic rules of pseudo-differential calculus]. Let $m \in \mathbb{Z}$ and let $a(x,\xi) \in S_{1,0}^m(\mathbb{R}^n)$ be a symbol of order m. We recall that the action of the pseudo-differential operator $\operatorname{Op}(a) \equiv a(x, D)$ is given by

$$Op(a)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} a(x,\xi) \,\hat{u}(\xi) \,d\xi \,.$$

1.1. We denote by $[Op(a), \partial_j]$ the commutator of Op(a) with the partial derivative with respect to the $j^{\text{èm}}$ direction. Prove that $[Op(a), \partial_j]$ is a pseudo-differential operator and compute its symbol in terms of a.

1.2. Same question for $[Op(a), x_j]$ where x_j is the multiplication operator by x_j .

Exercice 2 [About the localization of the wave front set]. Let $u \in \mathcal{E}'(\mathbb{R}^n)$ be a compactly supported distribution. We say that a direction $\xi \neq 0$ is in $\Upsilon(u)$ when there exists a conic neighborhood \mathcal{C}_1 of ξ such that \hat{u} is rapidly decreasing inside \mathcal{C}_1 . The complement of $\Upsilon(u)$ is denoted by $\Sigma(u) := \Upsilon(u)^c$. In what follows, we fix some $\xi \neq 0$ inside $\Upsilon(u)$.

2.0. Explain the sense of the sentence " \hat{u} is of at most polynomial growth ", and then recall why \hat{u} is a smooth function of at most polynomial growth.

2.1. Explain the sense of the sentence " \hat{u} is rapidly decreasing inside C_1 ".

2.2. Prove that there is a conic neighborhood \mathcal{C}_2 of ξ and a constant $c \in [0, 1]$ such that

$$\forall \eta \in \mathcal{C}_2, \quad \| \eta - \zeta \| \le c \| \eta \| \Longrightarrow \zeta \in \mathcal{C}_1.$$

Indication : interpret the condition in terms of

$$\check{\xi} := \frac{\xi}{\parallel \xi \parallel}, \qquad \tilde{\eta} := \frac{\eta}{\parallel \eta \parallel}, \qquad \tilde{\zeta} := \frac{\zeta}{\parallel \eta \parallel}.$$

2.3. Let ϕ be in the Schwartz space $\mathcal{S}(\mathbb{R}^n)$.

2.3.1. Prove and give a sense to the formula $\widehat{\phi}u(\eta) = F(\eta) + G(\eta)$ where

$$F(\eta) := \int_{\|\eta-\zeta\| \le c\|\eta\|} \hat{\phi}(\eta-\zeta) \,\hat{u}(\zeta) \,d\zeta \,, \qquad G(\eta) := \int_{\|\eta-\zeta\| \ge c\|\eta\|} \hat{\phi}(\eta-\zeta) \,\hat{u}(\zeta) \,d\zeta \,.$$

2.3.2. Prove that F is rapidly decreasing on C_2 .

2.3.3. By using Peetre's inequality

$$\forall t \in \mathbb{R}, \qquad \langle \eta \rangle^t \le 2^{|t|} \langle \zeta \rangle^t \langle \eta - \zeta \rangle^{|t|},$$

prove that G is rapidly decreasing.

2.3.4. Show that $\Sigma(\phi u) \subset \Sigma(u)$.

2.3.5. Let
$$\chi \in \mathcal{D}(\mathbb{R}^n)$$
, $\psi \in C^{\infty}(\mathbb{R}^n)$ and $v \in \mathcal{D}'(\mathbb{R}^n)$. Prove that $\Upsilon(\chi v) \subset \Upsilon(\psi \chi v)$.

2.4. Below, the symbol "WF" is for "Wave Front set". From the foregoing, deduce that

$$\forall \psi \in C^{\infty}(\mathbb{R}^n), \qquad \forall v \in \mathcal{D}'(\mathbb{R}^n), \qquad WF(\psi v) \subset WF(v)$$

Exercice 3 [About the square root of an elliptic operator]. Let a be a symbol which is in $S_{1,0}^m(\mathbb{R}^n;\mathbb{R}^*_+)$ with $m \in \mathbb{R}$ and $n \in \mathbb{N}$. We assume that

$$\exists (c,R) \in (\mathbb{R}^*_+)^2; \qquad a(x,\xi) \ge c \, (1+ \parallel \xi \parallel^2)^{m/2} \quad \text{if} \quad \parallel \xi \parallel \ge R.$$

3.1. Prove that we can find an elliptic operator $b_0 \in S_{1,0}^{(m/2)}(\mathbb{R}^n)$ such that

$$Op(a) - Op(b_0) \circ Op(b_0) \in S_{1,0}^{m-1}(\mathbb{R}^n).$$

3.2. We fix some $N \in \mathbb{N}$ with $N \geq 2$. Show by induction that we can find symbols $b_k \in S_{1,0}^{(m/2)-k}(\mathbb{R}^n)$ with $0 \leq k \leq N$ which are adjusted such that

$$Op(a) - Op(b_0 + \dots + b_N) \circ Op(b_0 + \dots + b_N) \in S_{1,0}^{m-N-1}(\mathbb{R}^n).$$

Problème [About the canonical commutation relations]. We consider two unbounded self-adjoint operators A and B on the Hilbert space \mathcal{H} satisfying the exponentiated commutation relation

$$(ECR) \qquad \forall (s,t) \in \mathbb{R}^2, \qquad e^{isA} e^{itB} = e^{-ist\hbar} e^{itB} e^{isA}.$$

where \hbar is the reduced Planck constant. In what follows, we consider a function f which is in the Schwarz space $S(\mathbb{R}^2)$ and which is real valued. We denote by \hat{f} its Fourier transform. We define $U(s,t) := e^{ist\hbar/2} e^{isA} e^{itB}$ together with the bounded operator Q(f)by the formula

$$Q(f) := \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \hat{f}(s,t) \ U(s,t) \ ds \, dt$$

P.1. Prove that

$$(CCR) \qquad \forall (s,t,s',t') \in \mathbb{R}^4, \quad U(s,t) U(s',t') = e^{-i\hbar(st'-ts')/2} U(s+s',t+t').$$
$$\implies T.S.V.P.$$

P.2. Show that $U(s,t)^* = U(-s,-t)$ (where the star * is for the adjoint operation).

P.3. Recall that f is real valued. Explain why Q(f) is well defined and self-adjoint.

P.4. Prove that U(s,t)Q(f) := Q(f') where the function f' is defined by its Fourier transform which is given by

$$\hat{f}'(s',t') := e^{i\hbar(s't-st')/2} \hat{f}(s'-s,t'-t).$$

P.5. Prove that we have

$$U(s,t)^*\,Q(f)\,U(s,t) = U(-s,-t)\,Q(f)\,U(s,t) = Q(g)$$

where the function g is such that $\hat{g}(s',t') = e^{i\hbar(s't-st')} \hat{f}(s',t')$.

P.6. Explain why we have $Q(f)Q(g) = Q(f \star g)$ for all $(f,g) \in \mathcal{S}(\mathbb{R}^2)$ where $f \star g$ is the Moyal product described by

$$\widehat{f \star g}(s,t) := \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{-i\hbar(st'-ts')/2} \,\widehat{f}(s-s',t-t') \,\widehat{g}(s',t') \,\,ds' \,dt'.$$

P.7. Let ϕ and ψ in \mathcal{H} as well as s and t in \mathbb{R} . We assume that f is such that Q(f) = 0. By exploiting the relation

$$0 = \langle U(s,t) \phi, Q(f) U(s,t) \psi \rangle,$$

show that the operator Q is injective on $\mathcal{S}(\mathbb{R}^2)$.